
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PLANNING WITH MCTS: ENHANCING
PROBLEM-SOLVING IN LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite recent advances in Large Language Models (LLMs), their ability to solve
complex reasoning problems remains limited by inconsistent planning and logical
flaws. We present a novel framework that significantly enhances LLMs’ problem-
solving capabilities by leveraging Monte Carlo Tree Search (MCTS) for plan gen-
eration. Unlike previous approaches that apply MCTS to solution search, our
method uniquely integrates MCTS into the planning phase, guided by special-
ized LLM-powered agents that evaluate plan quality. Experiments across diverse
benchmark datasets demonstrate that our approach improves problem-solving ac-
curacy by an average of 40.59% compared to zero-shot Chain-of-Thought prompt-
ing. Furthermore, we show that using smaller models for MCTS planning and
larger models for execution can maintain high performance while reducing com-
putational costs. This work opens new avenues for developing more robust and
efficient AI systems capable of tackling complex real-world problems, with po-
tential applications in fields requiring advanced logical reasoning and long-term
planning. Our code examples are publicly available at this Anonymous Github
Repository.

1 INTRODUCTION

In an era where artificial intelligence increasingly influences our daily lives, the quest for machines
capable of human-like reasoning remains a central challenge in computer science. Large Language
Models (LLMs) have emerged as powerful tools in natural language processing, demonstrating re-
markable capabilities across various tasks (Brown et al., 2020; Chowdhery et al., 2023). However,
when faced with complex, multi-step problems requiring logical consistency and long-term plan-
ning, even state-of-the-art models like GPT-4 (OpenAI et al., 2024) often falter, revealing a critical
gap between machine and human problem-solving abilities.

The limitations of LLMs in complex reasoning tasks stem from their struggle to maintain logical
consistency and handle long-term dependencies throughout extended problem-solving processes.
Existing approaches, such as Chain-of-Thought (CoT) prompting (Wei et al., 2022), have shown
promise in improving step-by-step reasoning. However, these methods often fail to address the fun-
damental challenge of generating and following a coherent, overarching plan (Wang et al., 2023b;
Yao et al., 2023). Similarly, current planning methods for LLMs, including task decomposition (Pa-
tel et al., 2022; Zhou et al., 2023) and explicit plan-and-solve approaches (Wang et al., 2023a; Yao
et al., 2023), are ultimately constrained by the LLM’s inherent reasoning abilities.

This research addresses a critical question: How can we enhance the planning capabilities of LLMs
to significantly improve their problem-solving performance in complex, multi-step tasks? We hy-
pothesize that by leveraging advanced search algorithms in the planning phase, we can generate
higher-quality plans that guide LLMs towards more effective and logically consistent solutions.

To this end, we propose a novel framework that integrates Monte Carlo Tree Search (MCTS) into the
planning process for LLMs. MCTS, renowned for its success in complex game-playing AI (Silver
et al., 2016), offers a powerful method for exploring vast search spaces and identifying optimal
strategies. Our approach uniquely applies MCTS to the generation of problem-solving plans, rather
than to direct solution search. This is achieved through a two-step process: first, MCTS explores the
space of possible plans, guided by specialized LLM-powered agents that evaluate plan quality; then,
the optimal plan is provided to the LLM for step-by-step execution.

1

https://github.com/Anonymous-gwFabfaH/MCTS-Planning
https://github.com/Anonymous-gwFabfaH/MCTS-Planning

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(1) Direct CoT Reasoning (2) Plan and Solve (3) Plan with MCTS and solve

(b) Reasoning Stage

(a) Planning Stage

Plan with CoT Plan with MCTS

Solid circle: reasoning state

Dashed circle: planning state

Red dashed circle: incorrect state

Darker color indicates higher probability

Figure 1: Illustration of the proposed framework for enhancing LLM problem-solving with MCTS
planning. (a) CoT prompting generates planning and reasoning states interleavedly, while post states
may suffer from cumulative error. (b) Plan and solve framework separates planning and reasoning,
while planning is generated manually or based on CoT, which may not be optimal. (c) Our proposed
MCTS-enhanced planning approach explicitly generates high-quality plans using MCTS, which are
then executed by the LLM for problem-solving. Darker colors of each state indicate higher proba-
bility, which leads to better problem-solving performance.

