
Under review as a conference paper at ICLR 2024

ADVECTIVE DIFFUSION TRANSFORMERS FOR TOPO-
LOGICAL GENERALIZATION IN GRAPH LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph diffusion equations are intimately related to graph neural networks (GNNs)
and have recently attracted attention as a principled framework for analyzing GNN
dynamics, formalizing their expressive power, and justifying architectural choices.
One key open questions in graph learning is the generalization capabilities of GNNs.
A major limitation of current approaches hinges on the assumption that the graph
topologies in the training and test sets come from the same distribution. In this pa-
per, we make steps towards understanding the generalization of GNNs by exploring
how graph diffusion equations extrapolate and generalize in the presence of varying
graph topologies. We first show deficiencies in the generalization capability of ex-
isting models built upon local diffusion on graphs, stemming from the exponential
sensitivity to topology variation. Our subsequent analysis reveals the promise of
non-local diffusion, which advocates for feature propagation over fully-connected
latent graphs, under the assumption of a specific data-generating condition. In
addition to these findings, we propose a novel graph encoder backbone, Advective
Diffusion Transformer (ADiT), inspired by advective graph diffusion equations
that have a closed-form solution backed up with theoretical guarantees of desired
generalization under topological distribution shifts. The new model, functioning as
a versatile graph Transformer, demonstrates superior performance across a wide
range of graph learning tasks. Source codes will be made publicly available.

1 INTRODUCTION

Learning representations for non-Euclidean data is essential for geometric deep learning. Graph-
structured data in particular has attracted increasing attention, as graphs are a very popular mathemat-
ical abstraction for systems of relations and interactions that can be applied from microscopic scales
(e.g. molecules) to macroscopic ones (social networks). The most common framework for learning on
graphs is graph neural networks (GNNs), which operate by propagating information between adjacent
nodes of the graph networks (Scarselli et al., 2008; Gilmer et al., 2017; Kipf & Welling, 2017). GNNs
are intimately related to graph diffusion equations (Atwood & Towsley, 2016; Klicpera et al., 2019;
Chamberlain et al., 2021a) and can be seen as discretized versions thereof. Considering GNNs as
diffusion equations offers powerful tools from the domain of partial differential equations (PDEs) al-
lowing to study the expressive power (Bodnar et al., 2022), behaviors such as over-smoothing (Rusch
et al., 2023; Di Giovanni et al., 2022) and over-squashing (Topping et al., 2022), the settings of
missing features (Rossi et al., 2022), and guide architectural choices (Di Giovanni et al., 2022).

While significant efforts have been devoted to understanding the expressive power of GNNs and
similar architectures for graph learning, the generalization capabilities of such methods are largely
an open question. In many important real-world settings, the training and testing graph topologies
can be generated from different distributions (a phenomenon referred to as “topological shift”) (Koh
et al., 2021; Hu et al., 2021; Bazhenov et al., 2023; Zhang et al., 2023).

Generalization to testing data with new unseen topological patterns can be highly challenging when
training observations are insufficient. One of the established principles by prior works resorts to the
invariant underlying mechanism (Rojas-Carulla et al., 2018; Arjovsky et al., 2019; Schölkopf et al.,
2021) that governs the shared data-generating process and enables generalization across environments.
However, unlike in Euclidean space, in the case of graphs, the invariant topological features can be
more abstract and complex, making it hard to come up with a single model to resolve the challenge.

1

Under review as a conference paper at ICLR 2024

Contributions We explore how graph diffusion equations (and derived GNN architectures) general-
ize in the presence of topological shifts. We show that current models relying on local graph diffusion
suffer from undesirable sensitivity to variations in graph structure, making it difficult to achieve stable
and reliable predictions and potentially tampering generalization. Extending the diffusion operators
to latent fully-connected graphs in principle allows ideal generalization if the ground-truth labels are
independent of the observed graphs in data generation, which is however often violated in practice.

To overcome this problem, we introduce a novel method for learning graph representations based on
advective diffusion equations. We connect advective diffusion with a Transformer-like architecture
particularly designed for the challenging topological generalization: the non-local diffusion term
(instantiated as global attention) aims to capture invariant latent interactions that are insensitive to
the observed graphs; the advection term (instantiated as local message passing) accommodates the
observed topological patterns specific to environments. We prove that the closed-form solution of this
new diffusion system possesses the capability to control the rate of change in node representations
w.r.t. topological variations at arbitrary orders. This further produces a guarantee of the desired level
of generalization under topological shifts.

For efficiently calculating the solution of the diffusion equation, we use the numerical scheme based
on the Padé-Chebyshev theory (Golub & Van Loan, 1989). Experiments show that our model,
which we call Advective Diffusion Transformer (ADiT), offers superior generalization across a broad
spectrum of graph ML tasks in diverse domains, including social and citation networks, molecular
screening, and protein interactions.

2 BACKGROUND AND PRELIMINARIES

As building blocks of our methodology, we first recaptulate diffusion equations on manifolds (Freidlin
& Wentzell, 1993; Medvedev, 2014) and its established connection with graph representations.

Diffusion on Riemannian manifolds. Let Ω denote an abstract domain, which we assume here to be
a Riemannian manifold (Eells & Sampson, 1964). A key feature distinguishing an n-dimensional
Riemannian manifold from a Euclidean space is the fact that it is only locally Euclidean, in the sense
that at every point u ∈ Ω one can construct n-dimensional Euclidean tangent space TuΩ ∼= Rn that
locally models the structure of Ω. The collection of such spaces (referred to as the tangent bundle
and denoted by TΩ) is further equipped with a smoothly-varying inner product (Riemannian metric).

Now consider some quantity (e.g., temperature) as a function of the form q : Ω → R, which we
refer to as a scalar field. Similarly, we can define a (tangent) vector field Q : Ω → TΩ, associating
to every point u on a manifold a tangent vector Q(u) ∈ TuΩ, which can be thought of as a local
infinitesimal displacement. We use Q(Ω) and Q(TΩ) to denote the functional spaces of scalar and
vector fields, respectively. The gradient operator ∇ : Q(Ω) → Q(TΩ) takes scalar fields into vector
fields representing the local direction of the steepest change of the field. The divergence operator is
the adjoint of the gradient and maps in the opposite direction, ∇∗ : Q(TΩ) → Q(Ω).

A manifold diffusion process models the evolution of a quantity (e.g., temperature or chemical
concentration) due to its difference across spatial locations on Ω. Denoting by q(u, t) : Ω× [0,∞) →
R the quantity over time t, the process is described by a PDE (diffusion equation) (Romeny, 2013):
∂q(u, t)

∂t
= ∇∗ (S(u, t)⊙∇q(u, t)) , t ≥ 0, u ∈ Ω with initial conditions q(u, 0) = q0(u), (1)

and possibly additional boundary conditions if Ω has a boundary. S denotes the diffusivity of
the domain. It is typical to distinguish between an isotropic (location-independent diffusivity),
non-homogeneous (location-dependent diffusivity S = s(u) ∈ R), and anisotropic (location- and
direction-dependent S(u) ∈ Rn×n) settings. In the cases studied below, we will assume the depen-
dence of the diffusivity on the location is via a function of the quantity itself, i.e., S = S(q(u, t)).

Diffusion on Graphs. Recent works leverage diffusion equations as a foundation principle for
learning graph representations (Chamberlain et al., 2021a;b; Thorpe et al., 2022; Bodnar et al., 2022;
Choi et al., 2023; Rusch et al., 2023), employing analogies between calculus on manifolds and
graphs. Let G = (V, E) be a graph with nodes V and edges E , represented by the |V| × |V| adjacency
matrix A. Let X = [xu]u∈V denote a |V| ×D matrix of node features, analogous to scalar fields on
manifolds. The graph gradient (∇X)uv = xv − xu defines edge features for (u, v) ∈ E , analogous
to a vector field on a manifold. Similarly, the graph divergence of edge features E = [euv](u,v)∈E ,
defined as the adjoint (∇∗E)u =

∑
v:(u,v)∈E euv , produces node features.

2

Under review as a conference paper at ICLR 2024

Diffusion-based approaches replace discrete GNN layers with continuous time-evolving node embed-
dings Z(t) = [zu(t)], where zu(t) : [0,∞) → RD is driven by the graph diffusion equation,
∂Z(t)/∂t = ∇∗ (S(Z(t), t;A)⊙∇Z(t)) , t ≥ 0, with initial conditions Z(0) = ϕenc(X), (2)

where ϕenc is a node-wise MLP encoder and w.l.o.g., the diffusivity S(Z(t), t;A) over the graph
can be defined as a |V| × |V| matrix-valued function dependent on A, which measures the rate of
information flows between node pairs. With the graph gradient and divergence, Eqn. 2 becomes
∂Z(t)/∂t = (C(Z(t), t;A)− I)Z(t), 0 ≤ t ≤ T, with initial conditions Z(0) = ϕenc(X), (3)

where C(Z(t), t;A) is a |V| × |V| coupling matrix associated with the diffusivity. Eqn. 3 yields
a dynamics from t = 0 to an arbitrary given stopping time T , where the latter gives node repre-
sentations for prediction, e.g., Ŷ = ϕdec(Z(T)). The coupling matrix determines the interactions
between different nodes in the graph, and its common instantiations include the normalized adjacency
(non-parametric) and learnable attention matrix (parametric), in which cases the finite-difference
numerical iterations for solving Eqn. 3 correspond to the discrete propagation layers of common
GNNs (Chamberlain et al., 2021a) and Transformers (Wu et al., 2023) (see Appendix A for details).

It is typical to tacitly make a closed-world assumption, i.e., the graph topologies of training and
testing data are generated from the same distribution. The challenge of generalization arises when the
testing graph topology is different from the training one. In such an open-world regime, it still remains
unexplored how graph diffusion equations extrapolate and generalize to new unseen structures.

3 CAN GRAPH DIFFUSION GENERALIZE?
As a prerequisite for analyzing the generalization behaviors of graph diffusion models, we need to
characterize how topological shifts happen in nature. In general sense, extrapolation is impossible
without any exposure to the new data or prior knowledge about the data-generating mechanism.
In our work, we assume testing data is strictly unknown during training, in which case structural
assumptions become necessary for authorizing generalization.

3.1 PROBLEM FORMULATION: GRAPH DATA GENERATION

Figure 1: The data-generating mech-
anism with topological shifts caused
by environment E. The solid (resp.
dashed) nodes represents observed
(resp. latent) random variables.

We present the underlying data-generating mechanism of
graph data in Fig. 1, inspired by the graph limits (Lovász &
Szegedy, 2006; Medvedev, 2014) and random graph mod-
els (Snijders & Nowicki, 1997). In graph theory, the topol-
ogy of a graph G = (V, E) can be assumed to be generated
by a graphon (or continuous graph limit), a random sym-
metric measurable function W : [0, 1]2 → [0, 1], which is
an unobserved latent variable. In our work, we generalize
this data-generating mechanism to include alongside graph
adjacency also node features and labels, as follows:

i) Each node u ∈ V has a latent i.i.d. variable Uu ∼ U [0, 1].
The node features are a random variable X = [Xu] gen-
erated from each Uu through a certain node-wise function
Xu = g(Uu;W). We denote by matrix X a particular realization of the random variable X .
ii) Similarly, the graph adjacency A = [Auv] is a random variable generated through a pairwise
function Auv = h(Uu, Uv;W,E) additionally dependent on the environment E. The change of E
happens when it transfers from training to testing, resulting in a different distribution of A. We denote
by A a particular realization of the adjacency matrix.
iii) The label Y can be specified in certain forms. In graph-level tasks (as we assume in below), Y is
generated by a function over sets, Y = r({Uv∈V}, A;W). Denote by Y a realization of Y .

The above process formalizes the data-generating mechanism behind various data of inter-dependent
nature. It boils down to finding parameters θ of a parametric function Γθ(A,X) that establishes
the predictive mapping from observed node features X and graph adjacency A to the label Y. Γθ

is typically implemented as a GNN, which is expected to possess sufficient expressive power (in
the sense that ∃θ such that Γθ(A,X) ≈ Y) as well as generalization capability under topological
distribution shift (i.e., when the observed graph topology varies from training to testing, which in our
model amounts to the change in E). While significant attention in the literature has been devoted to
the former property (Morris et al., 2019; Xu et al., 2019; Bouritsas et al., 2023; Papp et al., 2021;
Balcilar et al., 2021; Bodnar et al., 2022); the latter is largely an open question.

3

Under review as a conference paper at ICLR 2024

3.2 GRAPH DIFFUSION UNDER TOPOLOGICAL SHIFTS

Building upon the connection between GNNs and diffusion equations, we next study the behavior of
diffusion equation (i.e., Eqn. 3) under topological shifts, which will shed lights on GNN generalization.
The effect of A on node representations (solution of the diffusion equation Z(T)) stems from the
coupling matrix C(Z(t), t;A). Thereby, the output of the diffusion process can be expressed as
Z(T) = f(Z(0),A). We are interested in the extrapolation behavior of graph diffusion models that
can be reflected by the change of Z(T) w.r.t. small perturbation centered at A.

Linear Diffusion. We first consider the constant diffusivity setting inducing C(Z(t), t;A) = C.
In this case, Eqn. 3 becomes a linear diffusion equation with a closed-form solution Z(t) =
e−(I−C)tZ(0). In this case, using the numerical scheme to solve the PDE would induce the discrete
propagation layers akin to SGC (Wu et al., 2019), where the non-linearity in-between layers is omitted
for acceleration (see more illustration on this connection in Appendix A). The following proposition
shows that the variation magnitude of Z(T) can be significant for small change of input graphs.

Proposition 1. If the coupling matrix C is set as the normalized adjacency Ã = D−1A or Ã =
D−1/2AD−1/2, where D denotes the diagonal degree matrix of A, then the change of Z(T ; Ã) given
by Eqn. 3 w.r.t. a small perturbation ∆Ã is ∥Z(T ; Ã+∆Ã)− Z(T ; Ã)∥2 = O(exp (∥∆Ã∥2T)).

The consequence of this result is that the label prediction Ŷ = ϕdec(Z(T ; Ã)) can be highly (expo-
nentially) sensitive to the change of the graph topology. Under the assumption of our graph generation
model in which the graph adjacency is a realization of a random variable A = h(Uu, Uv;W,E)
dependent on a varying environment E, this may result in poor generalization.1 Proposition 1 can be
extended to the multi-layer model comprised of multiple piece-wise diffusion dynamics with feature
transformations (e.g., neural networks) in-between layers (see Appendix B.2).

Non-Linear Diffusion. In a more general setting, the diffusivity can be time-dependent. The analogy
in GNN architectures e.g. GAT (Velickovic et al., 2018) is layer-wise propagation that can aggregate
neighbored nodes’ signals with adaptive strengths across edges. Consider the time-dependent case
used in (Chamberlain et al., 2021a), where C(t) depends on Z(t) throughout the diffusion process:

C(Z(t);A) = [cuv(t)]u,v∈V , cuv(t) = I[(u, v) ∈ E] · η(zu(t),zv(t))∑
w,(u,w)∈E η(zu(t),zw(t)) , (4)

where η : Rd ×Rd → R denotes a pairwise function (“attention”). While such a non-linear diffusion
equation has no closed-form solution anymore, we can generalize our previous result as follows:

Proposition 2. For arbitrary time limit T and bounded function η, the change of Z(T) by the diffusion
model Eqn. 3 with C(Z(t);A) by Eqn. 4 w.r.t. a small perturbation ∆A is O (exp (∥∆A∥2T)).

The analysis so far suggests the common limitation of local graph diffusion equations with different
instantiations, i.e., the sensitivity of the output states w.r.t. the change of graph topology. This implies
the potential failure of such a model class for the challenge of generalization where the graph topology
varies from training to testing. Moreover, the analysis enlightens that the crux of the matter lies in the
diffusion operators which determine the effect of graph structures throughout the diffusion process.

