
Learning Memory-Enhanced Improvement Heuristics
for Flexible Job Shop Scheduling

Jiaqi Wang1,2, Zhiguang Cao4, Peng Zhao1,3∗, Rui Cao1,3,
Yubin Xiao1,3, Yuan Jiang5∗, You Zhou1,2,3∗

1Key Laboratory of Symbolic Computation and Knowledge
Engineering of Ministry of Education, Jilin University

2College of Software, Jilin University
3College of Computer Science and Technology, Jilin University

4Singapore Management University 5Nanyang Technological University
{jqwang24, pengzhao23, ruicao24, xiaoyb21}@mails.jlu.edu.cn

zhiguangcao@outlook.com, yuan005@e.ntu.edu.sg, zyou@jlu.edu.cn

Abstract

The rise of smart manufacturing under Industry 4.0 introduces mass customization
and dynamic production, demanding more advanced and flexible scheduling tech-
niques. The flexible job-shop scheduling problem (FJSP) has attracted significant
attention due to its complex constraints and strong alignment with real-world pro-
duction scenarios. Current deep reinforcement learning (DRL)-based approaches to
FJSP predominantly employ constructive methods. While effective, they often fall
short of reaching (near-)optimal solutions. In contrast, improvement-based meth-
ods iteratively explore the neighborhood of initial solutions and are more effective
in approaching optimality. However, the flexible machine allocation in FJSP poses
significant challenges to the application of this framework, including accurate state
representation, effective policy learning, and efficient search strategies. To address
these challenges, this paper proposes a Memory-enhanced Improvement Search
framework with heterogeneous graph representation—MIStar. It employs a novel
heterogeneous disjunctive graph that explicitly models the operation sequences
on machines to accurately represent scheduling solutions. Moreover, a memory-
enhanced heterogeneous graph neural network (MHGNN) is designed for feature
extraction, leveraging historical trajectories to enhance the decision-making capa-
bility of the policy network. Finally, a parallel greedy search strategy is adopted to
explore the solution space, enabling superior solutions with fewer iterations. Exten-
sive experiments on synthetic data and public benchmarks demonstrate that MIStar
significantly outperforms both traditional handcrafted improvement heuristics and
state-of-the-art DRL-based constructive methods.

1 Introduction

As an emerging paradigm integrating advanced manufacturing and digital technologies, Industry 4.0
is transforming production toward dynamic, large-scale, and customized manufacturing [1, 2]. The
job-shop scheduling problem (JSP) [3], a classic NP-hard combinatorial optimization problem (COP),
has been widely studied and plays a critical role in manufacturing systems [4]. As an extension of
JSP [5, 6], the flexible job-shop scheduling problem (FJSP) allows each operation to be assigned to

∗Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

one of several eligible machines [7], making it more suitable in handling the flexibility and diversity of
task–resource relations in new manufacturing paradigms [8]. While this increased flexibility enables
FJSP to better meet the demands of mass customization and automation in smart manufacturing
(SM) [5, 9, 10], it also introduces greater challenges in developing effective solution strategies [11].

Recent advances in neural models have shown remarkable effectiveness in solving complex
COPs [12, 13, 14, 15, 16, 17, 18]. As one promising paradigm among them, Deep Reinforce-
ment Learning (DRL) formulates the scheduling task as a Markov decision process (MDP), learning
a parameterized policy network that receives scheduling state as input and outputs feasible actions.
DRL approaches to scheduling can be categorized into construction and improvement [19, 20]. Con-
struction methods build schedules by assigning an operation to a machine at each step, progressively
extending partial solutions to complete ones [21]. However, their performance heavily relies on state
representations [22]. Many studies [23, 24, 25, 26] model scheduling states using disjunctive graphs,
but the incompleteness of partial solutions often leads to the omission of important components [21]
(e.g., the disjunctive arcs among undispatched operations [23]). Additionally, disjunctive graphs
struggle to incorporate essential work-in-progress information required during construction [21]
(e.g., current machine load and job status). These limitations lead to suboptimal schedules and
reduce their adaptability in SM. In contrast, improvement methods start from a complete initial
solution and iteratively refine it through small adjustments [27]. As the MDP state represents a fully
scheduled solution, it avoids the information loss inherent in partial ones. Moreover, the structure
of disjunctive graphs naturally encodes topological relationships among operations [28], enabling
complete schedules to be effectively represented with all necessary information [21]. This better
supports the high-performance demands of complex scheduling scenarios in SM.

Despite the promising results, most existing DRL-based improvement methods focus only on nonflex-
ible problems, such as the JSP [21, 29]. The increased complexity of FJSP over JSP poses significant
challenges for designing effective improvement approaches. First, the one-to-many relationships
between operations and machines make the scheduling state more intricate [8], challenging its rep-
resentation and demanding more expressive neural networks for encoding. Second, improvement
methods explore solutions through local moves within neighborhoods. In FJSP, due to the complex
decisions involving both operation sequencing and machine assignment [6], this process requires
tailored local moves as actions in the MDP [27]. Moreover, the existence of flexibility in FJSP signif-
icantly enlarges the solution space, increasing the risk of local optima entrapment and necessitating
more efficient search strategies to reduce the extensive number of iterations for convergence [27, 30].

To address the above challenges, we propose a DRL-based improvement heuristic framework for FJSP.
First, to represent complex scheduling states, we design a novel heterogeneous disjunctive graph
by adding machine nodes with directed hyper-edges to encode the complete solution, effectively
capturing critical information about operation sequencing on machines. We also propose a hetero-
geneous graph neural network and enhance its exploratory capability via a memory module, which
stores compact representations of visited solutions and retrieves relevant information to enrich the
current state embedding. This module leverages historical schedules to improve decision-making and
alleviate local optima issues. Second, we construct the action space based on the Nopt2 neighborhood
structure, enabling simultaneous adjustment to operation sequences and machine assignments, and
further reduce its dimensionality via constraint relationships to enhance search efficiency. Finally, we
propose a parallel greedy exploration strategy that evaluates multiple candidate actions at each step,
achieving comparable solution quality with fewer iterations. Extensive experiments on synthetic data
and public benchmarks demonstrate the superior performance of our approach in solving FJSP.

The contributions of this paper are summarized as follows: 1) The first DRL-based improvement
heuristic framework for FJSP—MIStar, capable of learning size-agnostic policies that outperform
both traditional handcrafted improvement and state-of-the-art DRL construction methods. 2) An MDP
formulation with a heterogeneous disjunctive graph for state representation of complete scheduling
solutions in FJSP, and an action space that enables simultaneous adjustments to operation sequences
and machine assignments. 3) A memory-enhanced heterogeneous graph neural network (MHGNN)
that leverages historical solutions to improve decision-making and alleviate local optima issues. 4) A
parallel greedy exploration strategy that improves efficiency of solution space exploration.

2

2 Related work

This section reviews the limitations of DRL-based construction methods and recent advances in
improvement methods, highlighting the challenges in solving FJSP.

Construction methods construct complete solutions by assigning an operation to a machine at each
step. Compared to the heuristic guidance offered by conventional dispatching rules, DRL employs
DNNs to score actions, but their effectiveness heavily relies on state representations [22, 31, 32]. Early
approaches [33, 34, 35, 36] extract multiple general state features as input, which overcompresses state
information and neglects the structural nature of FJSP [37]. Recent works [8, 23, 24, 38, 39] integrate
GNNs with DRL by modeling scheduling states as graphs, learning rich graph embeddings with
structural information for decision-making. However, the incompleteness of partial solutions often
results in the omission of important components [21] (e.g., the disjunctive arcs among undispatched
operations [23]), and work-in-progress information required during construction is hard to explicitly
represent in disjunctive graphs [21], leading to suboptimal performance.

Improvement methods iteratively refine solutions by performing local moves within the neighborhood.
Conventional methods use handcrafted rules to greedily select the best solution at each step, but suffer
from myopia and costly neighborhood evaluation [21]. Recent studies [21, 29, 40, 41] have addressed
these limitations by leveraging deep policy networks in DRL to directly generate local moves. Such
DRL-based improvement heuristics were initially applied to routing problems [42, 43, 44] and have
since been adapted to scheduling domains. By representing complete solutions as MDP states
through disjunctive graphs, these approaches circumvent the inaccuracies in state representation that
arise from partial solutions [21]. Falkner et al. [40] train a GNN-based JSP solver using DRL to
adapt local search strategies according to problem-specific features. However, their design of local
operators relies heavily on expertise, limiting the generalizability. Closer to our work, Zhang et
al. [21, 29] represent JSP solutions with disjunctive graphs and define the action space as a set of
exchangeable operation pairs based on the N5 neighborhood structure [45], training a GNN-based
policy network via DRL. While effective for JSP, extending this framework to FJSP—whose flexible
machine assignments better suit mass customization and dynamic production in Industry 4.0 [9, 10]—
faces critical challenges. First, conventional disjunctive graphs lack machine nodes, making them
insufficient for complex states of FJSP. In addition, the N5-based action design does not account for
machine assignment adjustments(See Appendix A for analysis). Furthermore, the increased flexibility
of FJSP over JSP enlarges the solution space and aggravates local optima issues in local search [46].

An effective approach to this issue is leveraging memory mechanisms by incorporating past experience
to promote exploration [47]. Garmendia et al. [48] maintain a tabu memory to filter redundant visits
in routing problems, yet such methods fail to integrate historical data into the decision-making of the
policy, leaving historical information underutilized. A closely related work is MARCO [47], which
aggregates contextually relevant information from the memory module to enhance state embeddings
and improve policy decisions. However, its application in improvement methods is limited to simple
binary optimization problems (i.e., maximum cut and maximum independent set), and its approach to
information aggregation is unsuitable for the complex constraints in FJSP. In contrast, we simplify
scheduling representations, which are stored in the memory module and aggregated via a soft voting
mechanism [49] to better accommodate the intricate constraints of FJSP.