The significance of this research extends beyond mere incremental improvements in LLM perfor-
mance. By enhancing the planning and problem-solving capabilities of LLMs, we pave the way
for more robust and reliable AI systems capable of tackling complex real-world problems. This
has far-reaching implications for fields such as automated reasoning, decision support systems, and
AI-assisted scientific discovery.

Our work makes several key contributions to the field of AI and natural language processing:

1. We introduce a novel paradigm for enhancing LLMs’ problem-solving abilities by applying
MCTS to the planning process, addressing a critical gap in current approaches.

2. We provide empirical evidence demonstrating significant improvements in problem-solving
accuracy across diverse benchmark datasets, with an average improvement of 40.59% com-
pared to zero-shot Chain-of-Thought prompting.

3. We offer insights into the interplay between planning, reasoning, and execution in LLM-
based problem-solving, contributing to a deeper understanding of AI cognition.

4. We propose an efficient approach using smaller models for MCTS planning and larger
models for execution, maintaining high performance while reducing computational costs.

2 SEARCHING PLAN FOR BETTER PROBLEM-SOLVING

This section presents our novel approach to enhancing the problem-solving capabilities of LLMs
through the integration of MCTS in the planning process. We first provide the necessary back-
ground and problem formulation, followed by a detailed description of our MCTS-enhanced plan-
ning framework.

2.1 PRELIMINARY: FROM COT TO PLANNING

LLMs have demonstrated remarkable performance in various natural language processing tasks, yet
their ability to solve complex, multi-step problems remains limited. Existing approaches, such as
CoT prompting (Wei et al., 2022), often struggle to maintain logical consistency and handle long-
term dependencies in reasoning chains, especially as problem complexity increases (Wang et al.,
2023b; Yao et al., 2023).

Formally, we can view problem-solving with LLMs as a process of generating a solution Y given
a problem X and a context C, which can be represented as a conditional probability distribution

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Count Characters: Example 1

Problem: how many R’s are there in the word “Strawberry”?
—
CoT Prompt: Let’s think step by step.
CoT Result:
Here’s how to count the ’R’s in "strawberry":
1. **Identify the ’R’s:** Look for the letter ’R’ in the word.
2. **Count:** There are **two** ’R’s in the word "strawberry".
—
Planning Prompt:
To count the R’s in "strawberry." we can iterate throuoh each letter of the word, Initially, we’ll set a counter to zero, for each leter encountered, we’ll
check if itis an "R" character. If it is, we’ll increment our counter, This proess will continwe until we’ve examined all letters in the word, allowing us to
determine the final count of "R’s present.
Planning Result:
Following the plan:
1. **Initialize counter:** ‘r_count = 0‘.
2. **Iterate through the word:** Check each letter of "strawberry" for ’R’.
3. **Increment counter:** If the letter is ’R’, increment the counter (‘r_count = r_count + 1‘).
4. **Final Count:** The word "strawberry" contains **3** ’R’s.
—
MCTS Planning:
1. **Define the task:** Our goal is to count the number of "R’s present within the word "strawberry."
2. **Iterate through the word:** We will examine each letter of "strawberry" one at a time.
3. **Check for "R":** If the letter is an "R", increment a counter to keep track of our count.
4. **Increment counter:** If the letter is an "R", increment a counter to keep track of our count.
5. **Complete iteration:** We will continue this process until we have examined every letter.
6. **Return the count:** After processing all letters, the counter will hold the final number of "R’s.
MCTS Planning Result:
Here’s the breakdown:
1. **Define the task:** We need to count how many "R’s are in "strawberry".
2. **Iterate through the word:** Let’s examine each letter:
* **s** - Not an R, counter remains 0.
* **t** - Not an R, counter remains 0.
* **r** - **It’s an R! Increment the counter to 1.**
* **a** - Not an R, counter remains 1.
* **w** - Not an R, counter remains 1.
* **b** - Not an R, counter remains 1.
* **e** - Not an R, counter remains 1.
* **r** - **It’s an R! Increment the counter to 2.**
* **r** - **It’s an R! Increment the counter to 3.**
* **y** - Not an R, counter remains 3.
3. **Complete iteration:** After examining all letters, the counter holds **3** R’s.
4. **Result:** There are **3** R’s in the word "strawberry".

