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Abstract

To support scientists who are developing the reduced model of complex physics
systems, we propose a method for extracting interpretable physics information
from a deep neural network (DNN) trained on time series data of a physics system.
Specifically, we propose a framework for estimating the hidden nonlinear symme-
tries of a system from a DNN trained on time series data that can be regarded as a
finite-degree-of-freedom classical Hamiltonian dynamical system. Our proposed
framework can estimate the nonlinear symmetries corresponding to the Laplace–
Lunge–Renz vector, a conservation value that keeps the long-axis direction of the
elliptical motion of a planet constant, and visualize its Lie manifold.

1 Introduction

One of the central roles in scientific activities is understanding large-scale complex systems through
their reduced models. Some complex systems are modeled as low-dimensional canonical dynamical
systems. For instance, reduced models have been developed for large-scale collective motion systems,
which are a type of large-scale complex system with order, such as plasma, acoustic waves, or vortex
systems [1, 2, 3, 4, 5]. To develop these reduced models, collective coordinates have been introduced,
such as the Fourier basis of a density or charge distribution [1, 2, 3, 4], or a vortex feature space [5].
Then, a Hamiltonian that describes the coarse-grained properties of a dynamical system is derived.
Thus, to develop a reduced model, it is necessary to introduce collective coordinates and derive the
Hamiltonian in those coordinates. The obtained Hamiltonian is then verified by confirming that
it can reconstruct the properties of the phenomena analyzed. This approach relies heavily on the
physical insights of physicists and may not work for modeling a dynamical system that features a
more complicated structure. One example is the collective motion of living things such as fish or
birds; such systems frequently have stable but very complicated patterns in a metastable state [6, 7].

The problem we are considering here is how to infer a reduced model using machine learning
methods. As mentioned earlier, this involves solving two problems: estimating a coordinate system
and constructing a reduced model within that coordinate system. One way to solve these problems is
to construct a Hamiltonian based on a given coordinate system and search for a coordinate system
that improves the model. Several machine learning methods have been developed for inferring the
Hamiltonian from a time-series dataset [8, 9, 10, 11]. These methods can be roughly divided into two
types. In the first type, the Hamiltonian is inferred by regressing the data with an explicit function,
such as the linear sum of multiple basis functions [8]. However, when inferring a reduced model
that consists of complicated unknown basis functions, this method only infers an approximated
reduced model using an approximated function, such as a polynomial function. In the second type, a
Hamiltonian is modeled using deep learning techniques [9, 10, 11]. In this case, an explicit function
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used in the first type is not required. Based on these machine learning methods, the search for the
coordinate system could be performed using statistical criteria such as the prediction error.

There are inherent difficulties in building a reduced model using a machine learning approach. Such
an approach finds a Hamiltonian that has properties that only hold for the given data. Historically,
physicists have achieved great success in constructing reduced models by abstracting knowledge
obtained from observational data and building universal models that can explain various physical
phenomena, not just the given data. For example, in thermodynamics, Gibbs linked a reduced model
that describes the molecular motion of a gas to chemical reaction theory [12, 13]. This is one of
the most successful uses of a reduced model. In other words, a good reduced model and a good
coordinate system mean that the performance is high not only for the given data.

To achieve a successful reduced model, it is important to interpret the knowledge obtained during data
analysis and develop a model that can be applied to different phenomena by combining explicit and
implicit knowledge of physics. In general, an inferred Hamiltonian modeled by deep neural networks
(DNNs) is difficult to interpret because DNNs are models with enormous degrees of freedom. If all
physical knowledge could be quantified, it would be possible to construct a reduced model with a
DNN, but this is currently an impractical assumption. Therefore, it is difficult for a machine learning
approach to achieve the same function as a physicist, who can flexibly interpret phenomena by
utilizing explicit or implicit physical knowledge and construct a reduced model.