(a) (b) (c)
Figure 1 Graph representations of FJSP. (a) FJSP instance in a disjunctive graph; (b) feasible
solution in a disjunctive graph; (c) feasible solution in our graph.

3 Preliminaries

This section presents the formulation of FJSP, disjunctive graphs, and Nopt2 neighborhood structure.

3

Flexible job shop scheduling problem. FJSP is defined as follows: Given a set of jobs J =
{J1, J2, · · · , Jn} and a set of machines M = {M1,M2, · · · ,Mm}, each job Ji consists of ni

operations denoted by Oi = {Oi1 , Oi2 , · · · , Oini}. The operations within a job must be processed
in a specific order, known as precedence constraints. Each operation Oij can be processed by any
machine Mk for a processing time pkij from its compatible set Mij ⊆ M, and the processing is
non-preemptive. Each machine can process only one operation at a time. The objective of FJSP is to
assign each operation to a compatible machine and determine its processing sequence on the selected
machine to minimize the makespan, defined as the maximum completion time Cmax = maxi,j{Cij},
where Cij denotes the completion time of Oij .

Disjunctive graph. An FJSP instance can be represented by a disjunctive graph G = (O, C,D) [50].
The operation set O = {Oij | ∀i, j} ∪ {OS , OT } includes all operation nodes and two dummy ones
representing the start and end states. The conjunctive arc set C consists of directed arcs that describe
the precedence constraints between operations of the same job. The disjunctive arc set D = ∪kDk

comprises undirected edges, and each Dk connects operations processed on the same machine Mk.
In FJSP, each operation can be connected to multiple disjunctive arcs. Therefore, solving an FJSP
instance is equivalent to selecting a disjunctive arc for each node and fixing its direction to construct
a DAG [28]. In the graph, the longest path from OS to OT is called the critical path (CP), whose
length represents the makespan of the solution. See Figure 1a and 1b for examples.

Figure 2 Nopt2 neighborhood structure.

The Nopt2 neighbourhood Structure. Given
a solution s, the Nopt2 constructs the neighbour-
hood Nopt2(s) as follows. First, the critical
path CP(s) is identified. Then, an operation
Ok

ij on the critical path is chosen and deleted
from its current processing sequence of Mk. It
is reinserted into the optimal insertion interval
within the sequence of an alternative compatible
machine Mk′ yielding a new solution s′. The
optimal insertion interval is determined based
on the precedence relations between the newly
inserted operation and existing operations on Mk′ , ensuring that all constraints are satisfied and the
makespan of s′ is potentially reduced. We adopt the Nopt2 neighborhood structure [51] (Figure 2) to
define the local move during the search process of MIStar. By identifying optimal insertion interval,
this structure significantly reduces the size of neighborhood. The neighborhood size |Nopt2(s)| is
influenced by both the instance scale and the flexibility of machine selection.

4 Methodology

This section details our framework, illustrated in Figure 3. Given an FJSP instance, an initial
solution is generated and transformed into a heterogeneous graph, from which a memory-enhanced
GNN learns embeddings. The policy network samples several local moves from the neighborhood
and evaluates in parallel. The best one is executed to update the current solution, yielding a new
one. The process terminates after a predefined search horizon. We formulate the iterative solution
optimization as a MDP. This section first formalizes the MDP, then presents a novel heterogeneous
graph representation and the memory-enhanced GNN-based policy network. Finally, we describe the
parallel greedy exploration strategy and the training algorithm.

4.1 MDP Formulation

We formulate the iterative optimization process of the FJSP as a discrete MDP. At each step t, the
agent, the decision-maker based on a given policy, selects an action (local move) from the action
space (neighborhood), and the state transitions accordingly to represent a new solution. The MDP is
defined as follows.

State. The state st encodes a complete solution and is defined by a set of feature vectors, including
xoij ∈ R9 for each operation Oij and yMk

∈ R4 for each machine Mk, detailed in Appendix B.
Action. The action space At comprises local moves in the Nopt2 neighborhood, changing with

4

Figure 3 The architecture of MIStar.

the state st. Each action at = [Om, On,Mk] denotes inserting critical operation Om before op-
eration On in the processing sequence of machine Mk, where Om /∈ {OS , OT } and On ̸= OS .
Reward. The reward comprises two components: improvement in solution quality rgain and penalty
for redundant solution visits rpenalty . The term rgain measures the improvement over the incumbent
best solution s∗t (initialized as s0), and is defined as: rgain = max(Cmax(s

∗
t) − Cmax(st+1), 0),

where maximizing the cumulative reward is equivalent to minimizing the makespan Cmax(s
∗
t). The

term rpenalty discourages redundant exploration by evaluating similarity between st and previous
states. Formally, it is computed as: rpenalty = λ× 1

K

∑
ω∈ΩTopK

ω, where ΩTopK denotes the top-K
similarity scores between st and stored states, and λ is the penalty coefficient. The overall reward is
defined as rt(st, at) = rgain − rpenalty , which is initially dominated by makespan improvement and
gradually shifts toward solution diversity as improvements diminish.

4.2 Directed Heterogeneous Graph

Conventional disjunctive graphs lack machine nodes, hindering GNNs from accurately capturing
machine states in FJSP, which in turn limits policies to effectively maximize machine utilization [37].
Inspired by the heterogeneous disjunctive graph H [8], we introduce a novel directed heterogeneous
disjunctive graph

−→
H = (O,M, C, E) to represent scheduling solutions. In our graph, the operation

and machine nodes are denoted as O and M, while the conjunctive arc set C and hyper-edge set E
represent the processing sequences on jobs and machines, respectively. Mathematically, the hyper-
edge is a special edge that can join any number of vertices [52]. Since machine assignment and
processing sequence are fixed in FJSP solutions, we reinterpret E as a directed hyper-arc set of size
|M|, i.e., E = {Ek = (Mk, O

k1, Ok2, . . . , Oknk)}, where nk is the number of operations processed
on Mk. As shown in Figure 1c, each machine nodes Mk connects to its processing sequence via
directed hyper-arcs Ek to explicitly encode machine status, and the unified directed arcs in

−→
H enable

clearer delineation and distinction of different solutions. See Appendix C for analysis.

4.3 Memory-enhanced Heterogeneous Graph Neural Network

We propose a memory-enhanced heterogeneous graph neural network (MHGNN) to extract state
features from scheduling solutions. As shown in Figure 4, MHGNN encodes the topological and
sequential constraint information to generate operation embeddings, which are aggregated into
machine nodes to obtain machine embeddings. Meanwhile, relevant historical information is retrieved
and extracted as historical action embeddings, which are then concatenated with machine and
operation embeddings before being fed into the policy network to produce an action distribution. The
following sections detail the embeddings design for operations, machines, and historical information.

5

4.3.1 Operation Node Embedding

Following [21], we focus on two key aspects of the FJSP graph: (1) the topology dynamically
changes due to the transitions of MDP state, and (2) rich semantics are conveyed through two
types of neighbors—job predecessors and machine predecessors—reflecting precedence constraints
and processing order on machines via conjunctive arcs and hyper-arcs, respectively. Their joint
representation is crucial for distinguishing solutions, forming the foundation for scheduling decisions.

To encode the topological information, we employ the Graph Isomorphism Network (GIN) [53],
which is known for its strong discriminative power for non-isomorphic graphs. Specifically, given
a graph

−→
H = (O,M, C, E), each operation Oij ∈ O is encoded into a q-dimensional embedding

through an L-layer GIN, where the l-th layer computes as follows:

µl
Oij

= MLPl

(1 + ϵl) · µl−1
Oij

+
∑

U∈N(Oij)

µl−1
U

 (1)

where µl
Oij

∈ Rq denotes the topological embedding of operation Oij at layer l, initialized with its
raw features xoij , ϵl is a learnable parameter, and N(Oij) comprises predecessor operation nodes.

To capture rich semantic relationships among operations, we apply an L-layer Graph Attention
Network (GAT) with nH attention heads, with the feature transformation at layer l computed as:

τ lOij
= GATl

(
τ l−1
Oij

, {τ l−1
U |U ∈ N(Oij)}

)
(2)

where τ lOij
∈ Rq denotes the semantic embedding of operation Oij at layer l, initialized with raw

features xoij . We obtain the operation embedding hl
Oij

∈ R2q at layer l by concatenating the above
two embeddingshe final-layer outputs form the set of operation node embeddings {hOij

= hL
Oij

|
∀Oij ∈ O}.

Figure 4 The network architecture of the memory-enhanced heterogeneou GNN.

4.3.2 Machine Node Embedding

Machine embeddings are incorporated to capture machine load by aggregating the information of
their associated operation nodes, serving as an essential heuristic to guide the policy in reassigning
operations from high-load machines to low-load counterparts [8]. For each machine Mk, the hyper-
arc Ek = (Mk, O

k1, Ok2, . . . , Oknk) encodes its full processing sequence. Since the importance
of operations at different positions varies, we employ an L-layer heterogeneous GAT [8] to extract
machine node embeddings, where nodes with different attributes are processed by distinct linear

6

transformations rather than a shared one when computing the attention coefficients. The machine
node embedding at layer l is computed as follows:

hl
Mk

= HGATl
(
hl−1
Mk

, {hl−1
U |U ∈ N(Mk)}

)
(3)

where hl
Mk

∈ Rq denotes machine embedding at layer l, initialized with raw features yMk
, HGATl is

a heterogeneous graph attention layer, and N(Mk) comprises operations in its processing sequence.
Similarly, the graph-level machine embedding is computed as hM = 1

|M|
∑

Mk∈M hL
Mk

.