Figure 2: Character counting example

P (Y |X,C). In zero-shot CoT prompting, the context C is typically the problem itself, and the LLM
attempts to generate the solution directly through a series of reasoning steps X = {X1, X2, ..., Xn}.
This direct approach often leads to suboptimal solutions due to the intertwined nature of planning
and reasoning.

To address this challenge, we employ a planning-based approach that decouples planning from rea-
soning. We introduce a plan π as an ordered sequence of actions, where π ∈ Π, and Π represents
the space of all possible plans. In this framework, the context C can be decomposed into two parts:
the problem description Cproblem and a plan π generated based on the problem, which we denote as
Cplan. Thus, we can rewrite the conditional probability as:

P (Y |X,C) = P (Y |X,Cproblem, Cplan) (1)

Assuming that the solution Y depends on the problem X and the plan Cplan, but not directly on
the problem description Cproblem once the plan is given, we can factorize this probability using the
chain rule:

P (Y |X,Cplan) = P (Y |X,Cplan)P (X|C) (2)

This factorization highlights the two distinct stages of our approach:

1. Planning (P (X|C)): Generating a sequence of reasoning steps (X) based on the initial
context (C), which includes the problem description.

2. Reasoning (P (Y |X,Cplan)): Generating the solution (Y) given the problem (X) and the
plan (Cplan).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

By explicitly separating these stages, we aim to improve the logical consistency and coherence of
the problem-solving process. The planning stage focuses on finding an effective plan, while the
reasoning stage leverages the plan to guide the generation of the solution.

Instead of relying on the LLM to implicitly generate a plan within its reasoning process, we leverage
MCTS (Chaslot et al., 2008) to explicitly explore the plan space Π during the planning stage. MCTS
is a powerful heuristic search algorithm that has achieved remarkable success in complex game
AI (Silver et al., 2016). We adapt MCTS to the problem-solving domain by representing plans as
nodes in the search tree and using specialized LLM-powered agents to evaluate the quality of each
plan. These agents assess properties such as the logical consistency and feasibility of the plan,
providing feedback that guides the MCTS exploration.

This approach differs significantly from previous work that has applied MCTS to LLMs. While some
studies have used Breadth First Search (BFS) or Depth First Search (DFS) to guide the selection of
reasoning steps in CoT (Yao et al., 2023), our framework focuses on using MCTS to optimize the
plan itself, providing a more structured and potentially more effective approach to complex problem-
solving.

By decoupling planning and reasoning, and by leveraging the strengths of MCTS and LLMs, our
proposed framework aims to enhance the problem-solving capabilities of LLMs, particularly in
scenarios requiring complex reasoning and long-term planning.

2.2 MONTE CARLO TREE SEARCH FOR PLANNING

To address the limitations of existing planning methods and improve the coherence and logical
consistency of LLM problem-solving, we propose leveraging MCTS for plan generation. Unlike
approaches that use MCTS to directly guide the reasoning process, our approach focuses on finding a
high-quality plan before the LLM begins to reason towards a solution. This corresponds to explicitly
searching for a good sequence of reasoning steps (X) in the probabilistic framework P (Y |X,Cplan)
discussed in Sec. 2.1.

Selection: Starting from the root node (which represents an initial plan, generated by prompting
the LLM with the problem description), we traverse the tree by selecting the child node with the
highest Upper Confidence Bound 1 (UCB1) value. UCB1 balances exploration and exploitation by
considering both the average reward of simulations passing through a node and the number of times
it has been visited:

UCB1(node) = Q(node) + C

√
ln(N(parent))

N(node)
(3)

where Q(node) is the average reward of simulations passing through the node, N(node) is the
number of times the node has been visited, N(parent) is the number of times the parent node has
been visited, and C is an exploration constant that controls the balance between exploration and
exploitation.

Expansion: When a leaf node is reached, a new node is added to the tree. This new node represents
a modified version of the parent node’s plan.