3.3 NON-LOCAL GRAPH DIFFUSION AND GENERALIZATION WITH CONDITIONS

We proceed to extend our discussion to another class of neural diffusion models that resort to non-local
diffusion operators allowing instantaneous information flows among arbitrary locations (Chasseigne
et al., 2006). In the context of learning on graphs, the non-local diffusion can be seen as generalizing
the feature propagation to a complete or fully-connected (latent) graph (Wu et al., 2023), in contrast
with common GNNs that allow message passing only between neighboring nodes. Formally speaking,
we can define the gradient and divergence operators on a complete graph: (∇X)uv = xv − xu

(u, v ∈ V) and (∇∗E)u =
∑

v∈V euv (u ∈ V). The corresponding diffusion equation still exhibits
the form of Eqn. 3. Nevertheless, unlike the models studied in Sec. 3.2 assuming that C(t) only has
non-zeros entries cuv(t) ̸= 0 for neighboring node pairs (u, v) ∈ E , the non-local diffusion model
allows non-zero cuv(t) for arbitrary (u, v)’s to accommodate the all-pair information flows. For
example, the coupling matrix can be instantiated as the global attention C(Z(t)) = [cuv(t)]u,v∈V with

1The influence of topology variation is inherently associated with h. For example, if one considers h as the
stochastic block model (Snijders & Nowicki, 1997), then the change of E may lead to generated graph data
with different edge probabilities. In the case of real-world data with intricate topological patterns, the functional
forms of h can be more complex, consequently inducing different types of topological shifts.

4

Under review as a conference paper at ICLR 2024

cuv(t) =
η(zu(t),zv(t))∑

w∈V η(zu(t),zw(t)) , in which case the finite-difference iteration of the non-local diffusion
equation corresponds to a Transformer layer (Vaswani et al., 2017) (see details in Appendix A).

The non-local diffusion model essentially learns latent interaction graphs among nodes from input data
and is agnostic to observed graph. For the predictive function Γθ built by the diffusion equation along
with the encoder ϕenc and decoder ϕdec, we can theoretically guarantee topological generalization
when Y is conditionally independent from A within the data-generating process in Sec. 3.1.

Proposition 3. Suppose the label Y is conditionally independent from A with given {Uu}u∈V in the
data generation hypothesis of Sec. 3.1, then for non-local diffusion model Γθ minimizing the empirical
risk Remp(Γθ;Etr) = 1

Ntr

∑Ntr

i l(Γθ(X
(i),A(i)),Y(i)) over training data {(X(i),A(i),Y(i))}

generated from p(X,A, Y |E = Etr), it holds with confidence 1− δ for the bounded generalization
error on unseen data (X′,A′,Y′) from a new environment Ete ̸= Etr :R(Γθ;Ete) ≜

E(X′,A′,Y′)∼p(X,A,Y |E=Ete)[l(Γθ(X
′,A′),Y′)] ≤ Remp(Γθ;Etr) +D1(Γ, Ntr), (5)

where D1(Γ, Ntr) = 2H(Γ) +O
(√

(1/Ntr) log(1/δ)
)

, H(Γ) denotes the Rademacher complexity
of the function class of Γ, Ntr is the size of the training set, and l denotes any bounded loss function.

The conditional independence between Y and A, however, can be violated in many situations where
labels strongly correlate with observed graph structures. In such cases, the non-local diffusion alone,
discarding any observed structural information, could be insufficient for generalization.

4 GRAPH ADVECTIVE DIFFUSION FOR TOPOLOGICAL GENERALIZATION

The preceding analysis reveals that the obstacles for graph diffusion models to achieving general-
ization arise from the non-fulfillment of two critical criteria: i) the diffusion process is capable of
learning useful topological patterns; ii) the node representations are insensitive to variation of graph
structures. While balancing these two objectives can be challenging due to the inherent trade-off, we
present a novel graph diffusion model in this section that offers a provable level of generalization.
The new model is inspired by a different class of diffusion equations, advective diffusion.

4.1 MODEL FORMULATION: GRAPH ADVECTIVE DIFFUSION

Advective Diffusion Equations. We first introduce the classic advective diffusion commonly used
for characterizing physical systems with convoluted quantity transfers, where the term advection (or
convection) refers to the evolution caused by the movement of the diffused quantity (Chandrasekhar,
1943). Consider the abstract domain Ω of our interest defined in Sec. 2, and assume V (u, t) ∈ TuΩ
(a vector field in Ω) to denote the velocity of the particle at location u and time t. The advective
diffusion of the physical quantity q on Ω is governed by the PDE as (Leveque, 1992)

∂q(u, t)

∂t
= ∇∗ (S(u, t)⊙∇q(u, t))︸ ︷︷ ︸

diffusion

+β∇∗ (V (u, t) · q(u, t))︸ ︷︷ ︸
advection

, t ≥ 0, u ∈ Ω; q(u, 0) = q0(u),

(6)
where β ≥ 0 is a weight. For example, if we consider q(u, t) as the water salinity in a river,
then Eqn. 6 describes the temporal evolution of salinity at each location that equals to the spatial
transfers of both diffusion process (caused by the concentration difference of salt and S reflects the
molecular diffusivity in the water) and advection process (caused by the movement of the water and
V characterizes the flowing directions).

Similarly, on a graph G = (V, E), we can define the velocity for each node u as a |V|-dimensional
vector-valued function V(t) = [vu(t)]. Then, we have (∇∗(V(t) · Z(t)))u =

∑
v∈V vuv(t)zv(t),

giving rise to the graph advective diffusion equation:

∂Z(t)

∂t
= [C(Z(t), t) + βV(t)− I]Z(t), 0 ≤ t ≤ T. (7)

Graph Advective Diffusion. We proceed to discuss how to properly define the coupling matrix
C and the velocity V to ensure that advective diffusion equations are stable under topological
shifts. Our inspiration stems from the recent research line in the pursuit of invariance in data
generation (Rojas-Carulla et al., 2018; Arjovsky et al., 2019; Schölkopf et al., 2021), where the

5

Under review as a conference paper at ICLR 2024

principle of (out-of-distribution) generalization lies in enforcing proper inductive bias that guides the
model to capture the invariant underlying mechanism shared across environments. Different from
natural data in Euclidean space (e.g., images), the invariant topological patterns in graphs can be
much more difficult to capture given their abstract and versatile characteristics. We next generalize
the invariance principle as an important inductive bias integrated into the advective diffusion for
generalization purpose (with illustration in Fig. 2).

Figure 2: Illustration of the proposed model.

Non-local diffusion as global attention. The diffu-
sion process led by the concentration gradient acts as
an internal driving force, where the diffusivity keeps
invariant across environments (e.g., the molecular
diffusivity stays constant in different rivers). This
resonates with the environment-invariant latent inter-
actions among nodes, determined by the underlying
data manifold, that induce all-pair information flows
over a complete graph. We thus follow Sec. 3.3 and
instantiate C as a global attention that computes the
similarities between arbitrary node pairs.

Advection as local message passing. The advection
process driven by the directional movement belongs
to an external force, with the velocity depending on
contexts (e.g., different rivers). This is analogous to the environment-sensitive graph topology that is
informative for prediction in specific environments. We instantiate the velocity as the normalized
adjacency V = Ã that reflects graph structures. With the above definitions, our graph advective
diffusion model can be formulated as:

∂Z(t)

∂t
=
[
C+ βÃ− I

]
Z(t), 0 ≤ t ≤ T with initial conditions Z(0) = ϕenc(X),

where C = [cuv]u,v∈V , cuv =
η(zu(0), zv(0))∑

w∈V η(zu(0), zw(0))
.

(8)

Here β ∈ [0, 1] is a weight hyper-parameter and η is a learnable pairwise similarity function. The
two mechanisms of non-local diffusion (implemented through attention akin to Transformers) and
advection (implemented like message passing neural networks) give rise to a new architecture, which
we call the Advective Diffusion Transformer, or ADIT for short.

Remark. Eqn. 8 has a closed-form solution Z(t) = e−(I−C−βÃ)tZ(0), and as we will show in the
next subsection, it allows generalization guarantees with topological distribution shifts. A special case
of β = 0 (no advection) can be used in situations where the graph structure is not useful. Moreover,
one can extend Eqn. 8 to a non-linear equation with time-dependent C(Z(t), t), in which situation
the equation will have no closed-form solution and need numerical schemes for solving. Similarly to
Di Giovanni et al. (2022), we found in our experiments a simple linear diffusion to be sufficient to
yield promising performance. We therefore leave the study of the non-linear variant for the future.

4.2 HOW GRAPH ADVECTIVE DIFFUSION HANDLES TOPOLOGICAL SHIFTS

We proceed to analyze the behavior of our proposed model w.r.t. topological shifts to demonstrate its
capability of generalizing to out-of-distribution (OOD) data. Our first main result is derived based on
the universal approximation power of neural networks and the data generation hypothesis in Sec. 3.1.
Theorem 1. For the model Eqn. 7 with C pre-computed by global attention over Z(0) and fixed
velocity V = Ã, the change rate of node representations Z(T ; Ã) w.r.t. a small perturbation ∆Ã

can be reduced to O(ψ(∥∆Ã∥2)) where ψ denotes an arbitrary polynomial function.

Theorem 1 suggests that the advective diffusion model with observed structural information incorpo-
rated is capable of controlling the impact of topology variation on node representations to arbitrary
rates. We can further derive the generalization error that is decomposed into the in-distribution
generalization (ID) error D1(Γ, Ntr) and the topological distribution gap between ID and OOD data.
Theorem 2. Assume l and ϕdec are Lipschitz continous. Then for data generated with the data
generation hypothesis of Sec. 3.1 from arbitrary Etr and Ete, we have the generalization error bound
of the model Γθ with confidence 1− δ:

R(Γθ;Ete) ≤ Remp(Γθ;Etr) +D1(Γ, Ntr) +D2(Etr, Ete,W), (9)

6

Under review as a conference paper at ICLR 2024

where D2(Etr, Ete,W) = O(EA∼p(A|Etr),A′∼p(A|Ete)[ψ(∥∆Ã∥2)]).

Theorem 2 implies that the generalization error can be controlled with the adaptive change rate yielded
by the model. The model possesses provable potential for achieving a desired level of generalization
with topological shifts. Furthermore, our model only requires trainable parameters for two shallow
MLPs ϕenc and ϕdec and the attention network η, which is highly parameter-efficient. This helps to
reduce the model complexity measured by H(Γ) that impacts D1 and is beneficial for generalization.

4.3 NUMERICAL SOLVERS FOR GRAPH ADVECTIVE DIFFUSION

We next delve into the model implementation, with a key question how to compute the closed-form
solution e−(I−C−βÃ)t. Direct computation of the matrix exponential through eigendecomposition
is computationally intractable for large matrices. As an alternative, we explore several numerical
approximation techniques based on series expansion.
ADIT-INVERSE uses a numerical method based on the extension of Padé-Chebyshev theory to
rational fractions (Golub & Van Loan, 1989; Gallopoulos & Saad, 1992), which has shown empirical
success in 3D shape analysis (Patané, 2014). The matrix exponential is approximated by solving
multiple linear systems (see more details and derivations in Appendix D) and we generalize it as a
flexible multi-head network where each head propagates in parallel:

Z(T) ≈
H∑

h=1

ϕ
(h)
FC(Zh), Zh = linsolver(Lh,Z(0)), Lh = (1 + θ)I−Ch − βÃ, (10)

where the linsolver computes the matrix inverse Zh = (Lh)
−1Z(0) and can be efficiently im-

plemented via torch.linalg.solve() that supports automated differentiation. Each head
contributes to propagation with the pre-computed attention Ch and node-wise transformation ϕ(h)FC .
ADIT-SERIES approximates the matrix inverse via finite geometric series (see Appendix D for
detailed derivations)

Z(T) ≈
H∑

h=1

ϕ
(h)
FC(Zh), Zh = [Z(0),PhZ(0), · · · , (Ph)

KZ(0)], Ph = Ch + βÃ, (11)

for better scalability. This model resorts to aggregation of K-order propagation with the propagation
matrix Ph in each head. The feed-forward of the model can be efficiently computed within linear
complexity w.r.t. the number of nodes (see how we achieve this acceleration in Appendix E.1.2).

The node representations obtained by approximate solution of the diffusion equation Z(T) are then
fed into ϕdec for prediction and loss computation (e.g., cross-entropy for classification or mean square
loss for regression). Due to space limit, we defer details of model architectures to Appendix E.1.
Moreover, in Appendix E.2 we discuss how to extend our model to accommodate edge attributes.

5 EXPERIMENTS

We apply our model to synthetic and real-world datasets that involve various topological distribution
shifts. We consider a wide variety of graph-based downstream tasks of disparate scales and granulari-
ties. More detailed dataset information is provided in Appendix F.1. In each case, we compare with
different sets of competitors that are suitable for the tasks. Details on baselines and implementation
are deferred to Appendix F.2 and F.3, respectively.

5.1 SYNTHETIC DATASETS

We create synthetic datasets that simulate the data generation in Sec. 3.1 to validate our model. We
instantiate h as a stochastic block model which generates edges Auv according to block numbers (b),
intra-block edge probability (p1) and inter-block edge probability (p2). Then we study three types of
topological distribution shifts: homophily shift (changing p2 with fixed p1); density shift (changing
p1 and p2); and block shift (varying b). The predictive task is node regression and we use RMSE to
measure the performance. Details for dataset generation is presented in Appendix F.1.1.

Fig. 3 plots RMSE on training/validation/testing graphs in three cases. We compare our model
(ADIT-INVERSE and ADIT-SERIES) with diffusion-based models analyzed in Sec. 3. The latter
includes Diff-Linear (graph diffusion with constant C), Diff-MultiLayer (the extension of Diff-Linear
with intermediate feature transformations), Diff-Time (graph diffusion with time-dependent C(Z(t)))

7

Under review as a conference paper at ICLR 2024

Tr Val Te1 2 3 4 5 6 7 8 9 10
Data Set

0.10

0.15

0.20

0.25

RM
SE

(a) Homophily Shift
Diff− Linear Diff−MultiLayer Diff− Time Diff−NonLocal ADiT− Inverse ADiT− Series

Tr Val Te1 2 3 4 5 6 7 8 9 10
Data Set

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

RM
SE

(b) Density Shift

Tr Val Te1 2 3 4 5 6 7 8 9 10
Data Set

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

RM
SE

(c) Block Shift

Figure 3: Results of RMSE (↓) on synthetic datasets that simulate the topological shifts caused by the
environment E in Fig. 1. We consider three types of shifts w.r.t. homophily levels, edge densities,
and block numbers, respectively. In each case, the validation and #1∼#10 testing sets are generated
with different configurations introducing increasing distribution gaps from the training set.

and Diff-NonLocal (non-local diffusion with global attentive diffusivity C(Z(t))). Three local graph
diffusion models exhibit clear performance degradation w.r.t. topological shifts exacerbated from #1
to #10 testing graphs, while our two models yield consistently low RMSE across environments. In
contrast, the non-local diffusion model produce comparably stable performance yet inferior to our
models due to its failure of utilizing the observed topological information.

Table 1: Results on Arxiv and Twitch, where we use time and spatial contexts for data splits,
respectively. We report the Accuracy (↑) for three testing sets of Arxiv and average ROC-AUC
(↑) for all testing graphs of Twitch (results for each case are reported in Appendix G.1). Top
performing methods are marked as first/second/third. OOM indicates out-of-memory error.

