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ABSTRACT

Accurate time series forecasting is a fundamental challenge in data science. Un-
like traditional statistical methods, conventional machine learning models, such as
RNNs and CNNs, use historical data consisting of previously measured variables
including the forecast variable and all its covariates. However, in many applica-
tions, some of the covariates can be predicted with reasonable accuracy for the
immediate future. We refer to such covariates as predictable future covariates.
Note that the input may also contain some covariates that cannot be accurately
predicted. We consider the problem of predicting water levels at a given location
in a river or canal system using historical data and future covariates, some of which
(precipitation, tide) may be predictable. In many applications, for some covariates
of interest, it may be possible to use historical data or accurate predictions for
the near future. Traditional methods to incorporate future predictable covariates
have major limitations. The strategy of simply concatenating the future predicted
covariates to the input vector is highly likely to miss the past-future connection.
Another strategy that iteratively predicts one step at a time can end up with predic-
tion error accumulation. We propose two novel feature representation strategies to
solve those limitations – shifting and padding, which create a framework for con-
textually linking the past with the predicted future, while avoiding any accumu-
lation of prediction errors. Extensive experiments on three well-known datasets
revealed that our strategies when applied to RNN and CNN backbones, outper-
form existing methods. Our experiments also suggest a relationship between the
amount of shifting and padding and the periodicity of the time series.

1 INTRODUCTION

Conventional time series forecasting is widely used to predict a set of target variables at a future time
point based on past data collected over a predetermined length. Next-step forecasting (Montgomery
et al., 2015; Shi et al., 2022) refers to predicting the target variables at a time point one step into the
future where the unit of time is the time granularity of the measurements. Multi-horizon forecasting
(Quaedvlieg, 2021) predicts the target variables multiple steps into the future Capistrán et al. (2010).
Accurate forecasting allows people to do better resource management and optimization decisions for
critical processes (Cinar et al., 2017; Salinas et al., 2020; Rangapuram et al., 2018). Applications
include probabilistic demand forecasting in retail (Böse et al., 2017), dynamic assignments of beds
to patients (Zhang & Nawata, 2018), monthly inflation forecasting, and much more.

Good multi-horizon forecasting requires historical data of the target variables from which to learn
long-term patterns. In addition, it also requires measurements from heterogeneous data sources of
useful covariates, often from the recent past. However, in many applications, some of the covariates
can also be predicted with reasonable accuracy for the immediate future. We refer to such covariates
as future covariates. For example, in some applications, a covariate of interest could be “precipita-
tion”, for which it is possible to use historical data as well as reasonably accurate predictions for the
near future, which may be obtained from the weather service. Despite its importance, only limited
approaches exist that use future covariates to improve time series predictions. Related methods can
be mainly categorized into direct strategy using sequence-to-sequence models (Mariet & Kuznetsov,
2019) and iterated methods using autoregressive models (Sahoo et al., 2020).
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Traditional methods to incorporate future covariates have major limitations. We propose two novel
feature representation strategies to solve those limitations – shifting and padding, which create a
framework for contextually linking the past with the predicted future, while avoiding any accumu-
lation of prediction errors. Extensive experiments on three well-known datasets revealed that our
strategies when applied to RNN and CNN backbones, outperform existing methods.

Iterative methods. The iterative strategy recursively uses a Next-step model multiple times where
the predicted values for the previous time step is used as the input to forecast the next time step,
as in Salinas et al. (2020). For the prediction at time step t, the target values zt−1 at the previous
time step, the (predicted) covariates xt for the current time step, and the context vectors ht−1 that
summarize the representation information of all the past time steps are considered as the input to
predict target values zt at the current time step using RNNs. Rangapuram et al. (2018) adopted a
similar approach by parameterizing a per-time-series linear state space model with recurrent neural
networks. Related work with the iterative approach is in Li et al. (2019) where the basic architecture
used was the transformer model with convolutional layers.

Direct methods. The direct method typically uses an encoder model to learn the feature represen-
tation of past data, which is saved as context vectors in a hidden state. A decoder model is utilized
to intake future covariates and context vectors from the encoder and to then predict the outputs for
multi-horizon forecasting, as shown in Figure 1. The multi-horizon Quantile Recurrent Forecaster
by Wen et al. (2017) used an LSTM as the encoder to generate context vectors, which are com-
bined with predicted future covariates and fed into a multi-layer perceptron (MLP) to predict the
future horizon. Some works ((Fan et al., 2019; Du et al., 2020)) have applied a temporal attention
mechanism between the encoder and the decoder. This architecture is able to learn the relevance of
different parts of the feature representations from historical data by computing attentional weights.
The weighted feature representations are then passed into the decoder to make predictions for future
time steps. In Fan et al. (2019), bi-directional LSTMs are used as the decoder backbone allowing
past and predicted features to be considered at every future time step. Temporal Fusion Transformer
(Lim et al. (2021)) combined gated residual networks (GRNs) and an attention mechanism (Vaswani
et al., 2017) as an additional decoder on top of the traditional encoder-decoder model. They used
GRNs to filter unnecessary information and the additional decoder with attention mechanism to
capture long-term dependencies between the time steps.

Figure 1: Direct method using sequence-to-sequence models.