Plans are represented as sequences of natural language instructions that guide the LLM’s reasoning.
For example, a plan to solve a math word problem might be: "1. Identify the given quantities. 2.
Determine the relationship between the quantities. 3. Formulate an equation. 4. Solve the equation."

Simulation and Reward: The newly generated plan is then subjected to a simulation to estimate
its effectiveness. Instead of real execution in traditional MCTS (Chaslot et al., 2008; Silver et al.,
2016), we employ multi-agents to assess the quality of the plan inspired by (Zhang et al., 2024b),
including:

• Logical Consistency Agent: Checks for contradictions or inconsistencies in the plan.
• Feasibility Agent: Determines whether the plan is executable.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Each evaluation agent assigns a score (e.g., between 0 and 1) to the plan, and may also provide
textual feedback explaining its assessment. For example, the Logical Consistency Agent might give
a low score and feedback like: "Step 2 contradicts the information given in Step 1." This feedback
can be used to guide plan modification in subsequent expansion steps.

The individual scores from the evaluation agents are combined by a reward function to produce an
overall reward signal for the plan. The reward function can be a simple weighted average or a more
complex function that takes into account the relative importance of different evaluation criteria.

Backpropagation: The reward signal obtained from the simulation and evaluation is backpropa-
gated up the MCTS tree, updating the value estimates of all nodes along the path from the root to
the newly expanded node.

By iteratively applying these steps, MCTS builds a search tree of potential plans, gradually focusing
on areas of the plan space that are likely to lead to high-quality solutions. Once a predefined number
of rollouts have been completed, or a time limit is reached, the MCTS algorithm selects the node
with the highest average reward as the optimal plan. We present an illustrative example of the
MCTS planning process in Fig. 2 with counting “R”s in the word “Strawberry” and a more complex
example in Sec. A.1.

3 EXPERIMENTS

3.1 RESEARCH QUESTIONS

In this research, we would like to investigatee the potential of MCTS to enhance the planning and
problem-solving capabilities of LLMs, addressing limitations of existing methods like zero-shot
CoT (Kojima et al., 2022) and Plan-and-Solve (Wang et al., 2023a) prompting in handling complex
multi-step problems. Specifically, we explore two core research questions:

RQ1: Does MCTS-based planning improve LLM problem-solving performance? We will evaluate
this by comparing the accuracy of our proposed approach against baseline prompting and analyzing
the correlation between plan quality and LLM performance.

RQ2: How to optimize the MCTS parameters for planning in LLMs? We will investigate the impact
of different MCTS strategy, such as different LLM for planning, evaluating, and executing, on the
problem-solving performance of our approach.

By answering these questions, we aim to provide insights into the interplay between planning and
reasoning in LLMs, contributing to the development of more robust and reliable AI systems capable
of tackling complex real-world problems.

3.2 DATASET AND EVALUATION METRICS

Benchmark Datasets: To evaluate the effectiveness of our MCTS-enhanced planning approach,
we conduct experiments on a diverse set of benchmark datasets specifically chosen to assess its per-
formance across various problem-solving tasks and challenge the limitations of existing methods,
including (1) arithmatic: GSM8K (Cobbe et al., 2021), AddSub (Hosseini et al., 2014), Multi-
Arith (Roy & Roth, 2015), SVAMP (Patel et al., 2021), and SingleEq (Koncel-Kedziorski et al.,
2015) (2) commonsense reasonin: CommonsensQA (Talmor et al., 2019) (3) symbolic reasoning:
Last Letters (Wei et al., 2022) (4) Gaming reasoning: Object Tracking (Srivastava et al., 2023).

With these datasets, we aim to cover a wide range of problem-solving tasks, including arithmetic,
commonsense reasoning, symbolic reasoning, and gaming reasoning, to evaluate the generalizability
of our approach.