To overcome this problem, it is usefull to employ methods to extract symmetries of the dynamics
system directly from physical data without constructing a reduced model [14, 15, 16, 17, 18, 19, 18,
20, 21]. These methods are derived from Noether’s theorem [22], which connects the symmetry of
the Hamiltonian and the conservation law. For example, as the study most relevant to this study, Liu
et al. have been proposed using deep neuralnetworks and symbolic regression [18], and they have
achieved quantitative estimation of complex conservation laws as interpretable form of functions. To
infer the conservation laws, it is only needed the tangent space of the manifold of the continuous
transformation group that corresponds to the symmetry of the system. Therefore, unlike Hamiltonian
estimation, conservation law estimation only requires manifold modeling with at most first-order
accuracy. This means that the conservation law can be inferred with arbitrary precision by polynomial
approximation. A coordinate system can then be selected based on the system’s symmetries on
the coordinate system. Furthermore, the obtained symmetries information can also help physicists
construct a reduced model.

The purpose of this study is to verify whether nonlinear symmetry can be estimated by the method of
Mototake et al [19]. They develop a method for inferring the symmetry of a data manifold modeled
by a deep autoencoder [23] and determine the conservation laws of the system. This method allows
direct visualization of the symmetries captured by the Auto Encoder through sampling. Although the
method of Liu et al. [18] can also estimate the conservation laws as interpretable forms of functions
corresponding to nonlinear symmetries, the visualization of symmetries should allow the scientists to
work their insight from other viewpoints. Such a property of the method is expected to be useful for
extracting complex conservation laws corresponding to nonlinear symmetries in an interpretable form
to scientists. The method is also capable, in principle, of estimating complex symmetries, such as
invariance of the system to non-linear transformations, but no such symmetry estimation was actually
carried out in the study [19]. The purpose of this study is to verify whether the method can estimate
the symmetries corresponding to non-linear transformations and to propose modifications to the
estimation framework needed to do it. Specifically, we attempt to estimate non-linear transformations
corresponding to the conservation law of Runge-Lenz vector present in central force systems obeying
the inverse square law.

This paper is organized as follows. In Sec. 2, we show the relationship between the symmetry of
the time-series dataset distribution and the conservation law using Noether’s theorem according to
Mototake’s paper [19]. In Sec. 3, we describe the proposed procedure of inferring the non-linear
symmetry of the time-series data manifold based on the employed methods [19]. In Sec. 4, to confirm
the effectiveness of the proposed methods, we apply them to the system conserving the Runge–Lenz
vector in a central force system. In Sec. 5, we present a summary and discussion.
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2 Theory

2.1 Noether’s theorem

Noether’s theorem establishes a deep connection between the continuous symmetries of a Hamiltonian
system and the conservation laws that govern it [22]. It is often described in the (2d + 1)-dimensional
extended phase space Γ×R, (q, p) := (q0 = t, q1, · · · , qd, p1, · · · , pd). The Noether’s theorem can also
be described in the (2d+2)-dimensional space Γ×R×R, (q0 = t, q1, · · · , qd, p0 = −H, p1, · · · , pd). In
this study, we describe the Noether’s theory in the (2d+2)-dimensional space as follows. Hamiltonian
systems in the (2d + 2)-dimensional space Γ × R × R are cinsidered, and restrict ourselves to the
case where the system’s Hamiltonian belongs to a C2 class function H(q, p). The Hamiltonian
representation of Noether’s theorem is described as follows [24]. Assume that H(q, p) and the
canonical equations of motion ∂H(q,p)

∂qi
= −ṗi and ∂H(q,p)

∂pi
= q̇i are invariant under the infinitesimal

transformation (q′i , p
′
i ) = (qi + δqi j, pi + δpi j), where i = 1, . . . , d, and j is the index of the direction of

the infinitesimal transformation corresponding to a conservation law. Then, on the basis of Noether’s
theorem, the conserved value G j satisfies the following equation: (δqi j, δpi j) =

(
∂G j

∂pi
,−
∂G j

∂qi

)
. The

canonical transformation that makes the Hamiltonian system invariant is given as

cinv(θ) : Γ × R × R −→ Γ × R × R, (1)
(q, p) 7−→ (Q,P) := (Q(q, p, θ),P(q, p, θ)), (2)

where Q(q, p, θ) and P(q, p, θ) represent the invariant transformation functions of coordinate (q, p)
to (Q,P), and θ represents a dθ-dimensional continuous parameter characterizing transformation
that satisfies Q