The iterative as well as the direct methods aim to incorporate future covariates as inputs but suffer
from several shortcomings. The iterative methods accumulate prediction errors because the input
to each time step is the output from the previous step, causing the model performance to quickly
degrade for longer forecasting horizons. On the other hand, direct methods are prone to miss some
interactions between data from past and future time points. The encoder processes only past data,
while the decoder merely concatenates past data and future covariates, which may miss specific rela-
tionships between the past and future time points. In this paper, we aim to resolve the shortcomings
of both the approaches with a novel architecture.
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Our contributions: In this paper, we present two novel strategies to combine historical data and
predicted future covariates in a meaningful manner using the strategies of shifting and padding. The
architecture facilitates forecasting by learning useful feature representations from both the past and
the predicted future. These two strategies transform the dataset and construct training pairs (input
features, labels) used for learning. Their input features are composed of both past information on all
features, predicted future information on some covariates (with appropriate time label) and a set of
covariates for which no accurately predicted future information is available. The goal is to directly
predict the target variables for the given horizons. The two strategies are briefly described below.

• Shifting: Predicted future covariates are shifted past in time and paired with appropriate
past time points to create a modified input vector for the predictions. The shift length is a
hyperparameter of the strategy.

• Padding: Covariates that cannot be accurately predicted are simply copied over from the
recent past, and provided as additional input parameters after combining them with future
predicted covariates. The length of the padding is a hyperparameter of the strategy.

2 NOTATION

Let ZN
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t )

N
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Q
q=1 be Q time series covariates that can be accurately predicted in the

near future. To predict target time series at future multiple horizons from t + 1 to t + k, we define
forecasting models that use the past data with a fixed length of w, i.e., for time t − w + 1 : t. The
goal of such a forecasting model is to predict the trajectory ZN

t+1:t+k of the target variables at the
next k time points using the past w time points of all time series (targets and covariates) and k future
time points of future predicted covariates. The model is mathematically expressed as follows:

ZN
t+1:t+k = F(ZN

t−w+1:t,XM
t−w+1:t,Y

Q
t−w+1:t+k; Θ), (1)

where F(·) is a function, Θ denotes the learnable parameters, w represents the length of the history
used, and k is the length of forecasting horizon.

3 METHODOLOGY

In this section, we provide details on the learning model mentioned in Eq. (1) above. We present
two different strategies, shifting and padding, to achieve this.

3.1 THE Shifting STRATEGY

In the shifting strategy, we focus on exploiting the predicted covariates for the future time period
of interest. This is achieved by shifting the predictions of the future covariates back in time by s
time steps, such that the present covariates are aligned and fused with a predicted covariate s time
points into the future to produce distinct feature vectors at each time point (Fig. 2). Thus, the input
features are composed of all time series (target and covariates) aligned from time points t − w + 1
to t with future covariates from time points t−w+1+ s to t+ s. Target variables are predicted for
the forecasting horizon from t + 1 to t + k. This explicit use of the the predicted future covariates
differentiates this approach from traditional forecasting appraoches and is expected to improve the
deep learning models since it simultaneously learns from the past and the future. The predicted
future covariates are shown as a blue dashed trajectory in Fig. 2. The target values computed at time
t+ 1 and later using our shifting approach are expressed as follows:

ZN
t+1:t+k = G(ZN

t−w+1:t,XM
t−w+1:t,Y

Q
t−w+1:t,Y

Q
t−w+1+s:t+s; Θ), (2)

where G(·) is the model function, ZN
t+1:t+k represents the N target variables to be predicted at the

future time points t+1 : t+k (region shaded brown in Fig. 2), ZN
t−w+1:t represent the target variables

from the past w time points (brown trajectories in Fig. 2), XQ
t−w+1:t and YQ

t−w+1:t represent the
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covariates from the past w time points (green and red trajectories from Fig. 2), and YQ
t−w+1+s:t+s

represent the predictable future covariates along with predictions from s time points into the future
and then shifted back by s time steps (green trajectories merged with dashed blue trajectories in Fig.
2), and Θ is the set of learnable parameters. The shift amount s is a hyperparameter of the model.

Figure 2: Input data transformed by shifting the predicted future covariates. Left: Original trajecto-
ries of all variables. Right: All input features with the shifted predicted future covariates included.

3.2 THE Padding STRATEGY

The padding approach attempts to extrapolate and incorporate future covariates that cannot be accu-
rately predicted by simply making a copy of the values from the previous s time points. The padded
values are then combined with the values of future covariates that can be accurately predicted. More
formally, the padding method makes a copy of XM

t−s:t and ZN
t−s:t, and makes them the padded values

(Fig. 3). Such manipulations can be viewed as creating a future pseudo-time T̃ = (t + 1, t + s)

where target variables Z̃N
t+1:t+s (brown dashed line in Fig. 3) and covariates X̃M

t+1:t+s (red dashed
line in Fig. 3) repeat the previous pattern from t − s to t. For predictable future covariates, the
padding is achieved with the best predictions instead of the copies from the recent past. Eq. (3)
provides a mathematical description of the padding forecasting model:

ZN
t+1:t+k = H(Z̃N

t−w+1:t+s, X̃M
t−w+1:t+s,Y

Q
t−w+1:t+s; Θ), (3)

where H(·) is a model function, ZN
t+1:t+k represents the N target variables to be predicted at the

future time points t+1 : t+k (region shaded brown in Fig. 3), Z̃N
t−w+1:t+s = ZN

t−w+1:t+ZN
t+1−s:t

is the concatenation of the time series in the range t−w+1 : t with a copy of the time series in the
range t+ 1− s : t (brown trajectories in Fig. 3), X̃M

t−w+1:t+s = XM
t−w+1:t + XM

t+1−s:t is the set of
padded covariates corresponding to covariates that cannot be accurately predicted (pink trajectories
in Fig. 3), YQ

t−w+1:t+s is the set of predicted future covariates padded with the predictions for the
time range t+ 1 : t+ s (green trajectory in Fig. 3), and Θ is the set of learnable parameters.