Evaluation Metrics: We employ accuracy as our primary evaluation metric across all datasets,
measuring the percentage of correctly solved problems. Accuracy provides a direct measure of the
LLM’s problem-solving capabilities and allows for straightforward comparison between different
approaches.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparison of MCTS Planning and Zero-shot CoT on different datasets.
Dataset AddSub CommonsensQA GSM8K Last Letters MultiArith Object Tracking SingleEq SVAMP

Type Model

Zero-shot CoT Qwen2.5-7B-Instruct 85.06 63.72 80.89 21.00 95.33 74.80 77.17 83.40
((Kojima et al., 2022)) Meta-Llama-3.1-8B-Instruct 28.61 63.80 57.32 26.40 38.17 49.33 39.76 27.00

CoT Plan Qwen2.5-0.5B-Instruct 36.96 31.20 17.82 0.00 37.00 31.87 44.09 29.90
((Wang et al., 2023a)) Qwen2.5-1.5B-Instruct 28.61 44.23 35.03 7.20 44.67 29.87 34.84 33.90

Qwen2.5-7B-Instruct 87.59 78.62 88.84 55.20 98.33 79.33 93.70 91.90
Meta-Llama-3.1-8B-Instruct 78.23 57.14 74.77 15.40 91.58 57.94 84.65 79.20

MCTS Plan (Ours) Qwen2.5-0.5B-Instruct 58.23 32.43 29.80 0.20 68.33 27.20 69.69 43.80
Qwen2.5-1.5B-Instruct 75.70 58.72 64.29 6.40 86.50 26.40 83.66 72.10

Qwen2.5-7B-Instruct 88.10 79.20 90.14 56.60 98.67 79.33 92.91 92.90
Meta-Llama-3.1-8B-Instruct 80.51 68.57 77.28 12.80 92.76 55.43 87.99 81.20

CoT Plan Avg. 57.85 52.80 54.12 19.45 67.89 49.75 64.32 58.73
MCTS Plan Avg. 75.63 59.73 65.38 19.00 86.56 47.09 83.56 72.50
Changes +17.79 +6.93 +11.26 -0.45 +18.67 -2.66 +19.24 +13.77

3.3 RQ1: ENHANCED PROBLEM-SOLVING THROUGH MCTS-GUIDED PLANNING

Existing methods for enhancing LLM problem-solving often face challenges in maintaining logical
consistency and handling long-term dependencies in complex multi-step problems. This is primar-
ily because these methods rely heavily on the LLM’s inherent reasoning capabilities, which can be
limited in such scenarios. We hypothesize that applying MCTS to the planning process can ad-
dress these limitations by generating higher-quality, more logically sound plans that guide the LLM
towards more effective solutions. MCTS excels at exploring large search spaces and identifying
optimal strategies through its balance of exploration and exploitation. By leveraging MCTS to gen-
erate plans, we aim to overcome the inherent limitations of relying solely on the LLM’s reasoning
for planning.

To investigate the impact of MCTS-generated plans on LLM problem-solving, we conduct experi-
ments comparing the performance of our MCTS-enhanced planning approach against two baselines:
(1) standard CoT prompting (Kojima et al., 2022) and (2) a plan-and-solve approach (Wang et al.,
2023a) where the LLM first generates a plan and then executes it. We evaluate these methods on a
diverse set of datasets introduced in Sec. 3.2.

We employ two state-of-the-art open-sourced LLMs: LLama 3.1 (8B parameters) (Dubey et al.,
2024) and Qwen 2.5 (0.5B, 1.5B, and 7B parameters) (Yang et al., 2024). These models represent
a strong baseline for current LLM capabilities and allow for a fair comparison between different
planning approaches. Notably, we include smaller variants of Qwen 2.5 (0.5B and 1.5B) for MCTS
to investigate the impact of model size on planning performance and computational efficiency, es-
pecially considering the potentially high computational cost of MCTS.

We adopt a zero-shot setting for both CoT and MCTS to assess the methods’ ability to generalize
to new problems without task-specific fine-tuning. For the CoT baseline, we use code and data
from (Kong et al., 2024) and (Kojima et al., 2022). We leverage the SGLang platform (Zheng et al.,
2024) for hosting and interacting with the LLMs.