4.3.3 Historical Action Embedding

At step t, we store the state-action pair (st, at) in a memory module. To reduce storage and
computational costs, we simplify the representation of st by omitting node attributes and focusing
solely on the processing sequence across machines (see analysis in Appendix D). Specifically, we
store the operation-machine incidence matrix Lt at each step, where the non-zero element (Lt)i,j
represents the processing order index of operation i on machine j, and assess the similarity between
the current state Lt and each historical state Lt′ (t′ < t), by computing the Frobenius inner product
as their similarity score ωt,t′ ∈ Ω, given by:

ωt,t′ = ⟨Lt, Lt′⟩F =

|O|∑
i=1

|M|∑
j=1

(Lt)i,j · (Lt′)i,j (4)

The k-nearest neighbors algorithm retrieves K actions with the highest similarity scores, forming
the set ALt

= {a1, a2, . . . , aK}. We aim to aggregate the information in ALt
to enhance the

state embedding and encourage exploration of more diverse solutions through the design of reward.
However, each historical action ai = [Omi

, Oni
,Mki

] is denoted by discrete integer indices indicating
operations and machines. Simply weighted averaging yields semantically invalid continuous values,
failing to provide useful guidance. To address this, we adopt a soft voting mechanism that aggregates
the three dimensions separately based on frequency-weighted similarity, as follows:

Õm = argmax
Om∈A1

Lt

K∑
i=1

ωt,i · I(Omi
= Om) (5)

Õn = argmax
On∈A2

Lt

K∑
i=1

ωt,i · I(Oni = On) (6)

M̃k = argmax
Mk∈A3

Lt

K∑
i=1

ωt,i · I(Mki = Mk) (7)

where ωt,i is the similarity score between st and the i-th most similar historical state, serving as the
weight of ai, I(·) is the indicator function, and A1

Lt
, A2

Lt
and A3

Lt
denote the unique value sets in

each dimension of ALt
. The aggregated action ãLt

= [Õm, Õn, M̃k] is then mapped by a single-layer
MLP to the embedding space of hO and hM , resulting in the historical action embedding ha ∈ Rq .

4.3.4 Decision Making

Given that machine assignments are determined in FJSP solutions (i.e., for any action [Om, On,Mk],
On must be processed by Mk), the third dimension can be omitted from the action space. We enhance
each operation embedding hOij by concatenating hM and ha, then feed them into the policy network
to obtain intermediate vectors forming a matrix FO ∈ R|O|×q. We multiply FO by its transpose to
obtain a score matrix FOO of shape |O| × |O|, where each element represents the priority score of an
action in At. Based on the Nopt2 neighborhood, we mask infeasible actions by setting their scores to
−∞ and apply softmax normalization to obtain the action probability distribution. By leveraging
the FJSP constraints, we reduce the space complexity of At from O(|O|2|M|) to O(|O|2), which
alleviates the difficulty of learning and accelerates model convergence. A detailed analysis of this
space complexity reduction is provided in Appendix E.

4.3.5 Training Algorithm

We propose an n-step PPO algorithm with a parallel greedy exploration strategy to efficiently
explore the large solution space of FJSP. At each step t, the policy samples P candidate actions

7

Table 1 Results on small synthetic instances
Size Sample Greedy 100 Iterations 200 Iterations 400 Iterations OR-Tools1

DANIEL HGNN DANIEL HGNN GD FI BI MIStar GD FI BI MIStar GD FI BI MIStar

SD
1

10×5
Obj. 101.67 105.59 106.76 111.67 100.00 100.91 100.55 100.02 100.00 100.91 100.54 99.88 100.00 100.91 100.53 99.69

96.32(5%)Gap 5.55% 9.62% 10.84% 15.94% 3.82% 4.77% 4.39% 3.84% 3.82% 4.77% 4.38% 3.70% 3.82% 4.77% 4.37% 3.50%
Time2 0.26s 0.44s 0.16s 0.17s 8.13s 12.60s 12.09s 5.64s 16.43s 27.54s 26.21s 11.23s 32.95s 58.71s 54.73s 23.00s

20×5
Obj. 192.78 207.53 197.56 211.22 191.31 191.79 191.36 190.87 191.31 191.79 191.36 190.79 191.31 191.79 191.36 190.67

188.15(0%)Gap 2.46% 10.30% 5.00% 12.26% 1.68% 1.93% 1.71% 1.45% 1.68% 1.93% 1.71% 1.40% 1.68% 1.93% 1.71% 1.34%
Time 1.14s 1.05s 0.33s 0.34s 53.86s 70.73s 77.32s 15.72s 1.80m 2.46m 2.70m 33.38s 3.60m 5.20m 5.56m 1.16m

15×10
Obj. 153.22 160.86 161.28 166.92 151.96 152.10 151.90 150.85 151.96 152.10 151.90 150.61 151.96 152.10 151.90 150.34

143.53(7%)Gap 6.75% 12.07% 12.37% 16.30% 5.87% 5.97% 5.83% 5.10% 5.87% 5.97% 5.83% 4.93% 5.87% 5.97% 5.83% 4.74%
Time 1.90s 2.17s 0.50s 0.50s 58.62s 86.43s 90.21s 27.09s 1.97m 3.08m 3.11m 54.22s 3.93m 6.81m 6.33m 1.80m

20×10
Obj. 193.91 214.81 198.50 215.78 192.92 193.26 193.03 192.71 192.92 193.26 193.03 192.70 192.92 193.26 193.03 192.68

195.98(0%)Gap -1.06% 9.61% 1.29% 10.10% -1.56% -1.39% -1.51% -1.67% -1.56% -1.39% -1.51% -1.67% -1.56% -1.39% -1.51% -1.68%
Time 2.71s 2.93s 0.68s 0.69s 2.44m 2.90m 3.09m 32.91s 4.90m 6.06m 6.64m 1.14m 9.86m 12.83m 13.87m 2.51m

SD
2

10×5
Obj. 365.26 479.37 413.73 552.80 360.17 354.22 349.66 345.05 360.17 354.22 349.66 343.43 360.17 354.22 349.66 342.50

326.24(96%)Gap 11.96% 46.94% 26.82% 69.45% 10.40% 8.58% 7.18% 5.77% 10.40% 8.58% 7.18% 5.27% 10.40% 8.58% 7.18% 4.98%
Time 0.30s 0.22s 0.16s 0.20s 6.06s 10.37s 11.74s 5.27s 12.21s 22.48s 25.65s 10.33s 24.39s 48.51s 54.57s 21.39s

20×5
Obj. 629.56 960.11 671.38 1047.83 626.35 622.75 619.13 615.12 626.35 622.75 619.13 613.75 626.35 622.75 619.13 612.73

602.04(0%)Gap 4.57% 59.48% 11.52% 74.05% 4.04% 3.44% 2.84% 2.17% 4.04% 3.44% 2.84% 1.95% 4.04% 3.44% 2.84% 1.78%
Time 0.78s 0.77s 0.33s 0.35s 48.48s 62.37s 72.23s 11.55s 1.61m 2.18m 2.52m 23.50s 3.30m 4.71m 5.21m 47.93s

15×10
Obj. 522.51 757.18 588.72 824.62 516.79 511.00 514.73 488.22 516.79 511.00 514.73 476.93 516.79 511.00 514.73 465.71

377.17(28%)Gap 38.53% 100.75% 56.09% 118.63% 37.02% 35.48% 36.47% 29.44% 37.02% 35.48% 36.47% 26.45% 37.02% 35.48% 36.47% 23.47%
Time 1.72s 1.45s 0.50s 0.57s 60.34s 89.27s 78.09s 18.09s 2.07m 3.17m 2.64m 37.42s 4.19m 6.87m 5.30m 1.31m

20×10
Obj. 552.38 987.57 605.37 1036.65 549.30 542.39 535.06 530.93 549.30 542.39 535.06 528.92 549.30 542.39 535.06 525.49

464.16(1%)Gap 19.01% 112.76% 30.42% 123.34% 18.34% 16.85% 15.27% 14.39% 18.34% 16.85% 15.27% 13.95% 18.34% 16.85% 15.27% 13.21%
Time 2.84s 2.91s 0.69s 0.71s 2.35m 3.06m 3.53m 25.76s 4.64m 7.07m 7.54m 53.25s 9.14m 15.33m 15.76m 1.88m

1 For OR-Tools, the solution and the ratio of optimally solved instances are reported.
2 “s”, “m”, and “h” denote seconds, minutes, and hours, respectively.

{a1t , a2t , . . . , aPt } from At, evaluates their improvements in parallel, and selects the action ait yielding
the greatest makespan reduction for execution. This approach enables the exploration of P solutions
per iteration, producing high-quality solutions in fewer iterations and significantly reducing search
time. More detailed analysis and pseudo-code of our training algorithm are presented in Appendix F.

5 Experiments

In this section, we present the experimental setup, performance evaluations on synthetic and public
datasets as well as the results of ablation studies.

5.1 Experimental Settings

Datasets. We evaluate our method on both synthetic data and benchmarks. The synthetic datasets
SD1 [8] and SD2 [22] cover 6 scales and 100 instances per scale, and differ in distribution. For each
n×m FJSP instance, the number of compatible machines |Mij | for Oij is sampled from U(1,m). In
SD1, the number of operations per job and the average processing time pij of Oij are sampled from
U(0.8×m, 1.2×m) and U(1, 20), respectively. The machine-specific processing time pkij is drawn
from U(0.8 × pij , 1.2 × pij). While in SD2, each job has m operations, and pkij is sampled from
U(1, 99). Benchmarks include Hurink [54] (Edata, Rdata, Vdata; 40 instances per set over 8 scales)
and Brandimarte [55] (10 instances across 7 scales). Implementation details are in Appendix G.

Baselines and Performance Metrics. We compare our method with two DRL-based construction
methods, HGNN [8] and DANIEL [22]. HGNN is a heterogeneous GNN designed to encode features
represented by a heterogeneous disjunctive graph, while DANIEL employs a dual-attention network
on tight graph representation. Both models are retrained and tested, with results reported for sampling
and greedy strategies. We also compare three hand-crafted improvement rules: greedy(GD) [46],
best-improvement (BI), and first-improvement (FI) [56]. Specifically, GD selects the solution with
the smallest makespan from the neighborhood, while BI and FI choose the best and first improving
ones, respectively. A restart strategy [57] is applied in BI and FI to escape local optima by continuing
the search from a new initial solution. We also compares with (near-)optimal solutions from Google
OR-Tools, a powerful constraint programming solver, under a 1800 s time limit. For benchmarks, we
report the results of a two-stage genetic algorithm (2SGA) [58] directly from [22].