Arxiv (2018) Arxiv (2019) Arxiv (2020) Twitch (avg)
MLP (Rumelhart et al., 1986) 49.91 ± 0.59 47.30 ± 0.63 46.78 ± 0.98 61.12 ± 0.16
GCN (Kipf & Welling, 2017) 50.14 ± 0.46 48.06 ± 1.13 46.46 ± 0.85 59.76 ± 0.34
GAT (Velickovic et al., 2018) 51.60 ± 0.43 48.60 ± 0.28 46.50 ± 0.21 59.14 ± 0.72
SGC (Wu et al., 2019) 51.40 ± 0.10 49.15 ± 0.16 46.94 ± 0.29 60.86 ± 0.13
GDC (Klicpera et al., 2019) 51.53 ± 0.42 49.02 ± 0.51 47.33 ± 0.60 61.36 ± 0.10
GRAND (Chamberlain et al., 2021a) 52.45 ± 0.27 50.18 ± 0.18 48.01 ± 0.24 61.65 ± 0.23
GraphTrans (Wu et al., 2021) OOM OOM OOM 61.65 ± 0.23
GraphGPS (Rampásek et al., 2022) 51.11 ± 0.19 48.91 ± 0.34 46.46 ± 0.95 62.13 ± 0.34
DIFFormer (Wu et al., 2023) 50.45 ± 0.94 47.37 ± 1.58 44.30 ± 2.02 62.11 ± 0.11
ADIT-SERIES 53.41 ± 0.48 51.53 ± 0.60 49.64 ± 0.54 62.51 ± 0.07

5.2 REAL-WORLD DATASETS

We proceed to evaluate ADIT beyond the synthetic cases and experiment on real-world datasets with
more complex shifts in graph topologies encountered in diverse and broad applications.
Information Networks. We first consider node classification on citation networks Arxiv (Hu
et al., 2020) and social networks Twitch (Rozemberczki et al., 2021) with graph sizes ranging
from 2K to 0.2M, where we use the scalable version ADIT-SERIES. To introduce topological shifts,
we partition the data according to publication years and geographic information for Arxiv and
Twitch, respectively. The predictive task is node classification, and we follow the common practice
comparing Accuracy (resp. ROC-AUC) for Arxiv (resp. Twitch). We compare with three types
of state-of-the-art baselines: (i) classical GNNs (GCN (Kipf & Welling, 2017), GAT (Velickovic
et al., 2018) and SGC (Wu et al., 2019)); (ii) diffusion-based GNNs (GDC (Klicpera et al., 2019)
and GRAND (Chamberlain et al., 2021a)), and (iii) graph Transformers (GraphTrans (Wu et al.,
2021), GraphGPS (Rampásek et al., 2022), and the diffusion-based DIFFormer (Wu et al., 2023)).
Appendix F.2 presents detailed descriptions for these models. Table 1 reports the results, showing
that our model offers significantly superior generalization for node classification.
Molecular Property Prediction. We next study graph classification for predicting molecular
properties on OGB-BACE and OGB-SIDER. We follow the scaffold-based splits by Hu et al. (2020),
which guarantee structural diversity across training and test sets and provide a realistic estimate of
model generalization in prospective experimental settings (Yang et al., 2019). The performance is
measured by ROC-AUC. Table 2 reports the results, showing that our model outperforms classical
GNNs and powerful graph Transformers2 that use the same input data and training loss.
Protein Interactions. We then test on protein-protein interactions of yeast cells (Fu & He, 2022).
Each node denotes a protein with a time-aware gene expression value and the edges indicate co-
expressed protein pairs at each time. The dataset consists of 12 dynamic networks each of which is

2Note that our comparison focuses on generic GNN architectures, rather than specialized methods that are
tailored for chemical problems and additionally leverage domain knowledge such as structural motifs.

8

Under review as a conference paper at ICLR 2024

Table 2: ROC-AUC (↑) on two molecule datasets OGB-BACE and OGB-SIDER with scaffold splits
for training/validation/testing, where the task is to predict molecular graph properties.

OGB-BACE OGB-SIDER
Train Valid Test Train Valid Test

MLP 67.78 ± 0.01 65.31 ± 0.00 66.80 ± 0.01 71.83 ± 2.07 57.72 ± 0.16 57.98 ± 0.23
GCN 93.58 ± 0.43 67.83 ± 0.39 80.93 ± 0.59 76.21 ± 0.10 61.84 ± 0.18 59.87 ± 0.14
GAT 91.67 ± 1.85 79.31 ± 1.27 78.18 ± 1.43 80.26 ± 0.03 61.88 ± 0.10 58.99 ± 0.06
GraphTrans 96.96 ± 0.59 71.76 ± 1.53 80.12 ± 0.58 97.67 ± 1.22 62.46 ± 0.85 60.73 ± 1.97
GraphGPS 68.24 ± 2.18 66.54 ± 2.44 73.46 ± 0.30 74.97 ± 1.06 60.87 ± 0.07 61.71 ± 0.07
DIFFormer 95.97 ± 0.97 74.48 ± 1.31 79.67 ± 0.87 89.94 ± 3.57 64.13 ± 0.58 60.94 ± 2.17
ADIT-INVERSE 97.39 ± 1.67 73.82 ± 1.45 80.38 ± 1.40 83.67 ± 0.09 60.85 ± 0.22 65.29 ± 0.16
ADIT-SERIES 93.58 ± 0.46 67.03 ± 0.53 82.03 ± 0.42 80.24 ± 0.23 59.70 ± 0.35 62.28 ± 0.36

Table 3: Results on dynamic protein interaction networks DDPIN with splits by different protein
identification methods. The predictive tasks span node regression, edge regression and link prediction.

Node Regression (RMSE) (↓) Edge Regression (RMSE) (↓) Link Prediction (ROC-AUC) (↑)
Valid Test Valid Test Valid Test

MLP 2.44 ± 0.02 2.34 ± 0.03 0.163 ± 0.004 0.185 ± 0.003 0.658 ± 0.014 0.616 ± 0.117
GCN 3.74 ± 0.01 3.40 ± 0.01 0.170 ± 0.004 0.184 ± 0.004 0.673 ± 0.088 0.683 ± 0.062
GAT 3.10 ± 0.09 2.86 ± 0.06 0.164 ± 0.001 0.176 ± 0.001 0.765 ± 0.023 0.687 ± 0.031
SGC 3.66 ± 0.00 3.40 ± 0.02 0.177 ± 0.016 0.190 ± 0.004 0.658 ± 0.044 0.775 ± 0.042
GraphTrans OOM OOM OOM OOM OOM OOM
GraphGPS 1.80 ± 0.01 1.65 ± 0.02 0.165 ± 0.016 0.159 ± 0.007 0.604 ± 0.029 0.673 ± 0.068
DIFFormer 2.06 ± 0.04 2.04 ± 0.02 0.173 ± 0.012 0.155 ± 0.002 0.935 ± 0.030 0.902 ± 0.054
ADIT-INVERSE 1.83 ± 0.02 1.75 ± 0.02 0.146 ± 0.002 0.147 ± 0.002 0.946 ± 0.027 0.957 ± 0.018
ADIT-SERIES 1.56 ± 0.02 1.49 ± 0.03 0.146 ± 0.002 0.144 ± 0.001 0.828 ± 0.026 0.866 ± 0.036

Ground Truth ADiT (0.697) GCN (0.685) GAT (0.664) GraphGPS (0.694) Difformer (0.674)
Figure 4: Testing cases for molecular mapping operators generated by different models with averaged
testing Accuracy (↑) reported. The task is to generate subgraph-level partitions resembling expert
annotations (ground-truth) for each molecule instance. See more results in Appendix G.1.

obtained by one protein identification method and records the metabolic cycles of yeast cells. The
networks have distinct topological features (e.g., distribution of cliques) as observed by (Fu & He,
2022), and we use 6/1/5 networks for train/valid/test. To test the generalization of the model across
different tasks, we consider: i) node regreesion for gene expression values (measured by RMSE); 2)
edge regression for predicting the co-expression correlation coefficients (measured by RMSE); 3)
link prediction for identifying co-expressed protein pairs (measured by ROC-AUC). Table 3 shows
that our models yield the first-ranking results in three tasks. In contrast, ADIT-SERIES performs
better in node/edge regression tasks, while ADIT-INVERSE exhibits better competitiveness for link
prediction. The possible reason might be that ADIT-INVERSE can better exploit high-order structural
information as the matrix inverse can be treated as ADIT-SERIES with K → ∞.
Molecular Mapping Operator Generation. Finally we investigate on the generation of molecular
coarse-grained mapping operators, an important step for molecular dynamics simulation, aiming to
find a representation of how atoms are grouped in a molecule (Li et al., 2020). The task is a graph
segmentation problem which can be modeled as predicting edges that indicate where to partition the
graph. We use the relative molecular mass to split the data and test the model’s extrapolation ability
for larger molecules. Fig. 4 compares the testing cases (with more cases in Appendix G.1) generated
by different models, which shows the more accurate estimation of our model (we use ADIT-SERIES
for experiments) that demonstrates desired generalization.
Additional Experimental Results. Due to space limit, we defer more results such as ablation studies
and hyper-parameter analysis (for β, θ and K) along with more discussions to Appendix G.2.

6 CONCLUSIONS AND DISCUSSIONS

This paper has systematically studied the generalization capabilities of graph diffusion equations under
topological shifts, and shed lights on building generalizable GNNs in the open-world regime. The
latter remains a largely under-explored question in graph ML community. Our new model, inspired by
advective diffusion equations, has provable topological generalization capability and is implemented
as a Transformer-like architecture. It shows superior performance in various graph learning tasks. Our
analysis and proposed methodology open new possibilities of leveraging established PDE techniques
for building generalizable GNNs.

9

Under review as a conference paper at ICLR 2024

Reproducibility Statement. We supplement the complete proofs for all the theoretical results and
detailed information for model implementations and experiments, with references below:

• The proofs for technical results in Sec. 3 are presented in Appendix B.

• The proofs for technical results in Sec. 4 are presented in Appendix C.

• The detailed derivations for our proposed models in Sec. 4.3 are shown in Appendix D.

• The architectures of our models along with pseudo codes are illustrated in Appendix E.

• The detailed information for all experimental datasets is presented in Appendix F.1.

• The details for competitors are provided in Appendix F.2.

• The implementation details for experiments are provided in Appendix F.3.

The source codes will be made publicly available.

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances in Neural
Information Processing Systems, pp. 1993–2001, 2016.

Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, and Paul
Honeine. Analyzing the expressive power of graph neural networks in a spectral perspective. In
International Conference on Learning Representations, 2021.

Gleb Bazhenov, Denis Kuznedelev, Andrey Malinin, Artem Babenko, and Liudmila Prokhorenkova.
Evaluating robustness and uncertainty of graph models under structural distributional shifts. arXiv
preprint arXiv:2302.13875, 2023.

Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Liò, and Michael Bronstein.
Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns.
Advances in Neural Information Processing Systems, 35:18527–18541, 2022.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Trans. Pattern Anal. Mach.
Intell., 45(1):657–668, 2023.

Ben Chamberlain, James Rowbottom, Maria I. Gorinova, Michael M. Bronstein, Stefan Webb, and
Emanuele Rossi. GRAND: graph neural diffusion. In International Conference on Machine
Learning (ICML), pp. 1407–1418, 2021a.

Benjamin Paul Chamberlain, James Rowbottom, Davide Eynard, Francesco Di Giovanni, Xiaowen
Dong, and Michael M. Bronstein. Beltrami flow and neural diffusion on graphs. In Advances in
Neural Information Processing Systems (NeurIPS), 2021b.

Subrahmanyan Chandrasekhar. Stochastic problems in physics and astronomy. Reviews of modern
physics, 15(1):1, 1943.

Emmanuel Chasseigne, Manuela Chaves, and Julio D Rossi. Asymptotic behavior for nonlocal
diffusion equations. Journal de mathématiques pures et appliquées, 86(3):271–291, 2006.

Jeongwhan Choi, Seoyoung Hong, Noseong Park, and Sung-Bae Cho. Gread: Graph neural reaction-
diffusion equations. In International Conference on Machine Learning, 2023.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Ben-
jamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with performers. In
International Conference on Learning Representations, 2021.

10

Under review as a conference paper at ICLR 2024

Francesco Di Giovanni, James Rowbottom, Benjamin Paul Chamberlain, Thomas Markovich, and
Michael M Bronstein. Graph neural networks as gradient flows: understanding graph convolutions
via energy. 2022.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
CoRR, abs/2012.09699, 2020.

James Eells and Joseph H Sampson. Harmonic mappings of riemannian manifolds. American journal
of mathematics, 86(1):109–160, 1964.

Mark I Freidlin and Alexander D Wentzell. Diffusion processes on graphs and the averaging principle.
The Annals of probability, pp. 2215–2245, 1993.

Dongqi Fu and Jingrui He. Dppin: A biological repository of dynamic protein-protein interaction
network data. In 2022 IEEE International Conference on Big Data (Big Data), pp. 5269–5277.
IEEE, 2022.

Efstratios Gallopoulos and Yousef Saad. Efficient solution of parabolic equations by krylov ap-
proximation methods. SIAM journal on scientific and statistical computing, 13(5):1236–1264,
1992.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine Learning, pp.
1263–1272, 2017.

Gene H Golub and Charles F Van Loan. Matrix computations. John Hopkins University Press, 1989.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Advances
in Neural Information Processing Systems, 2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc: A
large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. In Advances in neural information processing systems, 2019.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsub-
ramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M. Beery, Jure Leskovec,
Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. WILDS: A
benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning
(ICML), pp. 5637–5664, 2021.

Randall J Leveque. Numerical methods for conservation laws, volume 214. Springer, 1992.

Zhiheng Li, Geemi P Wellawatte, Maghesree Chakraborty, Heta A Gandhi, Chenliang Xu, and
Andrew D White. Graph neural network based coarse-grained mapping prediction. Chemical
science, 11(35):9524–9531, 2020.

László Lovász and Balázs Szegedy. Limits of dense graph sequences. Journal of Combinatorial
Theory, Series B, 96(6):933–957, 2006.

Georgi S Medvedev. The nonlinear heat equation on dense graphs and graph limits. SIAM Journal on
Mathematical Analysis, 46(4):2743–2766, 2014.

11

Under review as a conference paper at ICLR 2024

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In AAAI Conference on Artificial Intelligence, pp. 4602–4609, 2019.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: Random
dropouts increase the expressiveness of graph neural networks. In Advances in Neural Information
Processing Systems, pp. 21997–22009, 2021.

Giuseppe Patané. Laplacian spectral distances and kernels on 3d shapes. Pattern Recognition Letters,
47:102–110, 2014.

Ladislav Rampásek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. In Advances in Neural
Information Processing Systems, pp. 5998–6008, 2022.

Mateo Rojas-Carulla, Bernhard Schölkopf, Richard E. Turner, and Jonas Peters. Invariant models for
causal transfer learning. Journal of Machine Learning Research, 19:36:1–36:34, 2018.

Bart M Haar Romeny. Geometry-driven diffusion in computer vision, volume 1. Springer Science &
Business Media, 2013.

Emanuele Rossi, Henry Kenlay, Maria I Gorinova, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M Bronstein. On the unreasonable effectiveness of feature propagation in learning on
graphs with missing node features. In Learning on Graphs Conference, pp. 11–1. PMLR, 2022.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2), 2021.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

T Konstantin Rusch, Benjamin P Chamberlain, Michael W Mahoney, Michael M Bronstein, and
Siddhartha Mishra. Gradient gating for deep multi-rate learning on graphs. In International
Conference on Learning Representations, 2023.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of the
IEEE, 109(5):612–634, 2021.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

Tom AB Snijders and Krzysztof Nowicki. Estimation and prediction for stochastic blockmodels for
graphs with latent block structure. Journal of classification, 14(1):75–100, 1997.

Matthew Thorpe, Hedi Xia, Tan Nguyen, Thomas Strohmer, Andrea L. Bertozzi, Stanley J. Osher, and
Bao Wang. GRAND++: graph neural diffusion with a source term. In International Conference on
Learning Representations (ICLR), 2022.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations
(ICLR), 2018.

12

Under review as a conference paper at ICLR 2024

Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger.
Simplifying graph convolutional networks. In International Conference on Machine Learning, pp.
6861–6871, 2019.

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf. Handling distribution shifts on graphs: An
invariance perspective. In International Conference on Learning Representations, 2022a.

Qitian Wu, Wentao Zhao, Zenan Li, David Wipf, and Junchi Yan. Nodeformer: A scalable graph struc-
ture learning transformer for node classification. In Advances in Neural Information Processing
Systems, 2022b.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. Difformer:
Scalable (graph) transformers induced by energy constrained diffusion. In International Conference
on Learning Representations, 2023.

Zhanghao Wu, Paras Jain, Matthew A. Wright, Azalia Mirhoseini, Joseph E. Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. In Advances in
Neural Information Processing Systems, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-
Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, and et al. Analyzing learned molecular
representations for property prediction. Journal of chemical information and modeling, 59(8):
3370–3388, 2019.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform bad for graph representation? In Advances in Neural
Information Processing Systems, 2021.

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
Lin, Zhao Xu, Keqiang Yan, et al. Artificial intelligence for science in quantum, atomistic, and
continuum systems. arXiv preprint arXiv:2307.08423, 2023.