Tab. 1 presents the comparison of MCTS Planning and Zero-shot CoT on different datasets. Over-
all, the MCTS-enhanced planning approach outperforms the CoT baseline across most datasets, with
an average improvement of 40.59%. This substantial improvement highlights the effectiveness of
MCTS in generating high-quality plans for LLMs. As expected, larger models generally perform
better across all methods. However, the performance gap between small and large models is nar-
rower for MCTS Planning compared to CoT, suggesting that our approach can partially compensate
for the limitations of smaller models.

The improvements are particularly pronounced in tasks that require complex reasoning and long-
term planning. For example, on arithmetic tasks (MultiArith, SingleEq, and AddSub), MCTS Plan-
ning shows average improvements of 18.67%, 19.24%, and 17.79%, respectively. Similarly, on
problem-solving tasks (GSM8K and SVAMP), we observe improvements of 11.26% and 13.77%,
respectively.

These results strongly support our hypothesis that MCTS can enhance LLM problem-solving by
providing more structured and coherent plans that guide the reasoning process effectively. The

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Performance Comparison of Language Models
Model Max Depth Number of Rollouts

1 3 5 7 10 20 50 100 1 3 5 7 10 20

Meta-Llama-3.1-8B-Instruct 74.22 75.97 76.12 76.42 76.80 76.42 77.18 77.41 79.08 76.88 76.04 76.57 76.19 77.48
Qwen2.5-7B-Instruct 87.64 88.17 88.02 88.40 88.32 88.48 88.55 88.78 89.01 89.76 89.08 89.23 90.14 89.92

Table 3: Performance Cmparison of Different Evaluation Agents for MCTS.
Model Evaluator AddSub CommonsensQA GSM8K Last Letters MultiArith Object Tracking SingleEq SVAMP

Qwen2.5-7B-Instruct Feasibility 88.1 71.3 89.5 58.4 97.7 65.5 91.5 92.2
Qwen2.5-7B-Instruct Logical Consistency 86.6 70.9 89.2 58.2 97.2 65.0 91.5 91.4
Qwen2.5-7B-Instruct Combined (Ours) 88.1 79.2 90.1 56.6 98.7 79.3 92.9 92.9

superior performance in complex tasks suggests that MCTS is particularly adept at decomposing
multi-step problems and maintaining logical consistency throughout the solution process.

To investigate the key factors influencing the effectiveness of MCTS in planning for LLMs, we con-
duct an ablation study to analyze the impact of different components of our approach. Specifically,
we evaluate the following factors on the GSM8K dataset: (1) the maximum depth of the search tree,
(2) the number of rollouts in MCTS, and (3) different evaluation agents for reward computation.

Tab. 2 illustrates the results of our ablation study. We observe that:

Depth: The performance of MCTS Planning generally improves with increasing depth, indicating
that deeper search trees allow for more thorough exploration of the plan space and lead to higher-
quality plans. The rate of improvement slows down as depth increases, suggesting that the plan
can be easily optimized in the first few steps, while later steps are more difficult to optimize. This
behavior implies that the MCTS may early-stop the search when evaluator agents give high scores
to the plan.

Rollouts: The number of rollouts also impacts the performance of MCTS Planning. Initially, in-
creasing the number of rollouts from a small number yields significant improvements. However,
the uncertainty of performance improvement increases as the number of rollouts grows, indicating
that with an expanding search space and higher computational cost, the performance gains may di-
minish. We implemented backpropagate in a zero-sum game manner, which may contribute to the
increased uncertainty in performance improvement. Future work could explore alternative improve-
ment strategies to address this issue.

Evaluation Agents: We tested different evaluation agents for computing rewards in the MCTS
process. Tab. 3 shows the results of using feasibility and logical consistency evaluators compared to
our final approach. While both evaluators improved performance over the baseline, our combined
approach yielded the best results across most datasets.

These results demonstrate the effectiveness of our MCTS-guided planning approach in enhancing
the problem-solving capabilities of LLMs. By generating high-quality plans through MCTS, we
enable LLMs to tackle complex reasoning tasks more effectively, maintaining logical consistency
and coherence throughout the problem-solving process. However, it is important to note that the
computational cost of MCTS may be a limiting factor in some applications, and future work should
explore ways to optimize the algorithm for efficiency without sacrificing performance.