As such incremental search methods cannot quickly access very different solutions [27, 42], their
performance is sensitive to the initial solution quality. We use DANIEL to sample 100 initial solutions
per instance, which are equally applied to three rule-based methods for fair comparison. MIStar
then performs parallel iterative search, retaining the best solution. Performance is measured by the
average makespan and the relative gap to the best-known solution, which is obtained via OR-Tools
for synthetic datasets [22] and from [59] for public benchmarks.

8

Table 2 Generalization results on large synthetic instances
Size Sample Greedy 100 Iterations 200 Iterations 400 Iterations

OR-Tools1

DANIEL HGNN DANIEL HGNN GD FI BI MIStar GD FI BI MIStar GD FI BI MIStar

SD
1

30×10
Obj. 286.77 308.55 288.61 314.71 286.04 286.19 285.95 285.79 286.04 286.19 285.95 285.75 286.04 286.19 285.95 285.68

274.67(6%)Gap 4.41% 12.33% 5.08% 14.58% 4.14% 4.19% 4.11% 4.05% 4.14% 4.19% 4.11% 4.03% 4.14% 4.19% 4.11% 4.01%
Time2 5.60s 6.25s 0.97s 0.97s 7.67m 10.51m 10.73m 57.03s 15.32m 22.00m 21.49m 1.83m 30.65m 47.10m 43.11m 3.77m

40×10
Obj. 379.71 410.76 379.28 417.87 379.04 379.05 378.92 378.82 379.04 379.05 378.92 378.76 379.04 379.05 378.92 378.63

365.96(3%)Gap 3.76% 12.24% 3.64% 14.18% 3.57% 3.58% 3.54% 3.51% 3.57% 3.58% 3.54% 3.50% 3.57% 3.58% 3.54% 3.46%
Time 9.94s 10.45s 1.30s 1.34s 18.20m 25.13m 24.04m 1.11m 36.48m 52.01m 48.46m 2.55m 1.22h 1.82h 1.63h 5.94m

SD
2

30×10
Obj. 756.52 1453.40 800.02 1536.74 753.66 748.41 739.47 735.14 753.66 748.41 739.47 731.84 753.66 748.41 739.47 728.76

692.26(0%)Gap 9.28% 109.95% 15.57% 121.99% 8.87% 8.11% 6.82% 6.19% 8.87% 8.11% 6.82% 5.72% 8.87% 8.11% 6.82% 5.27%
Time 5.76s 5.98s 0.99s 1.14s 7.65m 12.13m 12.16m 49.43s 15.04m 24.58m 25.49m 1.69m 29.50m 51.78m 52.62m 3.56m

40×10
Obj. 953.14 1937.96 984.55 2045.78 947.64 941.60 930.44 931.04 947.64 941.60 930.44 929.13 947.64 941.60 930.44 925.93

998.39(0%)Gap -4.53% 94.11% -1.39% 104.91% -5.08% -5.69% -6.81% -6.75% -5.08% -5.69% -6.81% -6.94% -5.08% -5.69% -6.81% -7.26%
Time 10.06s 11.10s 1.34s 1.36s 18.29m 25.07m 21.06m 73.29s 35.83m 54.84m 42.18m 2.52m 1.18h 1.89h 1.42h 5.40m

1 For OR-Tools, the solution and the ratio of optimally solved instances are reported.
2 “s”, “m”, and “h” denote seconds, minutes, and hours, respectively.

Table 3 Results on public benchmarks
Method mk la(rdata) la(edata) la(vdata)

Obj. Gap Time(s) Obj. Gap Time(s) Obj. Gap Time(s) Obj. Gap Time(s)
OR-Tools 174.20 0.99% 1447.08 935.80 0.16% 1397.43 1028.93 0.01% 899.60 919.60 -0.01% 639.17

2SGA 175.20 1.57% 57.60 - - 812.201 0.39% 51.43
DANIEL(S)2 180.80 4.81% 1.71 984.63 5.39% 1.99 1120.28 8.88% 2.00 934.75 1.64% 2.02
HGNN(S) 192.20 11.42% 1.72 1004.60 7.53% 1.84 1123.10 9.16% 2.44 934.23 1.58% 2.12

DANIEL(G) 184.30 6.84% 0.45 1044.85 11.84% 0.48 1176.40 14.34% 0.48 965.38 4.97% 0.48
HGNN(G) 200.00 15.94% 0.46 1035.75 10.86% 0.52 1189.33 15.59% 0.48 962.48 4.66% 0.47
GD-1003 178.92 3.72% 22.86 963.03 3.08% 26.09 1100.46 6.96% 4.14 924.53 0.53% 89.94
FI-100 178.85 3.68% 34.91 968.60 3.67% 36.16 1101.43 7.05% 6.77 927.33 0.83% 131.90
BI-100 178.43 3.44% 37.98 964.80 3.27% 41.25 1100.63 6.97% 5.91 927.55 0.86% 122.02

MIStar-100 177.80 (±0.74)43.07% 17.50 958.90 (±4.55) 2.64% 19.86 1099.38 (±4.17) 6.85% 19.60 923.55 (±1.81) 0.42% 20.36
GD-200 178.92 3.72% 45.73 963.03 3.08% 51.94 1100.46 6.96% 8.27 924.53 0.53% 179.99
FI-200 178.85 3.68% 74.64 968.60 3.67% 76.17 1101.43 7.05% 14.45 927.33 0.83% 272.34
BI-200 178.43 3.44% 81.03 964.65 3.25% 86.20 1100.60 6.97% 12.70 926.55 0.75% 251.11

MIStar-200 177.70 (±0.75) 3.01% 36.45 957.23 (±4.72) 2.46% 40.66 1099.30 (±4.13) 6.84% 40.05 922.70 (±1.71) 0.33% 41.83
GD-400 178.92 3.72% 91.79 963.03 3.08% 103.81 1100.46 6.96% 16.51 924.53 0.53% 360.28
FI-400 178.85 3.68% 162.16 968.60 3.67% 158.27 1101.35 7.04% 31.56 927.33 0.83% 586.32
BI-400 178.43 3.44% 169.70 964.50 3.24% 180.45 1100.33 6.94% 27.24 925.55 0.64% 521.21

MIStar-400 177.60 (±0.63) 2.96% 76.35 956.38 (±4.04) 2.37% 85.45 1099.18 (±4.25) 6.83% 83.77 921.85 (±1.77) 0.24% 87.23
1 The makespan and gap of 2SGA on la(vdata) benchmark are computed on la1-30 instances, as reported in [58].
2 “(S)” denotes the sampling strategy, and “(G)” denotes the greedy strategy.
3 “-100”, “-200”, and “-400” denote different iteration budgets.
4 Values are reported as the average (± standard deviation) over 10 independent runs.

5.2 Performance on Synthetic Instances

We train our model with 100 iterations on four small sizes (10×5, 20×5, 15×10, and 20×10) from
two synthetic datasets and evaluate on corresponding test instances. Table 1 reports the performance
and average runtime per instance across all methods. The generalization capability of the model,
evaluated on large-sized instances (30 × 10 and 40 × 10 in Table 2) and with extended iterations
up to 400, is also reported. The results show that MIStar consistently outperforms two construction
methods across various instances, with larger gains on SD2. This is because initial solutions on
SD1 are near-optimal, leaving limited room for improvement, as verified by experiments on varying-
quality initial solutions (see Appendix I). Compared with rule-based improvement heuristics, MIStar
achieves better solution quality with shorter runtime and maintains consistent improvement over
longer iterations, verifying the effectiveness and efficiency of its policy. See detailed analysis in
Appendix H.

5.3 Performance on Public Benchmarks

We evaluate generalization on Hurink and Brandimarte benchmarks using the model trained on
the 10 × 5 instances from SD2. While OR-Tools and 2SGA achieve near-optimal results, their
computational cost limits practicality. MIStar maintains stable performance over both DRL-based
construction and rule-base method across all benchmarks, demonstrating its effective generalization
through the learned general policy. Regarding solving time, rule-based methods exhibit notable
variation across Hurink dataset, with runtimes increasing from edata to rdata and vdata due to
the growing set of assignable machines that enlarge the neighborhood. In contrast, MIStar maintains
stable runtime across all distributions.

9

Table 4 Generalization Performance on Larger-Scale Instances

Instance Size Method Objective Time (min) Optimality
Gap

50×15 OR-Tools 881.45 60.0 39.05%
(LB:537.2) MIStar-200 969.7 10.6 44.60%

60×15 OR-Tools 1075.1 60.0 46.94%
(LB:570.2) MIStar-200 1109.8 14.2 48.62%

100×10 OR-Tools 1922.65 60.0 62.22%
(LB:726.5) MIStar-200 2138.4 15.9 66.03%

50×30 OR-Tools Infeasible 60.0 -
(LB:N/A) MIStar-200 1040.1 60.0 -

5.4 Results on Larger Instances

To further evaluate the generalization and scalability of our framework, we conducted experiments on
even larger instances (up to 1,500 operations). For each problem size, 10 instances were randomly
generated, and both MIStar and OR-Tools were given a one-hour time limit per instance. We report
their average optimality gap across different scales, whcih is calculated based on the Lower Bound
(LB) as

(
1− LB

Objective

)
× 100%. For MIStar, the results were measured at 200 iterations using the

model trained on instances of size 20× 15.

The results in Table 4 highlight two critical advantages of our approach. First and most strikingly, on
the highly complex 50×30 instances, OR-Tools failed to produce any feasible solution within the time
limit, whereas MIStar consistently found high-quality solutions. This demonstrates MIStar’s superior
robustness and scalability on truly challenging problems. Second, for the other large instances where
OR-Tools did find a solution, MIStar achieves comparable solution quality in a small fraction of the
time. For example, on the 100× 10 instances, MIStar reaches a 66.03% optimality gap in just under
16 minutes, while OR-Tools requires a full hour to achieve a 62.22% gap. This massive speed-up,
combined with the strong generalization from a model trained only on smaller instances, confirms
that MIStar provides an effective and highly scalable solution for large-scale FJSP.