Figure 3: Input data transformed using the padding strategy. Pink and brown dotted trajectories
represent the padded information of the future covariates that cannot be accurately predicted and
the target variables being modeled, while the blue dotted trajectories represent the predicted future
covariates. Left: Original trajectories of all variables with the predicted future covariates. Right: All
input features with the padded values and predicted future covariates and the output trajectory.
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3.3 NETWORK ARCHITECTURES

To validate the effectiveness of the shifting and padding strategies for feature representation, we
constructed simple RNN and CNN architectures that included as input the covariates as described
above in Sections 3.1 and 3.2. The networks were set to forecast k future steps in one shot instead
of the traditional sequential prediction to avoid accumulation of errors.

3.3.1 RNN MODELS WITH SHIFTING

Shifting is implemented by providing the RNN backbone with w hidden states as shown in Fig. 4.
The standard RNNs was further modified to remove the hidden states ht+1, . . . , ht+k to enable a
one-shot prediction of the k future time points. The input to each hidden state hj were variables
associated with time t = j (i.e., target variable zj and covariates xj , yj), as well as the predicted
covariates (shifted by s), yj+s as shown in Fig. 4. RNN model generates the output for a target
variables (zt+1, . . . , zt+k) in a one-shot manner. The hidden states are described as follows:

hj = f(hj−1, zj , xj , yj , yj+s), (4)

where f is an activation function; hj and hj−1 refer to the current and previous hidden states; zj , xj ,
and yj represent the target time series, future covariates that cannot be accurately predicted, and
predictable future covariates from the past w steps; and yj+s denotes the predicted future covariates
from k steps into the future.

Figure 4: RNN models with the shifting strategy. Dashed ovals represents predicted future covariates
that have been shifted. Solid ovals are historical data or data for which we do not have future
predictions available. Colors are same as before.

3.3.2 RNN MODELS WITH PADDING

The RNN backbone for padding is similar to that for shifting, but extended with s extra states for
pseudo-times, as shown in Fig. 5. A precise mathematical formulation is given below.

hj =

{
f(hj−1, zj , xj , yj), j ∈ [t− w + 1, t]
f(hj−1, z̃j , x̃j , ỹj), j ∈ [t+ 1, t+ s],

(5)

where f(·) is the activation function; hj and hj−1 refer to the current and previous hidden states;
zj , xj , yj represent the target variables, covariates that cannot be accurately predicted, and covariates
that can be accurately predicted, all for the past time points j ∈ [t−w+1, t]; and z̃j , x̃j , ỹj represent
the padded versions of the same variables for the future time range.

3.3.3 CNN MODELS WITH SHIFTING

Convolutional Neural Networks (CNNs) can summarize and learn from the input data using sliding
filters that extract features with convolutional computations. The time series are aligned in a manner
similar to how we handled RNNs with shifting. Each CNN filter is used to extract features in parallel
by sliding from the first time point to the last time point, as shown on the left in Fig. 6. The parallel
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Figure 5: RNN models with the padding strategy. Dashed ovals represents padded features. Solid
ovals before time t are historical data. Colors are same as before.

action of the filters allows for the simultaneous learning of past and (predicted) future information.
As with RNN, CNN models will output predictions of the target variables for the desired range of
time points (i.e., horizon) in one shot.

Figure 6: CNN models with the shifting strategy. Left: Input from original past and shifted future.
Right: Actual future target time series. Blue line represents prior known future covariates. Pink,
brown lines are past unknown future covariates and target time series, respectively.

3.3.4 CNN MODELS WITH PADDING

The time series are aligned similar to how it was organized for RNNs with padding. The sliding
filters are similar to that used in CNNs with shifting, but with t+ s time points, as shown in Fig. 7.
CNNs with padding require more scanning because of the extra padded pseudo-times (t+1 : t+ s),
but the actual filters are more compact because fewer time series are processed.

4 EXPERIMENTS

4.1 DATASETS

Three real world datasets were used for time series forecasting tasks in this paper. Beijing PM2.5
and Electricity price datasets are publicly available from UCI and Kaggle repositories, respectively.
The third one is the Water stage dataset downloaded from the South Florida Water Management
District website. More details about dataset descriptions can be found in Appendix A.

Beijing PM2.5 It includes hourly observed data from January 1, 2010, to December 31, 2014. We
consider PM2.5 as the target variable to predict, other variables such as dew, temperature,
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Figure 7: CNN models with the padding strategy. Left shows inputs from the past with padded
series. Filters create convolutional layers, which are then used to output the target variables on the
right. Colors are used as in previous figures.

pressure, wind speed, wind direction, snow, and rain are covariates that can be predicted
and can influence PM2.5 values. PM2.5 ∈ [0, 671] µg/m3 in this dataset.

Electricity price It was recorded every hour from January 1, 2015, to December 31, 2018.
Energy_dataset.csv includes energy demand, generation, prices, while weather_
features.csv contains features such as temperature and humidity. Electricity price is
the target variable to predict, while prior known covariates are energy demand, generation,
and weather features. Electricity price ∈ [$9.33, $116.8] in this dataset1.

Water stage This is an hourly dataset from January 1, 2010, to December 31, 2020 and includes
information on water levels, the height of gate opening, water flow values through the gate,
water volumes pumped at gates, and rainfall measures. Water stage is the target variable
while other variables are covariates. Rainfall, gate position, and pump control are future
covariates that can be predicted. Water stage ∈ [−1.25, 4.05] feet in this dataset.

4.2 TRAINING AND EVALUATION

For each of datasets, we used the first 80% as a training set to train the model and the last 20%
as a test set to evaluate the performance. During the training phase, common techniques such as
normalization, dropout, regularization were used to avoid overfitting. Grid search was used to fine-
tune the models for optimal hyperparameters including the number of layers, the number of neurons,
learning rate, batch size, regularization factor, and the number of epochs. Mean Absolute Error
(MAE) and Root Square Mean Error (RSME) were used to evaluate models. Details on the training
and evaluation process is in Appendix B.