3.4 RQ2: ENHANCING THE EFFICIENCY OF MCTS IN PLANNING FOR LLMS

As demonstrated in Sec. 3.3, MCTS-based planning can significantly improve the problem-solving
performance of LLMs. However, the computational cost of MCTS poses challenges for real-world
applications, particularly when using large models for complex problem-solving tasks. Interestingly,
our observations from Tab. 1 suggest that smaller models can benefit substantially from MCTS
planning. This finding presents a promising direction for optimizing the efficiency of MCTS in
planning for LLMs. We therefore pose the following research question: Can we leverage small
LLMs for optimal plan search and large LLMs for plan execution to enhance the efficiency
and effectiveness of MCTS-based planning for LLMs?

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Performance Comparison of Different LLMs for Planning and Execution.
Dataset AddSub CommonsensQA GSM8K Last Letters MultiArith Object Tracking SingleEq SVAMP

Planner Model Evaluator Model Executor Model

Qwen2.5-1.5B-Instruct Qwen2.5-1.5B-Instruct Qwen2.5-1.5B-Instruct 75.70 58.72 64.29 6.40 86.50 26.40 83.66 72.10
gemma-2-2b-it gemma-2-2b-it gemma-2-2b-it 81.52 17.16 52.67 4.47 86.83 20.00 86.02 69.40

Qwen2.5-1.5B-Instruct Qwen2.5-1.5B-Instruct Qwen2.5-72B-Instruct 88.86 78.49 86.96 47.20 96.83 80.40 95.28 90.70
Qwen2.5-72B-Instruct Qwen2.5-1.5B-Instruct 86.58 68.36 81.35 28.20 92.50 47.12 88.78 81.40
Qwen2.5-72B-Instruct Qwen2.5-72B-Instruct 90.63 80.71 92.80 76.80 98.67 89.47 94.88 92.00

gemma-2-2b-it gemma-2-2b-it Qwen2.5-72B-Instruct 91.39 77.72 88.48 69.40 97.67 83.87 95.67 92.30
Qwen2.5-72B-Instruct gemma-2-2b-it 90.89 34.64 79.83 54.60 95.00 35.87 92.13 84.00
Qwen2.5-72B-Instruct Qwen2.5-72B-Instruct 92.41 78.54 92.42 78.20 98.33 80.53 95.87 93.00

Qwen2.5-72B-Instruct Qwen2.5-72B-Instruct Qwen2.5-72B-Instruct 91.14 83.95 94.62 85.60 98.67 97.86 95.08 93.40

To investigate this question, we designed an experimental setup using two small LLMs (Qwen2.5-
1.5B-Instruct and Gemma-2-2b-it (Team et al., 2024)) for plan search, and a large LLM (Qwen2.5-
72B-Instruct) for plan evaluation or execution. We evaluated this approach across the benchmark
datasets introduced in Sec. 3.2, comparing various combinations of small and large models for plan-
ning, evaluation, and execution tasks.

Tab. 4 presents a comprehensive performance comparison of different LLM combinations for plan-
ning and execution tasks. Our key findings include:

Small-Large Model Synergy: Using a small model for planning and a large model for execution
significantly improved problem-solving performance across all datasets. For instance, the Qwen2.5-
1.5B-Instruct (planner) + Qwen2.5-72B-Instruct (evaluator+executor) combination achieved an av-
erage improvement of 23.87% compared to using Qwen2.5-1.5B-Instruct alone.

Efficiency Gains: The small-large model combination approached the performance of the large
model (Qwen2.5-72B-Instruct) used alone, while potentially offering significant computational sav-
ings during the planning phase. For example, on the GSM8K dataset, the small-large combination
achieved 92.80% accuracy, compared to 94.62% for the large model alone.

Model-Specific Performance: Interestingly, the Gemma-2-2b-it model, despite its smaller size,
showed competitive performance when used for planning. This suggests that model architecture and
training, not just size, play crucial roles in planning effectiveness.

Our findings demonstrate that leveraging small LLMs for planning and large LLMs for execution
can significantly enhance the efficiency of MCTS-based planning while maintaining high problem-
solving performance. This approach offers several advantages:

1. Computational Efficiency: By using smaller models for the computationally intensive
planning phase, we can reduce the overall computational requirements without significantly
sacrificing performance.