5.5 Ablation Studies

We conducted ablation experiments on the SD2 dataset to assess the memory module and parallel
greedy search strategy. As evidenced in Table 7 (Appendix J), their combination improves perfor-
mance: the parallel greedy search strategy significantly enhances search efficiency and mitigates the
risk of early convergence to local optima. Meanwhile, the memory module optimizes policy decisions,
leading to higher solution quality. We further investigated the impact of the parallel scale P on our
strategy. Figure 8 (Appendix J) demonstrates that increasing P generally improves performance at the
cost of longer runtimes, with the optimal value depending on the instance characteristics. Therefore,
P should be properly adjusted to achieve a trade-off between runtime and solution quality.

6 Conclusion

This study proposes MIStar, the first DRL-based improvement heuristic framework for solving the
FJSP. By formulating the iterative refinement as an MDP, we introduce a heterogeneous disjunctive
graph representation tailored for FJSP solutions and employ a memory-enhanced heterogeneous graph
neural network for feature extraction and thorough exploration of the solution space. Furthermore,
we propose a parallel greedy search strategy that significantly reduces the number of iterations while
achieving high-quality solutions. Extensive experiments on synthetic data and public benchmarks
demonstrate the superior performance of MIStar over both traditional handcrafted improvement
heuristics and DRL-based construction methods. Future work may focus on enabling the network to
adaptively adjust the parallel scale P , and on extending our methodology to disruptive local moves in
larger neighborhoods, such as the reconstruction of solution segments, to further enhance exploration
and reduce sensitivity to initial solutions.

10

References
[1] Heiner Lasi, Peter Fettke, Hans-Georg Kemper, Thomas Feld, and Michael Hoffmann. Industry

4.0. Business & information systems engineering, 6:239–242, 2014.

[2] Yi Wang, Hai-Shu Ma, Jing-Hui Yang, and Ke-Sheng Wang. Industry 4.0: a way from mass
customization to mass personalization production. Advances in manufacturing, 5(4):311–320,
2017.

[3] Runwei Cheng, Mitsuo Gen, and Yasuhiro Tsujimura. A tutorial survey of job-shop scheduling
problems using genetic algorithms—i. representation. Computers & industrial engineering,
30(4):983–997, 1996.

[4] Jian Zhang, Guofu Ding, Yisheng Zou, Shengfeng Qin, and Jianlin Fu. Review of job shop
scheduling research and its new perspectives under industry 4.0. Journal of intelligent manufac-
turing, 30:1809–1830, 2019.

[5] Jin Xie, Liang Gao, Kunkun Peng, Xinyu Li, and Haoran Li. Review on flexible job shop
scheduling. IET collaborative intelligent manufacturing, 1(3):67–77, 2019.

[6] Imran Ali Chaudhry and Abid Ali Khan. A research survey: review of flexible job shop
scheduling techniques. International Transactions in Operational Research, 23(3):551–591,
2016.

[7] Guohui Zhang, Xinyu Shao, Peigen Li, and Liang Gao. An effective hybrid particle swarm
optimization algorithm for multi-objective flexible job-shop scheduling problem. Computers &
Industrial Engineering, 56(4):1309–1318, 2009.

[8] Wen Song, Xinyang Chen, Qiqiang Li, and Zhiguang Cao. Flexible job-shop scheduling
via graph neural network and deep reinforcement learning. IEEE Transactions on Industrial
Informatics, 19(2):1600–1610, 2022.

[9] Pedro Coelho, Ana Pinto, Samuel Moniz, and Cristovão Silva. Thirty years of flexible job-shop
scheduling: a bibliometric study. Procedia Computer Science, 180:787–796, 2021.

[10] Philipp Wenzelburger and Frank Allgöwer. Model predictive control for flexible job shop
scheduling in industry 4.0. Applied Sciences, 11(17):8145, 2021.

[11] Stéphane Dauzère-Pérès, Junwen Ding, Liji Shen, and Karim Tamssaouet. The flexible job shop
scheduling problem: A review. European Journal of Operational Research, 314(2):409–432,
2024.

[12] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
optimization: a methodological tour d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

[13] Mingzhao Wang, You Zhou, Zhiguang Cao, Yubin Xiao, Xuan Wu, Wei Pang, Yuan Jiang,
Hui Yang, Peng Zhao, and Yuanshu Li. An efficient diffusion-based non-autoregressive solver
for traveling salesman problem. In Proceedings of the 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining V.1, page 1469–1480, 2025.

[14] Yubin Xiao, Di Wang, Boyang Li, Mingzhao Wang, Xuan Wu, Changliang Zhou, and You Zhou.
Distilling autoregressive models to obtain high-performance non-autoregressive solvers for
vehicle routing problems with faster inference speed. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 20274–20283, 2024.

[15] Yubin Xiao, Di Wang, Boyang Li, Huanhuan Chen, Wei Pang, Xuan Wu, Hao Li, Dong Xu,
Yanchun Liang, and You Zhou. Reinforcement learning-based nonautoregressive solver for
traveling salesman problems. IEEE Transactions on Neural Networks and Learning Systems,
pages 1–15, 2024.

[16] Yubin Xiao, Di Wang, Xuan Wu, Yuesong Wu, Boyang Li, Wei Du, Liupu Wang, and You Zhou.
Improving generalization of neural vehicle routing problem solvers through the lens of model
architecture. Neural Networks, 187:107380, 2025.

11

[17] Yubin Xiao, Yuesong Wu, Rui Cao, Di Wang, Zhiguang Cao, Peng Zhao, and Yuan Jiang.
Dgl: Dynamic global-local information aggregation for scalable vrp generalization with self-
improvement learning. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 2025.

[18] Xuan Wu, Di Wang, Chunguo Wu, Lijie Wen, Chunyan Miao, Yubin Xiao, and You Zhou.
Efficient heuristics generation for solving combinatorial optimization problems using large lan-
guage models. In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery
and Data Mining V. 2, pages 3228–3239, 2025.

[19] Xuan Wu, Di Wang, Lijie Wen, Yubin Xiao, Chunguo Wu, Yuesong Wu, Chaoyu Yu, Douglas L.
Maskell, and You Zhou. Neural combinatorial optimization algorithms for solving vehicle
routing problems: A comprehensive survey with perspectives, 2024.

[20] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning
for combinatorial optimization: A survey. Computers & Operations Research, 134:105400,
2021.

[21] Cong Zhang, Zhiguang Cao, Wen Song, Yaoxin Wu, and Jie Zhang. Deep reinforcement
learning guided improvement heuristic for job shop scheduling. In The Twelfth International
Conference on Learning Representations, 2024.

[22] Runqing Wang, Gang Wang, Jian Sun, Fang Deng, and Jie Chen. Flexible job shop scheduling
via dual attention network-based reinforcement learning. IEEE Transactions on Neural Networks
and Learning Systems, 35(3):3091–3102, 2023.

[23] Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning
to dispatch for job shop scheduling via deep reinforcement learning. Advances in neural
information processing systems, 33:1621–1632, 2020.

[24] Kun Lei, Peng Guo, Wenchao Zhao, Yi Wang, Linmao Qian, Xiangyin Meng, and Liansheng
Tang. A multi-action deep reinforcement learning framework for flexible job-shop scheduling
problem. Expert Systems with Applications, 205:117796, 2022.

[25] Ruiqi Chen, Wenxin Li, and Hongbing Yang. A deep reinforcement learning framework
based on an attention mechanism and disjunctive graph embedding for the job-shop scheduling
problem. IEEE Transactions on Industrial Informatics, 19(2):1322–1331, 2022.

[26] Junyoung Park, Jaehyeong Chun, Sang Hun Kim, Youngkook Kim, and Jinkyoo Park. Learning
to schedule job-shop problems: representation and policy learning using graph neural network
and reinforcement learning. International journal of production research, 59(11):3360–3377,
2021.

[27] Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett.
Winner takes it all: Training performant rl populations for combinatorial optimization. Advances
in Neural Information Processing Systems, 36:48485–48509, 2023.

[28] Egon Balas. Machine sequencing via disjunctive graphs: an implicit enumeration algorithm.
Operations research, 17(6):941–957, 1969.

[29] Cong Zhang, Zhiguang Cao, Yaoxin Wu, Wen Song, and Jing Sun. Learning topological
representations with bidirectional graph attention network for solving job shop scheduling
problem. In Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence,
2024.

[30] Ke Li, Fei Liu, Zhenkun Wang, and Qingfu Zhang. Destroy and repair using hyper-graphs for
routing. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages
18341–18349, 2025.

[31] Peng Zhao, You Zhou, Di Wang, Zhiguang Cao, Yubin Xiao, Xuan Wu, Yuanshu Li, Hongjia
Liu, Wei Du, Yuan Jiang, and Liupu Wang. Dual operation aggregation graph neural networks
for solving flexible job-shop scheduling problem with reinforcement learning. In Proceedings
of the ACM Web Conference 2025, 2025.

12

[32] Peng Zhao, Zhiguang Cao, Di Wang, Wen Song, Wei Pang, You Zhou, and Yuan Jiang. Visual-
enhanced multimodal framework for flexible job shop scheduling problem. In Proceedings of
the 33rd ACM International Conference on Multimedia, 2025.

[33] Shu Luo. Dynamic scheduling for flexible job shop with new job insertions by deep reinforce-
ment learning. Applied Soft Computing, 91:106208, 2020.

[34] Yi Feng, Lu Zhang, Zhile Yang, Yuanjun Guo, and Dongsheng Yang. Flexible job shop
scheduling based on deep reinforcement learning. In 2021 5th Asian Conference on Artificial
Intelligence Technology (ACAIT), pages 660–666. IEEE, 2021.

