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Abstract

We seek to understand what facilitates sample-efficient learning from historical
datasets for sequential decision-making, a problem that is popularly known as
offline reinforcement learning (RL). Further, we are interested in algorithms that
enjoy sample efficiency while leveraging (value) function approximation. In this
paper, we address these fundamental questions by (i) proposing a notion of data
diversity that subsumes the previous notions of coverage measures in offline RL and
(ii) using this notion to unify three distinct classes of offline RL algorithms based
on version spaces (VS), regularized optimization (RO), and posterior sampling
(PS). We establish that VS-based, RO-based, and PS-based algorithms, under
standard assumptions, achieve comparable sample efficiency, which recovers the
state-of-the-art sub-optimality bounds for finite and linear model classes with the
standard assumptions. This result is surprising, given that the prior work suggested
an unfavorable sample complexity of the RO-based algorithm compared to the
VS-based algorithm, whereas posterior sampling is rarely considered in offline
RL due to its explorative nature. Notably, our proposed model-free PS-based
algorithm for offline RL is novel, with sub-optimality bounds that are frequentist
(i.e., worst-case) in nature.

1 Introduction

Learning from previously collected experiences is a vital capability for reinforcement learning (RL)
agents, offering a broader scope of applications compared to online RL. This is particularly significant
in domains where interacting with the environment poses risks or high costs. However, effectively
extracting valuable policies from historical datasets remains a considerable challenge, especially in
high-dimensional spaces where the ability to generalize across various scenarios is crucial. In this
paper, our objective is to comprehensively examine the efficiency of offline RL in the context of
(value) function approximation. We aim to analyze this within the broader framework of general data
collection settings.

The problem of learning from historical datasets for sequential decision-making, commonly known as
offline RL or batch RL, originated in the early 2000s [Ernst et al., 2005, Antos et al., 2006, Lange et al.,
2012] and has recently regained significant attention [Levine et al., 2020, Uehara et al., 2022a]. In
offline RL, where direct interaction with environments is not possible, our goal is to learn an effective
policy by leveraging pre-collected datasets, typically obtained from different policies known as
behavior policies. The sample efficiency of an offline RL algorithm is measured by the sub-optimality
of the policies it executes compared to a “good” comparator policy, which may or may not be an
optimal policy. Due to the lack of exploration inherent in offline RL, designing an algorithm with
low sub-optimality requires employing the fundamental principle of pessimistic extrapolation. This
means that the agent extrapolates from the offline data while considering the worst-case scenarios
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that are consistent with that data. Essentially, the diversity present in the offline data determines the
agent’s ability to construct meaningful extrapolations. Hence, a suitable notion of data diversity plays
a crucial role in offline RL.

To address the issue of data diversity, several prior methods have made the assumption that the offline
data is uniformly diverse – this implies that the data should cover the entire trajectory space with
some probability that is bounded from below [Munos and Szepesvári, 2008, Chen and Jiang, 2019,
Nguyen-Tang et al., 2022b]. This assumption is often too strong and not feasible in many practical
scenarios. In more recent approaches [Jin et al., 2021b, Xie et al., 2021, Uehara and Sun, 2022, Chen
and Jiang, 2022, Rashidinejad et al., 2023], the stringent assumption of uniform diversity has been
relaxed to only require partial diversity in the offline data. Various measures have been proposed
to capture this partial diversity, such as single-policy concentrability coefficients [Liu et al., 2019,
Rashidinejad et al., 2021, Yin and Wang, 2021], relative condition numbers [Agarwal et al., 2021,
Uehara and Sun, 2022], and Bellman residual ratios [Xie et al., 2021]. These measures aim to quantify
the extent to which the data captures diverse states and behaviors. However, it should be noted that in
some practical scenarios, these measures may become excessive or may not hold at all.

In terms of algorithmic approaches, existing sample-efficient offline RL algorithms explicitly construct
pessimistic estimates of models or value functions to effectively learn from datasets with partial
diversity. This is typically achieved through the construction of lower confidence bounds (LCBs) [Jin
et al., 2021b, Rashidinejad et al., 2021] or version spaces (VS) [Xie et al., 2021, Zanette et al.,
2021]. LCB-based algorithms incorporate a bonus term subtracted from the value estimates to
enforce pessimism across all state-action pairs and stages. However, it has been observed that
LCB-based algorithms tend to impose unnecessarily aggressive pessimism, leading to sub-optimal
bounds [Zanette et al., 2021]. On the other hand, VS-based algorithms search through the space of
consistent hypotheses to identify the one with the smallest value in the initial states. These algorithms
have demonstrated state-of-the-art bounds [Zanette et al., 2021, Xie et al., 2021].

In contrast to LCB-based and VS-based algorithms, regularized (minimax) optimization (RO) and
posterior sampling (PS) are more amenable to tractable implementations but are relatively new in the
offline RL literature. The RO-based algorithm initially introduced by [Xie et al., 2021, Algorithm 1]
incorporates pessimism implicitly through a regularization term that promotes pessimism in the
initial state. This approach eliminates the need for an intractable search over the version space.
However, Xie et al. [2021] demonstrate that the RO-based algorithm exhibits a significantly slower
sub-optimality rate than standard VS-based algorithms. Specifically, the RO-based algorithm achieves
a sub-optimality rate of K−1/3, whereas VS-based algorithms achieve a faster rate of K−1/2, where
K represents the number of episodes in the offline data.

On the other hand, posterior sampling (PS) [Thompson, 1933, Russo and Van Roy, 2014], a popular
and successful method in online RL, is rarely explored in the context of offline RL. PS involves
sampling from a constructed posterior distribution over the model or value function and acting
accordingly. However, PS is less commonly considered in offline RL due to its explorative nature,
which stems from the randomness of the posterior distribution. This randomness is well-suited for
addressing the exploration challenge in online RL tasks [Zhang, 2022, Dann et al., 2021, Zhong et al.,
2022, Agarwal and Zhang, 2022]. The only work that considers PS for offline RL is Uehara and Sun
[2022], where they maintain a posterior distribution over Markov decision process (MDP) models.
However, this model-based PS approach is limited to small-scale problems where computing the
optimal policy from an MDP model is computationally feasible. In addition, this work only provides
a weak form of guarantees via Bayesian bounds.

In the context of (value) function approximation, achieving sample-efficient offline RL relies on
certain conditions that facilitate effective learning. The identification of the minimum condition
required for sample efficiency, as well as the algorithms that can exploit such conditions, is an
important research question that we aim to address here. We advance our understanding by making
the following contributions: (I) We introduce a new notion of data diversity that subsumes and
expands all the prior distribution shift measures in offline RL, and (II) We show that all VS-based,
RO-based and PS-based algorithms are in fact (surprisingly) competitive to each other, i.e., under
standard assumptions, they achieve the same sub-optimality bounds (up to constant and log factors).
We summarize our key results in comparison with related work in Table 1. Our results further expand
the class of sample-efficient offline RL problems (Figure 1) and provide more choices of offline RL
algorithms with competitive guarantees and tractable approximations for practitioners to choose from.
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Algorithms Sub-optimality Bound Data

VS in [Xie et al., 2021] Hb
√

C2(π) · ln(|F| · |Πall|) ·K−1/2 I

RO in [Xie et al., 2021] Hb
√

C2(π) · 3
√

ln(|F| · |Πsoft(T )|) ·K−1/3 +Hb/
√
T I

MBPS in [Uehara and Sun, 2022] Hb
√

CBayes · ln |M| ·K−1/2 (Bayesian) I

VS in Algorithm 2 Hb
√
C(π; 1/

√
K) · ln(|F| · |Πsoft(T )|) ·K−1/2 +Hb/

√
T A

RO in Algorithm 3 Hb
√
C(π; 1/

√
K) · ln(|F| · |Πsoft(T )|) ·K−1/2 +Hb/

√
T A

MFPS in Algorithm 4 Hb
√
C(π; 1/

√
K) · ln(|F| · |Πsoft(T )|) ·K−1/2 +Hb/

√
T (frequentist) A

Table 1: Comparison of our bounds with SOTA bounds for offline RL under partial coverage
and function approximation, where gray cells mark our contributions. Algorithms: VS = version
space, RO = regularized optimization, MBPS = model-based posterior sampling, and MFPS =
model-free posterior sampling. Sub-optimality bound: K = #number of episodes, π = an arbi-
trary comparator policy, H = horizon, b = boundedness, T = the number of algorithmic updates,
ln |F|, ln |Πsoft(T )|, ln |Πall|, ln |M|: complexity measures of some value function class F , “in-
duced” policy class Πsoft(T ), the class of all comparator policies Πall, and model classM, where
typically Πsoft(T ) ⊂ Πall,∀T . Data: I = independent episodes, A = adaptively collected data. Here
C(π; 1/

√
K) and C2(π) are some measures of extrapolation from the offline data to target policy π.

For establishing (II), we need to construct concrete VS-based, RO-based and PS-based algorithms.
While the key components of the VS-based and RO-based algorithms appear in the literature [Xie et al.,
2021], we propose a novel, a first-of-its-kind, model-free posterior sampling algorithm for offline RL.
The algorithm contains two new ingredients: a pessimistic prior that encourages pessimistic value
functions when being sampled from the posterior distribution and integration of posterior sampling
with the actor-critic framework that incrementally updates the learned policy.

Overview of Techniques. Our analysis method presents a “decoupling” argument tailored for the
batch setting, drawing inspiration from recent decoupling arguments in the online RL setting [Foster
et al., 2021, Jin et al., 2021a, Zhang, 2022, Dann et al., 2021, Zhong et al., 2022, Agarwal and Zhang,
2022]. The core idea behind our decoupling argument is to establish a relationship between the
Bellman error under any comparator policy π and the squared Bellman error under the behavior policy.
This relationship is mediated through our novel concept of data diversity, denoted as C(π; ϵc), which
is defined in detail in Definition 3. This allows to separate the sub-optimality of a learned policy into
two main sources of errors: the extrapolation error, which captures the out-of-distribution (OOD)
generalization from the behavior policy to a target policy, and the in-distribution error, which focuses
on generalization within the same behavior distribution. The OOD error is effectively managed
by controlling the data diversity C(π; ϵc), while the in-distribution error is carefully addressed by
utilizing the algorithmic structures and the martingale counterpart to Bernstein’s inequality (i.e.,
Freedman’s inequality).

In the process of bounding the in-distribution error of our proposed PS algorithm that we built upon
the technique of Dann et al. [2021], we correct a non-rigorous argument of Dann et al. [2021] (which
we discuss in detail in Section E.3.1) and develop a new technical argument to handle the statistical
dependence induced by the data-dependent target policy in the actor-critic framework. Our new
argument carefully incorporates the uniform convergence argument into the in-expectation bounds of
PS. We give a detailed description of this argument in Section E.3. As an immediate application, our
technique fixes a technical mistake involving how to handle the statistical dependence induced by the
min player in the self-play posterior sampling algorithm of Xiong et al. [2022].

2 Background and Problem Formulation

2.1 Episodic Time-inhomogenous Markov Decision Process

Let S and A denote Lebesgue-measurable state and action spaces (possibly infinite), respec-
tively. Let P(S) denote the space of all probability distributions over S. We consider an episodic
time-inhomogeneous Markov decision process M = (S,A, P, r,H), where P = {Ph}h∈[H] ∈
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{S × A → P(S)}H are the transition probabilities (where [H] := {1, . . . ,H}), r = {rh}h∈[H] ∈
{S × A → R}H is the mean reward functions, and H ∈ N is the length of the horizon for each
episode. For any policy π = {πh}h∈[H] ∈ {S → P(A)}H , the action-value functions and the
value functions under policy π are defined, respectively, as Qπ

h,M (s, a) = Eπ[
∑H

i=h ri(si, ai) |
(sh, ah) = (s, a)], and V π

h,M (s) = Eπ[
∑H

i=h ri(si, ai)|sh = s]. Here Eπ[·] denotes the expec-
tation with respect to the randomness of the trajectory (sh, ah, . . . , sH , aH), with ai ∼ πi(·|si)
and si+1 ∼ Pi(·|si, ai) for all i. For any policy π, we define the visitation density probabil-
ity functions dπM = {dπh,M}h∈[H] ∈ {S × A → R+}H as dπh(s, a) := dPr((sh,ah)=(s,a)|π,M)

dρ(s,a)

where ρ is the Lebesgue measure on S × A and Pr((sh, ah) = (s, a)|π,M) is the probability of
policy π reaching state-action pair (s, a) at timestep h. The Bellman operator Tπ

h is defined as
[Tπ

hQ](s, a) := rh(s, a) + Es′∼Ph(·|s,a),a′∼πh+1(·|s′) [Q(s′, a′)], for any Q : S × A → R. Let
π∗ be an optimal policy, i.e., Qπ∗

h (s, a) ≥ Qπ
h(s, a),∀(s, a, h, π) ∈ S × A × [H] × Πall, where

Πall := {S → P(A)}H is the set of all possible policies. For simplicity, we assume that the initial
state s1 is deterministic across all episodes.1 We also assume that there is some b > 0 such that for any
trajectory (s1, a1, r1, . . . , sH , aH , rH) generated under any policy, |rh| ≤ b,∀h and |

∑H
h=1 rh| ≤ b

almost surely.2 This boundedness assumption is standard and subsumes the boundedness conditions
in the previous works, e.g., Zanette et al. [2021] set b = 1 and Jin et al. [2021b] use b = H (and
further assume that rh ∈ [0, 1],∀h).3 Without loss of generality, we assume that b ≥ 1.

Additional Notation. For any u : S × A → R and any π : S → P(A), we overload the
notation u(s, π) := Ea∼π(·|s) [u(s, a)]. For any f : S × A → R, denote the supremum norm
∥f∥∞ = max(s,a)∈S×A |f(s, a)|. We write E[g]2 := (E[g])2. For a probability measure ν on some
measurable space (Ω,B), we denote by supp(ν) the support of ν, supp(ν) := {B ∈ B : ν(B) > 0}.
We denote x ≲ y to mean that x = O(y).

2.2 Offline Data Generation

Denote the pre-collected dataset by D := {(sth, ath, rth)}
t∈[K]
h∈[H], where sth+1 ∼ Ph(·|sth, ath) and

E[rth|sth, ath] = rh(s
t
h, a

t
h). We consider the adaptively collected data setting where the offline data is

collected by time-varying behavior policies {µk}k∈[K], concretely, defined as follows.

Definition 1 (Adaptively collected data4). µk is a function of {(sih, aih, rih)}
i∈[k−1]
h∈[H] , ∀k ∈ [K].

For simplicity, we denote µ = 1
K

∑K
k=1 µ

k, dµ = 1
K

∑K
k=1 d

µk

, and Eµ[·] = 1
K

∑K
k=1 Eµk [·]. The

setting of adaptively collected data covers a common practice where the offline data is collected by
using some adaptive experimentation [Zhan et al., 2023]. When µ1 = · · · = µK , it recovers the
setting of independent episodes in Duan et al. [2020].

Value sub-optimality. The goodness of a learned policy π̂ = π̂(D) against a comparator policy π
for the underlying MDP M is measured by the (value) sub-optimality defined as

SubOptMπ (π̂) := V π
1 (s1)− V π̂

1 (s1). (1)

Whenever the context is clear, we drop M in Qπ
M , V π

M , dπM , and SubOptMπ (π̂).

2.3 Policy and function classes

Next, we define the policy space and the action-value function space over which we optimize the
value sub-optimality. We consider a (Cartesian product) function class F = F1 × · · · × FH ∈
{S ×A → [−b, b]}H . The function class F induces the following (Cartesian product) policy class

1This assumption is merely for the sake of clean presentation which does not affect any results.
2Note that we allow the reward samples to be negative.
3We can replace the condition |rh| ≤ b,∀h with 1-sub-Gaussian condition: rh ∼ Rh(sh, ah) wherein

Rh(sh, ah) is sub-Gaussian with mean rh(sh, ah) – which replaces b in our main theorems by b+ ln(KH/δ).
4It is essentially the “measurability” condition in Zanette et al. [2021] and “compliance” condition in Jin

et al. [2021b].
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Πsoft(T ) = Πsoft
1 (T ) × · · · × Πsoft

H (T ), where Πsoft
h (T ) := {πh(a|s) ∝ exp(η

∑t
i=1 gi(s, a)) :

t ∈ [T ], gi ∈ Fh,∀i ∈ [t], η ∈ [0, 1]} for any T ∈ N. The motivation for the induced policy class
Πsoft(T ) is from the soft policy iteration (SPI) update where we incrementally update the policy.