The four deep learning models (with RNNs or CNNs, and with shifting or padding) were tested
with the three datasets. Seq-to-Seq models (Du et al., 2020), MQRNN (Rangapuram et al., 2018),
DeepAR (Salinas et al., 2020), Temperal Fusion Transformer (TFT) (Lim et al., 2021) were com-
pared to the four methods mentioned proposed in this manuscript. We used horizon values of
k = 6, 12, 24, and 48 hours to forecast with input windows of size w = 72 hours and predictable
future covariates from s time steps ahead.

4.3 RESULTS

The results are summarized in Tables 1, 2, and 3. The lowest errors in each column are in bold
font. The results show that the shifting and padding methods with CNNs outperform all the other

1Although this has no bearing on the analysis or conclusions, the currency for the price column in this
dataset was unavialable. The $ sign is used as a proxy for whatever currency was intended.
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Table 1: MAE & RMSE for the Beijing PM2.5 dataset. (PM2.5 values ∈ [0, 671]µg/m3)

Methods k = 6 hrs k = 12 hrs k = 24 hrs

MAE RMSE MAE RMSE MAE RMSE

Baselines

Seq-to-Seq 25.57 41.66 30.64 49.01 35.61 54.98
MQRNN 39.95 55.66 46.56 60.22 36.63 52.02
DeepAR 37.53 57.24 42.04 65.16 49.02 72.88
TFT 33.15 55.65 33.84 53.59 37.69 59.17

Our methods

Shifting (RNN) 24.80 40.62 30.47 47.74 36.81 55.52
Padding (RNN) 24.73 40.00 29.26 46.89 36.67 55.03
Shifting (CNN) 23.79 38.81 28.49 45.58 33.51 51.61
Padding (CNN) 24.29 39.26 29.30 45.87 34.11 51.14

Table 2: MAE & RMSE for Electricity price dataset. (Price ∈ [$9.33, $116.8])

Methods k = 6 hrs k = 12 hrs k = 24 hrs

MAE RMSE MAE RMSE MAE RMSE

Baselines

Seq-to-Seq 2.769 3.761 3.350 4.596 3.736 5.169
MQRNN 3.750 4.840 7.019 7.905 8.33 9.609
DeepAR 5.444 7.201 6.483 8.823 7.242 9.993
TFT 5.953 8.849 6.618 8.779 7.449 9.986

Our methods

Shifting (RNN) 2.938 4.042 3.500 4.764 3.721 4.876
Padding (RNN) 2.437 3.454 3.053 4.167 3.541 4.704
Shifting (CNN) 2.681 3.577 3.232 4.349 3.667 4.969
Padding (CNN) 2.690 3.710 3.226 4.359 3.583 4.745

Table 3: MAE & RMSE for the Water Stage dataset. (Water Levels ∈ [−1.25, 4.05] ft)

Methods k = 12 hrs k = 24 hrs k = 48 hrs

MAE RMSE MAE RMSE MAE RMSE

Baselines

Seq-to-Sequence 0.123 0.162 0.134 0.174 0.136 0.176
MQRNN 0.123 0.149 0.123 0.225 0.126 0.176
DeepAR 0.133 0.194 0.146 0.231 0.127 0.195
TFT 0.057 0.083 0.089 0.139 0.077 0.109

Our methods

Shifting (RNN) 0.119 0.167 0.132 0.171 0.158 0.207
Padding (RNN) 0.113 0.154 0.133 0.181 0.134 0.177
Shifting (CNN) 0.074 0.097 0.080 0.105 0.087 0.115
Padding (CNN) 0.053 0.076 0.068 0.092 0.080 0.105

methods compared in this paper for two of the datasets. The methods with RNNs are sensitive
to the forecasting length, k. They outperform the “Baseline” methods for short-term predictions
(k = 6, 12 hrs), but often fail to do so for long-term forecasting (k = 24, 48 hrs). Our experiments
suggest that the future covariates play a significant role in time series predictions. It is also surprising
that the simple models (RNNs and CNNs) outperform the sophisticated and complicated deep neural
networks (labeled “Baseline” in the Tables).

We also experimented with the hyperparameter s, which refers to extent of shifting or padding.
As expected, the performance is sensitive to the choice of s. The best performance appears to be
achieved when s = k. In many applications, we may be able to reliably predict future covariates for
a window much larger than the k used here. However, when s > k, either the performance is flat
or deteriorates as s is increased. When s > w, the performance appears to deteriorate rapidly. Our
experiments also allowed us to consider if s is impacted by the periodicity of the datasets.
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Figure 8: MAE & RMSE for different forecasting lengths (k) and shift lengths (s). Left red point of
each subplot represents the errors when s = k while right red point denotes the errors when s = w.

The graphs in Fig. 8 shows the MAE and RMSE values as a function of shift length, s, for different
values of k, making sure to consider values of s that range from smaller than k (prediction horizon)
all the way to larger than w (input window size).

5 DISCUSSION AND CONCLUSIONS

Simple modifications to the basic RNN and CNN architectures have allowed us to build deep learn-
ing models that outperform more sophisticated models. Our experiments suggest that the utilization
of future covariates (whether predictable or not) can enhance performance considerably. Further-
more, our experiments have helped us to delineate the relationship between the shifting and padding
lengths and the model performance. We have observed that s = k results in the best performance
since future covariates in exact same forecasting horizon included. If s < k, we only get to utilize
some of the predicted covariates from the future for the prediction horizon of k time steps resulting in
considerably lower performances. If s > w, then we end up dropping some of the future covariates
in order to align with the input window, which again results in considerably lower performances.