(
q, p, θ = 0⃗

)
= q, and P

(
q, p, θ = 0⃗

)
= p. In this paper, this transformation is called

an invariant transformation. A set of the invariant transformations characterized by the continuous
parameters θ forms a Lie group. By the first-order Taylor expansion of Qi(q, p, θ) and Pi(q, p, θ)
around θ = 0⃗, we have the infinitesimal transformation, (δqi j, δpi j) =

(
ε ∂Qi(q,p,θ)

∂θ j

∣∣∣∣
θ=0⃗
, ε ∂Pi(q,p,θ)

∂θ j

∣∣∣∣
θ=0⃗

)
,

where |ε| ≪ 1.

2.2 Noether’s theorem and time-series dataset

In previous study[19], we found that the candidate transformations that make the Hamiltonian and
canonical equations invariant are obtained as the transformations that make the subspace

S i B

{
qt+∆t, pt+∆t, qt, pt

∣∣∣∣∣∣ H(qt, pt) = Ei, pt+∆t = pt −
∂H(qt, pt)
∂qt

, qt+∆t = qt +
∂H(qt, pt)
∂pt

}
(3)

invariant. We also found taht S i is understood as a differentiable manifold[19]. Interpolation of
differentiable manifolds can be realized by machine learning methods such as deep learning [25,
23, 26, 27, 28, 29]. In the framework, S i is estimated from a finite number of data D using a deep
learning technique.

2.3 DNN and data manifold

As mentioned in Sec. 2.2, the subspace S i could be modeled as a differentiable manifold using a
DNN model. In this paper, we refer to such a differentiable manifold as a data manifold.

We explain how a DNN models a dm-dimensional manifold in din-dimensional space x using one of
the simplest DNNs: a feed forward three-layer DNN, for which the input has din dimensions, the
hidden layer has dh(> din) dimensions, and the output has dout(< din) = dm dimensions. The mapping
function fDNN(x) =

[
f1(x), f2(x), · · · , fdout (x)

]
of the DNN is defined as fDNN(x) = whh = whφ(winx),

where h = (h1, h2, · · · , hdh ) is the dh-dimensional output of the hidden layer. We define φ(·) as
φ(winx) = (φ1, φ2, · · · , φdh ), φ j = φ

[∑din
i

(
win

i j xi

)]
, where φ is the activation function. Usually,

a sigmoid or ReLU function is used as the activation function. These activation functions are
constructed using linear and flat domains. On the basis of these properties of activation functions, φ j
maps the input subspace related to the linear domain of the activation function to a one-dimensional
space to align the vector (w0 j,w1 j · · · ,wdin j). If the number of φ j sharing the same input subspace
is dout, the φ j defines a dout-dimensional sub-hyperplane. The DNN models the data distribution by
continuously pasting these sub-hyperplanes as if they were the tangent spaces of a data manifold.
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Figure 1: Schematic diagram of method of extracting invariant transformation using autoencoder.
Lower panel shows the schematic diagram of the mapping structure of a two-dimensional input
space in a DNN trained with data distributed on a black curve. The arrows indicate the compression
direction of the input space in the mapping from the input to the hidden layer.

That is, the DNN embeds the input space in the output space by pasting the sub-hyperplanes and
compresses the tangent direction of these sub-hyperplanes (Fig. 1). Deeper and more complex DNNs
can be understood as a collection of such three-layer DNN. Thus, such deeper DNNs can model more
complex manifold structures as a combination of simple manifold structures modeled by a three-layer
DNN [27]. Note that the output of a three-layer DNN, a part of the deeper DNN, is referred to as a
hidden layer. This is only one example of how a DNN models a data manifold. However, many studies
have suggested that there are resemble property in successful trained DNNs [25, 23, 26, 27, 28, 29].
By replacing the input space from x to Γ × R × R, we can also model a time-series data manifold S i
using DNN.

In the employed method [19], using a trained DNN that models a time-series data manifold S i,
we propose a method of extracting information about the symmetry of a dynamical system. The
framework does not require special DNNs, so we can directly utilize the vast knowledge obtained
from studies on physical data analysis using DNNs.