We now discuss a set of assumptions that we impose on the policy and function classes.
Assumption 2.1 (Approximate realizability). There exist {ξh}h∈[H] where ξh ≥ 0 such that,

sup
T∈N,π∈Πsoft(T ),(sh,ah)∈supp(dµ

h)

inf
f∈F
|fh(sh, ah)−Qπ

h(sh, ah)| ≤ ξh, ∀h ∈ [H].

Assumption 2.1 establishes that F can realize Qπ for any π ∈ Πsoft(T ) up to some error ξ ∈ RH

in the supremum norm over the µ-feasible state-action pairs. It strictly generalizes the assumption
in Zanette et al. [2021] which restricts ξh = 0, ∀h (i.e., assume realizability) and the assumption in
Xie et al. [2021] which constrains the approximation error under any feasible state-action distribution.

The realizability in value functions alone is known to be insufficient for sample-efficient offline
RL [Wang et al., 2021]; thus, one needs to impose a stronger assumption for polynomial sample
complexity of model-free methods.5 In this paper, we impose an assumption on the closedness of the
Bellman operator.
Assumption 2.2 (General Restricted Bellman Closedness). There exists ν ∈ RH such that

sup
T∈N,fh+1∈Fh+1,π̃∈Πsoft(T )

inf
f ′
h∈Fh

∥f ′
h − Tπ̃

hfh+1∥∞ ≤ νh, ∀h ∈ [H].

Assumption 2.2 ensures that the value function space F and the induced policy class Πsoft(T ) for
any T ∈ N are closed under the Bellman operator up to some error ν ∈ RH in the supremum norm.
This assumption is a direct generalization of the Linear Restricted Bellman Closedness in Zanette
et al. [2020] from a linear function class to a general function class. As remarked by Zanette et al.
[2021], the Linear Restricted Bellman Closedness is already strictly more general than the low-rank
MDPs [Yang and Wang, 2019, Jin et al., 2020].

2.4 Effective sizes of policy and function classes

When the function class and the policy class have finite elements, we use their cardinality |Fh| and
|Πsoft

h (T )| to measure their sizes [Jiang et al., 2017, Xie et al., 2021]. When they have infinite
elements, we use log-covering numbers, defined as

dF (ϵ) := max
h∈[H]

lnN(ϵ;Fh, ∥ · ∥∞), and dΠ(ϵ, T ) := max
h∈[H]

lnN(ϵ; Πsoft
h (T ), ∥ · ∥1,∞),

where ∥π − π′∥1,∞ = sups∈S
∫
A |π(a|s) − π′(a|s)|dρ(a) for any π, π′ ∈ {S → P(A)} and

N(ϵ;X , ∥ · ∥) denotes the covering number of a pseudometric space (X , ∥ · ∥) with metric ∥ · ∥
[Zhang, 2023, e.g. Definition 4.1].

We also define a complexity measure that depends on a prior distribution p0 over F that we employ
to favor certain regions of the function space. Our notion, presented in Definition 2, is simply a direct
adaptation of a similar notation of Dann et al. [2021] to the actor-critic setting.
Definition 2. For any function f ′ ∈ Fh+1 and any policy π̃ ∈ Πall, we define F π̃

h (ϵ; f
′) := {f ∈

Fh : ∥f − Tπ̃
hf

′∥∞ ≤ ϵ}, for any ϵ ≥ 0, and subsequently define

d0(ϵ) := sup
T∈N,f∈F,π̃∈Πsoft(T )

H∑
h=1

ln
1

p0,h(F π̃
h (ϵ; fh+1))

, d′0(ϵ) := sup
T∈N,π̃∈Πsoft(T )

H∑
h=1

ln
1

p0,h(F π̃
h (ϵ;Q

π̃
h+1))

.

The quantity d0(ϵ) and d′0(ϵ) measures the concentration of the prior p0 over all functions f ∈ F
that are ϵ-close (element-wise) under Tπ̃ and ϵ-close (element-wise) to Qπ̃

h , respectively. If a stronger
version of Assumption 2.1 is met, i.e., Qπ̃

h ∈ Fh,∀π̃ ∈ Πall
h , h ∈ [H], we have d′0(ϵ) ≤ d0(ϵ),∀ϵ. For

5A stronger form of realizability is sufficient for polynomial sample complexity, e.g., realizability for a
density ratio w.r.t. the behavior state-action distribution in dual-primal methods [Zhan et al., 2022, Chen and
Jiang, 2022, Rashidinejad et al., 2023] or realizability for the underlying MDP in model-based methods [Uehara
and Sun, 2022]. Instead, we pursue model-free value-based methods.
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the finite function class F and an uninformative prior p0,h(fh) = 1/|Fh|, under a stronger version
of Assumption 2.2, i.e., νh = 0,∀h, we have d0(ϵ) ≤

∑H
h=1 ln |Fh| = ln |F|. For a parametric

model, where each fh = fθ
h is represented by a d-dimensional parameter θ ∈ Ωθ

h ⊂ Rd, a prior
over Ωθ induces a prior over F . If each Ωθ

h is compact, we can generally assume the prior that
satisfies supθ ln

1
p0,h(θ′:∥θ−θ′∥≤ϵ) ≤ d ln(c0/ϵ) for some constant c0. If fh = fθ

h is Lipschitz in θ,
we can assume that supθ ln

1
p0,h(θ′:∥θ−θ′∥≤ϵ) ≤ c1d ln(c2/ϵ) for some constants c1, c2. Overall, we

can assume that d0(ϵ) ≤ c1Hd ln(c2/ϵ). A similar discussion can be found in Dann et al. [2021].

3 Algorithms

Algorithm 1 GOPO(D,F , η, T, CriticCompute ):
Generic Offline Policy Optimization Framework
Input: Offline data D, function class F , learning rate

η > 0, and iteration number T
1: Uniform policy π1 = {π1

h}h∈[H]

2: for t = 1, . . . , T do
3: Qt = CriticCompute (πt,D,F , . . .)
4: πt+1

h (a|s) ∝ πt
h(a|s) exp(ηQ

t

h
(s, a)),∀(s, a, h)

5: end for
Output: π̂ ∼ Uniform({πt}t∈[T ])

Next, we present concrete instances of
PS-based, RO-based, and VS-based algo-
rithms. The RO-based and VS-based al-
gorithms presented here are slight refine-
ments of their original versions in Xie
et al. [2021]. The PS-based algorithm
is novel. All three algorithms resemble
the actor-critic style update, inspired by
Zanette et al. [2021]. We refer to this
generic framework as GOPO (Generic
Offline Policy Optimization) presented
in Algorithm 1. At each round t, a
critic estimates the value Qt

h
of the ac-

tor (i.e., policy πt) using the procedure
CriticCompute on Line 3, and the actor improves the policy using a multiplicative weights up-
date [Arora et al., 2012] (Line 4). After T iterations, GOPO returns a policy π̂ that is sampled
uniformly from the set of the obtained policies {πt}t∈[T ].

To incorporate the pessimism principle, a critic should generate pessimistic estimates of the value
of the actor πt in Line 3. This is where the three approaches differ – each invokes a different
method to compute the critic. Here, we provide a detailed description of the critic module for each
approach. To aid the presentation, we introduce the total temporal difference (TD) loss L̂π̃ , defined as
L̂π̃(fh, fh+1) :=

∑K
k=1 lπ̃(fh, fh+1; z

k
h), where zh := (sh, ah, rh, sh+1), zkh := (skh, a

k
h, r

k
h, s

k
h+1),

and lπ̃(fh, fh+1; zh) := (fh(sh, ah)− rh − fh+1(sh+1, π̃))
2.

Version Space-based Critic (VSC) (Algorithm 2). Given the actor πt, at each step h ∈ [H],
VSC directly maintains a local regression constraint using the offline data: L̂πt(fh, fh+1) ≤
infg∈F L̂πt(gh, fh+1) + β, where β is a confidence parameter and L̂πt(·, ·) is serving as a proxy to
the squared Bellman residual at step h. By taking the function that minimizes the initial value, VSC
then finds the most pessimistic value function Qt from the version space F(β;πt) ⊆ F . In general,
the constrained optimization in Line 2 is computationally intractable. Note that a minimax variant of
GOPO+VSC first appeared in Xie et al. [2021], where they directly perform an (intractable) search
over the policy space, instead of using the multiplicative weights algorithm (Line 4) of Algorithm 1.

Regularized Optimization-based Critic (ROC) (Algorithm 3). Instead of solving the global
constrained optimization in VSC, ROC solves arg inff∈F {λf1(s1, πt

1) + Lπt(f)}, where λ is a
regularization parameter and Lπt(f), defined in Line 1 of Algorithm 3. Note that in ROC, pessimism
is implicitly encouraged through the regularization term λf1(s1, π

t). We remark that, unlike VSC,
ROC admits tractable approximations that use adversarial training and work competitively in practice
[Cheng et al., 2022]. Note that a discounted variant of GOPO-ROC first appears in [Xie et al., 2021]
in discounted MDPs.

Algorithm 2 VSC(D,F , πt, β): Version
Space-based Critic

1: F(β;πt) := {f ∈ F : L̂πt(fh, fh+1) ≤
infg∈F L̂πt(gh, fh+1) + β,∀h ∈ [H]}

2: Qt ∈ argminf∈F(β;πt) f1(s1, π
t)

Output: Qt

Algorithm 3 ROC(D,F , πt, λ): Regularized
Optimization-based Critic

1: Lπt(f) :=
∑H

h=1 L̂πt(fh, fh+1)

− infg∈F
∑H

h=1 L̂πt(gh, fh+1)

2: Qt ← arg inff∈F {λf1(s1, πt) + Lπt(f)}
Output: Qt
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Posterior sampling-based critic (PSC) in Algorithm 4. Instead of solving a regularized minimax
optimization, PSC samples the value function Qt

h
from the data posterior π̂(f |D, πt) ∝ p̃0(f) ·

p(D|f, πt), where p̃0(f) is the prior over F and p(D|f, πt) is the likelihood function of the offline
data D. To formulate the likelihood function p(D|f, πt), we make use of the squared TD error
L̂πt(·, ·) and normalization method in [Dann et al., 2021] to construct an unbiased proxy of the

squared Bellman errors. In particular, p(D|f, πt) =
∏

h∈[H]
exp(−γL̂πt (fh,fh+1))

Ef′
h
∼p0,h

exp(−γL̂πt (f ′
h,fh+1))

, where γ is

a learning rate and p0 is an (unregularized) prior over F . A value function sampled from the posterior
with this likelihood function is encouraged to have small squared TD errors. The key ingredient in our
algorithmic design is the “pessimistic” prior p̃0(f) = exp(−λf1(s1, π1))p0(f) where we add a new
regularization term exp(−λf1(s1, π1)), with λ being a regularization parameter – which is inspired
by the optimistic prior in the online setting [Zhang, 2022, Dann et al., 2021]. This pessimistic prior
encourages the value function sampled from the posterior to have a small value in the initial state,
implicitly enforcing pessimism. We remark that PSC requires a sampling oracle and expectation
oracle (to compute the normalization term in the posterior distribution), which could be amenable to
tractable approximations, including replacing expectation oracle with a sampling oracle [Agarwal
and Zhang, 2022] while the sampling oracle can be implemented via first-order sampling methods
[Welling and Teh, 2011] or ensemble methods [Osband et al., 2016].

Algorithm 4 PSC(D,F , πt, λ, γ, p0): Posterior Sampling-based Critic

1: Qt ∼ p̂(f |D, πt) ∝ exp (−λf1(s1, πt)) p0(f)
∏

h∈[H]

exp(−γL̂πt (fh,fh+1))
Ef′

h
∼p0,h

exp(−γL̂πt (f ′
h,fh+1))

Output: Qt

4 Main Results

In this section, we shall present the upper bounds of the sub-optimality of the policies executed
by GOPO-VSC, GOPO-ROC, and GOPO-PSC. Our upper bounds are expressed in terms of a new
notion of data diversity.

4.1 Data diversity

We now introduce the key notion of data diversity for offline RL. Since the offline learner does not
have direct access to the trajectory of a comparator policy π ∈ Πall, they can only observe partial
information about the goodness of π channeled through the “transferability” with the behavior policy
µ. The transferability from µ to π depends on how diverse the offline data induced by µ can be in
supporting the extrapolation to π. Many prior works require uniform diversity where µ covers all
feasible scenarios of all comparator policies π. The data diversity can be essentially captured by how
well the Bellman error under the state-action distribution induced by µ can predict the counterpart
quantity under the state-action distribution induced by π. Our notion of data diversity, which is
inspired by the notion of task diversity in transfer learning literature [Tripuraneni et al., 2020, Watkins
et al., 2023], essentially encodes the ratio of some proxies of expected Bellman errors induced by µ
and π, and is defined as follows.
Definition 3. For any comparator policy π ∈ Πall, we measure the data diversity of the behavior
policy µ with respect to a target policy π by

C(π; ϵ) := max
h∈[H]

χ(Fh−Fh)(ϵ; d
π
h, d

µ
h),∀ϵ ≥ 0, (2)

where Fh−Fh is the Minkowski difference between the function class Fh and itself, i.e., Fh−Fh :=
{fh − f ′

h : fh, f
′
h ∈ F}, and χQ(ϵ; q, p) is the discrepancy between distributions q and p under the

witness of function class Q defined as

χQ(ϵ; q, p) = inf
{
C ≥ 0 : (Eq[g])

2 ≤ C · Ep[g
2] + ϵ,∀g ∈ Q

}
with Q being a function class and p and q being two distributions over the same domain.

Up to a small additive error ϵ, a finite C(π; ϵ) ensures that a proxy of the Bellman error under the
π-induced state-action distribution is controlled by that under the µ-induced state-action distribution.
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Despite the abstraction in the definition of this data diversity, it is always upper bounded by the
single-policy concentrability coefficient [Liu et al., 2019, Rashidinejad et al., 2021] and the relative
condition number [Agarwal et al., 2021, Uehara et al., 2022b, Uehara and Sun, 2022] that are both
commonly used in many prior offline RL works. We further discuss our data diversity measure in
more detail in Section 4.2.

4.2 Offline learning guarantees

We now utilize data diversity to give learning guarantees of the considered algorithms for extrapolation
to an arbitrary comparator policy π ∈ Πall. To aid the representation, in all of the following

theorems we are about to present, we shall set η =
√

lnVol(A)
4(e−2)b2T in Algorithm 1, where Vol(A)

is the volume of the action set A (e.g., Vol(A) = |A| for finite A), and define, for simplicity, the
misspecification errors ζmsp := K

∑H
h=1

(
ν2h + bνh

)
, ζ̃msp := ζmsp+bK

∑H
h=1 ξh, ν̄ :=

∑H
h=1 νh,

the optimization error ζopt := Hb
√
T−1 lnVol(A), and the complexity measures d̃opt(ϵ, T ) :=

max{dF (ϵ), dΠ(ϵ, T )}, and d̃ps(ϵ, T ) := max{dF (ϵ), dΠ(ϵ, T ), d0(ϵ)
γHb2 ,

d′
0(ϵ)

γHb2 }.

Theorem 1 (Guarantees for GOPO-VSC). Let π̂vs be the output of Algo-
rithm 1 invoked with CriticCompute being VSC(D,F , πt, β) (Algorithm 2) with

β = O(Hb2 max{d̃opt(ϵ, T ), ln(H/δ)} + b2Kϵ + bKmaxh∈[H] ξh). Fix any δ ∈ (0, 1].
Under Assumption 2.1-2.2, with probability at least 1− 2δ (over the randomness of the offline
data), for any ϵ, ϵc, λ > 0, and any π ∈ Πall, we have

E [SubOptπ(π̂
vs)|D] ≲ Hb2 ·max{d̃opt(ϵ, T ), ln(H/δ)}+ b2KHϵ+ ζ̃msp

λ
+

λH · C(π; ϵc)
2K

+Hϵc + ξ1 + ν̄ + ζopt.

Theorem 2 (Guarantees for GOPO-ROC). Let π̂ro be the output of Algorithm 1 invoked with
CriticCompute being ROC(D,F , πt, λ) (Algorithm 3). Fix any δ ∈ (0, 1]. Under Assump-
tion 2.1-2.2, with probability at least 1− 2δ (over the randomness of the offline data), for any
ϵ, ϵc, λ > 0, and any π ∈ Πall, we have

E [SubOptπ(π̂
ro)|D] ≲

Hb2 ·max{d̃opt(ϵ, T ), ln H
δ }+ b2KHϵ+ ζ̃msp

λ
+

λH · C(π; ϵc)
2K

+Hϵc + ξ1 + ν̄ + ζopt.