We also observed that there is considerable periodicity and seasonality in the datasets we used in
our experiments. However, in the range k <= s <= w, the variations in performance was too small
to be significant. While there were some local minima in the performance when s was a multiple of
the period p, the improvements were not significant.

In conclusion, the shifting- and padding-based CNNs proposed in this paper outperformed all the
baseline deep learning methods considered for our experiments. The corresponding methods with
RNNs outperformed the baseline methods for relatively short-term prediction (k = 6, 12 hrs), but
was not as accurate for longer term forecasting (k = 24, 48 hrs). The critical feature of our methods
appears to be the use of future covariates, either by shifting or padding. Shifting-based CNNs per-
formed best when the shift length s is between the forecast horizon and the length of input window
(k ≤ s ≤ w), suggesting a sweet spot for how much of the future is needed for good performance.
Periodicity in the datasets appears to have small, but insignificant influence on the performance of
the shift-based methods.
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A APPENDIX: DATASET

A.1 BEIJING PM2.5 DATASET

This dataset is Beijing Air Quality data set from the public UCI Website https://archive.
ics.uci.edu/ml/datasets/Beijing+PM2.5+Data. It includes hourly observed data
from January 1, 2010, to December 31, 2014. The data set has 43,824 rows and 13 columns. The
first column is simply an index and was ignored for the analysis. The four columns labeled as year,
month, day, and hour, were combined into a single feature called “year-month-day-hour”. We con-
sider PM2.5 as the target variable to predict, other variables such as dew, temperature, pressure,
wind speed, wind direction, snow, rain, etc. are the prior known covariates that can influence PM2.5
values. PM2.5 ∈ [0, 671] µg/m3 in this dataset.

Table 4: Description of Beijing PM2.5 Dataset

VARIABLE DESCRIPTION

No row number
year year of data in this row
month month of data in this row
day day of data in this row
hour hour of data in this row
pm2.5 PM2.5 concentration (ug/m3)
DEWP Dew Point (â, , f )
TEMP Temperature (â, , f )
PRES Pressure (hPa)
cbwd Combined wind direction
Iws Cumulated wind speed (m/s)
Is Cumulated hours of snow
Ir Cumulated hours of rain

A.2 ENERGY (ELECTRICITY) PRICE DATASET

This dataset contains 4 years of electrical consumption, generation, pricing, and weather data
for Spain. It is publicly available in the Kaggle website: https://www.kaggle.com/
datasets/?search=hourly+energy+demand. It has two hourly datasets from January
1, 2015, to December 31, 2018. Energy dataset.csv includes the information of energy demand,
generation, prices, and weather features.csv gives the weather features temperature, humidity, etc.
Electricity price is the target variable to predict, while prior known covariates are energy demand,
generation, and weather features. Electricity price ∈ [9.33, 116.8] in this dataset.
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Table 5: Description of Energy (electricity) price dataset

VARIABLE DESCRIPTION

generation biomass biomass generation in MW
generation fossil brown coal/lignite coal/lignite generation in MW
generation fossil coal-derived gas coal gas generation in MW
generation fossil gas gas generation in
generation fossil hard coal coal generation in MW
generation fossil oil oil generation in MW
generation fossil oil shale shale oil generation in MW
generation fossil peat peat generation in MW
generation geothermal geothermal generation in MW
generation hydro pumped storage aggregated hydro1 generation in MW
generation hydro pumped storage consumption hydro2 generation in MW
generation hydro run-of-river and poundage hydro3 generation in MW
generation hydro water reservoir hydro4 generation in MW
generation marine sea generation in MW
generation nuclear nuclear generation in MW
generation other other generation in MW
generation other renewable other renewable generation in MW
generation solar solar generation in MW
generation waste waste generation in MW
generation wind offshore wind offshore generation in MW
generation wind onshore wind onshore generation in MW
forecast wind onshore day ahead forecasted onshore wind generation
forecast solar day ahead forecasted solar generation
forecast wind onshore day ahead forecasted offshore wind generation
total load forecast forecasted electrical demand
total load actual actual electrical demand
price day ahead forecasted price EUR/MWh
price actual price in EUR/MWh4
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Table 6: Description of weather feature dataset

PART DESCRIPTION

dt iso datetime index localized to CET
city name name of city
temp temperature in K
temp min minimum in K
temp max maximum in K
pressure pressure in hPa
humidity humidity in %
wind speed wind speed in m/s
wind deg wind direction
rain 1h rain in last hour in mm
rain 3h rain last 3 hours in mm
snow 3h snow last 3 hours in mm
clouds all cloud cover in %
weather id Code used to describe weather
weather main Short description of current weather
weather description Long description of current weather
weather icon Weather icon code for website

A.3 WATER STAGE PREDICTION

Water stage prediction: we downloaded a dataset in the real world including the information of
water stage, the height of gate opening, the amount of water flowing through the gate, the amount of
pumped and rainfall from January 1, 2010, to December 31, 2020. Water stage is the target variable
while other variables are covariates. Rainfall information, gate position, and pump control are prior
known covariates. Water stage ∈ [−1.25, 4.05] feet in this dataset.