13

Under review as a conference paper at ICLR 2024

CONTENTS

1 Introduction 1

2 Background and Preliminaries 2

3 Can Graph Diffusion Generalize? 3

3.1 Problem Formulation: Graph Data Generation . 3

3.2 Graph Diffusion under Topological Shifts . 4

3.3 Non-Local Graph Diffusion and Generalization with Conditions 4

4 Graph Advective Diffusion for Topological Generalization 5

4.1 Model Formulation: Graph Advective Diffusion 5

4.2 How Graph Advective Diffusion Handles Topological Shifts 6

4.3 Numerical Solvers for Graph Advective Diffusion 7

5 Experiments 7

5.1 Synthetic Datasets . 7

5.2 Real-World Datasets . 8

6 Conclusions and Discussions 9

A Connection between Diffusion Equations and Message Passing 16

A.1 Graph Neural Networks as Local Diffusion . 16

A.2 Transformers as Non-Local Diffusion . 17

B Analysis and Proofs in Section 3 17

B.1 Analysis for Linear Diffusion Equations . 18

B.2 Analysis with Feature Transformations . 19

B.3 Analysis for Non-Linear Diffusion . 21

B.4 Analysis for Non-Local Diffusion with Global Diffusivity 24

C Analysis and Proofs in Section 4 25

D Approximation Strategies for Diffusion PDE Solutions 27

E Model Implementations and Algorithms 27

E.1 Model Architectures . 28

E.1.1 Instantiations and Parameterizations . 28

E.1.2 Acceleration of ADIT-SERIES with Linear Complexity 29

E.2 Applicability of Our Model . 29

F Experiment Details 30

14

Under review as a conference paper at ICLR 2024

F.1 Datasets . 30

F.1.1 Synthetic Datasets . 30

F.1.2 Information Networks . 31

F.1.3 Molecular Property Prediction . 32

F.1.4 Biological Protein Interactions . 32

F.1.5 Molecular Mapping Operator Generation 32

F.2 Competitors . 33

F.3 Implementation Details . 34

G Additional Experimental Results 34

G.1 Supplementary Results for Main Experiments . 34

G.2 Ablation Studies and Hyper-Parameter Analaysis 34

15

Under review as a conference paper at ICLR 2024

A CONNECTION BETWEEN DIFFUSION EQUATIONS AND MESSAGE PASSING

In this section, we provide a systematically introduction on the fundamental connections between
graph diffusion equations and neural message passing, as supplementary technical background for
our analysis and methodology presented in the main text. Consider graph diffusion equations of the
generic form

∂Z(t)

∂t
= (C(Z(t), t;A)− I)Z(t), 0 ≤ t ≤ T, with initial conditions Z(0) = ϕenc(X). (12)

As demonstrated by existing works, e.g., Chamberlain et al. (2021a), using finite-difference numerical
schemes for solving Eqn. 12 would induce the message passing neural networks of various forms.
The latter is recognized as the common paradigm in modern graph neural networks and Transformers
whose layer-wise updating aggregates the embeddings of other nodes to compute the embeddings for
the next layer.

A.1 GRAPH NEURAL NETWORKS AS LOCAL DIFFUSION

Consider the explicit Euler’s scheme as the commonly used finite-difference method for approximately
solving the differential equations, and Eqn. 12 will induce the discrete iterations with step size τ :

Z(k+1) − Z(k)

τ
≈ (C(Z(k), k;A)− I)Z(k). (13)

With some re-arranging we have

Z(k+1) = (1− τ)Z(k) + τC(Z(k), k;A)Z(k), (14)

with the initial states Z(0) = ϕenc(X). The above updating equation gives one-layer update through
residual connection and propagation with C(Z(k), k;A). There are some well-known graph neural
network architectures that can be derived with different instantiations of the coupling matrix.

Simplifying Graph Convolution (SGC). If one considers C(Z(k);A) = Ã = D−1/2AD−1/2,
then we will get the one-layer updating rule:

Z(k+1) = (1− τ)Z(k) + τD−1/2AD−1/2Z(k). (15)

This can be seen as one-layer propagation of SGC (Wu et al., 2019) with residual connection, and when
τ = 1 it becomes exactly the SGC layer. Since SGC model does not involve feature transformation
layers and non-linearity throughout the message passing, one often uses a pre-computed propagation
matrix for one-step convolution that is much faster than the multi-layer convolution:

Z(K) = PKZ(0), P = (1− τ)I+ τD−1/2AD−1/2. (16)

Graph Convolution Networks (GCN). The GCN network inserts feature transformation layers in-
between the propagation layers. This can be achieved by considering K stacked piece-wise diffusion
equations, where the k-th dynamics is given by the differential equation with time boundaries:

∂Z(t; k)

∂t
= (C−I)Z(t; k), t ∈ [tk−1, tk], with initial conditions Z(tk−1; k) = ϕ

(k)
int(Z(tk−1; k−1)),

(17)
where ϕ

(k)
int denotes the node-wise feature transformation of the k-th layer. Assume C =

D−1/2AD−1/2. Then consider one-step feed-forward of the explicit Euler scheme for Eqn. 17,
and one can obtain the updating rule at the k-th layer:

Z(k+1) = ϕ
(k+1)
int

(
(1− τ)Z(k) + τD−1/2AD−1/2Z(k)

)
. (18)

This corresponds to one GCN layer (Kipf & Welling, 2017) if one considers ϕ(k+1)
int as a fully-

connected neural layer with ReLU activation and simply sets τ = 1.

Graph Attention Networks (GAT). Apart from the system with constant diffusivity, one can assume
C to be time-dependent through a function of Z(t). In this way, the coupling function plays a similar

16

Under review as a conference paper at ICLR 2024

role as the attention function that computes the pairwise similarity between neighboring nodes. In
specific, consider the coupling matrix of the form involving a row-normalized similarity function:

C(Z(t);A) = [cuv(t)]u,v∈V , cuv(t) = I[(u, v) ∈ E] · η(zu(t), zv(t))∑
w,(u,w)∈E η(zu(t), zw(t))

. (19)

Similar to the preceding cases, we use the explicit Euler’s scheme and obtain the one-layer updating
rule of GAT (Velickovic et al., 2018) with residual connection:

Z(k+1) = (1− τ)Z(k) + τC(k)Z(k), c(k)uv = I[(u, v) ∈ E] · η(z
(k)
u , z

(k)
v)∑

w,(u,w)∈E η(z
(k)
u , z

(k)
w)

. (20)

In GAT instantiation, the similarity function η is further assumed to be

η(z(k)u , z(k)v) = exp
(

LeakyReLU(a⊤[Θz(k)u ∥Θz(k)v])
)
, (21)

where a ∈ Rd and Θ ∈ Rd×d are trainable parameters specific to the k-th layer (we omit the
superscript k for simplicity).

High-Order Propagation. Besides the explicit numerical scheme, one can also utilize the implicit
scheme and multi-step schemes (e.g., Runge-Kutta) for solving the diffusion equation, and the
induced updating form will involve high-order information (Chamberlain et al., 2021a).

A.2 TRANSFORMERS AS NON-LOCAL DIFFUSION

The original architectures of Transformers (Vaswani et al., 2017) involve self-attention layers as
the key module, where the attention measures the pairwise influence between arbitrary token pairs
in the input. There are recent works, e.g., Dwivedi & Bresson (2020); Ying et al. (2021); Wu
et al. (2021); Rampásek et al. (2022); Wu et al. (2022b) transferring the Transformer architectures
originally designed for sequence inputs into graph-structured data, and the attention is computed
for node pairs in the graph. Different from GAT that only attends on neighboring nodes in each
propagation, the attention of Transformers targets arbitrary node pairs in the graph, which can be seen
as a counterpart of non-local diffusion. In specific, the coupling matrix allows non-zero entries for
arbitrary location pairs and can be instantiated as a global attention. Then using the explicit Euler’s
scheme as Eqn. 14 we can obtain the self-attention propagation layer of common Transformers:

Z(k+1) = (1− τ)Z(k) + τC(k)Z(k), c(k)uv =
η(z

(k)
u , z

(k)
v)∑

w∈V η(z
(k)
u , z

(k)
w)

. (22)

For obtaining the fully-connected layers and non-linear activations adopted in Transformers, one
can inherit the spirit of GCN and extend the diffusion model to K piece-wise equations as Eqn. 17.
Then the layer-wise updating rule will involve ϕ(k)int in-between two attention layers. In original
Transformers, η is considered as a dot-then-scale exponential function

η(z(k)u , z(k)v) = exp

(
(WQz

(k)
u)⊤(WKz

(k)
v)√

d

)
, (23)

and there also exist more scalable choices, such as the attention function inspired by diffusion (Wu
et al., 2023) that can compute all-pair interactions with linear complexity.

B ANALYSIS AND PROOFS IN SECTION 3

Before we go into the proofs for our main results, we first introduce some basic concepts and technical
lemmas. For any matrix A = [aij]N×N we define

• σmax(A) = maxi{|λi|} denotes its singular value with the largest magnitude.
• nmax(A) = maxij{|aij |} denotes its absolute maximum entry.

Lemma 1. For any two N ×N matrices A and B, we have the upper bound for the L2-norm of
their Hadamard product

∥A⊙B∥2 ≤
√
N · nmax(A)∥B∥2. (24)

17

Under review as a conference paper at ICLR 2024

Proof. If A is positive definite, it is known that

∥A⊙B∥2 ≤ nmax(A)∥B∥2. (25)

We next prove the conclusion for A that is not positive definite. Let {si}Ni=1 be the standard
basis vectors in the space RN , and then any vector c can be denoted as c =

∑N
i=1 cisi. For

∀i ∈ {1, · · · , N}, we have

∥(A⊙B)si∥2 ≤ nmax(A) · ∥Bsi∥2 ≤ nmax(A) · ∥B∥2. (26)

Therefore we have the result

∥(A⊙B)c∥2 ≤
N∑
i=1

|ci| · ∥(A⊙B)si∥2 ≤ nmax(A) · ∥B∥2 ·
N∑
i=1

|ci|. (27)

According to Cauchy-Schwarz inequality, we have
∑N

i=1 |ci| ≤
√
N∥c∥2. Then the result of the

lemma can be obtained by noting that ∥(A⊙B)c∥2 ≤
√
N · nmax(A) · ∥B∥2 · ∥c∥2.

B.1 ANALYSIS FOR LINEAR DIFFUSION EQUATIONS

We first consider the diffusion equations with fixed diffusivity and coupling matrix C(Z(t), t;A) =
C. The model can be described as the following linear differential equation:

∂Z(t)

∂t
= (C− I)Z(t), 0 ≤ t ≤ T, with initial conditions Z(0) = ϕenc(X). (28)

The proposition below shows the change of Z(T) given by the dynamics of the above model w.r.t.
the variation of graph topology A.

Proposition 1. If the coupling matrix C is set as the normalized adjacency Ã = D−1A or Ã =
D−1/2AD−1/2, where D denotes the diagonal degree matrix of A, then the change of Z(T ; Ã) given

by Eqn. 3 w.r.t. a small perturbation ∆Ã is
∥∥∥Z(T ; Ã+∆Ã)− Z(T ; Ã)

∥∥∥
2
= O

(
exp (∥∆Ã∥2T)

)
.

Proof. When the coupling matrix is independent of time t, i.e., set as a fixed matrix C, the differential
equation Eqn. 3 becomes the linear system Eqn. 28 and has a closed-form solution

Z(T) = e−(I−C)TZ(0), T ≥ 0. (29)

For an arbitrary given finite time T , the final state Z(T) is determined by the initial value Z(0) and
the coupling matrix C. According to the definition in the proposition C = Ã, for given T and initial
states Z(0), the node representations Z(T) can be considered as a function of Ã. Let Ã′ = Ã+∆Ã.
Using basic calculus of matrix exponentials (Horn & Johnson, 2012), we have

Z(T ; Ã′)− Z(T ; Ã) = e−(I−Ã′)TZ(0)− e−(I−Ã)TZ(0)

=
[
e−(I−Ã′)T − e−(I−Ã)T

]
Z(0)

=
[
e−(I−Ã′)T − e−(I−Ã)T

]
e(I−Ã)T e−(I−Ã)TZ(0)

=
[
e(Ã

′−Ã)T − I
]
e−(I−Ã)TZ(0)

=
[
e(Ã

′−Ã)T − I
]
Z(T ; Ã).

(30)

The second-to-last step follows eÃ
′+Ã = eÃ

′
eÃ = eÃeÃ

′
which holds for arbitrary Ã′ and Ã that

are commutative. This property is satisfied due to that given the small perturbation ∆Ã, Ã′ and Ã
share the same eigenspace, and Ã′Ã = U−1Λ′UU−1ΛU = U−1Λ′ΛU = U−1ΛΛ′U = ÃÃ′.
From Eqn. 30, we have∥∥∥Z(T ; Ã′)− Z(T ; Ã)

∥∥∥
2
=
∥∥∥(e∆ÃT − I

)
Z(T ; Ã)

∥∥∥
2
≤
∥∥∥e∆ÃT − I

∥∥∥
2
σmax

(
Z(T ; Ã)

)
, (31)

18

Under review as a conference paper at ICLR 2024

where σmax denotes the singular value with the largest magnitude. Moreover, the series expansion of
the matrix exponential induces that

e∆ÃT = I+∆ÃT +
1

2!
∆Ã2T 2 + · · ·+ 1

n!
∆ÃnTn + · · · (32)

Combing Eqn. 31 and 32, we have

∥∥∥Z(T ; Ã′)− Z(T ; Ã)
∥∥∥
2
≤

∥∥∥∥∥
∞∑
k=1

1

k!
(∆Ã)kT k

∥∥∥∥∥
2

σmax

(
Z(T ; Ã)

)
≤

∞∑
k=1

1

k!
∥∆Ã∥k2T kσmax

(
Z(T ; Ã)

)
=
(
e∥∆Ã∥2T − 1

)
σmax

(
Z(T ; Ã)

)
.

(33)

We thus arrive at the result in the proposition and conclude the proof.

B.2 ANALYSIS WITH FEATURE TRANSFORMATIONS

The diffusion model in Eqn. 28 assumes no non-linearity throughout the continuous dynamics and the
neural networks are only applied to ϕenc and ϕdec. Similar to modern graph neural networks (Kipf &
Welling, 2017), the common practice is to insert feature transformations in-between two propagation
layers. In this spirit, the diffusion model can be modified as a cascade of K piecewise continuous
dynamics, where the k-th layer determines the diffusion trajectory from tk−1 to tk and can be
formulated as a differential equation with time boundaries:

∂Z(t; k)

∂t
= (C−I)Z(t; k), t ∈ [tk−1, tk], with initial conditions Z(tk−1; k) = ϕ

(k)
int(Z(tk−1; k−1)).

(34)
The feature transformation ϕ(k)int can be e.g., a fully-connected neural layer with trainable weights and
non-linear activation function. WithK layers as a cascade, the model induces a diffusion process from
t0 = 0 to tK and gives rise to the embedding trajectory: Z(0) = Z(0) → Z(1) → · · · → Z(K), where
Z(k) = Z(tk; k). Despite the potentially better capacity, we can show that the final representations
Z(K) = Z(tK ;K) in this system are also (exponentially) sensitive to the change of graph structures,
which may hinder decent generalization.

Proposition 4. For the graph diffusion model Eqn. 34 with constant coupling matrix C = Ã, the
change of output states Z(tK ;K, Ã) w.r.t. the perturbation ∆Ã is O

(
exp (∥∆Ã∥2tK)

)
.

Proof. The differential equation Eqn. 34 has the closed-form solution for the diffusion dynamics
from tk−1 to tk:

Z(tk−1 + τ ; k) = e−(I−C)τZ(tk−1; k), τ ∈ [0, τk], where τk = tk − tk−1. (35)

Therefore we have Z(tk; k) = e−(I−C)τkZ(tk−1; k). We can treat the representation Z(k) = Z(tk; k)

returned by the k-th layer as a function of C = Ã, and denote the intermediate embeddings of the
k-th layer updates with the following notations associated to Ã:

i) feature transformation: Z(tk−1; k, Ã) = ϕ
(k)
int

(
Z(tk−1; k − 1, Ã

)
,

ii) diffusion propagation: Z(tk; k, Ã) = e−(I−Ã)τkZ(tk−1; k, Ã).
(36)

19

Under review as a conference paper at ICLR 2024

We first prove the case of k = 1, i.e., the diffusion from t0 = 0 to t1. By utilizing the result of
Proposition 1 and the fact Z(t0; 0, Ã) = Z(t0; 0, Ã

′) = Z(0), we have

∥∥∥Z(t1; 1, Ã′)− Z(t1; 1, Ã)
∥∥∥
2

=
∥∥∥e−(I−Ã′)τ1ϕ

(1)
int

(
Z(t0; 0, Ã

′)
)
− e−(I−Ã)τ1ϕ

(1)
int

(
Z(t0; 0, Ã)

)∥∥∥
2

=
∥∥∥e−(I−Ã′)τ1ϕ

(1)
int

(
Z(t0; 0, Ã)

)
− e−(I−Ã)τ1ϕ

(1)
int

(
Z(t0; 0, Ã)

)∥∥∥
2

=
∥∥∥e∆Ãτ1e−(I−Ã)τ1ϕ

(1)
int

(
Z(t0; 0, Ã)

)
− e−(I−Ã)τ1ϕ

(1)
int

(
Z(t0; 0, Ã)

)∥∥∥
2

≤
[
e∥∆Ã∥2τ1 − 1

]
· σmax

(
Z(t1; 1, Ã)

)
(∗)

=
[
e∥∆Ã∥2t1 − 1

]
· σmax

(
Z(t1; 1, Ã)

)
,

(37)

where the step with (∗) follows Eqn. 30 and 31. We thus have the conclusion held.