Theorem 3 (Guarantees for GOPO-PSC). Let π̂ps be the output of Algorithm 1 invoked with
CriticCompute being PSC(D,F , πt, λ, γ, p0) (Algorithm 4). Under Assumption 2.2, for any

γ ∈ [0, 1
144(e−2)b2 ], and ϵ, ϵc, δ, λ > 0, and any π ∈ Πall, we have

E [SubOptπ(π̂
ps)] ≲

γHb2 ·max{d̃ps(ϵ, T ), ln lnKb2

δ }+ γb2KH ·max{ϵ, δ}+ γζmsp

λ

+
λH · C(π; ϵc)

Kγ
+Hϵc + ϵ+ ν̄ + ζopt.

Our results provide a family of upper bounds on the sub-optimality of each of {π̂vs, π̂ro, π̂ps},
indexed by our choices of the comparator π with the data diversity C(π; ϵc), additive (extrapolation)
error ϵc, the discretization level ϵ in log-covering numbers, the “failure” probability δ, and other
algorithm-dependent parameters (λ for π̂ro and (λ, γ) for π̂ps). Note that the optimization error ζopt
captures the error rate of the actor and can be made arbitrarily small with large iteration number T
whereas ζmsp, ζ̃msp, ν̄, and ξ1 are simply misspecification errors aggregated over all stages. Also
note that our bound does not scale with the complexity of the comparator policy class Πall. We next
highlight the key characteristics of our main results in comparison with existing work.
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data diversity

squared Bellman residual ratio

relative condition number

single-policy concentrability

uniform concentrability

Figure 1: The relations of sample-
efficient offline RL classes under differ-
ent data coverage measures. Given the
same MDP and a target policy (e.g., an
optimal policy of the MDP), each data
coverage measure induces a correspond-
ing set of behavior policies (represented
by the rectangle labelled by the data cov-
erage measure) from which the target
policy is offline-learnable.

(I) Tight characterization of data diversity. Our
bounds in all the above theorems are expressed in terms of
C(π; ϵc). Several remarks are in order. First, C(π; ϵc)
is a non-increasing function of ϵc; thus C(π; ϵc) is al-
ways smaller or at least equal to C(π; 0). In fact, it is
possible that C(π; 0) = ∞ yet C(π; ϵc) < ∞ for some
ϵ > 0. For instance, if there exists g ∈ Q such that
g(x) = 0,∀x ∈ supp(p) and {x : g(x) ̸= 0} has a
positive measure under q, then χQ(0; q, p) = ∞ while
χQ(supg∈Q Eq[g]

2; q, p) = 0. Second, C(π; 0) is always
bounded from above by (often substantially smaller than)
the single-policy concentrability coefficient between the
π-induced and µ-induced state-action distribution [Liu
et al., 2019, Rashidinejad et al., 2021], which been used
extensively in recent offline RL works [Yin and Wang,
2021, Nguyen-Tang et al., 2022a, 2023, Jin et al., 2022,
Zhan et al., 2022, Nguyen-Tang and Arora, 2023, Zhao
et al., 2023]. This is essentially because dπ can cover the
region that is not covered by dµ but still the integration of
functions in Fh − Fh over two distributions are close to
each other. Third, C(π; 0) is always upper bounded by the
relative condition numbers used in [Agarwal et al., 2021,
Uehara et al., 2022b, Uehara and Sun, 2022]. Our data diversity at ϵ = 0 is similar to the notion of
distribution mismatch in Duan et al. [2020], Ji et al. [2022], though our notion is motivated by transfer
learning and discovered naturally from our decoupling argument. Our data diversity measure at ϵ = 0
is smaller than the Bellman residual ratio measure used in Xie et al. [2021] (follows using Jensen’s
inequality). Finally, the concurrent work of Di et al. [2023] proposed a notion of D2-divergence
to capture the data disparity of a data point to the offline data. Our data diversity is in general less
restricted as we only need to ensure the diversity between two data distributions (of the target policy
and the behavior policy), not necessarily between each of their individual data points.

In summary, C(π; ϵc), to the best of our knowledge, provides the tightest characterization of distri-
bution mismatch compared to the prior data coverage notions. We sketch the relationships of the
discussed notions in Figure 1, where with our data diversity notion, we show that the scenarios for
the offline data in which offline RL is learnable are enlarged compared to the picture depicted by the
prior data coverage notions.

(II) Competing with all comparator policies simultaneously. Similar to some recent results in
offline RL, our offline RL algorithms compete with all comparator policies that are supported by
offline data in some sense. In particular, the choice of the comparator π provides the flexibility to
automatically compete with the best policy within a certain diversity level of our choice. For instance,
if we want to limit the level C(π; ϵc) ≤ C for some arbitrary C > 0, our bound automatically
competes with π = argmaxπ∈Πall{V π

1 (s) : C(π; ϵc) ≤ C}. This is immensely meaningful since the
offline data might not support extrapolation to an optimal policy in practice.

(III) State-of-the-art bounds for standard assumptions. We compare our bounds with other
recent guarantees of similar assumptions.6 To ease comparison, we assume for simplicity, that there
is no misspecification, i.e., νh = ξh = 0,∀h ∈ [H], and T ≥ K lnVol(A), and we minimize the
bounds in Theorem 2 and Theorem 3 with respect to λ. The three theorems can then be simplified
into a unified result presented in Proposition 1.

Proposition 1 (A unified guarantee for VS, RO and PS). Under Assumption 2.1-2.2 with no
misspecification, i.e., νh = ξh = 0,∀h ∈ [H], ∀π̂ ∈ {π̂vs, π̂ro, π̂ps}, E[SubOptπ(π̂)] =

Õ(Hb
√
d̃(1/K, T ) · C(π; 1/

√
K)/K + ξopt), where d̃(1/K, T ) = d̃opt(1/K, T ) if π̂ ∈ {π̂vs, π̂ro}

and d̃(1/K, T ) = d̃ps(1/K, T ) if π̂ = π̂ps. In addition,

6Recent primal-dual methods achieve favorable guarantees for offline RL. However, these guarantees are
not directly comparable to the guarantees of our value-based methods due to a different set of assumptions.
Nonetheless, we make a detailed discussion in Section A.2.
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• If Fh and Πsoft
h (T ) have finite elements for all h ∈ [H], d̃(1/K, T ) =

O(maxh∈[H] max{ln |Fh|, ln |Πsoft
h (T )|});

• If Fh = {(s, a) 7→ ⟨ϕh(s, a), w⟩ : ∥w∥2 ≤ b} is a linear model, where ϕh : S×A → Rd is
a known feature map and w.l.o.g. maxh ∥ϕh∥∞ ≤ 1, d̃(1/K, T ) = O(d log(1+KTb)),∀T .

Proposition 1 essentially asserts that VS-based, RO-based, and PS-based algorithms obtain compara-
ble guarantees for offline RL in the realizable case. We now compare our results to related work in
various instantiation of function classes.
Compared with Xie et al. [2021] when the function class is finite. In this case, the
analysis of the VS-based algorithms and RO-based algorithms of Xie et al. [2021] give
the bounds that in our setting can be translated7 into: Hb

√
maxh ln(|Fh||Πall

h |) · C2(π)/K

and Hb
√

C2(π)
3

√
maxh ln(|Fh||Πsoft

h (T )|)/K + Hb/
√
T , respectively, where C2(π) :=

maxh∈[H],π̃∈Πall,f∈F
∥fh−Tπ̃

hfh+1∥22,π
∥fh−Tπ̃

h
fh+1∥22,µ

. Instead, our bounds for both the VS-based and RO-

based algorithms are Hb
√

maxh ln(|Fh||Πsoft
h (T )|) · C(π; 1/

√
K)/K + Hb/

√
T . We improve upon

the results of Xie et al. [2021] on several fronts. First, our diversity measures C(π; 1/K) is always
smaller than their measure C2(π), since C(π; 1/

√
K) ≤ C(π; 0) ≤ C2(π). Second, for the VS-based

algorithm, Πsoft(T ) ⊂ Πall,∀T , our bound is always tighter. In fact, |Πall| is arbitrarily large
that bounds depending on this quantity is vacuous. Third, for the RO-based algorithm, the rates
in terms of K in the bound of Xie et al. [2021] are slower than that in our bound. Specifically, if
Πsoft

h (T ) = ÕT (1), then these rates are K−1/3 vs K−1/2 (with an optimal choice of T = K for
both bounds). If we consider the worst case that Πsoft

h (T ) = O(T log |Fh|), then these rates are
K−1/5 vs K−1/4 (with an optimal choice of T = K2/5 and T =

√
K in the respective bounds).

Finally, our results hold under the general adaptively collected data rather than their independent
episode setting. We summarize the bounds in the finite function class cases in Table 1, and give
comparisons for the linear model cases in Table 2.
Compared with LCB-based algorithms. When Fh is a d-dimensional linear model with
feature maps {ϕh}h∈[H], our bounds reduce into Hb

√
d ·K−1 · C(π; 1/

√
K) (Proposition 1),

which matches the order of (and potentially tighter than) the bound in Zanette et al. [2021],
since C(π; 1/

√
K) is always smaller (or at least equal to) than the relative condition num-

ber maxh supx∈Rd
xT Eπ [ϕh(sh,ah)ϕh(sh,ah)T ]x

xT Eµ[ϕh(sh,ah)ϕh(sh,ah)T ]x
. Compared with the bound of LCB-based algo-

rithms in Jin et al. [2021b], we improve a factor
√
d and holds under the more general

Assumption 2.2 which includes low-rank MDPs. In a more refined analysis [Xiong et al.,
2023], the LCB-based algorithm obtains the same dependence on d for low-rank MDPs as
our guarantees. However, this improvement relies on a uniform coverage assumption, i.e.,
minh∈[H] λmin

(
E(sh,ah)∼dµ

h

[
ϕh(sh, ah)ϕh(sh, ah)

T
])

> 0, which we do not require. Di et al.
[2023] generalize the results of Xiong et al. [2023] from linear MDPs to MDPs with general function
approximation. However, they still rely on a uniform coverage assumption. Finally note that, for
VS-based and RO-based algorithms, we provide high-probability bounds for a smoothing version of
π̂ over the randomization of the algorithms, not for π̂ itself.

Compared with model-based PS. Uehara and Sun [2022] consider model-based PS for offline RL,
where they obtain the Bayesian sub-optimality bound of H2

√
CBayes · ln |M|/K where CBayes is the

Bayesian version of a relative condition number andM is a finite model class. Two key distinctions
are that our method in Algorithm 4 is model-free, and our achieved bound is in the frequentist (i.e.,
worst-case) nature, which is a stronger result than the Bayesian bound of the same order.

5 Conclusion
We contributed to the understanding of sample-efficient offline RL in the context of (value) function
approximation. We proposed a notion of data diversity that generalizes the previous data coverage
measures and importantly expands the class of sample-efficient offline RL. We studied three different
algorithms: VS, RO, and PS, where the PS-based algorithm is our novel proposal. We showed that
VS, RO, and PS all have same-order guarantees under standard assumptions.

7Xie et al. [2021] consider discounted MDP and a restricted policy class for the comparator class.
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Appendices
Appendix A Extended Discussion

We also extend the discussion of our data diversity in comparison to the existing distribution mismatch
measures in the special case where each Fh is a linear function in a known feature map.

A.1 Linear function classes

In this section, we consider the linear model cases, where there are known feature maps ϕh : X×A →
Rd and w.l.o.g. maxh∈[H] ∥ϕ(·, ·)∥∞ ≤ 1, such that Fh = {ϕh(·, ·)Tw : w ∈ Rd, ∥w∥22 ≤ b}.
Recall that, in this case, e.g., it follows from [Zanette et al., 2021, Lemma 6], that we have

logN(ϵ;Fh, ∥ · ∥∞) ≤ d log(1 +
2

ϵ
),

logN(ϵ; Πsoft
h (T ), ∥ · ∥∞) ≤ d log(1 +

16bT

ϵ
).

Thus, our bounds from Proposition 1 can simplified as

Õ(Hb

√
d log(1 + 16bKT ) · C(π; 1/

√
K)/K +Hb

√
T−1 lnVol(A))

= Õ

Hb

√
max{dC(π; 1/

√
K), lnVol(A)}

K


where we choose T = K. To simplify the comparison, we assume that dC(π; 1/

√
K) ≥ lnVol(A).

Let us now compute various notions of data coverage in this linear model case. s We first need to
define the following quantities (various forms of covariance matrices).

Σh := λI +

K∑
k=1

ϕh(s
k
h, a

k
h)ϕh(s

k
h, a

k
h)

T ,

Λh := λI +

K∑
k=1

ϕh(s
k
h, a

k
h)ϕh(s

k
h, a

k
h)

T /[VhV
π
h+1](s

k
h, a

k
h),

ϕ̄π
h := Eπ[ϕh(sh, ah)],

Σ̄h := Eµ

[
ϕ(sh, ah)ϕ(sh, ah)

T
]
.

We define the following distribution mismatch quantities, which were used in the literature.

Cpevi(π) := max
h∈[H]

(
Eπ

[
∥ϕh(sh, ah)∥Σ−1

h

])2
,

Cpevi−adv(π) := max
h∈[H]

(
Eπ

[
∥ϕh(sh, ah)∥Λ−1

h

])2
,

Cpacle(π) := max
h∈[H]

∥ϕ̄π
h∥2Σ−1

h

,

Cbcp(π) := max
h∈[H]

(
Eπ

[
∥ϕh(sh, ah)∥Σ̄h

])2
.

The sub-optimality bounds of various methods are summarized in Table 2. For comparing our data
diversity measure with different notions of distribution mismatch, we have

Cpevi(π) ≥ Cpacle(π) ≈ C(π; 0)/K ≤ Cbcp(π)/K.

where the “≈” denotes that the involved terms scale in the same order and can be implied by
Fredman’s matrix inequality (see [Duan et al., 2020, Lemma B.5]) (under additional conditions).
Note that C(π; 1/

√
K) ≤ C(π; 0), thus our data diversity is the tightest quantity among all that are

considered.
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Algorithm Sub-optimality bound

PEVI [Jin et al., 2021b] Hb
√

Cpevi(π) · d

PEVI-ADV+ [Xiong et al., 2023] H
√
Cpevi−avi(π) · d

PACLE [Zanette et al., 2021] Hb
√
Cpacle(π) · d

VC [Xie et al., 2021, Section 3] Hb
√
Cbcp(π) · d/K

RO [Xie et al., 2021, Section 4] Hb
√
Cbcp(π)

3
√
d/K

Ours (VS, RO, PS) Hb
√
C(π; 1/

√
K) · d/K

Table 2: Sub-optimality bounds when the function class Fh is linear in ϕh : S ×A → Rd.

Note that the data coverage measure in Xiong et al. [2023], roughly speaking, can be bounded as
follows:

Cpevi−adv(π) ≤ b2Cpevi(π),

where we use the inequality [VhV
π
h+1](s

k
h, a

k
h) ≤ b2. Thus the bound of Xiong et al. [2023] in general

has a tighter dependence on b (which implicitly depends on H) than all the bounds of all other works
considered in Table 2, due to that Xiong et al. [2023] incorporated the variance information into the
estimation via the variance-weighted value iteration algorithm. However, obtaining this improved
bound in Xiong et al. [2023] relies on a uniform coverage assumption which we do not require.

A.2 Comparison with primal-dual methods for offline RL

As opposed to the value-based methods we considered in our paper, an important alternative approach
to offline RL is the primal-dual methods [Zhan et al., 2022, Chen and Jiang, 2022, Rashidinejad
et al., 2023, Gabbianelli et al., 2023, Ozdaglar et al., 2023]. However, the guarantees of primal-dual
methods use a different set of assumptions than the value-based methods we consider (the former
assumes realizability for the ratio between the state-action occupancy density of the target policy
and the state-action occupancy density of the behavior policy, except for Gabbianelli et al. [2023]
where this realizability assumption is implicitly encoded under a stronger assumption of linear MDP).
This makes the results presented in our paper and the results in the primal-dual methods not directly
comparable.