Table 7: Description of water stage dataset

PART DESCRIPTION

WS S1 Water Stage at Station 1 in ft
WS S4 Water Stage at Station 4 in ft
FLOW S25A The amount of water flowing Station 25A in m3/s
GATE S25A The height of gate opening at Station 25A m
HWS S25A Head water stage at Station 25A in ft
TWS S25A Tail water stage at Station 25A in ft
FLOW S25B The amount of water flowing Station 25B in m3/s
GATE S25B The height of gate1 opening at Station 25B m
GATE S25B2 The height of gate2 opening at Station 25B m
HWS S25B Head water stage at Station 25B in ft
TWS S25B Tail water stage at Station 25B in ft
PUMP S25B The amount of pumped water at Station 25B in m3/s
FLOW S26 The amount of water flowing Station 26 in m3/s
GATE S26 1 The height of gate1 opening at Station 26 m
GATE S26 2 The height of gate2 opening at Station 26 m
HWS S25B Head water stage at Station 26 in ft
TWS S25B Tail water stage at Station 26 in ft
PUMP S26 The amount of pumped water at Station 26 in m3/s
MEAN RAIN Mean value of rainfall of radar rainfall in inch
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B APPENDIX: TRAINING AND EVALUATION

For each of datasets, we used the first 80% as training set to train the model and the last 20% as test
set to evaluate the performance. During the training phase, common skills such as normalization,
dropout, regularization were used to avoid overfitting. Mean Absolute Error (MAE) and Root Square
Mean Error (RSME) are the measurement to evaluate models.

B.1 TRAINING DETAILS

Table 8: Training settings for Beijing PM2.5 dataset using RNN and CNN models
Lr Decay rate Batch size Epoch L1 L2 Early Stopping

Shifting (RNN) 1e-4 0.99 512 8000 1e-5 1e-4 patience=1000
Padding (RNN) 1e-4 - 512 1500 - - -
Shifting (CNN) 1e-4 0.90 512 8000 1e-4 1e-3 patience=500
Padding (CNN) 1e-4 - 512 1000 - - -

Table 9: Training settings for Energy (electricity) price dataset using RNN and CNN models
Lr Decay rate Batch size Epoch L1 L2 Early Stopping

Shifting (RNN) 1e-4 0.99 512 8000 1e-5 1e-4 patience=1000
Padding (RNN) 1e-4 0.90 512 8000 1e-3 1e-2 patience=1000
Shifting (CNN) 1e-5 0.90 512 8000 1e-4 1e-3 patience=500
Padding (CNN) 1e-5 0.90 512 8000 1e-4 1e-3 patience=1000

Table 10: Training settings for Water Stage dataset using RNN and CNN models
Lr Decay rate Batch size Epoch L1 L2 Early Stopping

Shifting (RNN) 1e-4 - 512 3000 - - -
Padding (RNN) 1e-4 - 512 2000 - - -
Shifting (CNN) 1e-4 - 512 2000 - - patience=500
Padding (CNN) 1e-4 - 512 3000 - - patience=1000

B.2 EVALUATION DETAILS

After models have been trained with the training data (first 80% of the entire dataset), we test the
trained models with the test set (last 20% of the entire dataset). Mean Absolute Error (MAE) and
Root Square Mean Error (RSME) are the measurement to evaluate models.

MAE =

∑N
i=1 |ŷi − yi|

N
(6)

RMSE =

√∑N
i=1(ŷi − yi)2

N
(7)

where N is the number of samples in the test set, ŷi is the predicted value of model, yi is the actual
value in the test set.
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C APPENDIX: SHIFTING STRATEGY

For the shifting strategy shown in Figure 2, to predict the target variables in future k time steps, we
shifted the future covariates in the same horizon to the past by exact k steps to incorporate enough
feature representations of future covariates. That is because the future covariates from time t + 1
to t + k have much more influence on those target variables in the same horizon that we want to
predict. However, in the real world, we can get the future covariates with the longer time range (¿ k).
Therefore, we also tried different shifting lengths using CNNs to explore the relationship between
the shifting length, s, the past length, w, and forecasting length, k and possible periodicity of dataset,
p. Here we used water stage dataset since water stage is influenced by tide whose periodicity is
roughly 12 hours. The length of past data is still 3 days (i.e., w = 72 hours). The corresponding
MAEs and RMSEs are listed in Tables 11 and 12 and visualized in Figure 12.

C.1 s < k

If s < k, it indicated the shorter time range of future covariates is shifted to the past, which cause
covariates from t + s to t + k in future k time steps are missed. However, we know those future
covariates from time t+ 1 to t+ k have much influence on the target variables in the same horizon
to predict. This missing covariates will result in the higher MAEs and RMSEs shown in the left part
of each subplot where s < k (Figure 12).

Figure 9: Input data transformed by shifting connection (s < k) for future covariates. Left: Orig-
inal heterogeneous inputs and output. Right: Shifted heterogeneous inputs and output. Dot line
represents prior known future covariates.
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C.2 w < s <= w + k

If w < s < w + k, it means a few of future covariate from time t + 1 to t + s − w are also
missed because they are shifted too many steps to the past such that exceed the window vision of
past data. They would be totally out of the vision window of the past data if s = w+k. This missing
covariates will result in the higher MAEs and RMSEs shown in the right part of each subplot where
w < s <= w + k (Figure 12).

Figure 10: Input data transformed by shifting connection (w < s <= w + k) for future covariates.
Left: Original heterogeneous inputs and output. Right: Shifted heterogeneous inputs and output.
Dot line represents prior known future covariates.
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C.3 k <= s <= w

If the shifting length is between the forecasting length and the length of past data (k <= s <=
w), MAE and RMSE are lower and fluctuating in a small range since all covariates from future k
time steps are incorporated in the window of the past data. We guess the fluctuation is caused by
periodicity of the dataset since there are local minimum errors if the shifting length is approximately
equal to the periodicity plus the forecasting length.