[35] Shu Luo, Linxuan Zhang, and Yushun Fan. Dynamic multi-objective scheduling for flexible job
shop by deep reinforcement learning. Computers & Industrial Engineering, 159:107489, 2021.

[36] Renke Liu, Rajesh Piplani, and Carlos Toro. Deep reinforcement learning for dynamic schedul-
ing of a flexible job shop. International Journal of Production Research, 60(13):4049–4069,
2022.

[37] Lanjun Wan, Long Fu, Changyun Li, and Keqin Li. Flexible job shop scheduling via deep
reinforcement learning with meta-path-based heterogeneous graph neural network. Knowledge-
Based Systems, 296:111940, 2024.

[38] Zhengqi Zeng, Xiaoxia Li, and Changbo Bai. A deep reinforcement learning approach to
flexible job shop scheduling. In 2022 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pages 884–890. IEEE, 2022.

[39] Wenquan Zhang, Fei Zhao, Yong Li, Chao Du, Xiaobing Feng, and Xuesong Mei. A novel
collaborative agent reinforcement learning framework based on an attention mechanism and
disjunctive graph embedding for flexible job shop scheduling problem. Journal of Manufacturing
Systems, 74:329–345, 2024.

[40] Jonas K Falkner, Daniela Thyssens, Ahmad Bdeir, and Lars Schmidt-Thieme. Learning to
control local search for combinatorial optimization. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 361–376. Springer, 2022.

[41] Constantin Waubert de Puiseau, Fabian Wolz, Merlin Montag, Jannik Peters, Hasan Tercan,
and Tobias Meisen. Decision transformer for enhancing neural local search on the job shop
scheduling problem. arXiv e-prints, pages arXiv–2409, 2024.

[42] Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial
optimization. Advances in neural information processing systems, 32, 2019.

[43] Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving
vehicle routing problems. In International conference on learning representations, 2019.

[44] Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement
heuristics for solving routing problems. IEEE transactions on neural networks and learning
systems, 33(9):5057–5069, 2021.

[45] ChaoYong Zhang, PeiGen Li, ZaiLin Guan, and YunQing Rao. A tabu search algorithm with a
new neighborhood structure for the job shop scheduling problem. Computers & Operations
Research, 34(11):3229–3242, 2007.

[46] Eugeniusz Nowicki and Czeslaw Smutnicki. A fast taboo search algorithm for the job shop
problem. Management science, 42(6):797–813, 1996.

[47] Andoni I Garmendia, Quentin Cappart, Josu Ceberio, and Alexander Mendiburu. Marco: A
memory-augmented reinforcement framework for combinatorial optimization. arXiv preprint
arXiv:2408.02207, 2024.

[48] Andoni I Garmendia, Josu Ceberio, and Alexander Mendiburu. Neural improvement heuristics
for graph combinatorial optimization problems. IEEE Transactions on Neural Networks and
Learning Systems, 2023.

13

[49] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2025.

[50] Igor G Smit, Jianan Zhou, Robbert Reijnen, Yaoxin Wu, Jian Chen, Cong Zhang, Zaharah
Bukhsh, Yingqian Zhang, and Wim Nuijten. Graph neural networks for job shop scheduling
problems: A survey. Computers & Operations Research, page 106914, 2024.

[51] Monaldo Mastrolilli and Luca Maria Gambardella. Effective neighbourhood functions for the
flexible job shop problem. Journal of scheduling, 3(1):3–20, 2000.

[52] Alain Bretto. Hypergraph theory. An introduction. Mathematical Engineering. Cham: Springer,
1:209–216, 2013.

[53] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

[54] Johann Hurink, Bernd Jurisch, and Monika Thole. Tabu search for the job-shop scheduling
problem with multi-purpose machines. Operations-Research-Spektrum, 15:205–215, 1994.

[55] Paolo Brandimarte. Routing and scheduling in a flexible job shop by tabu search. Annals of
Operations research, 41(3):157–183, 1993.

[56] Pierre Hansen and Nenad Mladenović. First vs. best improvement: An empirical study. Discrete
Applied Mathematics, 154(5):802–817, 2006.

[57] Helena Ramalhinho Lourenço, Olivier C Martin, and Thomas Stützle. Iterated local search:
Framework and applications. In Handbook of metaheuristics, pages 129–168. Springer, 2018.

[58] Danial Rooyani and Fantahun M Defersha. An efficient two-stage genetic algorithm for flexible
job-shop scheduling. Ifac-Papersonline, 52(13):2519–2524, 2019.

[59] Dennis Behnke and Martin Josef Geiger. Test instances for the flexible job shop scheduling
problem with work centers. 2012.

[60] Anssi Kanervisto, Christian Scheller, and Ville Hautamäki. Action space shaping in deep
reinforcement learning. In 2020 IEEE conference on games (CoG), pages 479–486. IEEE, 2020.

[61] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please see abstract and Section 1, which accurately reflect the paper’s contribu-
tions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this work are discussed in Section 5.1 and Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15

Justification: The full set of assumptions and complete proofs are provided in Appendix D.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We explained our settings in Section 5.1 and hyperparameters in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [No]
Justification: Our experiments use only open-source datasets, while the code required to
reproduce these findings does not shared at this time.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The training and test details are presented in Section 5 and Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The experiments are expensive to run for a sufficient number of times to
provide error bars at this point.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The information on the computer resources is reported in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The potential societal impacts of this work are discussed in Section 1 and
Section 2.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We did not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper dose not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper dose not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

20

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were used for minor language editing, which does not affect the scientific
contribution of the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Comparative Analysis of Neighborhood Structures

The critical path, whose length represents the makespan Cmax, is essential in constructing feasible
solutions [55]. Operations on this path are critical operations, and critical blocks are maximal
sequences of adjacent critical operations processed on the same machine [45]. In local search, the
neighborhood comprises feasible solutions generated by small perturbations to the current one [55].
For scheduling, these perturbations typically involve reordering operations on the critical path. The
neighborhood structure directly affects the efficiency of the search algorithm, making it important
to eliminate unnecessary or infeasible moves [45]. Among various neighborhood designs, the N5
neighborhood is significantly smaller than others [45]. It identifies a single critical path and defines a
move by reversing either the first two or the last two operations within a critical block.

While effective for JSP [21], the N5 neighborhood cannot be applied to FJSP. Its limitation lies in
only permitting reordering within one critical block, where operations are processed on the same
machine. This perturbation preserves the original machine assignments, severely constraining the
exploration of the solution space. More critically, unlike JSP where operations of the same job
are processed on different machines, FJSP allows multiple operations of a job to be processed on
the same one. Consequently, swapping operations within critical blocks in FJSP may violate job
precedence constraints, resulting in infeasible solutions (Figure 5).

In contrast, we employ the Nopt2 neighborhood [51] that simultaneously modifies operation sequences
and machine assignments while maintaining feasibility through time-constrained reinsertion (see
paragraph 3). This structure enables broader solution space exploration and improves efficiency by
using optimal insertion intervals to reduce the neighborhood size.

Figure 5 Infeasible exchange caused by the N5 neighborhood in FJSP. Dotted lines of different
colors are critical blocks.

B Definition of Raw Feature Vectors

The raw features of operations and machines at each state st (omitting step t) are defined as follows.
Features of Operations: Each operation node Oij ∈ O \ {OS , OT } is represented by a 9-dimensional
feature vector xOij

:

1) Minimum Processing Time: shortest processing time among compatible machines.
2) Average Processing Time: mean processing time among compatible machines.
3) Range of Processing Time: difference between the maximum and minimum processing times

among compatible machines.
4) Machine Availability Ratio: ratio of the number of compatible machines to total machines.
5) Processing Time: processing time on the assigned machine.
6) Earliest Start Time: earliest possible start time of the operation.
7) Latest Start Time: latest start time without schedule delay.
8) Scheduling Order on Machine: execution order on machine Mk (starting from 1).
9) Processing Time of Job: total processing time of parent job.

Features of Machines: Each machine node Mk ∈ M owns a 4-dimensional feature vector yMk
:

1) Utilization Rate: ratio of active processing time to makespan.

22

2) Criticality Degree: proportion of operations on critical path among processable operations.
3) Load Ratio: percentage of assigned operations versus machine capacity.
4) Processing Efficiency: mean processing time of assigned operations.

C Advantages of the Directed Heterogeneous Graph

In the FJSP, the global scheduling state comprises both operations and machines. However, the
absence of machine nodes in traditional disjunctive graphs results in an indirect representation
of machine information through numerical values [21], which limits the policy from assigning
operations to available machines effectively. The heterogeneous disjunctive graph H [8] addresses
this by introducing machine nodes (Fig. 6), where each operation connects to compatible machines
via undirected edges, such that solving the FJSP is equivalent to selecting one O-M arc per operation
while removing others. This reduces the graph density from

∑|M|
k=1

(
nk

2

)
to

∑|M|
k=1 nk with nk being

the number of operations assignable to machine Mk and enables better injection of machine status [8].

While beneficial for construction methods, this structure provides limited advantages for improvement
approaches where complete solutions contain fixed machine assignments. This leads to a total of |O|
disjunctive arcs—more than the |O| − |M| arcs in the conventional graph, negating the benefit of
reduced graph density. Most importantly, undirected edges hinder the clear encoding of machine
processing sequences, which is crucial for distinguishing between different scheduling solutions and
identifying the critical path when constructing the action space [21, 51]. Instead, our heterogeneous
graph

−→
H(Figure 1c), tailored for complete schedules, overcomes this limitation by encoding machine

processing sequences through directed hyper-edges, which effectively represent the ordering of
operations across different solutions without significantly increasing graph density. It adopts a unified
structure with fully directed arrows, avoiding the complexity of mixed edge types and better aligning
with current learning-to-search graph-based frameworks [21].

(a) (b)
Figure 6 Graph representations in H [8]. (a) FJSP instance; (b) feasible solution.