Since the work of Gabbianelli et al. [2023] considers linear MDPs, it is more comparable (than the
other primal-dual methods we mentioned) to the instantiating of our results to the linear function
class. Gabbianelli et al. [2023] consider primal-dual methods for offline RL in both infinite-horizon
discounted MDP and average-reward MDP. Our analysis framework for the regularized optimization
method in the episodic MDP should work for the infinite-horizon discounted MDP as well, where
the regularized optimization achieves the optimal sample complexity of O(ϵ−2) while the sample
complexity in Gabbianelli et al. [2023] in this setting is O(ϵ−4). However, Gabbianelli et al. [2023]
offers a better computational complexity (O(K) vs O(K7/5)) and also works in the average-reward
MDP setting which is beyond the episodic MDP setting considered in our work; though our bounds
hold for general function approximation that is beyond the strong assumption of linear MDPs.

The concurrent work of Zhu et al. [2023] combined the actor-critic framework with marginalized
importance sampling (MIS) for an RO-based algorithm, which also improves the sub-optimal rate of
order 1/K1/3 by Xie et al. [2021], Cheng et al. [2022] to the optimal rate of order 1/

√
K. Instead,

we obtain the optimal rate of order 1/
√
K with a refined analysis for a standard RO-based algorithm.

That is, unlike Zhu et al. [2023], we do not use MIS; consequently, we do not require the realizability
assumption for the ratio between the state-action occupancy density of the target policy and that of
the behavior policy.
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Appendix B Preparation

We now get into more involved parts where we present the proof process and the technical results for
obtaining Theorem 1, Theorem 2, and Theorem 3. In order to prove our main results in Section 4, we
shall need some old tools and develop some new useful tools. For convenience, we start out with
both old and new notations of quantities summarized in Table 3 that we are going to use frequently in
our proofs.

Name Notation Expression

transition sample zkh (skh, a
k
h, r

k
h, a

k
h+1)

transition sample zh (sh, ah, rh, sh+1)

Bellman error E π̃h (fh, fh+1)(sh, ah) (Tπ̃
hfh+1 − fh)(sh, ah)

TD loss function lπ̃(fh, fh+1; zh) (fh(sh, ah)− rh − fh+1(sh+1, π̃))
2

empirical squared Bellman error (SBE) L̂π̃(fh, fh+1)
∑K

k=1 lπ̃(fh, fh+1; z
k
h)

empirical bias-adjusted SBE Lπ̃(f)
∑H

h=1 L̂π̃(fh, fh+1)− infg∈F
∑H

h=1 L̂π̃(gh, fh+1)

excess TD loss ∆Lπ̃(fh, fh+1; zh) lπ̃(fh, fh+1; zh)− lπ̃(Tπ̃
hfh+1, fh+1; zh)

– Eµ[·] 1
K

∑K
k=1 Eµk [·]

– Ek[·](:= Eµk [·]) E
[
·
∣∣∣∣{zih}i∈[k−1]

h∈[H]

]
Table 3: A summary of notations and quantities of interest.

The quantity lπ̃(fh, fh+1; zh) can be viewed as a temporal difference (TD) loss function defined on
data point zh conditioned on each fh+1 and π̃. The quantity Tπ̃

hfh+1 can be viewed as the Bellman
regression function, where, conditioned on each fh+1 and π̃, for any (sh, ah), we have

Tπ̃
hfh+1(sh, ah) = Erh,sh+1|sh,ah

[rh + fh+1(sh+1, π̃)] = arg inf
g

Erh,sh+1|sh,ah
lπ̃(g, fh+1; zh).

Thus, the quantity ∆Lπ̃(fh, fh+1; zh) can be referred to as the excess TD loss, incurred by the
predictor fh, relative to the TD regression function Tπ̃

hfh+1, on data zh and conditioned on fh+1 and
π̃.

B.1 Variance condition and Bernstein’s inequality

We also define the σ-algebra Ak
h := σ(Dk−1 ∪ {(skh′ , akh′ , rkh′)}h′∈[h−1] ∪ (skh, a

k
h)) and denote

Ek,h[·] := E[·|Ak
h]. The following lemma establishes the variance condition on the excess TD loss, a

TD analogous to the variance condition that is widely used in the empirical process theory [Massart,
2000].

Lemma B.1. For any Ak
h-measurable policy π, we have

Ek,h[∆Lπ(fh, fh+1; z
k
h)] = Eπh (fh, fh+1)(s

k
h, a

k
h)

2,

Ek,h[∆Lπ(fh, fh+1; z
k
h)

2] ≤ 36b2Eπh (fh, fh+1)(s
k
h, a

k
h)

2.

Proof of Lemma B.1. The result directly exploits the boundedness of the TD loss function and the
squared loss is Lipschitz. In concrete, it is a direct application of Lemma G.1.

The following lemma establishes the martingale extension of Bernstein’s inequality, typically called
Freedman’s inequality [Freedman, 1975]. In this lemma, we prove a slightly modified version of the
original Freedman’s inequality for our own convenience. The proof for this lemma is elementary
which we also show here.
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Lemma B.2 (Freedman’s inequality). Let X1, . . . , XT be any sequence of real-valued random
variables. Denote Et[·] = E[·|X1, . . . , Xt−1]. Assume that Xt ≤ R for some R > 0 and Et[Xt] = 0
for all t. Define the random variables

S :=

T∑
t=1

Xt, V :=

T∑
i=1

Et[X
2
t ].

Then for any δ > 0, with probability at least 1− δ, for any λ ∈ [0, 1/R],

S ≤ (e− 2)λV +
ln(1/δ)

λ
.

Proof of Lemma B.2. Let us define the following sequence of random variables: Z0 = 1, Zt =

Zt−1
eλXt

Et[eλXt ]
. We have

Et[Zt] = Et

[
Zt−1

eλXt

Et[eλXt ]

]
=

Zt−1

Et[eλXt ]
Et[e

λXt ] = Zt−1.

Thus, we have

E[ZT ] = EET [ZT ] = E[ZT−1] = . . . = E[Z0] = 1.

Note that

ZT =
eλS∏T

t=1 Et[eλXt ]
=

eλS∑T
t=1 e

lnEt[eλXt ]
= exp

(
λS −

T∑
t=1

lnEt[e
λXt ]

)
. (3)

Since ZT ≥ 0, it follows from Markov’s inequality that, for any δ > 0, we have

Pr(ZT ≥ 1/δ) ≤ δE[ZT ] = δ. (4)

We now bound the logarithmic moment generating function lnEt[e
λXt ] using elementary inequalities:

For any λ ∈ [0, 1/R], we have

lnEt[e
λXt ] ≤ Et[e

λXt ]− 1 ≤ λEt[Xt] + (e− 2)λ2Et[X
2
t ], (5)

where the first inequality uses ln z ≤ z − 1,∀z ≥ 0 and the second inequality uses that ez ≤
1 + z + (e− 2)z2,∀z ≤ 1 and that λXt ≤ 1.

Plugging Equation (5) into Equation (3), then all together into Equation (4) complete the proof.

B.2 Functional projections for misspecification

Since Assumption 2.1 and Assumption 2.2 allow misspecification up to some errors ξ and ν, while
we are working on the function class F , we rely on the following projection operators, Definition 4
and Definition 5, to handle misspecification.
Definition 4 (Projection of action-value functions). For any π̃ ∈ Πsoft(T ) for some T ∈ N, we
define the projection of the state-action value function π̃ onto F as

ProjF (Q
π̃) := argmin

f∈F

{
|fh(sh, ah)−Qπ̃

h(sh, ah)|,∀h ∈ [H], (sh, ah) ∈ supp(dµh)
}
.

By Assumption 2.1, we have

|ProjF (Qπ̃)(sh, ah)−Qπ̃
h(sh, ah)| ≤ ξh, ∀h ∈ [H], (sh, ah) ∈ supp(dµh).

Definition 5 (Projection of Bellman operations). For any f ∈ F and π̃ ∈ Πsoft(T ) for some T , we
define the projection of the Bellman operation Tπ̃f onto F as

ProjF (Tπ̃f) := argmin
f ′∈F

{
∥f ′

h − Tπ̃
hfh+1∥∞,∀h ∈ [H]

}
.

By Assumption 2.2, we have

∥ProjF (Tπ̃f)− Tπ̃
hfh+1∥∞ ≤ νh,∀h ∈ [H].
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B.3 Induced MDPs

We now introduce the notion of induced MDPs which is originally used in [Zanette et al., 2021].

Definition 6 (Induced MDPs). For any policy π ∈ Πall and any sequence of functions Q =
{Qh}h∈[H] ∈ {S × A → R}H , the (Q, π)-induced MDPs, denoted by M(Q, π) is the MDP that
is identical to the original MDP M except only that the expected reward of M(Q, π) is given by
{rπ,Qh }h∈[H], where

rπ,Qh (s, a) := rh(s, a)− Eπh (fh, fh+1)(s, a).

By definition of M(π,Q), Q is the fixed point of the Bellman equation Qh = Tπ
h,M(π,Q)Qh+1.

Lemma B.3. For any π ∈ Πall and any sequence of functions Q = {Qh}h∈[H] ∈ {S ×A → R}H ,
we have

Qπ
M(π,Q) = Q,

where M(π,Q) is the induced MDP given in Definition 6.

B.4 Error decomposition

The key starting point for the proofs of all of the three main theorems is the following error decom-
position that decomposes the sub-optimality into three sources of errors: the Bellman error under
the comparator policy π, the gap values in the initial states, and the online-regret term due to the
induced MDPs. In online RL, the sub-optimality of a greedy policy against an optimal policy can be
decomposed into the sub-optimality in the Bellman errors and the error in the initial states [Dann
et al., 2021], using the standard value-function error decomposition in [Jiang et al., 2017, Lemma 1].
However, in our setting, we compete against an arbitrary policy π (not necessarily an optimal policy)
and the learned policy πt is not greedy with respect to the current action-value function Qt – thus
[Jiang et al., 2017, Lemma 1] cannot apply here. Instead, we develop an error decomposition –
Lemma B.4 which generalizes what was implicit in Zanette et al. [2021].

Lemma B.4 (Error decomposition). For any action-value functions Q ∈ {S ×A → R}H and any
policies π, π̃ ∈ Πall, we have

SubOptMπ (π̃) =

H∑
h=1

Eπ[E π̃h (Qh, Qh+1)(sh, ah)] +Q1(s1, π̃1)− V π̃
1 (s1) + SubOptM(Q,π̃)

π (π̃).

Proof of Lemma B.4. We have

SubOptMπ (π̃) = V π
1 (s1)− V π̃

1 (s1)

=
(
V π
1 (s1)− V π

1,M(Q,π̃)(s1)
)
+
(
V π̃
1,M(Q,π̃)(s1)− V π̃

1 (s1)
)
+
(
V π
1,M(Q,π̃)(s1)− V π̃

1,M(Q,π̃)(s1)
)

=

H∑
h=1

Eπ[E π̃h (Qh, Qh+1)(sh, ah)] +Q1(s1, π̃1)− V π̃
1 (s1) + SubOptM(Q,π̃)

π (π̃),

where in the last equality, for the first term, we use, by Definition 6, that

V π
1 (s1)− V π

1,M(Q,π̃)(s1) =

H∑
h=1

Eπ

[
rh(sh, ah)− rπ̃,Qh (sh, ah)

]
=

H∑
h=1

Eπ[E π̃h (Qh, Qh+1)(sh, ah)],

for the second term, we use, by Lemma B.3, that

V π
1,M(Q,π̃)(s1) = Qπ

1,M(Q,π̃)(s1, π̃1) = Q1(s1, π̃),

and for the last term, we use the definition of value sub-optimality in Equation (1).
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B.5 Decoupling lemma

One of the central tools for our proofs is the following decoupling lemma. The decoupling lemma
essentially decouples the Bellman residuals under the π-induced state-action distribution into the
squared Bellman residuals under the µ-induced state-action distribution and the new data diversity
measure in Definition 3 and additive terms of low order.
Lemma B.5 (Decoupling argument). Under Assumption 2.2, for any f ∈ F , any π̃ ∈ Πsoft(T ) for
some T , any π ∈ Πall, any λ > 0, and any ϵ ≥ 0, we have

H∑
h=1

Eπ[E π̃h (fh, fh+1)(sh, ah)] ≤
1

2λ

H∑
h=1

(
K∑

k=1

Eµk

[
E π̃h (fh, fh+1)(sh, ah)

2
]
+Kν2h + 4bKνh

)

+
λH · C(π; ϵ)

2K
+Hϵ+

H∑
h=1

νh,

where C(π; ϵ) is defined in Definition 3.

Proof of Lemma B.5. We have
H∑

h=1

Eπ[E π̃h (fh, fh+1)(sh, ah)] =

H∑
h=1

Eπ

[
(Tπ̃

hfh+1 − fh)(sh, ah)
]

≤
H∑

h=1

Eπ

[
(ProjFh

(Tπ̃
hfh+1)− fh)(sh, ah)

]
+ ν̄

≤
H∑

h=1

√
C(π, ϵ)Eµ

[
(ProjFh

(Tπ̃
hfh+1)− fh)(sh, ah)2

]
+Hϵ+ ν̄

≤
H∑

h=1

√
C(π, ϵ)

(
Eµ[E π̃h (fh, fh+1)(sh, ah)2] + ν2h + 4bνh

)
+Hϵ+ ν̄

≤

√√√√HC(π, ϵ)
H∑

h=1

(
Eµ[E π̃h (fh, fh+1)(sh, ah)2] + ν2h + 4bνh

)
+Hϵ+ ν̄

≤ K

2λ

H∑
h=1

(
Eµ[E π̃h (fh, fh+1)(sh, ah)

2] + ν2h + 4bνh
)
+

λHC(π, ϵ)
2K

+Hϵ+ ν̄,

where the first inequality uses Assumption 2.2, the second inequality uses the definition of Cπ(ϵ), the
third inequality uses Assumption 2.2 (again), the fourth inequality uses Cauchy-Schwartz inequality,
and the last inequality uses the AM-GM inequality

√
xy ≤ K

2λx+ λ
2K y.

B.6 Regret of the multiplicative weights algorithm for the actors

Now we establish the regret bound for the online-regret term due to the induced MDPs. The result in
the following lemma is quite standard and can be readily generalized from a similar result in Zanette
et al. [2021]. We present the proof here for completeness.
Lemma B.6. Consider an arbitrary sequence of value functions {Qt}t∈[T ] such that
maxh,t ∥Qt

h∥∞ ≤ b and define the following sequence of policies {πt}t∈[T+1] where

π1(·|s) = Uniform(A),∀s,
πt+1
h (a|s) ∝ πt

h(a|s) exp
(
ηQt

h(s, a)
)
,∀(s, a, h, t).

Suppose η =
√

lnVol(A)
4(e−2)b2T and T ≥ lnVol(A)

(e−2) , where Vol(A) denotes the volume of the action set A.
8 For an arbitrary policy π ∈ Πall, we have

T∑
t=1

(
V π
1,M(πt,Qt)(s1)− V πt

1,M(πt,Qt)(s1)
)
≤ 4Hb

√
T lnVol(A).

8When |A| < ∞, Vol(A) = |A|.
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Proof of Lemma B.6. The proof for this lemma is quite standard as shown in Zanette et al. [2021].
We rewrote the proof with a slight modification for completeness. For simplicity, we write
Mt := M(πt, Qt). We will see that the key property that enables this lemma is that Qt

h = Qπt

h,Mt

(Lemma B.3), which allows us to relate the value difference lemma to the log policy ratio. Using the
value difference lemma (Lemma G.2), we have

V π
1,Mt

(s1)− V πt

1,Mt
(s1) =

H∑
h=1

EπA
πt

h,Mt
(sh, ah),

where Eπ is the expectation over the random trajectory (s1, a1, . . . , sH , aH) generated by π (and the
underlying MDP Mt

9). For any V : S → R, it follows from the definition of {πt} update that we
have

log
πt+1
h (a|s)
πt
h(a|s)

= ηQt
h(s, a)− log

(
Ea∼πt

h(·|s)
[
exp

(
ηQt

h(s, a)
)])

= η(Qt
h(s, a)− V (s))− log

(
Ea∼πt

h(·|s)
[
exp

(
η(Qt

h(s, a)− V (s))
)])

.

In the equation above, noting that Qt
h = Qπt

h,Mt
(Lemma B.3) and replacing V (s) by V πt

h,Mt
, we have

log
πt+1
h (a|s)
πt
h(a|s)

= ηAπt

h,Mt
(s, a)− log

(
Ea∼πt

h(·|s)

[
exp

(
ηAπt

h,Mt
(s, a)

)])
, (6)

where we define the advantage function Aπ
M = {Aπ

h,M}h∈[H] as

Aπ
h,M (s, a) := Qπ

h,M (s, a)− V π
h,M (s),∀(s, a, h).