Figure 11: Input data transformed by shifting connection (k <= s <= w) for future covariates.
Left: Original heterogeneous inputs and output. Right: Shifted heterogeneous inputs and output.
Dot line represents prior known future covariates.
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C.4 VISUALIZATION OF MAE & RMSE WITH DIFFERENT SHIFTING LENGTHS

With the Water Stage dataset, we tried different shifting lengths from 1 to w + k for a certain
forecasting length.

Figure 12: MAE & RMSE for different forecasting lengths (k) with different shifting lengths (s).

18



Under review as a conference paper at ICLR 2023

Table 11: MAE & RMSE for water stage dataset with different shifting lengths.

Shifting length s
k=6 hrs k=12 hrs k=18 hrs k=24 hrs

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

s = 1 0.0841 0.1150 0.1099 0.1478 0.1226 0.1646 0.1360 0.1799
s = 2 0.0794 0.1088 0.1000 0.1358 0.1195 0.1608 0.1348 0.1808
s = 3 0.0683 0.0952 0.0999 0.1339 0.1066 0.1458 0.1304 0.1770
s = 4 0.0594 0.0834 0.0857 0.1177 0.1046 0.1444 0.1228 0.1656
s = 5 0.0612 0.0837 0.0775 0.1084 0.0978 0.1344 0.1125 0.1527
s = 6 0.0572 0.0777 0.0766 0.1068 0.0922 0.1271 0.1129 0.1536
s = 7 0.0553 0.0751 0.0763 0.1030 0.0919 0.1268 0.1073 0.1465
s = 8 0.0531 0.0736 0.0687 0.0936 0.0901 0.1240 0.1030 0.1423
s = 9 0.0520 0.0714 0.0633 0.0876 0.0844 0.1171 0.1026 0.1397
s = 10 0.0563 0.0755 0.0613 0.0840 0.0786 0.1090 0.0943 0.1304
s = 11 0.0555 0.0771 0.0597 0.0820 0.0798 0.1095 0.0931 0.1294
s = 12 0.0569 0.0775 0.0581 0.0791 0.0700 0.1001 0.0914 0.1266
s = 13 0.0537 0.0729 0.0597 0.0784 0.0728 0.1007 0.0836 0.1174
s = 14 0.0520 0.0771 0.0573 0.0785 0.0608 0.0871 0.0892 0.1227
s = 15 0.0534 0.0737 0.0536 0.0738 0.0692 0.0939 0.0809 0.1133
s = 16 0.0563 0.0762 0.0574 0.0779 0.0608 0.0853 0.0792 0.1091
s = 17 0.0539 0.0737 0.0588 0.0790 0.0605 0.0848 0.0718 0.1003
s = 18 0.0563 0.0779 0.0532 0.0737 0.0566 0.0778 0.0693 0.0975
s = 19 0.0595 0.0812 0.0573 0.0784 0.0638 0.0871 0.0690 0.0948
s = 20 0.0599 0.0808 0.0608 0.0822 0.0633 0.0869 0.0693 0.0965
s = 21 0.0526 0.0727 0.0565 0.0775 0.0626 0.0859 0.0662 0.0912
s = 22 0.0535 0.0753 0.0521 0.0719 0.0613 0.0833 0.0654 0.0896
s = 23 0.0516 0.0720 0.0576 0.0785 0.0621 0.0844 0.0655 0.0901
s = 24 0.0527 0.0724 0.0585 0.0807 0.0589 0.0812 0.0617 0.0841
s = 25 0.0518 0.0725 0.0590 0.0803 0.0605 0.0834 0.0638 0.0881
s = 26 0.0569 0.0784 0.0595 0.0813 0.0643 0.0877 0.0628 0.0875
s = 27 0.0532 0.0732 0.0582 0.0804 0.0591 0.0823 0.0625 0.0871
s = 28 0.0510 0.0699 0.0530 0.0725 0.0610 0.0846 0.0698 0.0946
s = 29 0.0530 0.0735 0.0559 0.0770 0.0623 0.0855 0.0668 0.0921
s = 30 0.0565 0.0776 0.0573 0.0781 0.0598 0.0830 0.0634 0.0880
s = 31 0.0535 0.0737 0.0570 0.0778 0.0609 0.0840 0.0656 0.0901
s = 32 0.0548 0.0753 0.0573 0.0785 0.0563 0.0769 0.0618 0.0866
s = 33 0.0586 0.0779 0.0570 0.0781 0.0607 0.0839 0.0636 0.0875
s = 34 0.0556 0.0763 0.0571 0.0776 0.0617 0.0847 0.0670 0.0906
s = 35 0.0557 0.0765 0.0598 0.0808 0.0620 0.0844 0.0604 0.0832
s = 36 0.0560 0.0758 0.0561 0.0765 0.0668 0.0902 0.0638 0.0856
s = 37 0.0549 0.0758 0.0584 0.0802 0.0600 0.0831 0.0649 0.0914
s = 38 0.0545 0.0746 0.0643 0.0891 0.0614 0.0838 0.0626 0.0871
s = 39 0.0533 0.0736 0.0537 0.0740 0.0599 0.0819 0.0646 0.0889
s = 40 0.0523 0.0717 0.0607 0.0830 0.0592 0.0815 0.0675 0.0916
s = 41 0.0555 0.0750 0.0518 0.0716 0.0635 0.0860 0.0611 0.0840
s = 42 0.0567 0.0765 0.0575 0.0777 0.0667 0.0908 0.0614 0.0837
s = 43 0.0543 0.0747 0.0579 0.0788 0.0587 0.0812 0.0624 0.0860
s = 44 0.0534 0.0727 0.0559 0.0769 0.0559 0.0780 0.0625 0.0863
s = 45 0.0576 0.0785 0.0596 0.0816 0.0660 0.0900 0.0627 0.0870
s = 46 0.0523 0.0727 0.0596 0.0817 0.0607 0.0833 0.0658 0.0894
s = 47 0.0593 0.0804 0.0536 0.0742 0.0598 0.0820 0.0694 0.0943
s = 48 0.0583 0.0788 0.0524 0.0723 0.0628 0.0861 0.0593 0.0816
s = 49 0.0548 0.0754 0.0570 0.0777 0.0636 0.0880 0.0664 0.0901
s = 50 0.0594 0.0806 0.0553 0.0751 0.0591 0.0811 0.0609 0.0845

19



Under review as a conference paper at ICLR 2023

Table 12: MAE & RMSE for water stage dataset with different shifting lengths.