We next prove the case for arbitrary k ≥ 2. To this end, we resort to an important relationship
formulated via the lemma below.

Lemma 2. The graph diffusion model with layer-wise updating rule of Eqn. 36 induces a relationship
for arbitrary Ã and Ã′:

Z(tk; k, Ã
′) = e∆ÃtkZ(tk; k, Ã). (38)

Proof. We prove this lemma by induction. First, for the case k = 1, we have the result holds:

Z(t1; 1, Ã
′) = e−(I−Ã′)τ1ϕ

(1)
int

(
Z(t0; 0, Ã

′)
)

= e(Ã
′−Ã)τ1e−(I−Ã)τ1ϕ

(1)
int

(
Z(t0; 0, Ã

′)
)

= e(Ã
′−Ã)τ1e−(I−Ã)τ1ϕ

(1)
int

(
Z(t0; 0, Ã)

)
= e∆Ãt1Z(t1; 1, Ã).

(39)

Next, we prove the result for arbitrary k > 1 via induction. Assuming that we have the conclusion
held for the case of k = l − 1, we consider the case of k = l.

Z(tk; k, Ã
′) = e−(I−Ã′)τkϕ

(k)
int

(
Z(tk−1; k − 1, Ã′)

)
= e(Ã

′−Ã)τke−(I−Ã)τkϕ
(k)
int

(
Z(tk−1; k − 1, Ã′)

)
= e(Ã

′−Ã)τke−(I−Ã)τkϕ
(k)
int

(
e∆Ãtk−1Z(tk−1; k − 1, Ã)

)
(∗)

= e∆Ãτke∆Ãtk−1ϕ
(k)
int

(
e−(I−Ã)τkZ(tk−1; k − 1, Ã)

)
(∗∗)

= e∆ÃtkZ(tk; k, Ã),

(40)

where the step with (∗) follows the condition held for k − 1, and the step with (∗∗) stems from the
fact that ϕ(k)int is a node-wise feature map, i.e., commutative with arbitrary propagation matrices.

20

Under review as a conference paper at ICLR 2024

We then go back to the proof for the proposition w.r.t. arbitrary k ≥ 2.∥∥∥Z(tk; k, Ã′)− Z(tk; k, Ã)
∥∥∥
2

=
∥∥∥e−(I−Ã′)τkϕ

(k)
int

(
Z(tk−1; k − 1, Ã′)

)
− e−(I−Ã)τkϕ

(k)
int

(
Z(tk−1; k − 1, Ã)

)∥∥∥
2

=
∥∥∥e−(I−Ã′)τkϕ

(k)
int

(
e∆Ãtk−1Z(tk−1; k − 1, Ã)

)
− e−(I−Ã)τkϕ

(k)
int

(
Z(tk−1; k − 1, Ã)

)∥∥∥
2

(∗)

=
∥∥∥e−(I−Ã′)τke∆Ãtk−1ϕ

(k)
int

(
Z(tk−1; k − 1, Ã)

)
− e−(I−Ã)τkϕ

(k)
int

(
Z(tk−1; k − 1, Ã)

)∥∥∥
2

=
∥∥∥e∆Ãtke−(I−Ã)τkϕ

(k)
int

(
Z(tk−1; k − 1, Ã)

)
− e−(I−Ã)τkϕ

(k)
int

(
Z(tk−1; k − 1, Ã)

)∥∥∥
2

≤
∥∥∥e∆Ãtk − I

∥∥∥
2
·
∥∥∥e−(I−Ã)τkϕ

(k)
int

(
Z(tk−1; k − 1, Ã)

)∥∥∥
2

≤
[
e∥∆Ã∥2tk − 1

]
· σmax

(
Z(tk; k, Ã)

)
,

(41)

where the step with (∗) uses Lemma 2 and the last step follows the similar reasoning of Eqn 31 and
33. We thus conclude the proof for arbitrary k.

B.3 ANALYSIS FOR NON-LINEAR DIFFUSION

We next extend the analysis to the case with time-dependent diffusivity that induces C(Z(t), t;A)
evolving with time in the equation. We assume the dependence between the coupling matrix and time
is fully given by the impact of node states Z(t) at each time, so we use C(Z(t);A) to simplify the
notation. Then the diffusion equation can be written as:

∂Z(t)

∂t
= (C(Z(t);A)− I)Z(t), 0 ≤ t ≤ T, with initial conditions Z(0) = ϕenc(X). (42)

We further instantiate the coupling matrix as a parametric attention function over graph topology that
is adopted by (Chamberlain et al., 2021a):

C(Z(t);A) = [cuv(t)]u,v∈V , cuv(t) = I[(u, v) ∈ E] · η(zu(t), zv(t))∑
w,(u,w)∈E η(zu(t), zw(t))

. (43)

The differential equation becomes non-linear and has no closed-form solution, yet we can extend our
analysis in previous subsections to such a case for the change rate of Z(T ;A) in this system.

Proposition 2. For arbitrary time limit T and bounded function η, the change of Z(T) by the diffusion
model Eqn. 3 with C(Z(t);A) by Eqn. 4 w.r.t. a perturbation ∆A is O (exp (∥∆A∥2T)).

Proof. We are to compare the difference of the node representations Z(T ;A) and Z(T ;A′) given by
the diffusion model with different input graphs. The diffusion dynamics give the relationship

Z(T ;A) =

∫ T

0

∂Z(t;A)

∂t
dt =

∫ T

0

[C(Z(t;A);A)− I]Z(t;A)dt, (44)

Z(T ;A′) =

∫ T

0

∂Z(t;A′)

∂t
dt =

∫ T

0

[C(Z(t;A′);A′)− I]Z(t;A′)dt, (45)

where the coupling matrices C(Z(t;A);A) and C(Z(t;A′);A′) are given by Eqn. 4. We define the
difference between two coupling matrices at arbitrary time t as

∆C(t) = C(Z(t;A′);A′)−C(Z(t;A);A). (46)

The lemma below suggests the magnitude of the gap is bounded by the difference between two
adjacency matrices.

Lemma 3. For any bounded attention function η, the difference between coupling matrices satisfies
(where c is a constant associated with η)

∥∆C(t)∥2 ≤ c(η) · ∥∆A∥2. (47)

21

Under review as a conference paper at ICLR 2024

Proof. We define C(Z(t);A) = N(Z(t);A)U(Z(t);A) where N(Z(t);A) and U(Z(t);A) de-
note the un-normalized attention matrix and (diagonal) normalization matrix, respectively:

U(Z(t);A) = [uuv(t)]u,v∈V , uuv(t) = I[(u, v) ∈ E]η(zu(t), zv(t)), (48)

N(Z(t);A) = diag−1(nu(t))u∈V , nu(t) =
∑

v,(u,v)∈E

η(zu(t), zv(t)). (49)

Furthermore, we define a global un-normalized attention matrix and its (diagonal) normalization
matrix:

U(Z(t)) = [uuv(t)]u,v∈V , uuv(t) = η(zu(t), zv(t)), (50)

N(Z(t)) = diag−1(nu(t))u∈V , nu(t) =
∑
v∈V

η(zu(t), zv(t)). (51)

We thus have the results for attention matrices defined with any two different graphs A, A′:

C(Z(t);A) = N(Z(t);A)U(Z(t);A) = N(Z(t);A)(U(Z(t))⊙A), (52)

C(Z(t);A′) = N(Z(t);A′)U(Z(t);A′) = N(Z(t);A′)(U(Z(t))⊙A′). (53)

By definition we have

∥∆C(t)∥2
= ∥C(Z(t);A′)−C(Z(t);A)∥2
= ∥N(Z(t);A′)(U(Z(t))⊙A′)−N(Z(t);A)(U(Z(t))⊙A)∥2
= ∥(N(Z(t);A′)−N(Z(t);A)) · (U(Z(t))⊙A′) +N(Z(t);A)(U(Z(t))⊙ (A′ −A))∥2.

(54)

Since N(Z(t);A) and N(Z(t);A′) are diagonal matrices and according to Lemma 1, we have

∥N(Z(t);A)(U(Z(t))⊙ (A′ −A))∥2
≤ nmax(N(Z(t);A′)) · ∥U(Z(t))⊙∆A∥2
≤ nmax(N(Z(t);A′)) ·

√
|V| · nmax(U(Z(t))) · ∥∆A∥2.

(55)

On the other side, we have

∥(N(Z(t);A′)−N(Z(t);A)) · (U(Z(t))⊙A′)∥2
≤ ∥N(Z(t);A′)−N(Z(t);A)∥2 · ∥U(Z(t))⊙A′∥2
≤ ∥N(Z(t);A′)∥2∥N(Z(t);A)∥2∥U(Z(t))⊙A′1−U(Z(t))⊙A1∥2 · ∥U(Z(t))⊙A′∥2
= ∥N(Z(t);A′)∥2∥N(Z(t);A)∥2∥U(Z(t))⊙∆A1∥2 · ∥U(Z(t))⊙A′∥2
≤ nmax(N(Z(t);A′))nmax(N(Z(t);A)) ·

√
|V| · ∥U(Z(t))⊙∆A∥2 · ∥U(Z(t))⊙A′∥2

≤ nmax(N(Z(t);A′))nmax(N(Z(t);A)) · |V|3/2 · nmax(U(Z(t))) · σmax(U(Z(t))) · ∥∆A∥2,
(56)

where the last step uses Lemma 1 and the fact nmax(A
′) ≤ 1. Inserting the results of Eqn. 55 and

Eqn. 56 into Eqn. 54 and according to the triangle inequality, we can arrive at the lemma.

We next continue the proof for the proposition. Our proof follows the similar reasoning line of the
proof for Proposition 4 by induction from t = 0 to T , and in particular, we consider the time interval
τ = tk − tk−1 to be infinitesimal.

We first move from t = 0 to t = τ (i.e., an infinitesimal forward from the initial state Z(0)). Since
Z(0;A) = Z(0;A′) = Z(0), one can easily verify through Eqn. 44 and 45 that

Z(τ ;A) = e−(I−C(Z(0);A))τZ(0), Z(τ ;A′) = e−(I−C(Z(0);A′))τZ(0). (57)

22

Under review as a conference paper at ICLR 2024

Then similar to the derivation of Eqn. 37, replacing Ã by C(Z(0);A) and ∆Ã by ∆C(t0) =
C(t0; 1,A

′)−C(t0; 1,A), we can easily have

∥Z(τ ;A′)− Z(τ ;A)∥2
=
∥∥∥e−(I−C(Z(0);A′))τZ(0)− e−(I−C(Z(0);A))τZ(0)

∥∥∥
2

=
∥∥∥e∆C(t0)e−(I−C(Z(0);A))τZ(0)− e−(I−C(Z(0);A))τZ(0)

∥∥∥
2

=
∥∥∥(e∆C(t0) − 1

)
· e−(I−C(Z(0);A))τZ(0)

∥∥∥
2

≤
[
e∥∆C(t0)∥2τ − 1

]
· σmax (Z(τ ;A)) .

(58)

We thus have the conclusion held for t = τ .

We next prove the case for arbitrary t > 0. And, before we delve into such a case, we prove an
important property that acts as the continuous version of Lemma 2.

Lemma 4. The graph diffusion model Eqn. 3 with time-depdendent coupling matrix C(Z(t);A)
induces a relationship for the representations yielded by arbitrary A and A′:

Z(T ;A′) = e
∫ T
0

∆C(t)dtZ(T ;A). (59)

Proof. We prove this lemma by induction. First, for the case T = τ , we have the result:

Z(τ ;A′) = e−(I−C(Z(0);A′))τZ(0)

= e(C(Z(0);A′)−C(Z(0);A))τe−(I−C(Z(0);A))τZ(0)

= e∆C(0)τZ(τ ;A).

(60)

Next, we prove the result for arbitrary T > 0 via induction. Assuming that we have the conclusion
held for T ≤ ts, we consider the case for an infinitesimal forward step ts + τ . According to Eqn. 44
and 45 we can easily have

Z(ts + τ ;A) = e−(I−C(Z(ts;A);A))τZ(ts;A), (61)

Z(ts + τ ;A′) = e−(I−C(Z(ts;A
′);A′))τZ(ts;A

′). (62)

Therefore we can derive the relationship between Z(ts + τ ;A′) and Z(ts + τ ;A):

Z(ts + τ ;A′) = e−(I−C(Z(ts;A
′);A′))τZ(ts;A

′)

= e(C(Z(ts;A
′);A′)−C(Z(ts;A);A))τe−(I−C(Z(ts;A);A))τZ(ts;A

′)

= e∆C(ts)τe−(I−C(Z(ts;A);A))τe
∫ ts
0

∆C(t)dtZ(ts;A) (∗)

= e∆C(ts)τe
∫ ts
0

∆C(t)dte−(I−C(Z(ts;A);A))τZ(ts;A)

= e
∫ ts+τ
0

∆C(t)dtZ(ts + τ ;A),

(63)

where the step with (∗) follows the condition held for t ≤ ts.

23

Under review as a conference paper at ICLR 2024

We then proceed to prove the proposition for arbitrary T > 0.

∥Z(T ;A′)− Z(T ;A)∥2
=
∥∥∥e−(I−C(Z(T−τ ;A′);A′))τZ(T − τ ;A′)− e−(I−C(Z(T−τ ;A);A))τZ(T − τ ;A)

∥∥∥
2

=
∥∥∥e−(I−C(Z(T−τ ;A′);A′))τe

∫ T−τ
0

∆C(t)dtZ(T − τ ;A)− e−(I−C(Z(T−τ ;A);A))τZ(T − τ ;A)
∥∥∥
2

(∗)

=
∥∥∥e−(I−C(Z(T−τ ;A);A))τe∆C(T−τ)τe

∫ T−τ
0

∆C(t)dtZ(T − τ ;A)− e−(I−C(Z(T−τ ;A);A))τZ(T − τ ;A)
∥∥∥
2

=
∥∥∥e∫ T

0
∆C(t)dte−(I−C(Z(T−τ ;A);A))τZ(T − τ ;A)− e−(I−C(Z(T−τ ;A);A))τZ(T − τ ;A)

∥∥∥
2

≤
∥∥∥e∫ T

0
∆C(t)dt − I

∥∥∥
2
·
∥∥∥e−(I−C(Z(T−τ ;A);A))τZ(T − τ ;A)

∥∥∥
2

=
∥∥∥e∫ T

0
∆C(t)dt − I

∥∥∥
2
· σmax (Z(T − τ ;A))

≤
[
ec∥∆A∥2T − 1

]
· σmax (Z(T − τ ;A)) ,

(64)

where the step with (∗) is due to Lemma 4 and the last step can be obtained by the series expansion
of matrix exponential along with Lemma 3. We thus conclude the proof for arbitrary T .

B.4 ANALYSIS FOR NON-LOCAL DIFFUSION WITH GLOBAL DIFFUSIVITY

Non-local diffusion is distinguished from the local diffusion discussed in previous subsections,
stemming from the different diffusion process enabling quantity transfers between any location pairs
in the system. In the context of learning on graphs, the generic non-local diffusion equations can also
be described via the following equation:

∂Z(t)

∂t
= (C(Z(t))− I)Z(t), 0 ≤ t ≤ T, with initial conditions Z(0) = ϕenc(X), (65)

where the difference from local diffusion lies in the coupling function C(Z(t)) that allows non-zero
entries cuv’s for arbitrary node pair (u, v) ∈ V × V . Specifically, as an extension of the attention
defined over graph structures, we can consider the global attention that computes similarities between
arbitrary node pairs:

C(Z(t)) = [cuv(t)]u,v∈V , cuv(t) =
η(zu(t), zv(t))∑

w,(u,w)∈E η(zu(t), zw(t))
. (66)

In this way, the feed-forward of the diffusion model becomes independent of A and we have the
following result that gives the generalization bound under a specific condition of data-generating
assumption.