3 Method

In this section, we describe the employed framework[19] for estimating the symmetry of a time-series
dataset of dynamics.

3.1 Estimating method of nonlinear symmetry

On the basis of the theory of the relationship between the symmetry of the time-series dataset
distribution and the conservation law (Sec. 2.2), we prviously proposed a method[19] of inferring
the symmetry of data manifold using the Monte Carlo sampling method. In this study, we extended
the methods to extract the symmetry for non-linear transformations. In this section, the symmetry
estimation framework is described, together with the extensions for nonlinear-symmetry estimation.

It can be inferred from the discussion in Sec. 2 that data points that are not on the manifold in the input
space are attracted to the manifold (Fig. 1). Once the data points are attracted to the manifold in the
hidden layer, they continue to exist on the manifold in the output f(x). We propose a method based on
this property of DNNs for extracting the symmetry of the data manifold using a deep autoencoder [23].
The deep autoencoder is a model that compresses the input space to a low-dimensional hidden layer
and decompresses the layer to an output space with the same dimension as the input space. In the
decompression process, only the subspace of the input space around the data manifold is recovered
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because of the DNN property. On the basis of this property, we can evaluate whether a transformation
X(·) causes the dataset distribution {xi}

N
i=1 to remain in the same subspace of the data manifold (Fig. 1).

The procedure is as follows. First, we train the deep autoencoder using {xi}
N
i=1 as a training dataset.

Second, we input the transformed dataset {X(xi)}Ni=1 into the trained deep autoencoder. Note that the
deep autoencoder is not trained on the transformed dataset. Third, we evaluate the transformation X(·)
using the mean squared error between the input distribution of the dataset and its mapped distribution:

Esamp[X(·)] =
1
N

N∑
i=1

{
X(xi) − fDNN[X(xi)]

}2 . (4)

A smaller Esamp value implies that X(·) is a more invariant transformation. Using the criterion

Esamp, we approximate the invariant transformation set as
{

X(·)

∣∣∣∣∣∣ arg min
X

Esamp[X(·)]
}
, where {xi}

N
i=1

is D =
{
qi

ti , p
i
ti , q

i
ti+∆t, p

i
ti+∆t

}N

i=1
, dataset D is generated from dynamics data at energy Ei, and X(·) for

the transformation c : (Q(·, ·),P(·, ·)).

To infer the conservation law, it is necessary to estimate the invariant transformation set
Minvariant of the manifold S i. The invariant transformation set Minvariant is defined as Minvariant B{
QS i (·, ·, θ),PS i (·, ·, θ)

∣∣∣ θ} . Because QS i (·, ·; θ), PS i (·, ·; θ) are usually unknown, we infer them to be a

subset of a parametric function set
{
Q(·, ·; a), P(·, ·; a)

∣∣∣ a ∈ Rda
}
, where da ≥ dθ. This function can be

complex enough to contain a true transformation function, but it will be more difficult to determine
the subset from the finite data. Moreover, significant difficulties arise when estimating invariant
infinitesimal transformations. This will be discussed further in the section (Sec. 3.2).

The subset of the true transformation function Minvariant is identified using the trained DNN as

Minvariant ∼

{
Q(·, ·; a),P(·, ·; a)

∣∣∣∣∣∣ arg min
a

Esamp
[
Q(·, ·; a),P(·, ·; a)

]}
, (5)

Esamp[Q(·, ·; a),P(·, ·; a)] =
1
N

N∑
i=1

{
[Q(·, ·; a),P(·, ·; a)] − fDNN[Q(·, ·; a),P(·, ·; a)]

}2 . (6)

Next, the invariant transformation is obtained by sampling an element a j of the parameter vector a
following the probability distribution, as in the matrix transformation case

P(a1, a2, a3, · · · , ada ) =
1
Z

exp
{
−

N
2σ2 Esamp[Q(·, ·; a),P(·, ·; a)]

}
. (7)

To perform this sampling, we need to specify σ. Ideally, σ should be set to 0. However, it is necessary
to set σ to an appropriate finite value because errors are included in the time-series dataset and the
training results of DNN. Such σ affected by noise cannot be set in advance. In addition, the target
distributions in this study are assumed to be the global flat minima, because the same Esamp surface
following the invariant transformation exists. Generally, such a target distribution needs an enormous
amount of time to sample. Therefore, in this study, we use the replica-exchange Monte Carlo (REMC)
method [30] as a sampling method to overcome these problems. Such a method enables us to perform
efficient sampling by parallel sampling with different noise intensities of σ while exchanging noise
intensities with each other. In the state of a large noise, we can realize global sampling from the
abstract distribution. By exchanging this sampling information with the state of a small noise, we can
perform efficient sampling from the target distribution. The procedure of method is summarized in
Algorithm 1 of Appendix A.