Shifting length s
k=6 hrs k=12 hrs k=18 hrs k=24 hrs

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

s = 51 0.0589 0.0797 0.0573 0.0781 0.0570 0.0793 0.0669 0.0922
s = 52 0.0531 0.0727 0.0539 0.0736 0.0619 0.0838 0.0640 0.0863
s = 53 0.0587 0.0800 0.0571 0.0775 0.0575 0.0795 0.0654 0.0893
s = 54 0.0569 0.0771 0.0551 0.0748 0.0627 0.0849 0.0654 0.0880
s = 55 0.0584 0.0790 0.0585 0.0799 0.0645 0.0890 0.0632 0.0869
s = 56 0.0568 0.0781 0.0589 0.0792 0.0668 0.0902 0.0642 0.0879
s = 57 0.0553 0.0750 0.0622 0.0844 0.0644 0.0881 0.0719 0.0957
s = 58 0.0529 0.0723 0.0609 0.0822 0.0653 0.0887 0.0673 0.0904
s = 59 0.0596 0.0805 0.0580 0.0791 0.0620 0.0853 0.0663 0.0913
s = 60 0.0556 0.0756 0.0596 0.0817 0.0606 0.0836 0.0703 0.0955
s = 61 0.0536 0.0733 0.0546 0.0756 0.0596 0.0819 0.0675 0.0924
s = 62 0.0604 0.0819 0.0578 0.0796 0.0641 0.0870 0.0632 0.0865
s = 63 0.0571 0.0778 0.0562 0.0761 0.0639 0.0878 0.0673 0.0907
s = 64 0.0584 0.0784 0.0651 0.0874 0.0628 0.0857 0.0713 0.0989
s = 65 0.0616 0.0826 0.0583 0.0795 0.0658 0.0894 0.0768 0.1025
s = 66 0.0578 0.0770 0.0595 0.0803 0.0613 0.0833 0.0659 0.0901
s = 67 0.0596 0.0803 0.0587 0.0794 0.0731 0.0974 0.0670 0.0920
s = 68 0.0607 0.0828 0.0592 0.0788 0.0661 0.0892 0.0768 0.1066
s = 69 0.0565 0.0766 0.0624 0.0837 0.0642 0.0875 0.0667 0.0916
s = 70 0.0578 0.0787 0.0623 0.0841 0.0654 0.0899 0.0711 0.0952
s = 71 0.0553 0.0754 0.0649 0.0874 0.0726 0.0987 0.0682 0.0935
s = 72 0.0579 0.0779 0.0615 0.0839 0.0666 0.0910 0.0714 0.0974
s = 73 0.0607 0.0817 0.0606 0.0828 0.0626 0.0848 0.0690 0.0927
s = 74 0.0591 0.0809 0.0664 0.0896 0.0706 0.0971 0.0700 0.0969
s = 75 0.0607 0.0821 0.0610 0.0832 0.0644 0.0884 0.0727 0.0993
s = 76 0.0653 0.0887 0.0641 0.0873 0.0663 0.0884 0.0791 0.1060
s = 77 0.0636 0.0885 0.0637 0.0853 0.0682 0.0923 0.0684 0.0931
s = 78 0.0662 0.0895 0.0663 0.0895 0.0808 0.1103 0.0675 0.0913
s = 79 0.0665 0.0913 0.0686 0.0923 0.0679 0.0912 0.0739 0.0981
s = 80 0.0679 0.0926 0.0678 0.0922 0.0693 0.0935 0.0750 0.1023
s = 81 0.0690 0.0946 0.0699 0.0948 0.0704 0.0953 0.0774 0.1042
s = 82 0.0717 0.0977 0.0735 0.0997 0.0725 0.0980 0.0807 0.1092
s = 83 - - 0.0755 0.1024 0.0730 0.0990 0.0802 0.1060
s = 84 - - 0.0763 0.1028 0.0760 0.1030 0.0748 0.1011
s = 85 - - 0.0767 0.1040 0.0740 0.1000 0.0780 0.1055
s = 86 - - 0.0826 0.1111 0.0800 0.1080 0.0760 0.1024
s = 87 - - 0.0821 0.1117 0.0810 0.1100 0.0768 0.1050
s = 88 - - 0.0831 0.1126 0.0840 0.1110 0.0850 0.1137
s = 89 - - - - 0.0830 0.1120 0.0825 0.1117
s = 90 - - - - 0.0870 0.1170 0.0836 0.1118
s = 91 - - - - 0.0935 0.1242 0.0834 0.1114
s = 92 - - - - 0.0896 0.1194 0.0868 0.1155
s = 93 - - - - 0.0932 0.1233 0.0868 0.1156
s = 94 - - - - 0.0925 0.1229 0.0941 0.1247
s = 95 - - - - - - 0.0923 0.1231
s = 96 - - - - - - 0.0970 0.1289
s = 97 - - - - - - 0.1021 0.1354
s = 98 - - - - - - 0.0982 0.1302
s = 99 - - - - - - 0.0976 0.1302
s = 100 - - - - - - 0.1004 0.1338
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