Proposition 3. Suppose the label Y is conditionally independent from A with given {Uu}u∈V in the
data generation hypothesis of Sec. 3.1, then for non-local diffusion model Γθ minimizing the empirical
risk Remp(Γθ;Etr) = 1

Ntr

∑Ntr

i l(Γθ(X
(i),A(i)),Y(i)) over training data {(X(i),A(i),Y(i))}

generated from p(X,A, Y |E = Etr), it holds with confidence 1− δ for the bounded generalization
error on unseen data (X′,A′,Y′) from a new environment Ete ̸= Etr :R(Γθ;Ete) ≜

E(X′,A′,Y′)∼p(X,A,Y |E=Ete)[l(Γθ(X
′,A′),Y′)] ≤ Remp(Γθ;Etr) +D1(Γ, Ntr), (67)

where D1(Γ, Ntr) = 2H(Γ) +O
(√

(1/Ntr) log(1/δ)
)

, H(Γ) denotes the Rademacher complexity
of the function class of Γ, Ntr is the size of the training set, and l denotes any bounded loss function.

Proof. Since the generation of the label Y is assumed to be independent from A (i.e., the dependence
path from A to Y is cut off in Fig. 1), we therefore have the following two properties:

p(X,Y |E = Etr) = p(X,Y |E = Ete), (68)

24

Under review as a conference paper at ICLR 2024

p(X,A, Y |E) = p(X,Y |E)p(A|E). (69)
The node features X and labels Y can be treated as generated from an identical distribution shared
by training and testing sets.

Moreover, since the non-local diffusion model as defined in Sec. 3.3 does not leverage any information
of input graphs A, we have the following result

l(Γθ(X,A),Y) = l(Γθ(X,A
′),Y), ∀A,A′. (70)

Then consider the expectation of the error on testing data
R(Γθ;E) = E(X,A,Y)∼p(X,A,Y |E) [l(Γθ(X,A),Y)] . (71)

For any graph adjacency matrix A∗ ∈ supp(p(A)) from the support of p(A), we have the relationship
E(X′,A′,Y′)∼p(X,A,Y |E=Ete) [l(Γθ(X

′,A′),Y′)]

= E(X′,Y′)∼p(X,Y |E=Ete),A′∼p(A|Ete) [l(Γθ(X
′,A′),Y′)]

= E(X′,Y′)∼p(X,Y |E=Ete) [l(Γθ(X
′,A∗),Y′)]

= E(X′,Y′)∼p(X,Y |E=Etr) [l(Γθ(X
′,A∗),Y′)]

= E(X,Y)∼p(X,Y |E=Etr),A∼p(A|Etr) [l(Γθ(X,A),Y)]

= E(X,A,Y)∼p(X,AY |E=Etr) [l(Γθ(X,A),Y)] .

(72)

The above result indicates R(Γθ;Etr) = R(Γθ;Ete). Then for any bounded loss function l, the
existing result based on the Rademacher complexity (Shalev-Shwartz & Ben-David, 2014) gives the
generalization error bound

R(Γθ;Ete) = R(Γθ;Etr) ≤ Remb(Γθ;Etr) + 2H(Γ) +O

√ log(1/δ)

Ntr

 , (73)

where H(Γ) denotes the Rademacher complexity of the function class induced by Γ. We thus
conclude the proof for the proposition.

C ANALYSIS AND PROOFS IN SECTION 4

Theorem 1. For the advective diffusion model Eqn. 7 with C pre-computed by global attention over
Z(0) and fixed velocity V = Ã, the change rate of node representations Z(T ; Ã) w.r.t. ∆Ã can be
reduced to O(ψ(∥∆Ã∥2)) where ψ denotes an arbitrary polynomial function.

Proof. The advective diffusion equation with coupling matrix C pre-computed by attention network
η(zu(0), zv(0)) and fixed velocity V = Ã, we have its closed-form solution

Z(T) = e−(I−C−βÃ)TZ(0), T ≥ 0. (74)
We next conclude the proof by construction. Notice that the initial states are given by the encoder
MLP Z(0) = ϕenc(X). According to our data generation hypothesis in Fig. 1, we know that
node embeddings are generated from the latents of each node (we use uu to denote the realization
of Uu): xu = g(Uu;W) and graph adjacency is generated through a pair-wise function auv =
h(Uu,Uv;W,E). We can construct a mapping to obtain a propagation matrix in the form of
C = C+m log(I+ Ã)− βÃ, where C is independent from A and m is an arbitrary non-negative
number, from the composition of the MLP encoder ϕenc and attention network η due to the universal
approximation results that hold for MLPs on the compact set (Hornik et al., 1989).

Then we consider the difference between node representations generated by two graph adjacency
matrices:
Z(T ; Ã′)− Z(T ; Ã) = e−(I−C′−βÃ′)TZ(0)− e−(I−C−βÃ′)TZ(0)

=
[
e−(I−C−m log(I+Ã′)+βÃ′−βÃ′)T − e−(I−C−m log(I+Ã)+βÃ−βÃ)T

]
Z(0)

=
[
e(m log(I+Ã′)−m log(I+Ã))T − I

]
e−(I−C−m log(I+Ã))TZ(0)

=
[
(I+ Ã′)mT (I+ Ã)−mT − I

]
Z(T ; Ã),

(75)

25

Under review as a conference paper at ICLR 2024

where the penultimate step is based on the commutative property form log(I+Ã) andm log(I+Ã′)

given the small perturbation ∆Ã. We proceed to consider the L2 norm of the difference:∥∥∥Z(T ; Ã′)− Z(T ; Ã)
∥∥∥
2
≤
∥∥∥(I+ Ã′)mT (I+ Ã)−mT − I

∥∥∥
2
σmax

(
Z(T ; Ã)

)
=
∥∥∥(I+ Ã+∆Ã)mT (I+ Ã)−mT − I

∥∥∥
2
σmax

(
Z(T ; Ã)

)
= O(∥∆Ã∥mT

2).

(76)

Therefore we conclude the proof for the theorem.

Theorem 2. Assume l and ϕdec are Lipschitz continous. Then for any data gener-
ated with the data generation hypothesis of Sec. 3.1, if Γθ minimizing the empirical risk
Remp(Γθ;Etr) =

1
Ntr

∑Ntr

i=1 l(Γθ(X
(i),A(i)),Y(i)) over training data {(X(i),A(i),Y(i))} gener-

ated from p(X,A, Y |E = Etr), the generalization error on unseen data (X′,A′,Y′) from a new
environment Ete ̸= Etr would have an upper bound that holds with the confidence 1− δ:

R(Γθ;Ete) ≤ Remp(Γθ;Etr) +D1(Γ, Ntr) +D2(Etr, Ete,W), (77)

where D2(Etr, Ete,W) = O(EA∼p(A|Etr),A′∼p(A|Ete)[ψ(∥∆A∥2)]).

Proof. According to the data generation in Fig. 1, for given node latents Uu’s, we can decompose the
joint distribution into

p(X,A, Y |E) = p(X|E)p(A|E)p(Y |A,E). (78)

Also, by definition in Sec. 3.1 we have

p(X|E = Etr) = p(X|E = Ete), (79)

p(Y |A,E = Etr) = p(Y |A,E = Ete). (80)

We next consider the gap between R(Γθ;Etr) and R(Γθ;Ete):

|R(Γθ;Ete)−R(Γθ;Etr)|
=
∣∣E(X′,A′,Y′)∼p(X,A,Y |E=Ete)[l(Γθ(X

′,A′),Y′)]− E(X,A,Y)∼p(X,A,Y |E=Etr)[l(Γθ(X,A),Y)]
∣∣

=
∣∣EX′∼p(X|Ete),A′∼p(A|Ete),Y′∼p(Y |A=A′,Ete))[l(Γθ(X

′,A′),Y′)]

− EX∼p(X|Etr),A∼p(A|Etr),Y∼p(Y |A=A,Etr))[l(Γθ(X,A),Y)]
∣∣

≤ |EX′∼p(X|Ete),A′∼p(A|Ete),Y′∼p(Y |A=A′,Ete))[l(Γθ(X
′,A′),Y′)]

− EX∼p(X|Etr),A∼p(A|Etr),Y′∼p(Y |A=A′,Etr))[l(Γθ(X,A),Y′)]| (∗)
= |EX′∼p(X|Ete),A′∼p(A|Ete),Y′∼p(Y |A=A′,Ete))[l(Γθ(X

′,A′),Y′)]

− EX′∼p(X|Ete),A∼p(A|Etr),Y′∼p(Y |A=A′,Etr))[l(Γθ(X,A),Y′)]|
= |EX′∼p(X|Ete),A′∼p(A|Ete),Y′∼p(Y |A=A′,Ete))[l(Γθ(X

′,A′),Y)]

− EX′∼p(X|Ete),A∼p(A|Etr),Y′∼p(Y |A=A′,Ete))[l(Γθ(X
′,A),Y′)]|

= |EX′∼p(X|Ete),A∼p(A|Etr),A′∼p(A|Ete),Y′∼p(Y |A=A′,Ete))[l(Γθ(X
′,A′),Y′)− l(Γθ(X

′,A),Y′)]|
≤ EX′∼p(X|Ete),A∼p(A|Etr),A′∼p(A|Ete),Y′∼p(Y |A=A′,Ete)) [|l(Γθ(X

′,A′),Y′)− l(Γθ(X
′,A),Y′)|] ,

(81)

where the step with (∗) follows the observation that for a well-trained model Γθ, (X,A,Y) ∼
p(X,A, Y |E = Etr) and Y′ ̸= Y, it almost surely holds that l(Γθ(X,A),Y) ≤ l(Γθ(X,A),Y′).

Moreover, due to the Lipschitz continuity of l and ϕdec, we have

|l(Γθ(X
′,A′),Y′)− l(Γθ(X

′,A),Y′)| ≤ L · ∥Z(T ;A′)− Z(T ;A)∥2 . (82)

Combing Eqn. 81, Eqn. 82 and the result of Theorem 1, we have

|R(Γθ;Ete)−R(Γθ;Etr)| ≤ LC · EA∼p(A|Etr),A′∼p(A|Ete)

[
∥∆Ã∥mT

2

]
. (83)

26

Under review as a conference paper at ICLR 2024

where C is a constant. Moreover, we have the relationship between the empirical risk Remb(Γθ;Etr)
and the in-distribution generalization error R(Γθ;Etr)

|Remb(Γθ;Etr)−R(Γθ;Etr)| ≤ 2H(Γ) +O

√ log(1/δ)

Ntr

 . (84)

The conclusion for the main theorem can be obtained via combining Eqn. 83 and 84 using the
triangle inequality.

D APPROXIMATION STRATEGIES FOR DIFFUSION PDE SOLUTIONS

The closed-form solutions of linear diffusion equations often involve the form of matrix exponential
e−Lt, which is intractable for computing its exact value. There are many established techniques
based on numerical approximations, e.g., series expansion, in this fundamental challenge. In our
presented model in Sec. 4.3, we propose two implementation versions based on two approximation
ways for handling the closed-form solution of the advective diffusion equations on graphs.

Approximation with Linear Systems. One scalable scheme proposed by Gallopoulos & Saad (1992)
is via the extension of the minimax Padé-Chebyshev theory to rational fractions (Golub & Van Loan,
1989). This approximation technique has been utilized by Patané (2014) as an effective and efficient
method for spectrum-free computation of the diffusion distances in 3D shape analysis. In specific, the
matrix exponential of the form e−Lt is approximated by the combination of multiple matrix inverses:

exp (−Lt) ≈ −
r∑

i=1

αi(L+ θiI)
−1, (85)

where αi and θi can be pre-defined parameters Gallopoulos & Saad (1992). To unleash the capacity
of neural networks, in Sec. 4.3, our model implementation (ADIT-INVERSE) extends this scheme to
a multi-head network where each head contributes to propagation with independently parameterized
attention networks. The matrix inverse is computed with the linear system solver that is available in
common deep learning tools (e.g., PyTorch) and supports automatic differentiation.

Approximation with Geometric Series. When the graph sizes become large, the matrix inverse
can be computationally expensive. For better scalability, we can use the geometric series for
approximation:

(L+ θiI)
−1 =

∞∑
k=0

(−1)kθ
−(k+1)
i Lk ≈

K∑
k=0

(−1)kθ
−(k+1)
i Lk. (86)

In this way, the matrix exponential can be approximately computed via a combination of finite series:

exp (−Lt) ≈ −
r∑

i=1

αi

K∑
k=0

(−1)kθ
−(k+1)
i Lk. (87)

In our model, the closed-form solution for the PDE induces L = (I−C− βÃ), and the summation
in Eqn. 87 can be expressed as a weighted sum of Pk = (C+ βÃ)k for k = 0, · · · ,K. Our model
implementation (ADIT-SERIES) proposed in Sec. 4.3 generalizes the weighted sum to a one-layer
neural network.

E MODEL IMPLEMENTATIONS AND ALGORITHMS

In this section, we provide detailed and self-contained descriptions about our model architectures in
Appendix E.1. Then in Appendix E.2, we discuss how to apply our model to various graph-structured
data with additional input information. To make the presentation clear and focused on the model
implementation side, we will re-define some notations that are originally defined in Sec. 4, where we
formulate the model with the terminology of the PDE domain.

27

Under review as a conference paper at ICLR 2024

E.1 MODEL ARCHITECTURES

The model takes a graph G = (V, E ,X,A) as input, and output prediction in the downstream tasks.
We assume the number of nodes in the graph |V| = N , node feature matrix X ∈ RN×D and graph
adjacency matrix A ∈ {0, 1}N×N . We use D to denote the diagonal degree matrix of A. The
normalized adjacency is denoted by Ã, and 1 is an all-one N -dimensional column vector. In this
subsection, we assume G has no edge weight or edge feature for presentation, and with loss of
generality, we will discuss how to incorporate these additional attributes in Appendix E.2.

E.1.1 INSTANTIATIONS AND PARAMETERIZATIONS

Our model is comprised of three modules: the encoder ϕenc, the decoder ϕdec, and the propagation
network in-between the first two.

Encoder: The node features X = [xu]u∈V ∈ RN×D are first mapped to embeddings in the latent
space Z(0) = [z

(0)
u]u∈V ∈ RN×d via the encoder: Z(0) = ϕenc(X). The encoder ϕenc(·) is

instantiated as a shallow MLP with non-linear activation (e.g., ReLU).

Propagation: The propagation network converts the initial node embeddings Z(0) to the node
representations Z = [zu]u∈V ∈ RN×d (where Z(0) and Z are the re-defined counterparts of Z(0) and
Z(T), respectively, presented in Sec. 4). The propagation network is implemented via a multi-head
network with H heads involving the attention network η(h)(·, ·) and feature transformation network
ϕ
(h)
FC(·). The latter is instantiated as a fully-connected layer WO,h, and the attention network is

instantiated as a normalized dot-product positive similarity function:

η(h)(z(0)u , z(0)v) = 1 +

(
WQ,hz

(0)
u

∥WQ,hz
(0)
u ∥2

)⊤(
WK,hz

(0)
v

∥WK,hz
(0)
v ∥2

)
,

Ch = {c(h)uv }, c(h)uv =
η(h)(z

(0)
u , z

(0)
v)∑

w∈V η
(h)(z

(0)
u , z

(0)
w)

,

(88)

where WQ,h ∈ Rd×d and WK,h ∈ Rd×d are trainable weights for query and key, respectively, of
the h-th head. Then the node representations will be computed in different ways by two models.

• For ADIT-INVERSE, the node representations are calculated via

Lh = (1 + θ)I−Ch − βÃ,

Zh = linsolver(Lh,Z
(0)),

Z =

H∑
h=1

ZhWO,h,

(89)

where WO,h ∈ Rd×d. Alg. 1 summarizes the feed-forward computation of ADIT-INVERSE.

• For ADIT-SERIES, the node representations are computed by

Ph = Ch + βÃ,

Z(k) = PhZ
(k−1), for k = 1, · · ·K,

Z =

H∑
h=1

[Z(0),Z(1), · · · ,Z(K)]WO,h,

(90)

where WO,h ∈ R(K+1)d×d. To accelerate the computation of Eqn. 90, we can inherit the
strategy used in Wu et al. (2023) and alter the order of matrix products, which reduces
the time and space complexity to O(N) (see Appendix E.1.2 for detailed illustration).
Alg. 2 presents the feed-forward computation of ADIT-SERIES that only requires O(N)
algorithmic complexity.

28

Under review as a conference paper at ICLR 2024

Algorithm 1 Feed-Forward of the Model ADIT-INVERSE.