3.2 Estimating method of infinitesimal transformation for nonlinear symmetry

From the Na sampling results of Eq. (7), Da B {(a1, a2 · · · ada )na }
Na
na=1, the infinitesimal transformations

are estimated as follows.

Assuming that a is a differentiable function of θ: a(θ), Rdθ → Rda , we can estimate Minvariant as

Minvariant =
{
Q(·, ·; a(θ)),P(·, ·; a(θ))

∣∣∣ θ ∈ Rdθ
}
. (8)
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The set of invariant transformations Minvariant forms a Lie group, as we mentioned in Sec. 2.1.
Therefore, Minvariant constructs a dθ-dimensional differential manifold in the coordinate space of θ.
The infinitesimal transformation is estimated as the tangent vector of the manifold at θ = 0 as follows:(

δql, δpl
)
= ε

(
∂Q(q, p; a(θl))

∂θl

∣∣∣∣∣
θl=0
,
∂P(q, p; a(θl))

∂θl

∣∣∣∣∣
θl=0

)
. (9)

Because a is a differentiable function of θ, the tangent vector is given as

(
δql, δpl

)
= ε

 da∑
k=1

∂Q(q, p; a)
∂ak

∂ak(θ)
∂θl

∣∣∣∣∣∣∣
θ=0

,

da∑
k=1

∂P(q, p; a)
∂ak

∂ak(θ)
∂θl

∣∣∣∣∣∣∣
θ=0

 . (10)

Because functions Q and P are defined explicitly, their derivations, ∂Q(q,p;a)
∂ak

and ∂P(q,p;a)
∂ak

, can be

obtained analytically. Therefore, we should only estimate ∂ak(θ)
∂θl

∣∣∣∣
θ=0

to obtain the infinitesimal
transformation.

Because a(θ) is defined as a differentiable function, set {a|θ ∈ Rdθ } constructs a dθ-dimensional
manifold structure in coordinate space a. The implicit function representation of the manifold is
defined as 

f1(a1, · · · , ada ) = 0
...

fda−dθ (a1, · · · , ada ) = 0

. (11)

The Jacobian matrix of fk for the parameters of subset a, (b1, b2, · · · , bdθ ) ⊂ a, is defined as Jkl =
∂ fk(a1,··· ,ada )

∂bl
. If the Jacobian matrix at aid becomes nonsingular, from the implicit function theorem,

variables other than (b1, b2, · · · , bdθ ), {ck}
da−dθ
k=1 B A′ \ {bl}

dθ
l=1, can be expressed as ck = gi(b1, · · · , bdθ ).

This means that θ can be replaced by b. In this case, ∂ak(θ)
∂θl

∣∣∣∣
θ=0

is estimated as the tangent vector
∂ak(b)
∂bl

∣∣∣∣
a=aid

at identity map aid ∈ {a|Q(·, ·; a) = q,P(·, ·; a) = p} . This implies that, around eI, the
implicit equations in Eq. (11) representing the manifold Minvariant can be decomposed into the
following d′ − dθ simultaneous equations:

h1(c1, b1, · · · , bdθ ) = 0
...

hd′−dθ (cd′−dθ , b1, · · · , bdθ ) = 0

, (12)

where bl corresponds to the continuous parameter θl of continuous transformation[
Q(q, p, θ),P(q, p, θ)

]
. Differentiating these equations with respect to bl around a point eI yields

d′ − dθ simultaneous partial differential equations,
∂
∂bl

h1(c1, b1, · · · , bdθ )|A′=eI = 0
...