Note that |Aπt

h,Mt
(s, a)| ≤ 2b. By choosing η ∈ (0, 1/(2b)), we have

log
(
Ea∼πt

h(·|s)

[
exp

(
ηAπt

h,Mt
(s, a)

)])
≤ log

(
Ea∼πt

h(·|s)

[
1 + ηAπt

h,Mt
(s, a) + (e− 2)η2Aπt

h,Mt
(s, a)2

])
= log

(
Ea∼πt

h(·|s)

[
1 + (e− 2)η2Aπt

h,Mt
(s, a)2

])
≤ log(1 + (e− 2)η24b2)

≤ 4(e− 2)b2η2 (7)

where the first inequality uses that ex ≤ 1+x+(e−2)x2,∀x ≤ 1 and |ηAπt

h,Mt
(s, a)| ≤ 1,∀(s, a), the

first equality uses that Ea∼πt
h(·|s)

[
Aπt

h,Mt
(s, a)

]
= 0, the second inequality uses that |Aπt

h,Mt
(s, a)| ≤

2b, and the last inequality uses that log(1+x) ≤ x,∀x ≥ 0. Combining Equation (7) and Equation (6),
we have

Aπt

h,Mt
(s, a) ≤ 1

η
log

πt+1
h (a|s)
πt
h(a|s)

+ 4(e− 2)b2η.

Thus, for any h ∈ [H], we have

T∑
t=1

EπA
πt

h,Mt
(sh, ah)

≤ 1

η

T∑
t=1

(
Eπ

[
KL[πh(·|sh)∥πt

h(·|sh)]
]
− Eπ

[
KL[πh(·|sh)∥πt+1

h (·|sh)]
])

+ 4(e− 2)Tb2η

9Note that Pr((s1, a1, . . . , sH , aH)|π,M) = Pr((s1, a1, . . . , sH , aH)|π,Mt) since Mt and M have iden-
tical transition kernels.
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=
1

η

(
Eπ

[
KL[πh(·|sh)∥π1

h(·|sh)]
]
− Eπ

[
KL[πh(·|sh)∥πT+1

h (·|sh)]
])

+ 4(e− 2)Tb2η

≤ 1

η
Eπ

[
KL[πh(·|sh)∥π1

h(·|sh)]
]
+ 4(e− 2)Tb2η

≤ 1

η
log(Vol(A)) + 4(e− 2)Tb2η,

where the second inequality uses the non-negativity of KL divergence, and the last inequality uses
that KL[πh(·|sh)∥π1

h(·|sh)] = −H[πh(·|sh)] + log(Vol(A)) ≤ log(Vol(A)) where π1 is uniform
over A and Vol(A) denotes the volume over the compact set A. Combining all pieces together, we
have

T∑
t=1

EπA
πt

h,Mt
(sh, ah) ≤

1

η
H log(Vol(A)) + 4(e− 2)THb2η.

Minimizing the RHS of the above equation with respect to η yields η =
√

log Vol(A)
4(e−2)b2T and

T∑
t=1

EπA
πt

h,Mt
(sh, ah) ≤ 2H

√
4(e− 2)b2T log Vol(A) ≤ 4Hb

√
T log Vol(A).

Finally, we need that

η =

√
log Vol(A)
4(e− 2)b2T

≤ 1

2b
,

which implies T ≥ lnVol(A)
(e−2) .

We are now ready to establish the proofs of our three main theorems.

Appendix C Proof of Theorem 1

To construct our proof for Theorem 1, we first establish two following lemmas. The first lemma,
Lemma C.1 establishes that the in-distribution squared Bellman residuals are bounded by the unbiased
proxy of the squared Bellman error Lπ̃(f), up to some estimation and approximation errors. The
second lemma, Lemma C.2, asserts that the unbiased proxy of the squared Bellman error at the
projection of Qπ̃ is close to zero, up to some estimation and approximation errors.

Lemma C.1. For any δ > 0, ϵ > 0 and any T ∈ N, under Assumption 2.2, with probability at least
1− δ, it holds uniformly over all f ∈ F and π̃ ∈ Πsoft(T ) that

H∑
h=1

K∑
k=1

Ek

[
E π̃h (fh, fh+1)(sh, ah)

2
]
≤ 2Lπ̃(f) + 40b(b+ 2)KHϵ+ 12bK

H∑
h=1

νh

+ 144(e− 2)b2H [dF (ϵ) + dΠ(ϵ, T ) + ln(1/δ)] ,

where Lπ̃(f) :=
∑H

h=1 L̂π̃(fh, fh+1)− infg∈F
∑H

h=1 L̂π̃(gh, fh+1).

Lemma C.2. Under Assumption 2.1, for any T ∈ N, with probability at least 1−δ, it holds uniformly
for any π̃ ∈ Πsoft(T ) that

Lπ̃(ProjF (Q
π̃)) ≤ 36(e− 2)b2H

(
2dF (ϵ) + dΠ(ϵ, T ) + ln

H

δ

)
+ 6b(3b+ 4)ϵKH + 15bK

H∑
h=1

ξh,

where ProjF (Q
π̃) is the projection of Qπ̃ onto F , formally defined in Definition 4.
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C.1 Proof of Theorem 1

With the two lemmas above, we are ready to prove Theorem 1. This proof is also laying a foundational
step for our proofs of Theorem 2 and Theorem 3 that we shall present shortly. The proofs for the two
lemmas above are presented immediately after the proof of Theorem 1.

Proof of Theorem 1. Using Lemma B.4, we have

SubOptMπ (πt) =

H∑
h=1

Eπ[Eπ
t

h (Qt

h
, Qt

h+1
)(sh, ah)] + ∆1Q1

(s1, π
t
1) + SubOptMt

π (πt)

where we denote

Mt := M(Qt, πt),

∆1Q1
(s1, π

t) := Q
1
(s1, π

t)− V πt

1 (s1).

Bounding
∑T

t=1 SubOptMt
π (πt). Note that

∑T
t=1 SubOptMt

π (πt) can be controlled by standard
tools from online learning (Lemma B.6); thus it remains to control the first H + 1 terms.

Bounding ∆1Q1
(s1, π

t
1). Due to Lemma C.2, the event that ProjF (Q

πt

) ∈ F(β;πt) holds occur
at probability at least 1− δ. Furthermore, under this event, we have

∆1Q1
(s1, π

t
1) = Q

1
(s1, π

t)− V πt

1 (s1)

≤ ProjF1
(Qπt

1 )− V πt

1 (s1)

≤ ξ1,

where the first inequality exploits Line 2 of Algorithm 2, and the last inequality uses Assumption 2.1.

Bounding
∑H

h=1 Eπ[Eπ
t

h (Qt

h
, Qt

h+1
)(sh, ah)]. It follows from Lemma B.5 that

H∑
h=1

Eπ[Eπ
t

h (Qt

h
, Qt

h+1
)(sh, ah)] ≤

√√√√HC(π; ϵ)
H∑

h=1

(
Eµ[E π̃h (Q

t

h
, Qt

h+1
)(sh, ah)2] + ν2h + 4bνh

)
+Hϵ+ ν̄.

The term
∑H

h=1 Eµ[E π̃h (Q
t

h
, Qt

h+1
)(sh, ah)

2] is bounded by Lemma C.1, with notice that Lπt(Qt) ≤
β (due to the definition of F(β;πt) in Algorithm 2).

Combining the three steps above via the union bound completes our proof.

We now prove the two support lemmas.

C.2 Proof of Lemma C.1

Proof of Lemma C.1. Let us consider any fixed f ∈ F and any π ∈ Πall. By Lemma B.1, we have

Ek,h[∆Lπ(fh, fh+1; z
k
h)] = Eπh (fh, fh+1)(s

k
h, a

k
h)

2,

Ek,h[∆Lπ(fh, fh+1; z
k
h)

2] ≤ 36b2Eπh (fh, fh+1)(s
k
h, a

k
h)

2.

Combining with Lemma B.2, we have that with probability at least 1− δ, for any ι ∈ [0, 1
13b2 ],

K∑
k=1

Ek[Eπh (fh, fh+1)(sh, ah)
2]−

K∑
k=1

∆Lπ(fh, fh+1; z
k
h)

≤ 36(e− 2)b2ι

K∑
k=1

Ek[Eπh (fh, fh+1)(sh, ah)
2] + (1/ι) log(1/δ).
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By setting ι = 1
72(e−2)b2 , the above inequality becomes

K∑
k=1

Ek[Eπh (fh, fh+1)(sh, ah)
2] ≤ 2

K∑
k=1

∆Lπ(fh, fh+1; z
k
h) + 144(e− 2)b2 ln(1/δ).

For any ϵ > 0, and for any f ∈ F , π ∈ Πsoft(T ), by definition of ϵ-covering, there exist f ′ and π′ in
the ϵ-cover of F and Πsoft(T ), i.e.,

∥fh − f ′
h∥∞ ≤ ϵ, ∥πh − π′

h∥1,∞ ≤ ϵ.

By simple calculations, we have

|Eπh (fh, fh+1)(sh, ah)
2 − Eπ

′

h (f ′
h, f

′
h+1)(sh, ah)

2| ≤ 4b(b+ 2)ϵ,

|∆Lπ(fh, fh+1; z
k
h)−∆Lπ′(f ′

h, f
′
h+1; z

k
h)| ≤ 18b(b+ 2)ϵ.

Thus, by the union bound, we have with probability at least 1 − δ, it holds uniformly over all
f ∈ F , π ∈ Πsoft(T ) that

H∑
h=1

K∑
k=1

Ek[Eπh (fh, fh+1)(sh, ah)
2] ≤ 2

H∑
h=1

K∑
k=1

∆Lπ(fh, fh+1; z
k
h) + 40b(b+ 2)KHϵ

+ 144(e− 2)b2
H∑

h=1

ln(N(ϵ;Fh, ∥ · ∥∞)N(ϵ; Πsoft
h (T ), ∥ · ∥1,∞)/δ).

Finally, notice that

|lπ(Tπ
hfh+1, fh+1; zh)− lπ(ProjFh

(Tπ
hfh+1), fh+1; zh)| ≤ 6bνh.

Thus, we have
H∑

h=1

K∑
k=1

∆Lπ(fh, fh+1; z
k
h) ≤ Lπ(f) + 6bK

H∑
h=1

νh.

We can then conclude our proof.

C.3 Proof of Lemma C.2

In order to prove Lemma C.2, we shall first prove the following lemma, which establishes the
confidence radius of the empirical squared Bellman errors that we used to establish the version space
in Algorithm 2.
Lemma C.3. Consider any δ > 0, ϵ > 0, T ∈ N, let

βϵ := 36(e− 2)b2 (2dF (ϵ) + dΠ(ϵ, T ) + ln(H/δ)) + 6b(3b+ 4)ϵK.

With probability at least 1− δ, it holds uniformly over any π ∈ Πsoft(T ), f ∈ F , and h ∈ [H] that

K∑
k=1

(
Tπ
hfh+1(x

k
h)− rkh − fh+1(s

k
h+1, πh+1)

)2 ≤ inf
gh∈Fh

K∑
k=1

(
gh(x

k
h)− rkh − fh+1(s

k
h+1, πh+1)

)2
+ βϵ.

Proof of Lemma C.3. Let us fix any h ∈ [H]. For any (f, g, π) ∈ F × F × Πsoft(T ) and any
k ∈ [K], define the following random variable

Zk,h(f, g, π) :=
(
gh(x

k
h)− rkh − fh+1(s

k
h+1, πh+1)

)2 − (Tπ
hfh+1(x

k
h)− rkh − fh+1(s

k
h+1, πh+1)

)2
.

Denote

Ek,h[·] := E
[
·
∣∣∣∣{zih}i∈[k−1]

h∈[H] , sk1 , a
k
1 , r

k
1 , . . . , s

k
h−1, a

k
h−1, r

k
h−1, s

k
h, a

k
h

]
.
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By Lemma B.1, we have

Ek,h [Zk,h(f, g, π)] = Eπh (gh, fh+1)(s
k
h, a

k
h)

2,

Ek,h

[
Z2
k,h(f, g, π)

]
≤ 36b2Eπh (gh, fh+1)(s

k
h, a

k
h)

2.

Thus, combing with Lemma B.2, for any (f, g, π) ∈ F × F × Πsoft(T ), with probability at least
1− δ, for any ι ∈ [0, 1

13b2 ],

K∑
k=1

Ek,h [Zk,h(f, g, π)]−
K∑

k=1

Zk,h(f, g, π) ≤ 36(e− 2)b2ι

K∑
k=1

Eπh (gh, fh+1)(s
k
h, a

k
h)

2 +
ln(1/δ)

ι
.

By setting ι = 1/(36(e− 2)b2), the above inequality becomes

−
K∑

k=1

Zk,h(f, g, π) ≤ 36(e− 2)b2 ln(1/δ). (8)

For any ϵ > 0, let Fϵ and Πϵ be ϵ-covers of F and Πsoft(T ), respectively, with respect to ∥ · ∥∞
and ∥ · ∥∞,1, respectively, where ∥u − v∥∞ := sup(s,a) |u(s, a) − v(s, a)| and ∥π − π′∥∞,1 :=

sups
∑

a∈A |π(a|s) − π′(a|s)|. Using the union bound, it follows from Equation (8) that with
probability at least 1− δ, it holds uniformly over any h ∈ [H] and any (f, g, π) ∈ Fϵ×Fϵ×Πϵ that

−
K∑

k=1

Zk,h(f, g, π) ≤ 18(e− 2)b2 [ln(H/δ) + 2dF (ϵ) + dΠ(ϵ, T )] .

For any (f, g, π) ∈ F × F ×Πsoft(T ), there exist (fϵ, gϵ, πϵ) ∈ Fϵ ×Fϵ ×Πϵ such that

∥fh − (fϵ)h∥∞ ≤ ϵ, ∥gh − (gϵ)h∥∞ ≤ ϵ, ∥πh − (πϵ)h∥∞,1 ≤ ϵ,∀h ∈ [H].

It is easy to compute the discretization error that

Zk,h(f, g, π)− Zk,h(fϵ, gϵ, πϵ) ≤ 18b(b+ 1)ϵ.

Using the discretization argument and the union bound complete our proof.

We are now ready to prove Lemma C.2.

Proof of Lemma C.2. Consider the event that the inequality in Lemma C.3 holds. Under this event,
for any π̃ ∈ Πsoft(T ), we have

K∑
k=1

lπ̃(ProjFh
(Qπ̃

h),ProjFh+1
(Qπ̃

h+1); z
k
h) ≤

K∑
k=1

lπ̃(Q
πt

h , Qπ̃
h+1; z

k
h) + 6bKξh

=

K∑
k=1

lπ̃(Tπ̃
hQ

π̃
h+1, Q

π̃
h+1; z

k
h) + 6bKξh

≤
K∑

k=1

lπ̃(Tπ̃
hProjFh+1

(Qπ̃
h+1),ProjFh+1

(Qπ̃
h+1); z

k
h) + 12bKξh

≤
K∑

k=1

lπ̃(gh,ProjFh+1
(Qπ̃

h+1); z
k
h) + βϵ + 12bKξh (for any gh ∈ Fh)

≤
K∑

k=1

lπ̃(gh, Q
π̃
h+1; z

k
h) + βϵ + 15bKξh,

where we use Assumption 2.1 for the first, second, and last inequalities, the third inequality uses
Lemma C.3, and the equality uses Qπ̃

h+1 = Tπ̃
hQ

π̃
h+1. Rearranging the last inequality completes our

proof.
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Appendix D Proof of Theorem 2

In this appendix, we present our complete argument to establish Theorem 2. In order to prove
Theorem 2, the key is to establish a connection from the squared Bellman error under the data
distribution µ to the regularized objective in Algorithm 3. This key idea should become clear in the
following proof.

Proof of Theorem 2. Similar to the proof of Theorem 1, our starting point is using Lemma B.4:

SubOptMπ (πt) =

H∑
h=1

Eπ[Eπ
t

h (Qt

h
, Qt

h+1
)(sh, ah)] + ∆1Q1

(s1, π
t
1) + SubOptMt

π (πt)

and we bound
∑T

t=1 SubOptMt
π (πt) using Lemma B.6. We now bound the remaining terms.