INPUT: Node feature matrix X and normalized adjacency matrix Ã.
Z(0) = ϕenc(X)
for h = 1, · · · , H do

ZQ,h =

[
WQ,hz

(0)
u

∥WQ,hz
(0)
u ∥2

]
u∈V

, ZK,h =

[
WK,hz

(0)
u

∥WK,hz
(0)
u ∥2

]
u∈V

Uh = 11⊤ + ZQ,h(ZK,h)
⊤

Ch = diag−1 (Uh1)Uh

Lh = (1 + θ)I− Sh − βÃ
Zh = linsolver(Lh,Z)

Z =
∑H

h=1 ZhWO,h

OUTPUT: Node representations Z and predicted labels with ϕdec(Z).

Decoder: The decoder ϕdec(·) transforms the node representations into prediction. Depending on the
specific downstream tasks, the decoder can be implemented in different ways:

(node-level prediction): ŷu = MLP(zu)
(graph-level prediction): ŷ = MLP(SumPooling({zu}u∈V))

(edge-level prediction): ŷuv = MLP([zu, zv]).
(91)

In particular, the softmax activation is used for output in classification tasks. For training, we adopt
standard loss functions, i.e., cross-entropy for classification and mean square loss for regression.

E.1.2 ACCELERATION OF ADIT-SERIES WITH LINEAR COMPLEXITY

We illustrate how to achieve the propagation of ADIT-SERIES in Eqn. 90 with O(N) complexity. With

the query and key matrices defined by ZQ,h =

[
WQ,hz

(0)
u

∥WQ,hz
(0)
u ∥2

]
u∈V

and ZK,h =

[
WK,hz

(0)
u

∥WK,hz
(0)
u ∥2

]
u∈V

,

the attention matrix Ch in Eqn. 88 is computed by (in the matrix form used for implementation)

Ch = diag−1
(
N + ZQ,h (ZK,h)

⊤
1
)(

11⊤ + ZQ,h (ZK,h)
⊤
)
. (92)

Computing the above result requires O(N2) time and space complexity. Still, if we consider the
feature propagation with Ch, we have

ChZ
(k)
h = diag−1

(
N + ZQ,h (ZK,h)

⊤
1
)
·
(
11⊤ + ZQ,h (ZK,h)

⊤
)
· Z(k)

h

= diag−1
(
N + ZQ,h

(
(ZK,h)

⊤1
))

·
[
1
(
1⊤Z

(k)
h

)
+ ZQ,h

(
(ZK,h)

⊤Z
(k)
h

)]
,

(93)

where the equality is achieved by altering the order of matrix products. The above computation only
requires O(N) time and space complexity. The feed-forward computation of ADIT-SERIES with
O(N) acceleration is summarized in Alg. 2.

E.2 APPLICABILITY OF OUR MODEL

In the main paper, we assume unweighted graphs without edge attribute features for model formulation.
Without loss of generality, we next discuss how to extend our model to handle the edge weights and
edge features.

Edge Weights. For weighted graphs, the adjacency matrix A would become a real matrix where the
entry auv denotes the weight on the edge (u, v) ∈ E . In this situation, we still have the corresponding
normalized adjacency Ã = D−1A or Ã = D−1/2AD−1/2, where D = diag([du]u∈V) and
du =

∑
v,(u,v)∈E auv . Our model implementations can be trivially generalized to this case by using

Ã as the propagation matrix for local message passing.

Edge Features. If the graph contains edge features, denoted by E = [euv](u,v)∈E ∈ R|E|×D′
, we

introduce an encoding layer WE ∈ RD′×d for mapping the edge features into embeddings in the

29

Under review as a conference paper at ICLR 2024

Algorithm 2 Feed-Forward of the Model ADIT-SERIES (with O(N) complexity).

INPUT: Node feature matrix X and normalized adjacency matrix Ã.
Z(0) = ϕenc(X)
for h = 1, · · · , H do

ZQ,h =

[
WQ,hz

(0)
u

∥WQ,hz
(0)
u ∥2

]
u∈V

, ZK,h =

[
WK,hz

(0)
u

∥WK,hz
(0)
u ∥2

]
u∈V

Nh = diag−1
(
N + ZQ,h

(
(ZK,h)

⊤1
))

Z
(0)
h = Z(0)

for k = 1, · · · ,K do
Z

(k)
h = Nh ·

[
1
(
1⊤Z

(k−1)
h

)
+ ZQ,h

(
(ZK,h)

⊤Z
(k−1)
h

)]
+ βÃZ

(k−1)
h

Zh = [Z
0)
h ,Z

(1)
h , · · · ,Z(K)

h]

Z =
∑H

h=1 ZhWO,h

OUTPUT: Node representations Z and predicted labels with ϕdec(Z).

latent space and then incorporate them with node embeddings. In specific, we first compute the
edge-to-node signals:

M = [mu]u∈V , mu =
∑

v,(u,v)∈E

Ãu,vWEeuv. (94)

• For ADIT-INVERSE, we can modify Eqn. 89 as

Lh = (1 + θ)I−Ch − βÃ,

Zh = linsolver
(
Lh, (Z

(0) +M)
)
,

Z =

H∑
h=1

ZhWO,h.

(95)

• For ADIT-SERIES, we can modify Eqn. 90 to be

Ph = Ch + βÃ,

Z(k) = Ph(Z
(k−1) +M), k = 1, · · ·K,

Z =

H∑
h=1

[Z(0),Z(1), · · · ,Z(K)]WO,h,

(96)

F EXPERIMENT DETAILS

We supplement details for our experiments, regarding datasets, competitors, and implementations, for
facilitating the reproducibility.

F.1 DATASETS

The datasets we use for the experiments in Sec. 5 span diverse domains and learning tasks. We
summarize the statistics and brief descriptions for each dataset in Table 4, with the detailed information
presented in the following subsections.

F.1.1 SYNTHETIC DATASETS

The synthetic datasets used in Sec. 5.1 simulate the graph data generation in Sec. 3.1, where the
topological distribution shifts are caused by the difference of environments across training and testing
data. In specific, we generate graphs of |V| = 1000 nodes, with the node features X, graph adjacency
matrix A and labels Y generated by the following process.

30

Under review as a conference paper at ICLR 2024

Table 4: Statistics and descriptions for experimental datasets.

Dataset #Nodes #Edges #Graphs Train/Val/Test Split Task Metric

Synthetic-h 1,000 14,064 - 32,066 12 SBM (Homophily) Node Regression RMSE
Synthetic-d 1,000 7,785 - 13,912 12 SBM (Density) Node Regression RMSE
Synthetic-b 1,000 14,073 - 59,936 12 SBM (Block Number) Node Regression RMSE

Twitch 1,912 - 9,498 31,299 - 153,138 7 Geographic Domain Node Classification ROC-AUC
Arxiv 169,343 1,166,243 1 Publication Time Node Classification Accuracy

OGB-BACE 10 - 97 10 - 101 1,513 Molecular Scaffold Graph Classification ROC-AUC
OGB-SIDER 1 - 492 0 - 505 1,427 Molecular Scaffold Graph Classification ROC-AUC

DDPIN-nr 143 - 5,003 22 - 25,924 12 Protein Identification Method Node Regression RMSE
DDPIN-er 143 - 5,003 22 - 25,924 12 Protein Identification Method Edge Regression RMSE
DDPIN-lp 143 - 5,003 22 - 25,924 12 Protein Identification Method Link Prediction ROC-AUC

HAM 8 - 25 7 - 29 1,987 Relative Molecular Mass Edge Classification Accuracy

• Each node u ∈ V is assigned with a scalar uu randomly sampled from the uniform distribu-
tion U [0, 1].

• For the generation of node features X = [xu]u∈V , we instantiate the node-wise function g
as a 2-layer MLP with ReLU activation and 4-dimensional output. Then the node feature
xu is generated through xu = MLP(uu).

• For the generation of graph adjacency A = [auv]u,v∈V , we instantiate the pairwise function
h as the stochastic block model (Snijders & Nowicki, 1997) which generates edges according
to the intra-block edge probability (p1) and the inter-block edge probability (p2). We map
the nodes into b blocks by the following rule: for node u ∈ V , we assign it to the k-th block
if vu ∈ [k−1

b , kb) (where 1 ≤ k ≤ b). Then the edge auv is randomly generated from a
bernoulli distribution with p1 if u and v are in the same block, and p2 otherwise.

• For the generation of labels Y, we consider the regression tasks and each node has a
label yu generated through an ensemble model of a 2-layer GCN and a 1-layer DIFFormer
(without using the graph-based propagation) with random initializations: Y = gcn(U,A) +
difformer(U,A), where U = [uu]u∈V .

Using the above data generation, we create 12 graphs with the indices #1∼ #12, and use the graph
#1 for training, the graph #2 for validation, and the graphs #3∼ #12 for testing. The topological
distribution shifts are introduced in three different ways as described in Sec. 5.1, where in each case,
the detailed configurations for p1, p2 and b are illustrated below.

• Homophily Shift: p1 = 0.1, b = 5 and p2 = 0.01 + 0.05 ∗ 1
12 ∗ (i− 1) for the graph #i.

• Density Shift: b = 5, p1 = 0.1 + 0.1 ∗ 1
12 ∗ (i− 1) and p2 = 0.01 + 0.1 ∗ 1

12 ∗ (i− 1) for
the graph #i.

• Block Shift: p1 = 0.1, p2 = 0.01 and b = 5 + (i− 1) for the graph #i.

F.1.2 INFORMATION NETWORKS

The citation network Arxiv provided by Hu et al. (2020) consists of a single graph with 0.16M
nodes, where each node represents a paper with the publication year (ranging from 1960 to 2020) and
a subarea id (from 40 different subareas in total). The node attribute features are 128-dimensional
obtained by averaging the word embeddings of the paper’s title and abstract. The edges are given
by the citation relationship between papers. The predictive task is to estimate the paper’s subarea.
We use the publication years to split the data: papers published before 2014 for training, within
the range from 2014 to 2017 for validation, and on 2018/2019/2020 for testing. Since there is a
single graph, to increase the difficulty of generalization, we consider the inductive setting: the testing
nodes are not contained in the training graph. Table 6 demonstrates the dissimilar statistics for
training/validation/testing graphs, manifesting the existence of topological shifts. Following the
common practice, we use Accuracy as the evaluation metric.

Twitch (Rozemberczki et al., 2021) is comprised of seven dis-connected graphs, where each node
represents a Twitch user and edges indicate the friendship. Each graph is collected from the social
newtork in a particular region, including DE, ENGB, ES, FR, PTBR, RU and TW. The node features

31

Under review as a conference paper at ICLR 2024

Table 5: Statistics for training/validation/testing graphs on Arxiv. There is a single citation network
that augments with time evolving, and with the data splits in the inductive setting, the previous graph
is contained by the subsequent one.

Train (1960-2014) Valid (2015-2017) Test 1 (2018) Test 2 (2019) Test 3 (2020)
Target Nodes 41,125 49,816 29,799 39,711 8,892
All Nodes 41,125 90,941 120,740 160,451 169,343
All Edges 102,316 374,839 622,466 1,061,197 1,166,243
Max Degrees 275 3,036 6,251 12,006 13,161
Avg Degrees 4.98 8.24 10.31 13.23 13.77

are multi-hot with 2,545 dimensions indicating the user’s profile. The predictive task is to classify the
gender of the user. The seven networks with sizes ranging from 2K to 9K have distinct structural
characteristics (such as densities and maximum degrees) as observed by Wu et al. (2022a). We
therefore split the data according to the geographic information: use the network DE for training,
ENGB for validation, and the remaining networks for testing. The evaluation metric is ROC-AUC for
binary classification.

F.1.3 MOLECULAR PROPERTY PREDICTION

The molecule datasets OGB-BACE and OGB-SIDER are released by Hu et al. (2020) and the task is
to identify the target molecular properties. Each dataset contains a collection of molecules, where
each molecule is a graph with dozens of atom nodes and bond edges. The node features are 9-
dimensional, composed of the atom’s characteristics (e.g., atomic number, chirality, normal charge,
etc.). Additionally, each bond edge has a 3-dimensional feature indicating the bond type, bond
stereochemistry and whether the bond is conjugated.

We follow the pre-processed steps used by Hu et al. (2020) and adopt its released public splits,
which partition the molecules of each dataset into training/validation/testing ones with the ratio
80%/10%/10% based on molecular scaffolds. The latter guarantees that the molecules in the testing
set are maximally different from the training set w.r.t. structural characteristics, allowing us to
evaluate the model’s performance on the challenging topological generalization. We follow the
common practice using ROC-AUC for performance evaluation.

F.1.4 BIOLOGICAL PROTEIN INTERACTIONS

DDPIN (Fu & He, 2022) contains 12 individual dynamic network datasets at different scales, and each
dataset is a dynamic protein-protein interaction network that describes the protein-level interactions
of yeast cells. Each graph dataset is obtained by one protein identification method and consists
of 36 graph snapshots, wherein each node denotes a protein that has a sequence of 1-dimensional
continuous features with 36 time stamps. This records the evolution of gene expression values within
metabolic cycles of yeast cells. The edges in the graph are determined by co-expressed protein pairs
at one time, and each edge is associated with a co-expression correlation coefficient.

We consider the predictive tasks within each graph snapshot and ignore the temporal evolution
between different snapshots. In specific, we use the graph topology of each snapshot as the observed
graph adjacency A and use the gene expression values at the previous 10 time steps as node
features X. On top of this, we consider three different predictive tasks: 1) node regression for
gene expression value at the current time (measured by RMSE); 2) edge regression for predicting
the co-expression correlation coefficient (measured by RMSE); 3) link prediction for identifying
co-expressed protein pairs (measured by ROC-AUC). Given the fact that each graph dataset has
distinct sizes (ranging from 143 to 5,003 nodes) and distributions of 3-cliques and 4-cliques (ranging
from 0 to hundreds) (Fu & He, 2022), we consider the dataset-level data splitting and use 6/1/5 graph
datasets for training/validation/testing, which introduces topological distribution shifts.

F.1.5 MOLECULAR MAPPING OPERATOR GENERATION

The Human Annotated Mappings (HAM) dataset (Li et al., 2020) consists of 1,206 molecules with
expert annotated mapping operators, i.e., a representation of how atoms are grouped in a molecule.
The latter segments the atoms of a molecule into groups of varying sizes. As an important step in

32

Under review as a conference paper at ICLR 2024

molecular dynamics simulation, generating coarse-grained mapping operators aims to reproduce
the mapping operators produced by experts. This task can be modeled as a graph segmentation
problem (Li et al., 2020) which takes a molecule graph as input and outputs the labels for each edge
that indicates if there is cut needed to partition the source and end atoms into different groups.

For data splits, we calculate the relative molecular mass of each molecule using the RDKit package3,
and rank the molecules with increasing mass. Then we use the first 70% molecules for training,
the following 15% for validation, and the remaining for testing. This splitting protocol partitions
molecules with different weights, and requires generalization from small molecules in the training set
to larger molecules in the testing set.

Table 6: The range of relative molecular mass for training/validation/testing molecules in HAM.

Train Valid Test
Relative Molecular Mass 108.18 ∼ 273.34 273.34 ∼ 311.14 311.14 ∼ 762.94

F.2 COMPETITORS

In our experiments, we compare with peer encoder backbones for graph learning tasks. The competi-
tors span three aspects: 1) classical GNNs, 2) diffusion-based GNNs, and 3) graph Transformers. We
briefly introduce the competitors and illuminate their connections with our model.

• GCN (Kipf & Welling, 2017) is a popular model that propagates node embeddings over
observed graphs for computing node representations, which can be seen as the discretized
version of graph diffusion equations with feature transformations. While the model architec-
ture is simple, GCN is still a strong competitor in graph learning tasks, as shown by quite a
few recent empirical studies.

• GAT (Velickovic et al., 2018) introduces attention networks for computing pairwise weights
for neighboring nodes in the graph and propagates node signals with adaptive strengths
given by the attention weights. GAT can be seen as the discretized version of the non-linear
graph diffusion equation.

• SGC (Wu et al., 2019) proposes to simplify the GCN architecture by removing the feature
transformations in-between propagation layers, reducing multi-layer propagation to one-
layer. This brings up significant acceleration for training and inference. SGC can be seen as
the discretization of the linear diffusion equation on graphs.

• GDC (Klicpera et al., 2019) extends the graph convolution operator to graph diffusion
convolution derived from the linear diffusion equation on graphs. We use its implementation
version based on the heat kernel for diffusion coefficients.