∂
∂bl

hd′−dθ (cd′−dθ , b1, · · · , bdθ )|A′=eI = 0

. (13)

Solving these simultaneous partial differential equations gives the tangent vector ∂a(bl)
∂bl

∣∣∣∣
a=aid

of the

manifold at aid. Thus, if hk can be regressed with the sampling result Da as the polynomial of {bl}
dθ
l=1,

the conservation law can be inferred. Thus, we can estimate the infinitesimal transformation
(
δql, δpl

)
from the sampling result Da. Thus, in principle, the previously proposed method can be applied to
general coordinate transformations including nonlinear transformation. But, to estimate interpretable
conservation laws, we would need to model nonlinear transformations of appropriate complexity as
parametric functions. This is as difficult as setting up a reduced coordinate system.

3.3 Runge Lenz vector and nonlinear transformation

From the discussion in the Sec. 3.1 and 3.2, in order to search for the non-linear symmetries required
for conservation law estimation, it is necessary to set up a parametric function that can represent
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Figure 2: Schematic diagram of proposed framework.

the non-linear transformation to be estimated. On the other hand, it is generally difficult to pre-
set such parametric functions. This difficulty could be overcome by finding a class of parametric
functions to explore that can be used generically in certain domains based on physical knowledge.
The purpose of this study is therefore to explore a class of parametric functions for such non-linear
transformations through the estimation of non-linear transformations corresponding to the Runge
Lenz vector, which is a hidden conservation law for central force potential systems where the force is
inversely proportional to the square of the radius.

H3 =
1

2m
p2 +G

mM
|q|

(14)

First, we describe the geometrical structure of the symmetry of the Runge Lenz vector following
previous studies [31, 32]. Consider the motion of the central force potential in six-dimensional
phase space: (q, p) = (q1, q2, q3, p1, p2, p3). In this system, the Laplace–Runge–Lenz vector, A⃗ =
p× L−mG q

||q||2 , L = q× p, is conserved. The Runge Lenz vector corresponds to the SO(4) symmetry
in the coordinate space (q̃, q̃4, p̃, p̃4) = (q̃1, q̃2, q̃3, q̃4, p̃1, p̃2, p̃3, p̃4), defined as

q̃ = q̃(q, p) :=
q
||q||2

−
q · p
mG

p, q̃4 = q̃4(q, p) :=
p0

mG
q · p, (15)

p̃ = p̃(q, p) :=
2p0p

p2
0 + p2

, p̃4 = p̃4(q, p) :=
p2 − p2

0

p2
0 + p2

, (16)

where p0 =
√
−2mE. The transformed coordinate satisfies the conditions q̃2 + q̃2

4 = 1, p̃2 + p̃2
4 = 1,

and q̃ · p̃ + q̃4 p̃4 = 0. Let us assume that the matrix representation of SO(4) is given by A. Moreover,
assume the transformation is represented as q̃′T = Aq̃T and p̃′T = Ap̃T .

We investigate the correspondence between the 4 × 4 matrix representation A of the SO(4) symmetry
in (q̃, p̃) space and the coordinate transformation in (q, p) space. Because the inverse of the coordinate
transformation is given by

q = q(q̃, q̃4, p̃, p̃4) = −
G
2E

[(1 − p̃4)q̃ + q̃4p̃], p = p(q̃, q̃4, p̃, p̃4) =
√
−2mE

p̃
1 − p̃4

, (17)

the transformation of SO(4) in the original space becomes

Q(q̃, q̃4, p̃, p̃4) = q(Q̃, Q̃4, P̃, P̃4), P(q̃, q̃4, p̃, p̃4) = p(Q̃, Q̃4, P̃, P̃4), (18)(
Q̃t

Q̃4

)
= A

(
q̃t

q̃4

)
,

(
P̃t

P̃4

)
= A

(
p̃t

p̃4

)
. (19)

Thus, the Runge Lenz vector has linear symmetry in the space beyond which it maps the phase space
with certain non-linear transformations. Such symmetry estimates suggest that it is useful to assume
a class of non-linear transformations, such as stereo mapping, as a class of mapping transformations
of phase space.