For any γ > 0, we have

H∑
h=1

Eπ[Eπ
t

h (Qt

h
, Qt

h+1
)(sh, ah)]

≤ K

2λ

H∑
h=1

(
Eµ[Eπ

t

h (Qt

h
, Qt

h+1
)(sh, ah)

2] + ν2h + 4bνh

)
+

λHC(π, ϵ)
2K

+Hϵ+ ν̄

≤
Lπt(Q) + 0.5ι1 + 0.5Kν̄2 + 2bKν̄

λ
+

λHC(π, ϵ)
2K

+Hϵ+ ν̄,

where the first inequality uses Lemma B.5 and the second inequality uses Lemma C.1, and here
ι1 := 40b(b+2)KHϵ+12bK

∑H
h=1 νh+144(e− 2)b2H [dF (ϵ) + dΠ(ϵ, T ) + ln(1/δ)]. Thus, we

have
H∑

h=1

Eπ[Eπ
t

h (Qt

h
, Qt

h+1
)(sh, ah)] + ∆1Q1

(s1, π
t
1)

≤
Lπt(Q) + λ∆1Q1

(s1, π
t
1) + 0.5ι1 + 0.5K

∑H
h=1 ν

2
h + 2bK

∑H
h=1 νh

λ
+

λHC(π, ϵ)
2K

+Hϵ+

H∑
h=1

νh

≤
Lπt(ProjF (Q

πt

)) + λ∆1ProjF1
(Qπt

1 )(s1, π
t
1) + 0.5ι1 +

∑H
h=1 ν

2
h + 2bK

∑H
h=1 νh

λ

+
λHC(π, ϵ)

2K
+Hϵ+

H∑
h=1

νh

≤
ι2 + λξ1 + 0.5ι1 +

∑H
h=1 ν

2
h + 2bK

∑H
h=1 νh

λ
+

λHC(π, ϵ)
2K

+Hϵ+

H∑
h=1

νh,

where the second inequality uses the fact that Qt

h
is a minimizer over F ∋ ProjF (Q

πt

) of Lπt(f) +

λf1(s1, π
t
1) (which has the same minimizer as Lπt(f) + λ∆1f1(s1, π

t
1)), and the last inequality

uses Lemma C.2, and here we define ι2 := 36(e− 2)b2H
(
2dF (ϵ) + dΠ(ϵ, T ) + ln H

δ

)
+ 6b(3b+

4)ϵKH + 15bK
∑H

h=1 ξh.

Appendix E Proof of Theorem 3

In this appendix, we give our complete proof for Theorem 3. In order to develop our argument for
proving Theorem 3, we shall start with a generalized form of posterior sampling in Section E.1 and
develop our key support result in Proposition 2. We then use Proposition 2 and the similar machinery
developed in Section D to complete our argument for proving Theorem 3.
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E.1 Generalized form of posterior and Proposition 2

We start with recalling the posterior distribution defined in Line 1 of Algorithm 4 as

p̂(f |D, π) ∝ exp (−λf1(s1, π1)) p0(f)
∏

h∈[H]

exp
(
−γL̂π(fh, fh+1)

)
Ef ′

h∼p0,h
exp

(
−γL̂π(f ′

h, fh+1)
) . (9)

Similar to the proof strategy in Dann et al. [2021], we now consider a slightly more general form
of the posterior distribution with an extra parameter α ∈ [0, 1] and in an equivalent but more useful
form. In concrete, consider any α ∈ [0, 1] and define the potential functions:

Φ̂h(f, π;D) := − ln p0(fh) + αγ

K∑
k=1

∆Lπ̃(fh, fh+1; z
k
h)

+ α lnEf̃h∼p0
exp

(
−γ

K∑
k=1

∆Lπ̃(fh, fh+1; z
k
h)

)
,

Φ̂(f, π;D) :=
H∑

h=1

Φ̂h(f, π;D),

∆1f1(s1, π) := f1(s1, π)− V π
1 (s1).

where recall that ∆Lπ̃(fh, fh+1; z
k
h) is defined in Table 3. Define the generalized posterior distribu-

tion

p̂(f |D, π) ∝ exp
(
−Φ̂(f, π;D)− λ∆f1(s1, π)

)
, (10)

where it is equivalent to the posterior defined in Equation (9) when α = 1. We shall use Equation (10)
for the posterior for the rest of this section. We shall also define the complexity measure of this
generalized posterior – a counterpart to that of the canonical posterior form in Definition 2.
Definition 7. Define

κh(α, ϵ, π̃) := (1− α) lnEfh+1∼p0

[
p0,h

(
F π̃

h (ϵ; fh+1)
)−α/(1−α)

]
,

where recall that F π̃
h (ϵ; fh+1) = {f ′ ∈ Fh : sups,a |E π̃h (f ′, fh+1)(s, a)| ≤ ϵ} which is defined in

Definition 2. Define the complexity measure

d0(ϵ, α) := sup
T∈N,π̃∈Πsoft(T )

H∑
h=1

κh(α, ϵ, π̃). (11)

Note that we have

lim
α→1−

d0(ϵ, α) = d0(ϵ).

We now state our key milestone result – Proposition 2 to support the argument for proving Theorem 3.
The proof of Proposition 2 is deferred to Section E.3.

Notation Eπ̃∼Pt(·|D). Note that in Algorithm 4, each policy πt for t ∈ [T ] is a random variable that
depends on both the offline data D and the randomization of sampling from the posteriors. That is,
when conditioned on the offline data D, each πt is still a random variable. We denote Pt(·|D) as the
posterior distribution of πt conditioned on D. Note that for any π̃ ∼ Pt(·|D) and any t ∈ [T ], we
have π̃ ∈ Πsoft(T ).
Proposition 2. For any γ ∈ [0, 1

144(e−2)b2 ], ϵ > 0, δ > 0, α ∈ (0, 1], T ∈ N, and any t ∈ [T ] and
λ > 0, we have,

EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
0.125αγK

H∑
h=1

Eµ[E π̃h (fh, fh+1)(sh, ah)
2] + λ∆f1(s1, π̃)

]
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≲ λϵ+ αγHb2 ·max{dF (ϵ), dΠ(ϵ, T ), ln
lnKb2

δ
}+ αγb2KH ·max{ϵ, δ}+ γHK

ϵ2

α

+

H∑
h=1

sup
π̃h∈Πsoft

h (T )

κh(α, ϵ, π̃h) + sup
π̃∈Πsoft(T )

H∑
h=1

ln
1

p0(Fh(ϵ;Q
π̃h

h ))
.

We now have all main components needed to construct our argument for proving Theorem 3.

E.2 Proof of Theorem 3

Proof of Theorem 3. We start with the error decomposition argument.

Step 1: Error decomposition. Similar to the first step of the proof of Theorem 2, using Lemma B.4,
we have

SubOptMπ (πt) =

H∑
h=1

Eπ[Eπ
t

h (Qt

h
, Qt

h+1
)(sh, ah)] + ∆1Q1

(s1, π
t
1) + SubOptMt

π (πt)

where we denote Mt := M(Qt, πt) and ∆1Q1
(s1, π

t) := Q
1
(s1, π

t) − V πt

1 (s1). Since term∑T
t=1 SubOptMt

π (πt) can be controlled Lemma B.6, it remains to control

J := ED

[
H∑

h=1

Eπ[Eπ
t

h (Qt

h
, Qt

h+1
)(sh, ah)] + ∆1Q1

(s1, π
t
1)

]

= EDEπ̃∼Pt(·|D)Ef∼p̂(·|π̃,D)

[
H∑

h=1

Eπ[E π̃h (fh, fh+1)(sh, ah)] + ∆1f1(s1, π̃1)

]
.

Step 2: Decoupling argument. Using Lemma B.5, we have
H∑

h=1

Eπ[E π̃h (fh, fh+1)(sh, ah)] + ∆1f1(s1, π̃1)

≤ 0.125Kγ

λ

H∑
h=1

(
Eµ[E π̃h (fh, fh+1)(sh, ah)

2] + ν2h + 4bνh
)
+

0.5λHC(π, ϵc)
Kγ

+∆1f1(s1, π̃1)

+Hϵc +

H∑
h=1

νh

=
0.125Kγ

∑H
h=1 Eµ[E π̃h (fh, fh+1)(sh, ah)

2] + λ∆1f1(s1, π̃1) + ι1
λ

+
0.5λHC(π, ϵc)

Kγ

+Hϵc +

H∑
h=1

νh

where ι1 := 0.125Kγ
(∑H

h=1 ν
2
h + 4b

∑H
h=1 νh

)
.

Applying Proposition 2, taking the limit α→ 1−, and re-organizing the terms complete our proof.

It remains to prove Proposition 2, which is the focus of the remaining appendix.

E.3 Proof of Proposition 2

Our proof strategy for Proposition 2 builds upon Dann et al. [2021] where the central idea in the
proof is to upper and lower bound the log-partition function – which in our case is as follows:

Zt := EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
Φ̂(f, π̃;D) + λ∆f1(s1, π̃) + ln p̂(f |D, π̃)

]
, (12)
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for any t ∈ [T ] and any T ∈ N. The key technical distinction is that we need to handle the statistical
dependence induced by Eπ̃∼Pt(·|D) – which is absent in Dann et al. [2021]. In concrete, when π̃
depends on D, then

E∆Lπ̃
h(fh, fh+1)(s

k
h, a

k
h) ̸= E π̃h (fh, fh+1)(s

k
h, a

k
h)

2,

since π̃ depends on (skh, a
k
h). We develop an machinery to handle such issue in posterior sampling

by carefully controlling the variance of the variable of interest (thus we can leverage the variance-
dependent concentration inequality in Lemma B.2) and integrating it into posterior sampling using a
uniform convergence argument. Roughly speaking, several milestone results during the process of
developing our proof argument, we need to bound the form of

EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃) [S(f, π̃,D)]
where S(f, π̃,D) is a function of f, π̃,D. It is useful to view S(f, π̃,D) as a stochastic process
indexed by (f, π̃). In our machinery, we shall first construct an upper bound on the variance of the
random process, namely

V (f, π̃) ≥ ED[S(f, π̃,D)2].

Using a discretization argument, the union bound and Lemma B.2, we have with probability at least
1− δ, for any f ∈ F , π̃ ∈ Πsoft(T ), for any t ∈ [0, 1

supS(f,π̃,D) ], we have

S(f, π̃,D) ≤ OK(1) + ED [S(f, π̃,D)] + (e− 2)tED[S(f, π̃,D)2] +
ln(N/δ)

t
where OK(1) is a discretization error that can be controlled, and N is a covering number of F ×
Πsoft(T ). Note that S(f, π̃,D) often involves the squared loss which satisfies the Bernstein condition
(see Lemma G.1) – thus we can roughly bound ED[S(f, π̃,D)2] ≤ α|ED [S(f, π̃,D)] | for some
constant α. To integrate the high-probability bound into in-expected bound, we use the argument:

EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃) [S(f, π̃,D)] ≤ OK(1) + EDEπ̃∼Pt(·|D)ED [S(f, π̃,D)]

+ (e− 2)tEDEπ̃∼Pt(·|D)ED[S(f, π̃,D)2] +
ln(N/δ)

t
+ δ supS(f, π̃,D).

E.3.1 Lower-bounding log-partition function.

In this appendix, we give a lower bound of the log-partition function defined in Equation (12). The
final lower bound is presented in Proposition 3. In order to establish such a lower bound, we first
present a series of support lemmas that will culminate into Proposition 3.

The following lemma decomposes the log-partition function Z into different terms that we shall
control separately.
Lemma E.1. For any t ∈ [T ] and any T ∈ N, we have

Zt ≥ EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
λ∆f1(s1, π̃) + (1− 0.5α) ln

p̂(f1|D, π̃)
p0(f1)

]
︸ ︷︷ ︸

At

+ 0.5α

H∑
h=1

EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
2γ

K∑
k=1

∆Lπ̃(fh, fh+1; z
k
h) + ln

p̂(fh, fh+1|D, π̃)
p0(fh, fh+1)

]
︸ ︷︷ ︸

Bh,t

+

H∑
h=1

EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
α lnEf ′

h∼p0
exp

(
−γ

K∑
k=1

∆Lπ̃(f
′
h, fh+1; z

k
h)

)
+ (1− α) ln

p̂(fh+1|D, π̃)
p0(fh+1)

]
︸ ︷︷ ︸

Ch,t

.

Proof of Lemma E.1. This is a simple adaptation of the decomposition in [Dann et al., 2021,
Lemma 6].

We now control each term of the above decomposition of Z separately – where a majority of these
steps are where our technical arguments depart from those in Dann et al. [2021]. In particular,
Lemma E.4, Lemma E.5, and Lemma E.7 are our new technical results.
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Bounding At.
Lemma E.2. We have

At ≥ λEDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)∆f1(s1, π̃).

Proof of Lemma E.2. It simply follows from that:

EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
(1− 0.5α) ln

p̂(f1|D, π̃)
p0(f1)

]
= (1− 0.5α)DKL[p̂(·|D, π̃)∥p0] ≥ 0.

Bounding Bh,t.

Lemma E.3. For any f, π̃, 0 ≤ γ ≤ 1
72(e−2)b2 , and h ∈ [H], we have

lnE(sh+1,rh)∼Ph(·|sh,ah) exp (−2γ∆Lπ̃(fh, fh+1; zh)) ≤ −2γ(1− 72(e− 2)γb2)E π̃h (fh, fh+1)(sh, ah)
2.

Proof of Lemma E.3. For simplicity, we write E = E(sh+1,rh)∼Ph(·|sh,ah). We have

lnE exp (−2γ∆Lπ̃(fh, fh+1; zh)) ≤ E exp (−2γ∆Lπ̃(fh, fh+1; zh))− 1

≤ −2γE∆Lπ̃(fh, fh+1; zh) + (e− 2)4γ2E∆Lπ̃(fh, fh+1; zh)
2

≤ −2γ(1− (e− 2)2γ36b2)E2h(fh, fh+1, π̃)(sh, ah)

where the first inequality uses lnx ≤ x− 1,∀x ≥ 0, the second inequality uses ex ≤ 1 + x+ (e−
2)x2,∀|x| ≤ 1 and |2γE∆Lπ̃(fh, fh+1; zh)| ≤ 18γb2 ≤ 1, the third inequality uses Lemma B.1 and
γ ≤ 1

72(e−2)b2 .

Lemma E.4. Define the random variable

ξπ̃h (fh, fh+1; zh) := −2γ∆Lπ̃(fh, fh+1; zh)− lnE(sh+1,rh)∼Ph(·|sh,ah) exp (−2γ∆Lπ̃(fh, fh+1; zh)) .

For any γ ∈ [0, 1
144(e−2)b2 ], t ∈ [0, 1

26γb2 ], ϵ > 0, δ > 0, T ∈ N with probability at least 1 − δ, it
holds uniformly over all π̃ ∈ Πsoft(T ), fh ∈ Fh, fh+1 ∈ Fh+1 that

K∑
k=1

ξπ̃h (fh, fh+1; z
k
h) ≤ D + c

K∑
k=1

e2k,

where 
D := 120γb(b+ 2)Kϵ+ 2dF (ϵ)+dΠ(ϵ,T )+ln(1/δ)

t ,

c := 320b2γ2(e− 2)t,

ek := E π̃h (fh, fh+1)(s
k
h, a

k
h).

(13)

Proof of Lemma E.4. For simplicity, denote
uk := lnE(sh+1,rh)∼Ph(·|sh,ah) exp

(
−2γ∆Lπ̃(fh, fh+1; z

k
h)
)
,

vk := −2γ∆Lπ̃(fh, fh+1; z
k
h),

wk := vk − uk,

ek := E π̃h (fh, fh+1)(s
k
h, a

k
h).

(14)

We have

uk ≥ E(sh+1,rh)∼Ph(·|sh,ah) ln exp
(
−2γ∆Lπ̃(fh, fh+1; z

k
h)
)
= −2γe2k,
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where the first inequality uses Jensen’s inequality for concave function ln(·) and the equality uses
Lemma B.1. Now using Lemma E.3 with γ ≤ 1

144(e−2)b2 , we have

uk ≤ −γe2k. (15)

We also have Evk = −2γe2k by Lemma B.1. Thus, we have

|uk| ≤ 2γe2k, and E[wk] = −2γe2k − uk ≤ 0.