D Compact State Representation in Memory

D.1 Motivation and Compact Formulation

During the improvement, we store the state-action pair (st, at) at each step in a memory module.
However, the state is represented as a complex heterogeneous graph with rich node attributes and
adjacency relations, leading to excessive memory consumption if fully stored. Furthermore, evaluating
similarity between such graphs typically requires GNNs to extract embeddings, introducing additional
network components and computational cost.

To address this, we simplify the graph representation to better support our memory mechanism. First,
since our current goal is to distinguish different scheduling solutions—rather than using node features
as heuristic guidance—we omit the node attributes and retain only the graph topology. Second, for a
given problem instance, solutions differ only in operation sequences on machines (i.e., hyper-arcs),
while sharing the same job precedence constraints (i.e., conjunctive arcs). Based on this insight,
we isolate the hyper-arcs from

−→
Ht (see Fig. 7) and use them as the key feature to characterize each

solution. Specifically, we use the operation-machine incidence matrix Lt as a compact representation
of st and measure similarity via the Frobenius inner product.

23

(a) (b)
Figure 7 Decomposition of FJSP solution structure. (a) shared job precedence constraints; (b)
distinct machine processing sequences.

Instead of serving as merely binary indicators of machine assignment, the non-zero element (Lt)i,j
represents the processing order index of operation i on its assigned machine j. This crucial design
ensures that two schedules with identical machine assignments but different sequences (e.g., a good
sequence vs. a poor one) are correctly distinguished. For instance, a good sequence of operations
corresponding to [1, 2, 3, 4, 5] and a poor, reversed sequence [5, 4, 3, 2, 1] on the same machine
will be recognized as maximally dissimilar by the Frobenius inner product. The mathematical
foundation for this lies in the Rearrangement Inequality, which guarantees that the inner product is
maximized for similarly ordered sequences and minimized for oppositely ordered ones. This allows
our similarity metric to be both computationally efficient and highly sensitive to the quality of the
operation sequence.
Theorem 1. The Rearrangement Inequality states that, for two sequences a1 ≤ a2 ≤ · · · ≤ an and
b1 ≤ b2 ≤ · · · ≤ bn, the inequalities

a1bn + a2bn−1 + · · ·+ anb1 ≤ a1bπ(1) + a2bπ(2) + · · ·+ anbπ(n) ≤ a1b1 + a2b2 + · · ·+ anbn

hold, where π(1), π(2), . . . , π(n) is any permutation of 1, 2, . . . , n.

D.2 Alternative Designs

We have considered and tested other expressive representations for the historical states that explicitly
encode sequence information.

Multi matrices: The adjacency matrix AM
t of operations on machines encodes the processing order

between operations, while the binary operation-machine incidence matrix LB
t indicates machine

assignment. The state similarity is then calculated by computing the inner products of both matrices
separately and summing the results, expressed as:

ωt,t′ = ⟨LB
t , L

B
t′ ⟩F + ⟨AM

t , AM
t′ ⟩F (8)

Difference matrix: For the operation-machine incidence matrices that store processing order indices,
we compute the element-wise difference between two schedules, Lt and Lt′ , to obtain a difference
matrix, and then use the reciprocal of its Frobenius norm to measure similarity, formulated as:

ωt,t′ =
1

|Lt − Lt′ |F + ϵ
=

1√∑|O|
i=1

∑|M|
j=1 |(Lt)i,j − (Lt′)i,j |2 + ϵ

(9)

However, these alternatives introduced higher storage or computational overhead without yielding
significant performance gains. Our chosen representation thus strikes a deliberate and effective
balance between representational power and efficiency.

E Complexity Analysis of Action Space

Let FO ∈ R|O|×q and FM ∈ R|M|×q denote the embedding matrices of operation and machine
nodes, respectively. To assign a priority score to each possible triple-action [Om, On,Mk], we
compute the priority matrix FOOM ∈ R|O|×|O|×|M| through a two-step tensor operations involving
FO and FM . As a result, the space complexity of the action space Aoriginal is O(|O|2|M|). Prior

24

work [60] has shown that a large number of possible actions is known to lead to over-optimistic
estimates of future rewards, degrading agent performance and learning efficiency. To address this, we
reshape the action space by exploiting the constraint of FJSP: each operation can only be assigned to
a unique machine. Given a solution of FJSP, there exists a mapping fM : O → M, which allows
us to omit the third dimension and represent actions as pairs [Om, On]. The space complexity of
Aoptimized is reduced to O(|O|2) and the optimized priority matrix is calculated as follows:

FOO = FOF
⊤
O ∈ R|O|×|O| (10)

We can formalize the relationship between the original and optimized action spaces as follows:
Theorem 2. The optimized action space Aoptimized is functionally equivalent to Aoriginal in terms
of admissible actions under the FJSP constraints.

Proof. For any feasible action a = [Om, On,Mk] ∈ Aoriginal, there exists a unique a′ =
[Om, On] ∈ Aoptimized with Mk = fM (On). Conversely, any a′ ∈ Aoptimized can be mapped back
to a ∈ Aoriginal via fM . Thus, this compaction preserves all feasible actions while eliminating
invalid ones (i.e., actions where the operation and machine do not match). This shaping of the
action space reduces learning difficulty and accelerates model convergence without compromising
the agent’s performance.

Algorithm 1: Training procedure with n-step PPO using parallel search.
Input: MIStar with trainable parameters Θ = {δ, θ, φ}, parallel scale P , iteration limit T ,

update size n, validate size v, new data generation step d, batch size B, total number of
training epochs I;

Output: Trained MIStar with parameters Θ∗ = {δ∗, θ∗, φ∗};
1 for i = 0 to i < I do
2 if i mod d = 0 then
3 Randomly generate B instances;
4 end
5 Compute initial solutions {s10, . . . , sB0 } using DANIEL;
6 for t = 0 to T do
7 for sbt ∈ {s1t , . . . , sBt } do
8 Initialize a training data buffer Db and memory buffer Hb with size 0;
9 Extract embeddings using MHGNN;

10 for p = 1 to P do
11 Sample a local move abpt ∼ πδ(·|sbt);
12 Compute Cmax(s

bp
t+1) w.r.t abpt ;

13 end
14 Identify the best action ab∗t with greatest improvement ;
15 Update sbt w.r.t ab∗t and compute similarity score Ω from Hb;
16 Compute reward rt(s

b
t , a

b∗
t) = rgain − rpenalty;

17 Store the data (sbt , a
b∗
t , rt) into Db and store (sbt , a

b∗
t) into Hb;

18 if t mod n = 0 then
19 Compute the generalised advantage estimates Ât;
20 Compute the PPO loss L, and optimize the parameters Θ for R epochs;
21 Update network parameters;
22 end
23 Clear buffers Db and Hb;
24 end
25 end
26 if i mod v = 0 then
27 Validate the policy;
28 end
29 i = i+B;
30 end

25

F The n-step PPO Algorithm with Parallel Greedy Exploration Strategy

We adopt the PPO algorithm [61] based on the actor-critic architecture as our training strategy. The
actor is the policy network and the critic provides state value estimation. The network parameters are
updated every n steps, which effectively addresses sparse rewards and out-of-memory issues [21].
The flexibility of FJSP leads to a large solution space, requiring numerous iterations to converge to
high-quality solutions [30]. To address this challenge, we introduce a parallel greedy exploration
strategy, which evaluates multiple candidate actions in parallel and greedily selects the one yielding
the greatest improvement. This approach enables the exploration of multiple solutions per iteration,
yielding high-quality results with fewer iterations. Moreover, by prioritizing solutions with the
greatest improvement, the model is guided toward more promising paths, minimizing the interference
from inefficient paths during gradient updates and accelerating convergence.

The pseudo-code of the n-step PPO algorithm is presented in Algorithm 1.

G Training Configurations

All hyperparameters were fine-tuned on the smallest-scale instances from SD2 and kept the same
for all other models. Experiments were conducted on a platform equipped with an Intel i9-12900K
processor with 24 cores, 64 GB memory, and an NVIDIA RTX 4090 GPU with 24 GB VRAM.
Detailed specifications are provided in Table 5. Upon acceptance of this manuscript for publication,
the full code will be made available on GitHub.

Table 5 Training configuration parameters
Parameter Value

Number of MHGNN layers (L) 4
Number of Actor network layers 4
Number of Critic network layers 3
Number of attention heads in GAT (nH) 1
Dimension of hidden layers (q) 64
GIN learnable parameter (ϵ) 0
Discount factor (γ) 1
Clipping ratio 0.2
Policy function coefficient 1
Value function coefficient 0.5
Entropy coefficient 0.01
Learning rate 5× 10−4

Optimizer Adam
Memory buffer size 600
KNN retrieval count (K) 15
Similarity penalty coefficient (λ) 10
PPO update interval (n) 10
Rounds per PPO update (R) 3
Total training epochs (I) 20,000
Validation interval (v) 5
Instance generation interval (d) 20
Iterations per instance (T) 100
Batch size (B) 20
Parallel scale (P) 50

H Detailed Analysis on Synthetic Instances

Our experiments on four small-sized instances from SD2 reveal that MIStar generates an action space
consisting of dozens to hundreds of possible moves per iteration using the Nopt2 neighborhood—up
to 100 times larger than [21] for solving JSP. While this expanded action space provides greater

26

Table 6 Results of different initialization methods

Method
SD2

Iter. 10×5 20×5 15×10 20×10
Obj. Gap Obj. Gap Obj. Gap Obj. Gap

DANIEL(S)

0 365.26 0.00% 629.56 0.00% 522.51 0.00% 552.38 0.00%
100 345.05 5.53% 615.12 2.29% 488.22 6.56% 530.93 3.88%
200 343.43 5.98% 613.75 2.51% 476.93 8.72% 528.92 4.25%
400 342.50 6.23% 612.73 2.67% 465.71 10.87% 525.49 4.87%

HGNN(S)

0 479.35 0.00% 963.03 0.00% 759.54 0.00% 984.64 0.00%
100 375.20 21.73% 745.18 22.62% 677.96 10.74% 879.48 10.68%
200 366.35 23.57% 702.90 27.01% 626.90 17.46% 812.53 17.48%
400 359.10 25.09% 674.93 29.92% 569.81 24.98% 737.42 25.11%