• GRAND (Chamberlain et al., 2021a) proposes graph neural diffusion, a continuous PDE
model, that generalizes manifold diffusion to graphs and then uses numerical schemes to
solve the PDE. We compare with its linear version that implements the linear graph diffusion
equation.

• GraphTrans (Wu et al., 2021) is a recently proposed Transformer for graph-structured
data that satisfies the permutation-invariant property. The model architecture sequentially
combines GNNs and Transformers in order, where the GNN can learn local, short-range
structures and the Transformer can capture global, long-range relationships.

• GraphGPS (Rampásek et al., 2022) introduces a scalable and powerful Transformer model
class for graph data and achieves state-of-the-art results on molecular property predic-
tion benchmarks. We use its scalable implementation version with the Performer atten-
tions (Choromanski et al., 2021).

• DIFFormer (Wu et al., 2023) is a scalable Transformer inspired by diffusion on graphs. The
model is comprised of principled attention layers, which implements the diffusion iterations
minimizing a global energy. The architecture integrates graph-based feature propagation and
global attention in each layer. We use its version with simple diffusivity that only requires
linear complexity and yields state-of-the-art results on some large-graph benchmarks.

3https://github.com/rdkit/rdkit

33

https://github.com/rdkit/rdkit

Under review as a conference paper at ICLR 2024

F.3 IMPLEMENTATION DETAILS

Computation Systems. All the experiments are run on NVIDIA 3090 with 24GB memory. The
environment is based on Ubuntu 18.04.6, Cuda 11.6, Pytorch 1.13.0 and Pytorch Geometric 2.1.0.

Evaluation Protocol. For all the experiments, we run the training and evaluation of each model with
five independent trials, and report the mean and standard deviation results in our tables and figures.
In each run, we train the model with a fixed budget of epochs and record the testing performance
produced by the epoch where the model yields the best performance on validation data.

Hyper-Parameters. We use the grid search for hyper-parameter tuning on the validation dataset with
the searching space described below.

• For information networks, hidden size d ∈ {32, 64, 128}, learning rate ∈ {0.0001, 0.001},
head number H ∈ {1, 2, 4}, the weight for local message passing β ∈ {0.2, 0.5, 0.8, 1.0},
and the order of propagation (only used for ADIT-SERIES) K ∈ {1, 2, 4}.

• For molecular datasets, hidden size d = 256, learning rate ∈
{0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005}, dropout ∈ {0.0, 0.1, 0.3, 0.5}, head
number H ∈ {1, 2, 4}, the weight for local message passing β ∈ {0.5, 0.75, 1.0}, the
coefficient for identity matrix (only used for ADIT-INVERSE) θ ∈ {0.5, 1.0}, and the order
of propagation (only used for ADIT-SERIES) K ∈ {1, 2, 3, 4}.

• For protein interaction networks, hidden size d ∈ {32, 64}, learning rate ∈
{0.01, 0.001, 0.0001}, head number H ∈ {1, 2, 4}, the weight for local message passing
β ∈ {0.3, 0.5, 0.8, 1.0}, the coefficient for identity matrix (only used for ADIT-INVERSE)
θ ∈ {0.5, 1.0}, and the order of propagation (only used for ADIT-SERIES) K ∈ {1, 2, 3, 4}.

G ADDITIONAL EXPERIMENTAL RESULTS

In this section, we supplement more experimental results including additional results for main
experiments, ablation studies and hyper-parameter analysis.

G.1 SUPPLEMENTARY RESULTS FOR MAIN EXPERIMENTS

In Table 7, we report the Accuracy for training/validation/testing sets on Arxiv. In Table 8, we
present the ROC-AUC for each graph of Twitch. In Fig. 7 and 8, we show the generated results for
more testing cases of molecular mapping operators in HAM.

Table 7: Result of Accuracy for training/validation/testing sets on Arxivwhere we consider inductive
setting and use published papers in different years for data splitting.

Train (1960-2014) Valid (2015-2017) Test 1 (2018) Test 2 (2019) Test 3 (2020)
MLP 58.15 ± 0.67 51.43 ± 0.35 49.91 ± 0.59 47.30 ± 0.63 46.78 ± 0.98
GCN 60.50 ± 1.21 53.03 ± 0.26 50.14 ± 0.46 48.06 ± 1.13 46.46 ± 0.85
GAT 63.01 ± 1.05 54.44 ± 0.20 51.60 ± 0.43 48.60 ± 0.28 46.50 ± 0.21
SGC 60.30 ± 0.21 54.39 ± 0.06 51.40 ± 0.10 49.07 ± 0.16 46.94 ± 0.29
GDC 66.76 ± 2.51 54.67 ± 0.34 51.88 ± 0.41 49.53 ± 0.50 47.33 ± 0.60
GRAND 64.65 ± 1.10 55.00 ± 0.12 52.45 ± 0.27 50.18 ± 0.18 48.01 ± 0.24
GraphTrans 63.39 ± 1.85 54.45 ± 0.43 51.70 ± 0.55 49.38 ± 1.08 47.01 ± 0.98
GraphGPS 67.02 ± 3.18 53.55 ± 0.41 51.11 ± 0.19 48.91 ± 0.34 46.46 ± 0.95
DIFFormer 60.29 ± 0.88 53.71 ± 0.42 50.45 ± 0.94 47.37 ± 1.58 44.30 ± 2.02
ADIT-SERIES 63.79 ± 0.66 55.25 ± 0.14 53.41 ± 0.48 51.53 ± 0.60 49.64 ± 0.54

G.2 ABLATION STUDIES AND HYPER-PARAMETER ANALAYSIS

We next conduct more analysis on our proposed model by ablation studies on some key components
and investigating the impact of hyper-parameters.

Diffusion and Advection. We conduct ablation studies on the advection term (i.e., the local message
passing with the propagation by Ã) and the diffusion term (i.e., the global attention). In Table 9

34

Under review as a conference paper at ICLR 2024

Table 8: Result of ROC-AUC for each graph on Twitch where we use nodes in different networks
to split the training, validation and testing data.

Train (DE) Valid (ENGB) Test 1 (ES) Test 2 (FR) Test 3 (PTBR) Test 4 (RU) Test 5 (TW)
MLP 75.26 ± 1.49 63.48 ± 0.15 65.19 ± 0.37 62.25 ± 0.28 65.01 ± 0.19 54.92 ± 0.33 58.23 ± 0.13
GCN 69.55 ± 0.34 60.76 ± 0.21 63.75 ± 0.44 61.56 ± 0.56 63.26 ± 0.42 54.51 ± 0.21 55.72 ± 0.28
GAT 69.28 ± 1.14 59.80 ± 0.42 62.81 ± 1.16 60.65 ± 0.92 63.13 ± 1.25 53.80 ± 0.27 55.31 ± 0.94
SGC 71.68 ± 0.33 61.98 ± 0.07 65.12 ± 0.15 63.06 ± 0.12 64.14 ± 0.19 55.17 ± 0.06 56.83 ± 0.20
GDC 80.73 ± 1.69 62.14 ± 0.30 66.33 ± 0.25 60.70 ± 0.51 64.21 ± 0.23 56.60 ± 0.24 58.97 ± 0.37
GRAND 79.17 ± 0.74 62.48 ± 0.39 66.52 ± 0.23 61.62 ± 0.62 64.44 ± 0.73 56.42 ± 0.38 59.27 ± 0.57
GraphTrans 79.17 ± 0.74 62.48 ± 0.39 66.52 ± 0.23 61.62 ± 0.62 64.44 ± 0.73 56.42 ± 0.38 59.27 ± 0.57
GraphGPS 74.49 ± 1.35 63.40 ± 0.31 66.85 ± 0.32 63.74 ± 0.37 65.03 ± 0.58 56.39 ± 0.39 58.63 ± 0.83
DIFFormer 73.12 ± 0.52 63.06 ± 0.09 66.68 ± 0.15 64.44 ± 0.13 65.23 ± 0.20 55.75 ± 0.12 58.91 ± 0.37
ADIT-SERIES 75.46 ± 0.28 63.53 ± 0.14 66.78 ± 0.14 63.35 ± 0.10 65.68 ± 0.06 56.27 ± 0.06 60.48 ± 0.21

Table 9: Ablation studies for ADIT-SERIES on Arxiv.

Train (1960-2014) Valid (2015-2017) Test 1 (2018) Test 2 (2019) Test 3 (2020)
ADIT 63.79 ± 0.66 55.25 ± 0.14 53.41 ± 0.48 51.53 ± 0.60 49.64 ± 0.54
ADIT w/o diffusion 64.65 ± 1.10 55.00 ± 0.12 52.45 ± 0.27 50.18 ± 0.18 48.01 ± 0.24
ADIT w/o advection 57.71 ± 0.86 51.27 ± 0.21 49.52 ± 1.02 45.74 ± 1.74 44.71 ± 1.85

we report the results for ADIT-SERIES on Arxiv, which shows that the two modules are indeed
effective for producing superior generalization on node classification tasks.

Edge Features for Molecular Tasks. For molecular property prediction datasets, we use edge
features (that contain attribution information of chemical bonds) for our model as well as other
competitors. In Table 10 we compare with the model variant not using edge features. The results show
that edge features, which provide additional information useful for predicting the target molecular
properties, can indeed contribute to improving the generalization performance.

Table 10: Ablation studies for ADIT-INVERSE on OGB-BACE and OGB-SIDER.

OGB-BACE OGB-SIDER
Train Valid Test Train Valid Test

ADIT 97.39 ± 1.67 73.82 ± 1.45 80.38 ± 1.40 83.67 ± 0.09 60.85 ± 0.22 65.29 ± 0.16
ADIT w/o edge features 95.76 ± 4.27 75.90 ± 2.68 79.14 ± 1.96 81.26 ± 1.18 57.44 ± 0.26 63.77 ± 0.40

Impact of β. The hyper-parameter β controls the importance weight for the advection term (im-
plemented as the local message passing). Fig. 5 shows the model performance of ADIT-SERIES
on Arxiv and DDPIN with different β’s. We found that the optimal settings for β can be different
across datasets and tasks. In specific, for node classification on Arxiv, the model gives the best
performance with β in the range between 0.7 and 1.0. The performance degrades when β is too small
(<0.5) or too large (>2.0). The reason could be that the graph structural information is useful for the
predictive task on Arxiv yet too much emphasis on the graph structure can lead to undesired gener-
alization of the model. Differently, for the protein interaction dataset DDPIN, we found that using
smaller β can bring up more satisfactory performance across node regression and edge regression
tasks. In particular, setting β = 0, in which case the advection term is completely dropped, can yield
optimal performance for the node regression task. This is possibly due to that the graph structure is
not that informative and pure global attention can learn generalizable topological patterns from latent
interactions. To sum up, in practice, the model enables much flexibility for adjusting the weight on
the advection effect (the importance of observed structural information) to accommodate the diversity
of graph-structured data.

Impact of K. The hyper-parameter K (used for ADIT-SERIES) controls the number of propagation
orders in the model. In fact, the value of K would impact how the structural information is utilized
by the model. If K is small, the model only utilizes the low-order structure, and large K enables the
usage of high-order structural information. Fig. 6 presents the model performance on Arxiv and
DDPIN with K ranging from 1 to 6. We observe that the optimal settings for K are different across
cases, and using larger K can not necessarily yield better performance. This is because in these cases,
the low-order structural information is informative enough for desired generalization.

35

Under review as a conference paper at ICLR 2024

0 0.2 0.5 0.8 1.0 1.5 2.0 5.0 10.0
β

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

Arxiv

Test 1 (2018)
Test 2 (2019)
Test 3 (2020)

0 0.3 0.5 0.8 1.0
β

1.44
1.46
1.48
1.50
1.52
1.54
1.56
1.58

RM
SE

DDPIN-nr

0 0.3 0.5 0.8 1.0
β

0.140

0.145

0.150

0.155

RM
SE

DDPIN-er

Figure 5: Model performance on Arxiv and DDPIN with different settings of β. The latter involves
node regression (nr) and edge regression (er) tasks.

1 2 3 4 5 6
K

0.42

0.44

0.46

0.48

0.50

0.52

0.54

Ac
cu

ra
cy

Arxiv

Test 1 (2018)
Test 2 (2019)
Test 3 (2020)

1 2 3 4 5 6
K

1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65

RM
SE

DDPIN-nr

1 2 3 4 5 6
K

0.130
0.135
0.140
0.145
0.150
0.155
0.160
0.165

RM
SE

DDPIN-er

Figure 6: Model performance on Arxiv and DDPIN with different settings of K. The latter involves
node regression (nr) and edge regression (er) tasks.

Impact of θ. Finally, we study the impact of θ used for computing Lh in ADIT-INVERSE. Table 11
shows the performance of ADIT-INVERSE on DDPIN with different θ’s. We found that using θ close
to 1 can bring up stably good performance, which is consistently manifested by experiments on other
cases. Still, if θ is too small, e.g., close to 0, it would sometimes lead to numerical instability. This is
due to that, in such a case, the matrix Lh could become a singular matrix.

Table 11: Testing accuracy of ADIT-INVERSE with different θ’s in the edge regression task on
DDPIN.

θ 0 0.5 1.0 2.0

Accuracy 0.241 0.154 0.147 0.149

36

Under review as a conference paper at ICLR 2024

Ground Truth ADiT (1.00) GCN (1.00) GAT (0.69) GraphGPS (0.92) Difformer (0.92)

(a)

Ground Truth ADiT (1.00) GCN (0.22) GAT (0.22) GraphGPS (0.22) Difformer (0.22)

(b)

Ground Truth ADiT (1.00) GCN (1.00) GAT (0.89) GraphGPS (0.86) Difformer (0.86)

(c)

Ground Truth ADiT (0.90) GCN (0.54) GAT (0.87) GraphGPS (0.74) Difformer (0.74)

(d)

Ground Truth ADiT (0.83) GCN (0.70) GAT (0.70) GraphGPS (0.63) Difformer (0.60)

(e)

Figure 7: Additional testing cases for molecular mapping operators generated by different models
and the expert annotations (ground-truth). For each case, we report the score (the higher is better)
that measures the closeness between the generated results and the expert annotations.

37

Under review as a conference paper at ICLR 2024

Ground Truth ADiT (1.00) GCN (0.87) GAT (0.77) GraphGPS (0.85) Difformer (0.87)

(a)

Ground Truth ADiT (1.00) GCN (0.84) GAT (0.76) GraphGPS (0.70) Difformer (0.64)

(b)

Ground Truth ADiT (1.00) GCN (0.72) GAT (0.74) GraphGPS (0.56) Difformer (0.57)

(c)

Ground Truth ADiT (1.00) GCN (0.77) GAT (0.77) GraphGPS (0.77) Difformer (0.89)

(d)

Ground Truth ADiT (1.00) GCN (0.64) GAT (0.51) GraphGPS (0.51) Difformer (0.51)

(e)

Figure 8: Additional testing cases for molecular mapping operators generated by different models
and the expert annotations (ground-truth). For each case, we report the score (the higher is better)
that measures the closeness between the generated results and the expert annotations.

38

	Introduction
	Background and Preliminaries
	Can Graph Diffusion Generalize?
	Problem Formulation: Graph Data Generation
	Graph Diffusion under Topological Shifts
	Non-Local Graph Diffusion and Generalization with Conditions

	Graph Advective Diffusion for Topological Generalization
	Model Formulation: Graph Advective Diffusion
	How Graph Advective Diffusion Handles Topological Shifts
	Numerical Solvers for Graph Advective Diffusion

	Experiments
	Synthetic Datasets
	Real-World Datasets

	Conclusions and Discussions
	Connection between Diffusion Equations and Message Passing
	Graph Neural Networks as Local Diffusion
	Transformers as Non-Local Diffusion

	Analysis and Proofs in Section 3
	Analysis for Linear Diffusion Equations
	Analysis with Feature Transformations
	Analysis for Non-Linear Diffusion
	Analysis for Non-Local Diffusion with Global Diffusivity

	Analysis and Proofs in Section 4
	Approximation Strategies for Diffusion PDE Solutions
	Model Implementations and Algorithms
	Model Architectures
	Instantiations and Parameterizations
	Acceleration of ADiT-series with Linear Complexity

	Applicability of Our Model

	Experiment Details
	Datasets
	Synthetic Datasets
	Information Networks
	Molecular Property Prediction
	Biological Protein Interactions
	Molecular Mapping Operator Generation

	Competitors
	Implementation Details

	Additional Experimental Results
	Supplementary Results for Main Experiments
	Ablation Studies and Hyper-Parameter Analaysis