Hence, we have

Ew2
k = E(vk − uk)

2

≤ 2E(v2k + u2
k)

≤ 288b2γ2e2k + 8γ2e4k

≤ 320b2γ2e2k

where the first inequality uses Cauchy-Schwartz inequality, the second inequality uses Lemma B.1
and that |uk| ≤ 2γe2k, and the last inequality uses that |ek| ≤ 2b. Also note that |wk| ≤ |vk|+ |uk| ≤
2γ(9b2) + 2γ(4b2) = 26γb2. Thus, by Lemma B.2, for any δ > 0, for any t ∈ [0, 1

26γb2 ], with
probability at least 1− δ, we have

K∑
k=1

wk ≤
K∑

k=1

Ewk + (e− 2)t · E
K∑

k=1

w2
k +

ln(1/δ)

t

≤ 320b2γ2(e− 2)t

K∑
k=1

e2k +
ln(1/δ)

t
.

We apply the discretization argument and the union bound to obtain that: For any δ > 0, ϵ > 0,
T ∈ N it holds uniformly over all π̃ ∈ Πsoft

h (T ), fh ∈ Fh, fh+1 ∈ Fh+1 that

K∑
k=1

wk ≤ 120γb(b+ 2)Kϵ+ 320b2γ2(e− 2)t

K∑
k=1

e2k +
2dF (ϵ) + dΠ(ϵ, T ) + ln(1/δ)

t
.

Lemma E.5. For any γ ∈ [0, 1
144(e−2)b2 ], ϵ > 0, δ > 0, we have

Bh,t ≥ 0.5γEDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
K∑

k=1

E π̃h (fh, fh+1)(s
k
h, a

k
h)

2

]
≥ −120γb(b+ 2)Kϵ− 640(e− 2)b2γ (2dF (ϵ) + dΠ(ϵ, T ) + ln(1/δ))− 26γb2Kδ.

Proof of Lemma E.5. Define the random variables uk, vk, wk, ek as Equation (14). Recall D, c are
defined in Equation (13) for any t ∈ [0, 1

26γb2 ]. Define the event E such that the inequality

K∑
k=1

ξπ̃h (fh, fh+1; z
k
h) ≤ 320b2γ2(e− 2)t︸ ︷︷ ︸

c

K∑
k=1

e2k +D, (16)

holds uniformly over all π̃ ∈ Πsoft(T ), fh ∈ Fh, fh+1 ∈ Fh+1. By Lemma E.4, we have

Pr(E) ≥ 1− δ, thus Pr(Ec) ≤ δ.

We have

EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
K∑

k=1

(−wk + ce2k) + ln
p̂(fh, fh+1|D, π̃)
p0(fh, fh+1)

]

33



≥ EDEπ̃∼Pt(·|D) inf
p
Ef∼p

[
K∑

k=1

(−wk + ce2k) + ln
p(fh, fh+1)

p0(fh, fh+1)

]

= −EDEπ̃∼Pt(·|D) lnEfh,fh+1∼p0
exp

(
K∑

k=1

(wk − ce2k)

)

= −ED1{E}Eπ̃∼Pt(·|D) lnEfh,fh+1∼p0 exp

(
K∑

k=1

(wk − ce2k)

)

− ED1{Ec}Eπ̃∼Pt(·|D) lnEfh,fh+1∼p0
exp

(
K∑

k=1

(wk − ce2k)

)

≥ −ED1{E}Eπ̃∼Pt(·|D) lnEfh,fh+1∼p0
exp

(
K∑

k=1

(wk − ce2k)

)
− 26γb2Kδ

≥ −D − 26γb2Kδ, (17)

where the first equality uses Lemma G.3, the second inequality uses that Pr(Ec) ≤ δ and
∑K

k=1(wk−
ce2k) ≤

∑K
k=1 wk ≤ 26γb2K and the last inequality uses Equation (16). Thus, using the same

notations as Lemma Lemma E.4, we have

Bh,t = EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
−

K∑
k=1

vk + ln
p̂(fh, fh+1|D, π̃)
p0(fh, fh+1)

]

= EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
K∑

k=1

(−wk + ce2k) + ln
p̂(fh, fh+1|D, π̃)
p0(fh, fh+1)

]

+ EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
K∑

k=1

(−uk − ce2k)

]

≥ −D − 26γb2Kδ + (γ − c)EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
K∑

k=1

e2k

]
where the inequality uses Equation (17) and Equation (15). Finally, setting

t =
1

640b2(e− 2)γ
<

1

13b2γ

completes our proof.

From squared Bellman errors to in-expectation squared Bellman errors and fixing a non-
rigorous argument of Dann et al. [2021]. Lemma E.5 only bounds Bh with the squared
Bellman errors

∑K
k=1 E π̃h (fh, fh+1)(s

k
h, a

k
h)

2 while the in-expectation squared Bellman errors∑K
k=1 Eµk [E π̃h (fh, fh+1)(sh, ah)

2] are what we need for showing Proposition 2. There is no an
immediate path to go from the squared Bellman error to the in-expectation squared Bellman errors as
the order of ED and Eπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃) are not exchangeable, i.e.,

EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
K∑

k=1

E π̃h (fh, fh+1)(s
k
h, a

k
h)

2

]

̸= EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
K∑

k=1

Eµk [E π̃h (fh, fh+1)(sh, ah)
2]

]
. (18)

A similar caveat arises in the online setting in Dann et al. [2021] as well. In particular, a non-rigorous
argument of [Dann et al., 2021, Lemma 8] is that they conclude (an online analogue of) the LHS of
Equation (18) is equal to (an online analogue of) its RHS.
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To fix this issue without ultimately incurring a sub-optimality rate that is slower than 1/
√
K, we

need to change the squared Bellman error into the in-expectation squared Bellman error, up to some
estimation error that scales faster than Kα for any α > 0. Note that, a standard Azuma–Hoeffding
inquality (and the union bound) give an estimation error that scales with K1/2. To achieve the
logarithmic dependence on K, the following lemma exploits the non-negativity of the squared
Bellman error and uses the localization argument of Bartlett et al. [2005] to obtain an estimation error
rate that scales polylogarithmic with K.
Lemma E.6 (Improved online-to-batch argument for non-negative R.V.s [Nguyen-Tang et al., 2023]).
Let {Xk} be any real-valued stochastic process adapted to the filtration {Fk}, i.e. Xk is Fk-
measurable. Suppose that for any k, Xk ∈ [0, H] almost surely for some H > 0. For any K > 0,
with probability at least 1− δ, we have:

K∑
k=1

E [Xk|Fk−1] ≤ 2

K∑
k=1

Xk +
16

3
H log(log2(KH)/δ) + 2.

With Lemma E.6, we now actually make a connection from the squared Bellman error to the
in-expectation squared Bellman error in the following lemma, which incorporates the uniform
convergence argument into the posterior sampling in the same spirit with our earlier argument in
Section E.3.
Lemma E.7. For any δ, ϵ > 0 and T ∈ N, any t ∈ [T ], we have

EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

K∑
k=1

E π̃h (fh, fh+1)(s
k
h, a

k
h)

2

≥ 0.5EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

K∑
k=1

Eµk

[
E π̃h (fh, fh+1)(sh, ah)

2
]

− b(b+ 2)Kϵ− 32

3
b2
(
2dF (ϵ) + dΠ(ϵ, T ) + ln

ln 4Kb2

δ

)
− 1− 2Kb2δ.

Proof of Lemma E.7. For simplicity, we denote X(f,D) :=
∑K

k=1 E π̃h (fh, fh+1)(s
k
h, a

k
h)

2 and

X(f) := ED[X(f,D)], and ∆ := 8bKϵ + 64
3 b2

(
2dF (ϵ) + dΠ(ϵ, T ) +

ln ln 4Kb2

δ

)
+ 2. We de-

fine the event:

E =
{
D : X(f) ≤ 2X(f,D) + ∆,∀fh ∈ Fh, fh+1 ∈ Fh+1, π̃ ∈ Πsoft

h (T )
}
.

Due to the non-negativity of E π̃h (fh, fh+1)(s, a)
2, Lemma E.6 and the union bound, we have

Pr(E) ≥ 1− δ and Pr(Ec) ≤ δ.

We have

2EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)X(f,D)
= 2EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)X(f,D)1{E}+ 2EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)X(f,D)1{Ec}
≥ 2EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)X(f,D)1{E}
≥ ED1{E}Eπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)(X(f)−∆)

= ED1{E}Eπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)X(f)−∆Pr(E)

≥ ED1{E}Eπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)X(f)−∆

= EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)X(f)−∆− ED1{Ec}Eπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)X(f)

≥ EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)X(f)−∆− ED1{Ec}Ef∼p̂(·|D,π̃)4Kb2

= EDEf∼p̂(·|D,π̃)X(f)−∆− 4Kb2 Pr(Ec)

≥ EDEf∼p̂(·|D,π̃)X(f)−∆− 4Kb2δ

where the fourth inequality uses |X(f)| ≥ 4Kb2 and the last inequality uses Pr(Ec) ≤ δ.
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Bounding Ch,t.
Lemma E.8. For any ϵ > 0 and T ∈ N, we have

Ch,t ≥ − max
π̃∈Πsoft

h (T )
κh(α, ϵ, π̃)− γα6bKϵ.

where κh(α, ϵ, π̃) is defined in Equation (11).

Proof of Lemma E.8. We have

Ch,t = EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
α lnEf ′

h∼p0
exp

(
−γ

K∑
k=1

∆Lπ̃(f
′
h, fh+1; z

k
h)

)
+ (1− α) ln

p̂(fh+1|D, π̃)
p0(fh+1)

]

= (1− α)EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
α

1− α
lnEf ′

h∼p0
exp

(
−γ

K∑
k=1

∆Lπ̃(f
′
h, fh+1; z

k
h)

)
+ ln

p̂(fh+1|D, π̃)
p0(fh+1)

]

≥ −(1− α)EDEπ̃∼Pt(·|D) lnEfh+1∼p0

(
Ef ′

h∼p0
exp

(
−γ

K∑
k=1

∆Lπ̃(f
′
h, fh+1; z

k
h)

)) −α
1−α

≥ − max
π̃∈Πsoft(T )

κh(α, ϵ, π̃)− γα6bKϵ.

where the first inequality uses Lemma G.3 and the last inequality uses the following inequalities: For
any fh ∈ Fh(ϵ, fh+1, π̃), we have

|∆Lπ̃(fh, fh+1; zh)| ≤ 6b|E π̃h (fh, fh+1)| ≤ 6bϵ; thus

Ef ′
h∼p0

exp

(
−γ

K∑
k=1

∆Lπ̃(f
′
h, fh+1; zh)

)
≥ p0,h(F π̃

h (ϵ, fh+1)) · exp(−γ6bKϵ).

We are now ready to state the complete form of the lower bound of Z.

Proposition 3. For any γ ∈ [0, 1
144(e−2)b2 ], ϵ > 0, δ > 0, and any t ∈ [T ], we have,

Z ≥ λEDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)∆f1(s1, π̃)

+ 0.125αγ

H∑
h=1

EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

K∑
k=1

Eµk

[
E π̃h (fh, fh+1)(sh, ah)

2
]

− 0.5αH
(
120γb(b+ 2)Kϵ+ 640(e− 2)γb2 (2dF (ϵ) + dΠ(ϵ, T ) + ln(1/δ))

)
− 13αγb2KHδ

− 0.25αγH

(
b(b+ 2)Kϵ+

32

3
b2
(
2dF (ϵ) + dΠ(ϵ, T ) + ln

ln 4Kb2

δ

)
+ 1 + 2Kb2δ

)
−

H∑
h=1

max
π̃∈Πsoft(T )

κh(α, ϵ, π̃)− γα6bKHϵ.

Proof of Proposition 3. Using Lemma E.1, it suffices to bound terms A, Bh, and Ch defined in
Lemma E.1. For this purpose, we use

• Lemma E.2: To bound At,

• Lemma E.5 and Lemma E.7: To bound Bh,t,

• Lemma E.8: To bound Ch,t.

The result is then simply a direct combination of the above lemmas.
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E.3.2 Upper-bounding log-partition function

In this appendix, we upper bound the log-partition function Z. While we follow the proof flow in
Dann et al. [2021], due to the statistical dependence in the actor-critic framework of our algorithm,
we require different technical arguments to establish this result. In particular, Lemma E.9 and
Lemma E.10 are our new technical lemmas.
Proposition 4. For any ϵ, δ > 0, γ > 0, and t ∈ [T ], we have

Zt ≤ λϵ− inf
π̃∈Πsoft(T )

H∑
h=1

ln p0(Fh(ϵ; π̃)) + 4γ

(
α+

3(e− 2)

α

)
HKϵ2

+ 60αγb(b+ 2)KHϵ+ αγb2H (13 + 36(e− 2)) (2dF (ϵ) + dΠ(ϵ, T ) + ln(1/δ)) + 18αγKHb2δ.

where recall that Zt is defined in Equation (12).

Proof of Proposition 4. We have

Zt = EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
Φ̂(f, π̃;D) + λ∆f1(s1, π̃) + ln p̂(f |D, π̃)

]
= EDEπ̃∼Pt(·|D) inf

p
Ef∼p

[
Φ̂(f, π̃;D) + λ∆f1(s1, π̃) + ln p(f)

]
≤ EDEπ̃∼Pt(·|D) inf

p
Ef∼p

[
ln

p(f)

p0(f)
+ αγ

H∑
h=1

K∑
k=1

∆Lπ̃(fh, fh+1; z
k
h) + λ∆f1(s1, π̃)

]

+ EDEπ̃∼Pt(·|D) inf
p
Ef∼p

[
α

H∑
h=1

lnEf̃h∼p0
exp

(
−γ

K∑
k=1

∆Lπ̃(f̃h, fh+1; z
k
h)

)]
where the second equality uses the fact that DKL[p∥p̂] ≥ 0 with the minimum occurring at p = p̂ and
the inequality uses the triangle inequality. The first term is bounded by Lemma E.9 and Lemma E.11,
and the second term is bounded by Lemma E.10

It remains to state and prove Lemma E.9, Lemma E.11 and Lemma E.10.

The following lemma bounds the in-expectation of the loss ∆Lπ̃ by the in-expectation of the squared
Bellman error.
Lemma E.9. For any distribution p over F , for any ϵ, δ > 0, γ > 0, any t ∈ [T ], we have

EDEπ̃∼Pt(·|D)Ef∼p

[
αγ

K∑
k=1

∆Lπ̃(fh, fh+1; z
k
h)

]

≤ γ

(
α+

3(e− 2)

α

)
EDEπ̃∼Pt(·|D)Ef∼p

[
K∑

k=1

E π̃h (fh, fh+1)(s
k
h, a

k
h)

2

]
+ 30αγb(b+ 2)Kϵ+ 13αγb2 (2dF (ϵ) + dΠ(ϵ, T ) + ln(1/δ)) + 9αγKb2δ.

Proof of Lemma E.9. For simplicity, define

xk := αγ∆Lπ̃(fh, fh+1; z
k
h),

ek := E π̃h (fh, fh+1)(s
k
h, a

k
h).

By Lemma B.1, we have

E[xk] = αγe2k,

E[x2
k] ≤ 36b2α2γ2e2k.

Thus, by Lemma B.2, for any δ > 0, with probability at least 1− δ, for any t ∈ [0, 1
13αγb2 ] we have

K∑
k=1

xk ≤
K∑

k=1

E[xk] + t(e− 2)

K∑
k=1

E[x2
k] +

ln(1/δ)

t
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≤
(
αγ + t(e− 2)36b2γ2

) K∑
k=1

e2k +
ln(1/δ)

t
.

Using the discretization argument and the union bound, we have that: For any ϵ > 0, δ > 0, we have

Pr(E) ≥ 1− δ, thus Pr(Ec) ≤ δ,

where E denotes that event that for any t ∈ [0, 1
13αγb2 ],

K∑
k=1

xk ≤ 30αγb(b+ 2)Kϵ+
(
αγ + t(e− 2)36b2α2γ2

) K∑
k=1

e2k +
2dF (ϵ) + dΠ(ϵ, T ) + ln(1/δ)

t
,

any fh ∈ Fh, fh+1 ∈ Fh+1, π̃ ∈ Πsoft
h (T ). Thus, we have

EDEπ̃∼Pt(·|D)Ef∼p

[
K∑

k=1

xk

]
= ED1{E}Eπ̃∼Pt(·|D)Ef∼p

[
K∑

k=1

xk

]
+ ED1{Ec}Eπ̃∼Pt(·|D)Ef∼p

[
K∑

k=1

xk

]

≤ ED1{E}Eπ̃∼Pt(·|D)Ef∼p

[
30αγb(b+ 2)Kϵ

+
(
αγ + t(e− 2)36α2b2γ2

) K∑
k=1

e2k +
2dF (ϵ) + dΠ(ϵ, T ) + ln(1/δ)

t

]
+ 9αγKb2δ

≤ EDEπ̃∼Pt(·|D)Ef∼p

[
30b(b+ 2)Kϵ

+
(
αγ + t(e− 2)36α2b2γ2

) K∑
k=1

e2k +
2dF (ϵ) + dΠ(ϵ, T ) + ln(1/δ)

t

]
+ 9αγKb2δ.