SPT

0 503.86 0.00% 799.56 0.00% 670.56 0.00% 775.03 0.00%
100 399.25 20.76% 692.43 13.40% 578.48 13.73% 695.34 10.28%
200 393.74 21.86% 680.62 14.88% 550.94 17.84% 673.44 13.11%
400 389.34 22.73% 671.05 16.07% 521.96 22.16% 648.48 16.33%

MWKR

0 493.36 0.00% 949.85 0.00% 737.44 0.00% 953.11 0.00%
100 382.09 22.55% 747.12 21.34% 664.69 9.87% 858.45 9.93%
200 372.62 24.47% 705.15 25.76% 618.86 16.08% 799.61 16.11%
400 364.99 26.02% 676.88 28.74% 563.56 23.58% 729.91 23.42%

FIFO

0 476.96 0.00% 931.50 0.00% 763.12 0.00% 978.03 0.00%
100 376.29 21.11% 729.85 21.65% 669.51 12.27% 861.06 11.96%
200 367.70 22.91% 693.35 25.57% 618.74 18.92% 799.15 18.29%
400 360.68 24.38% 668.26 28.26% 562.59 26.28% 728.91 25.47%

RANDOM

0 585.08 0.00% 1067.38 0.00% 1062.39 0.00% 1304.70 0.00%
100 382.24 34.67% 750.69 29.67% 733.17 30.99% 960.68 26.37%
200 371.38 36.52% 707.33 33.73% 661.03 37.78% 865.85 33.64%
400 365.33 37.56% 678.00 36.48% 589.53 44.51% 772.15 40.82%

optimization potential, it also introduces more suboptimal solutions, increasing the risk of local
optima entrapment. Moreover, even for small-sized problems, OR-Tools could only optimally solve a
small portion of instances within the time limit [22]. These observations underscore the complexity
of the FJSP. Compared with rule-based improvement heuristics, MIStar shows superior performance
under the same iteration budget, with only a marginal shortfall (0.06%) against the BI rule on the
SD2 40× 10 instance at 100 iterations. Notably, even equipped with restart, rule-based methods still
tend to stagnate as iterations increase—likely due to the large and complex solution space—whereas
MIStar continues to improve, demonstrating the effectiveness of the learned policy. Additionally,
MIStar reduces runtime by directly outputting local moves, avoiding exhaustive evaluations across
the entire neighborhood.

I Improvement over Varied Initial Solution Generation Methods

We systematically evaluate the optimization capabilities of MIStar using six initialization strate-
gies: two DRL-based construction methods with sampling (DANIEL(S) and HGNN(S)), random
initialization, and three classical priority dispatching rules—shortest processing time (SPT), most
work remaining (MWKR), and first-in-first-out (FIFO) [55]. Experiments are conducted on the SD2
dataset with models trained on instances of the same size, to assess the performance across different
initialization methods under the fixed iteration budget. Improvement is measured by the makespan
gap, calculated as

(
1− Cbest

C0

)
× 100%, where C0 is the makespan of the initial solution and Cbest is

the incumbent optimal value.

The results are detailed in Table 6. It can be observed that the quality of initial solutions impacts
the search efficiency of MIStar. With the same number of iterations, better initial solutions enable
MIStar to generate higher-quality schedules, while poorer ones typically allow for larger relative
improvements. Notably, after 400 iterations, solutions initialized by HGNN(S), MWKR, and FIFO
outperform those generated by DANIEL(S) with 0 iteration on the 10×5 instances. This demonstrates
that, with a sufficient iteration budget, MIStar has the potential to elevate weaker initial solutions
to a performance level comparable to that of stronger ones. Moreover, even when starting from
(near)-optimal solutions initialized by DANIEL(S), MIStar still achieves notable improvements,
further validating the effectiveness of our framework.

27

Table 7 Performance of ablated models

Model
SD2

Iter. 10×5 20×5 15×10 20×10
Obj. Time1 Obj. Time Obj. Time Obj. Time

Baseline
100 364.27 0.76s 629.09 1.16s 519.34 1.82s 552.46 2.37s
200 364.27 1.48s 629.09 2.44s 519.34 3.69s 552.46 4.78s
400 364.27 2.89s 629.09 4.85s 519.34 7.25s 552.46 9.48s

w/o GIN
100 348.31 4.97s 616.71 10.72s 491.78 18.12s 548.61 24.80s
200 347.06 10.78s 614.98 22.88s 484.36 37.58s 545.97 53.68s
400 345.73 20.56s 613.98 45.90s 477.80 1.45m 544.31 1.91m

w/o GAT
100 350.86 5.82s 618.67 11.34s 492.76 17.85s 548.0 22.63s
200 349.89 9.46s 617.33 22.91s 486.74 36.97s 547.97 51.02s
400 348.33 21.41s 615.99 46.79s 480.66 1.29m 547.87 1.78m

w/o HGAT
100 350.49 5.44s 618.15 11.39s 491.97 17.95s 535.78 23.89s
200 349.08 9.74s 616.56 23.01s 483.46 37.01s 532.83 52.47s
400 347.17 20.10s 614.97 46.38s 473.83 1.29m 529.92 1.67m

w/o Par.
100 363.02 0.59s 627.20 0.98s 518.28 1.68s 551.39 2.41s
200 363.02 1.22s 627.20 2.13s 518.28 4.02s 551.39 6.18s
400 363.02 2.59s 627.20 5.05s 518.28 11.72s 551.39 17.57s

w/o Mem.
100 346.11 5.47s 615.99 13.98s 490.63 17.25s 534.31 25.47s
200 344.76 11.04s 615.32 25.33s 486.16 35.85s 531.71 51.08s
400 343.53 20.24s 614.80 48.91s 482.16 73.14s 528.44 1.69m

Ours
100 345.05 5.27s 615.12 11.55s 488.22 18.09s 530.93 25.76s
200 343.43 10.33s 613.75 23.50s 476.93 37.42s 528.92 53.25s
400 342.50 21.39s 612.73 47.93s 465.71 1.31m 525.49 1.88m

1 “s” and “m” denote seconds and minutes, respectively.

J Results on Ablation Studies

J.1 Analysis on Components and Strategy

We conducted comprehensive ablation studies to evaluate the contributions of the key components of
our framework, including both the model architecture and the search strategy. The experiments were
performed on four small-size instances from the SD2 dataset.

We first assessed the roles of the memory module and the parallel greedy search strategy. Three
ablated variants are compared: the Baseline model without any enhancements, a version without
the parallel greedy search strategy (w/o Par.), and another without the memory module (w/o Mem.).
Results in Table 7 demonstrate the critical roles of both components. Although our parallel approach
takes longer per iteration, it achieves superior solutions in fewer steps, improving search efficiency.
In contrast, the model without parallelism runs faster but consistently converges to inferior local
optima. Furthermore, while the memory module helps enhance the decision-making of the policy, it
alone (i.e., w/o Par.) proves insufficient to escape local optima. This limitation may stem from the
fact that the FJSP solution space is extremely large and complex, making it challenging for the policy
network to achieve effective global exploration through sparse, single-step sampling. For future work,
a critical direction involves dynamically constraining the search space or optimizing the memory
mechanism to selectively extract salient historical features.

Our tailored representation module, which is composed of multiple specialized graph encoders, is
not only theoretically motivated by the structural characteristics of FJSP graphs but is also aligned
with mainstream graph learning practices [8, 21, 24, 50]. The ablation results by removing each
component (i.e., w/o GAT, w/o GIN and w/o HGAT) confirm that each of them is essential for learning
informative and discriminative state representations that support effective policy learning.

J.2 Evaluation of Search Scale

Using models trained with P = 50, we systematically evaluated the search strategy across different
parallel scales P ∈ {10, 20, 30, 40, 50, 60, 70} on SD2 instances of two sizes. The result curves are
illustrated in Figure 8. It is evident that increasing P leads to longer runtimes under a fixed number
of iterations. Moreover, the runtime scales linearly with the iteration count across different P values.
Regarding solution quality, the 10×5 instance has a relatively small neighborhood (approximately
80 solutions), making P = 20 sufficient to cover most promising moves. Consequently, further
increasing P does not yield noticeable improvement. On the other hand, the 15×10 instance has

28

around 240 neighbors, so increasing P from 10 to 60 continuously improves performance. However,
the difference between P = 60 and P = 70 becomes negligible, indicating a saturation point beyond
which additional evaluations offer little benefit. These observations highlight the importance of
selecting an appropriate P based on the problem size and the flexibility of alternative machines to
balance performance gains and computational cost. In future work, we plan to enable the network to
dynamically adapt P according to instance characteristics, reducing manual tuning efforts.

(a) 10× 5 instances.

(b) 15× 10 instances.
Figure 8 Runtime (left) and performance (right) curves across different parallel scale.

29

	Introduction
	Related work
	Preliminaries
	Methodology
	MDP Formulation
	Directed Heterogeneous Graph
	Memory-enhanced Heterogeneous Graph Neural Network
	Operation Node Embedding
	Machine Node Embedding
	Historical Action Embedding
	Decision Making
	Training Algorithm

	Experiments
	Experimental Settings
	Performance on Synthetic Instances
	Performance on Public Benchmarks
	Results on Larger Instances
	Ablation Studies

	Conclusion
	Comparative Analysis of Neighborhood Structures
	Definition of Raw Feature Vectors
	Advantages of the Directed Heterogeneous Graph
	Compact State Representation in Memory
	Motivation and Compact Formulation
	Alternative Designs

	Complexity Analysis of Action Space
	The n-step PPO Algorithm with Parallel Greedy Exploration Strategy
	Training Configurations
	Detailed Analysis on Synthetic Instances
	Improvement over Varied Initial Solution Generation Methods
	Results on Ablation Studies
	Analysis on Components and Strategy
	Evaluation of Search Scale