In this study, we propose a framework in which the non-linear symmetry is assumed to be a combina-
tion of a coordinate transformation and a linear transformation (Fig. 2), each of which is estimated
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independently of the other. A machine learning framework to estimate nonlinear symmetries has
been already proposed using symbolic regression [18], they can also estimate the conservation laws
as interpretable forms of functions corresponding to nonlinear symmetries. A method has also been
proposed [21] to visualize conservation laws in the space in which they are embedded. The advantage
of our method is to allow direct visualization of the manifolds formed by Lie groups. It should allow
the scientists to work their insight from other viewpoints.

In this study, we check whether it is possible to estimate the linear symmetry corresponding to the
Runge Lenz vector in the space of its mapping destination when the previously mentioned coordinate
transformations are known. It is not obvious that the estimation will work even when the coordinate
transformations are known. That is, under a non-linear coordinate transformation, the measure
changes from a point in the original space to a point in mapped space, and if the data are finite, even if
the data manifold has a uniform density in the original space, there will be regions where the density
is almost zero at the mapping destination (see Fig. 2). This makes it difficult to estimate symmetry.

4 Results

We applied the proposed method to a system of central force potentials (Eq. 14). Specifically, for
simulation data generated at all energies and initial conditions under the Hamiltonian of the central
force potential (Eq. 14), an estimation of the set of transformations that make the data manifold
invariant was performed in the framework of the following linear transformation after applying a
coordinate transformation [Eqs.(23) and (24)]:

Q̃1
Q̃2
Q̃3
P̃1
P̃2
P̃3)


=



a11, a12, 0 , 0 , 0 , 0
a21, a22, 0 , 0 , 0 , 0
0 , 0 , 1 , 0 , 0 , 0
0 , 0 , 0 , a11, a12, 0
0 , 0 , 0 , a21, a22, 0
0 , 0 , 0 , 0 , 0 , 1





q̃1
q̃2
q̃3
p̃1
p̃2
p̃3)


(20)

The estimation results of the proposed method confirm that a set of target transformations corre-
sponding to the Lungerenz vector can be obtained (Fig. 3). Specifically, for the matrix elements
a11 and a12 corresponding to cos and sin, a set of circular symmetric transformations was obtained,
and for the matrix elements a11 and a22 corresponding to cos and cos, a set of diagonal symmetric
transformations (Fig. 3).

5 Summary and Discussion

This study suggests that the employed method [19] of directly visualizing manifolds formed
by Lie algebras is also effective for non-linear transformations, by separating the trans-
formation function for verifying symmetry into a coordinate transformation and a linear
transformation. In this study, it was confirmed that linear transformations can be esti-
mated under known coordinate transformations. As a result, we succeeded in extracting
a set of symmetric transformations, despite the fact that the nonlinear coordinate transfor-
mations resulted in large differences in measures between the original and mapped spaces.

Figure 3: Estimation results of symmetric transfor-
mation set corresponding to Runge Lentz vector.

In the future, we will further attempt to estimate
the non-linear coordinate transformations and
estimate the conserved values based on them. It
is necessary to express non-linear mapping trans-
formations in terms of parametric functions, in
which case it may be useful to use a function
class of stereo mapping, such as the one used in
this study. It is then necessary to represent the
non-linear coordinate transformations by para-
metric functions. The results of this study sug-
gest that it is useful to use a function class of
stereo mapping, such as the one used in this
study, as its parametric function.
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Appendix A

The procedure of proposed method is summarized in Algorithm 1.

Algorithm 1 Estimation of the invariant transformation set [19]

Input: dataset D =
{
qi

ti , p
i
ti , q

i
ti+∆t, p

i
ti+∆t

}N

i=1
in a given coordinate system.

Output: Invariant transformation set Da = {(a1, a2, a3, · · · , ada )na }
Na
na=1.

Step 1: Train the deep autoencoder with dataset D.
Step 2: Using the trained deep autoencoder and REMC method, sampling transformation parameters

a1, a2, a3, · · · , ada from multiple probability distributions P′(a1, a2, a3, · · · , ada ) corresponding to
different noise intensities σ′.

Step 3: Select σ′ from the distribution structure of the sampling results and output the sampling
result of the selected σ′ state as Da.
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