Picking t = 1
13αγb2 completes the proof.

The following lemma bounds the in-expectation negation of the loss proxy ∆Lπ̃ .

Lemma E.10. For any δ > 0, ϵ > 0, γ > 0, any f̃h ∈ Fh, any t ∈ [T ], and any distribution p over
F , we have

EDEπ̃∼Pt(·|D)Ef∼p

[
−γ

K∑
k=1

∆Lπ̃(f̃h, fh+1; z
k
h)

]
≤ 36(e− 2)γb2 (dF (ϵ) + dΠ(ϵ, T ) + ln(1/δ))

+ 9γKb2δ + 30γb(b+ 2)Kϵ.

Proof of Lemma E.10. For simplicity, define

yk := −γ∆Lπ̃(fh, fh+1; z
k
h),

ek := E π̃h (fh, fh+1)(s
k
h, a

k
h).

By Lemma B.1, we have

E[yk] = −γe2k,
E[y2k] ≤ 36b2γ2e2k.

Thus, by Lemma B.2, for any δ > 0, with probability at least 1− δ, for any t ∈ [0, 1
13γb2 ] we have

K∑
k=1

yk ≤
K∑

k=1

E[yk] + t(e− 2)

K∑
k=1

E[y2k] +
ln(1/δ)

t

≤ −γ
(
1− 36t(e− 2)b2γ

) K∑
k=1

e2k +
ln(1/δ)

t
.
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Setting t = 1
36(e−2)b2γ < 1

13γb2 in the above inequality, we obtain

k∑
k=1

yk ≤ 36(e− 2)b2γ ln(1/δ).

Using the discretization argument and the union bound, we have that: For any ϵ > 0, δ > 0, we have

Pr(E) ≥ 1− δ, thus Pr(Ec) ≤ δ,

where E denotes that event ,

K∑
k=1

yk ≤ 30γb(b+ 2)Kϵ+ 36(e− 2)γb2 (dF (ϵ) + dΠ(ϵ, T ) + ln(1/δ)) ,

any fh+1 ∈ Fh+1, π̃ ∈ Πsoft
h (T ). Thus, we have

EDEπ̃∼Pt(·|D)Ef∼p

[
K∑

k=1

yk

]
= ED1{E}Eπ̃∼Pt(·|D)Ef∼p

[
K∑

k=1

yk

]
+ ED1{Ec}Eπ̃∼Pt(·|D)Ef∼p

[
K∑

k=1

yk

]
≤ 30γb(b+ 2)Kϵ+ 36(e− 2)γb2 (dF (ϵ) + dΠ(ϵ, T ) + ln(1/δ)) + 9γKb2δ.

The following lemma bounds the in-expectation squared Bellman errors with the regularization term
and the data distribution term, under the infimum realization of the data distribution p.

Lemma E.11. For any ϵ > 0, β ≥ 0, any t ∈ [T ], we have

EDEπ̃∼Pt(·|D) inf
p
Ef∼p

[
λ∆f1(s1, π̃) + ln

p(f)

p0(f)
+ β

H∑
h=1

K∑
k=1

E π̃h (fh, fh+1)(s
k
h, a

k
h)

2

]
≤ λϵ− inf

π̃∈Πsoft(T )
ln p0(Fh(ϵ;Q

π̃
h)) + 4βHKϵ2.

where recall that Fh(ϵ; fh+1) is defined in Definition 2.

Proof of Lemma E.11. For any f ∈ F(ϵ;Qπ̃), we have

∥fh −Qπ̃
h∥∞ ≤ ϵ,∀h.

Thus, we have

|E π̃h (fh, fh+1)(s, a)| ≤ ∥Tπ̃
hfh − fh+1∥∞ = ∥Tπ̃

hfh − Tπ̃
hQ

π̃
h − fh+1 +Qπ̃

h+1∥∞
≤ ∥Tπ̃

hfh − Tπ̃
hQ

π̃
h∥∞ + ∥fh+1 −Qπ̃

h+1∥∞
≤ 2ϵ.

Thus, by choosing

p(f) =
p0(f)1{f ∈ F(ϵ; π̃)}

p0(F(ϵ; π̃))
,

we have

inf
p
Ef∼p

[
λ∆f1(s1, π̃) + ln

p(f)

p0(f)
+ β

H∑
h=1

K∑
k=1

E π̃h (fh, fh+1)(s
k
h, a

k
h)

2

]
≤ λϵ− ln p0(Fh(ϵ; π̃)) + 4βHKϵ2.

We by now have everything needed to prove Proposition 2.
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E.3.3 Proof of Proposition 2

Proof of Proposition 2. By Proposition 3, we have

Zt ≥ λEDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)∆f1(s1, π̃)

+ 0.125αγ

H∑
h=1

EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

K∑
k=1

Eµk

[
E π̃h (fh, fh+1)(sh, ah)

2
]

− 0.5αH
(
120γb(b+ 2)Kϵ+ 640(e− 2)γb2 (2dF (ϵ) + dΠ(ϵ, T ) + ln(1/δ))

)
− 13αγb2KHδ

− 0.25αγH

(
b(b+ 2)Kϵ+

32

3
b2
(
2dF (ϵ) + dΠ(ϵ, T ) +

ln ln 4Kb2

δ

)
+ 1 + 2Kb2δ

)
−

H∑
h=1

max
π̃∈Πsoft(T )

κh(α, ϵ, π̃)− γα6bKHϵ.

By Proposition 4, we have

Zt ≤ λϵ− inf
π̃∈Πsoft(T )

H∑
h=1

ln p0(Fh(ϵ; π̃)) + 4γ

(
α+

3(e− 2)

α

)
HKϵ2

+ 60αγb(b+ 2)KHϵ+ αb2γH (13 + 36(e− 2)) (2dF (ϵ) + dΠ(ϵ, T ) + ln(1/δ)) + 18αγKHb2δ.

Thus, we have

EDEπ̃∼Pt(·|D)Ef∼p̂(·|D,π̃)

[
0.125αγK

H∑
h=1

Eµ[E π̃h (fh, fh+1)(sh, ah)
2] + λ∆f1(s1, π̃)

]

≲ λϵ+ αγHb2 ·max{dF (ϵ), dΠ(ϵ, T ), ln
lnKb2

δ
}+ αγb2KH ·max{ϵ, δ}+ γHK

ϵ2

α

+

H∑
h=1

max
π̃h∈Πsoft

h

κh(α, ϵ, π̃h) + sup
π̃∈Πsoft(T )

H∑
h=1

ln
1

p0(Fh(ϵ;Q
π̃h

h ))
.

Appendix F Proof of Proposition 1

In this appendix, we prove Proposition 1, which is a simple reduction from Theorem 1, Theorem 2,
and Theorem 3.

Proof of Proposition 1. We recall that Proposition 1 consists of two parts of statements: Part (i) – the
simplified bounds of all three algorithms into one unified form under no misspecification, and Part
(ii) – the specialization of the unified bound into the special cases of finite function classes and linear
function classes.

Part (i): The unified sub-optimality bounds for VS, RO, and PS

We recall that the first part of Proposition 1 is that:

∀π̂ ∈ {π̂vs, π̂ro, π̂ps},EDSubOptπ(π̂) = Õ

(
Hb√
K

√
d̃(1/K) · C(π; 1/

√
K) +

Hb
√
lnVol(A)
T

)
,

(19)

where

d̃(1/K) =

{
d̃opt(1/K, T ) if π̂ ∈ {π̂vs, π̂ro},
d̃ps(1/K, T ) if π̂ = π̂ps,

where we recall in Section 4.2 that

d̃opt(ϵ, T ) := max{dF (ϵ), dΠ(ϵ, T )},
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d̃ps(ϵ, T ) := max{dF (ϵ), dΠ(ϵ, T ),
d0(ϵ)

γHb2
,
d′0(ϵ)

γHb2
},

and dF (ϵ), dΠ(ϵ, T ), d0(ϵ), and d′0(ϵ) are defined in Section 2.4. Also recall that for Proposition 1,
we assume that there is no misspecification, i.e., ξh = νh = 0,∀h ∈ [H].

For π̂vs. It follows from Theorem 1, where we choose ϵc = 1/
√
K, and ϵ = 1/K that with

probability at least 1− 2δ, we have

SubOptπ(π̂
vs) ≲

√
K−1 ·H · C(π; 1/

√
K)(Hb2 max{d̃opt(1/K, T ), ln(H/δ)}+ b2H) +H/

√
K + ζopt

≲
√
K−1 ·H2b2 · C(π; 1/

√
K)max{d̃opt(1/K, T ), ln(H/δ)}+

Hb
√

lnVol(A)
T

Thus we have

SubOptπ(π̂
vs) = O

(
Hb√
K

√
C(π; 1/

√
K) ·max{d̃opt(1/K, T ), ln(H/δ)}+

Hb
√

lnVol(A)
T

)
.

(20)

For π̂ro. The sub-optimality bound for π̂ro is obtained from Theorem 2 with the same parameter
setting as that for π̂vs, where we set ϵ = 1/K, ϵc = 1/

√
K, and T ≥ K lnVol(A). Additionally, we

shall need to set the regularization parameter λ. Since the bound in Theorem 2 holds for any λ > 0,
we shall minimize this bound with respect to λ > 0, which results in the optimal λ as

λ∗ =

√
2KHb2 ·max{d̃opt(1/K, T ), ln(H/δ)}

H · C(π, 1/
√
K)

.

and the sub-optimality bound as

SubOptπ(π̂
ro) = O

(
Hb√
K

√
C(π; 1/

√
K) ·max{d̃opt(1/K, T ), ln(H/δ)}+

Hb
√

lnVol(A)
T

)
.

(21)

For π̂ps. We specialize the sub-optimality of π̂ps from Theorem 3. Similar to the case of π̂vs and
π̂ro, we set: ϵ = 1/K, ϵc = 1/

√
K, and T ≥ K lnVol(A). Additionally, we need to set the failure

probability δ ∈ [0, 1], the learning rate γ ∈ [0, 1
144(e−2)b2 ] and the regularization parameter λ > 0.

For δ, we set δ = 1/K. For λ, we minimize the bound in Theorem 3 with respect to λ, which results
into λ = λ∗ which is give as

λ∗ = γ

√
KHb2 ·max{d̃ps(1/K, T ), ln(K ln(Kb2))}

H · C(π, 1/
√
K)

,

turns the sub-optimality bound into

EDSubOptπ(π̂
ps) = O

(
Hb√
K

√
C(π; 1/

√
K) ·max{d̃ps(1/K, T ), ln(K ln(Kb2))}+

Hb
√
lnVol(A)
T

)
.

(22)

Finally, we choose γ ∈ [0, 1
144(e−2)b2 ] to minimize d̃ps(ϵ, T ) = max{dF (ϵ), dΠ(ϵ, T ), d0(ϵ)

γHb2 ,
d′
0(ϵ)

γHb2 },
which occurs at γ = 1

144(e−2)b2 , and thus

d̃ps(ϵ, T ) = max

{
dF (ϵ), dΠ(ϵ, T ),

144(e− 2)d0(ϵ)

H
,
144(e− 2)d′0(ϵ)

H

}
. (23)

Overall, we have that Equation (20), Equation (21), and Equation (22) can be unified into Equa-
tion (19).

41



Part (ii): Specializing to the finite function classes and linear function classes

We consider two common cases.

Case 1. Finite function class. We consider the case that Fh and Πsoft
h (T ) have finite elements

for all h ∈ [H]. Then we have d̃(ϵ) = O(maxh∈[H] max{ln |Fh|, ln |Πsoft
h (T )|}),∀ϵ, due to that

d′0(ϵ) ≤ d0(ϵ) ≤ Hmaxh∈[H] ln |Fh| and Equation (23).

Case 2. Linear function class. We consider the case that the function class Fh is linear in some
(known) feature map ϕh : S ×A → Rd. Concretely, the corresponding function class and the policy
class defined in Section 2.3 are simplified into:

Fh = {(s, a) 7→ ⟨ϕh(s, a), w⟩ : ∥w∥2 ≤ b},

Πsoft
h (T ) :=

{
(s, a) 7→ exp(⟨ϕh(s, a), θ⟩)∑

a′∈A exp(⟨ϕh(s, a′), θ⟩)
: ∥θ∥2 ≤ ηT

}
.

We have

dF (ϵ) ≤ d ln(1 +
2b

ϵ
),

dΠ(ϵ, T ) ≤ d ln(1 +
16ηT

ϵ
),

d′0(ϵ) ≤ d0(ϵ) ≤ c1dH ln(c2/ϵ),

where the first two inequalities use [Zanette et al., 2021, Lemma 6] and the last inequality follows the
discussion in Section 2.4. Note that dΠ(ϵ, T ) depends only logarithmically in T .

Appendix G Support Lemmas

In this section, for convenience, we present some simple yet useful lemmas that our proofs above
often refer to.

The following lemma establishes the variance condition for the squared loss, which is typically used
along with Bernstein’s inequality.
Lemma G.1. Consider any real-valued function class F . Consider the squared loss L(f(x), y) =
(f(x) − y)2. Assume bounded loss L(f(x), y) ≤ M2 for any f ∈ F , for some M > 0. Let
f∗(x) = E[y|x] and assume that L(f∗(x), y) ≤ B2 for some B > 0 (we do not require that f∗ ∈ F ).
Let z = (x, y) and define

G = {ϕ(·) : ϕ(z) = L(f(x), y)− L(f∗(x), y), f ∈ F}.
Then, for all ϕ ∈ G, we have

Ey[ϕ(z)
2] ≤ 2(M2 +B2)Ey[ϕ(z)],∀x.

where Ey is the expectation taken over y given x.

Proof of Lemma G.1. Consider any ϕ ∈ G (with the corresponding f ∈ F). For any x, we have

Ey[ϕ(z)] = (f(x)− f∗(x))
2.

Thus, we have

ϕ(z)2 = (f(x)− f∗(x))
2(f(x) + f∗(x)− 2y)2

≤ (f(x)− f∗(x))
22[(f(x)− y)2 + (f∗(x)− y)2]

≤ 2(M2 +B2)(f(x)− f∗(x))
2.

The first inequality uses Cauchy-Schwartz. The second inequality uses that f∗ ∈ F and L(f(x), y) ≤
M2,∀f ∈ F . Thus, for any x, we have

Ey[ϕ(z)
2] ≤ 2(M2 +B2)(f(x)− f∗(x))

2 = 2(M2 +B2)Ey[ϕ(z)].

The equation uses that Ey[ϕ(z)] = (f(x)− f∗(x))
2.
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The following lemma is a simple decomposition of the value gap in the initial state, typically known
as the performance difference lemma in the RL literature.
Lemma G.2 (Performance difference lemma). For any policy π, π̃, we have

V π
1 (s1)− V π̃

1 (s1) =

H∑
h=1

Eπ

[
Qπ̃

h(sh, ah)− V π̃
h (sh)

]
,

where Eπ denotes the expectation over the random trajectory (s1, a1, . . . , sh, ah) generated by π
(and the underlying MDP).

Proof of Lemma G.2. We simply expand V π
1 (s1) = Ea1,s2|s1,π[r1(s1, a1) + V π

2 (s2)] and use recur-
sion to obtain the lemma.

The following lemma presents a simple connection from a form of a log partition function to the
expectation under the infimum realization of the sampling distribution.
Lemma G.3. For any density functions p and p0 and any function f , we have

inf
p
Ex∼p(x)

[
f(x) + ln

p(x)

p0(x)

]
≥ − lnEx∼p0

exp(−f(x)).

Proof of Lemma G.3. Define the density function

q(x) =
p0(x) exp(−f(x))

Z(f)
where Z(f) := Ex∼p0(x) exp(−f(x)).

Then, we have

Ex∼p(x)

[
f(x) + ln

p(x)

p0(x)

]
= Ex∼p(x) ln

p(x)

q(x)
− lnZ(f)

= KL[p∥q]− lnZ(f)

≥ − lnZ(f).
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