2. Scalability: This method allows for more efficient scaling of MCTS-based planning to
larger and more complex problem spaces.

3. Resource Optimization: Organizations can optimize their use of computational resources,
potentially reducing costs and environmental impact.

However, it’s important to note potential limitations, such as the need for careful model selection
and the possibility of suboptimal plans due to the use of smaller models in the planning phase.
Future work should investigate these trade-offs more thoroughly and explore techniques to mitigate
potential drawbacks.

In conclusion, our research demonstrates a promising approach to enhancing the efficiency and
effectiveness of MCTS-based planning for LLMs, opening new avenues for improving AI problem-
solving capabilities in resource-constrained environments.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4 RELATED WORK

4.1 CHAIN-OF-THOUGHT PROMPTING

Chain-of-Thought (CoT) prompting has emerged as a prominent technique to improve the reasoning
abilities of LLMs by encouraging step-by-step problem-solving (Wei et al., 2022). By decomposing
complex tasks into smaller, manageable steps, CoT aims to enhance logical consistency and reduce
errors in multi-step reasoning. Subsequent studies have explored various enhancements to CoT,
such as self-consistency approaches (Wang et al., 2023b) and tree-of-thought methods (Yao et al.,
2023), which attempt to maintain logical coherence over extended reasoning paths. Despite these
advancements, CoT methods often struggle with maintaining overall logical flow in highly complex
scenarios, leading to inconsistencies and suboptimal solutions. How to maintain logical consistency
and coherence in multi-step reasoning tasks is a research frontier in the field.

4.2 PLANNING TECHNIQUES FOR LLMS

Beyond CoT, several planning-based approaches have been proposed to bolster the problem-solving
capabilities of LLMs. Task decomposition techniques (Patel et al., 2022; Zhou et al., 2023) involve
breaking down complex problems into simpler sub-tasks, which the LLM can solve sequentially.
Explicit plan-and-solve frameworks (Wang et al., 2023a; Besta et al., 2024) require the LLM to
generate a plan before executing it, aiming to structure the reasoning process more effectively. Ad-
vanced methods like Skeleton-of-Thoughts (Ning et al., 2024) and Graph-of-Thought (Besta et al.,
2024) introduce more sophisticated representations of plans to capture dependencies and improve
coherence. However, these methods remain constrained by the LLM’s inherent reasoning limita-
tions, often failing to produce optimal plans in the face of complex, multi-step problems. How to
generate high-quality plans for LLMs remains a challenging research question in the field.

4.3 MONTE CARLO TREE SEARCH

MCTS is a heuristic search algorithm renowned for its success in game-playing AI, particularly in
games with vast search spaces like Go and Chess (Silver et al., 2016). MCTS operates through four
main phases: selection, expansion, simulation, and backpropagation (Chaslot et al., 2008). Its ability
to balance exploration and exploitation makes it highly effective in navigating large decision trees
to identify optimal strategies. Recent research has begun to explore the application of MCTS in the
context of LLMs, particularly for solution search in CoT processes (OpenAI, 2024) or self-training
process (Zhang et al., 2024a). These studies have demonstrated that MCTS can enhance the search
for high-quality solutions by efficiently exploring the space of possible reasoning paths. However,
the direct application of MCTS to LLMs presents challenges, such as the computational expense of
evaluating generated content and the difficulty in effectively integrating heuristic evaluations within
the planning process. We investigate these challenges in our research and propose to use smaller
LLM for planning and larger LLM for evaluation and execution to address these challenges.

4.4 RESEARCH GAP AND OUR CONTRIBUTION

While MCTS has shown promise in enhancing solution search for LLMs, its application to the plan-
ning process remains largely unexplored. Existing planning methods for LLMs, including Chain-
of-Thought prompting and plan-and-solve frameworks, predominantly rely on the LLM’s inherent
reasoning abilities to generate plans. However, these reasoning abilities can be inconsistent and
prone to errors, particularly when dealing with complex, multi-step problems requiring long-term
planning and logical consistency. For instance, in tasks involving multi-step mathematical reasoning
or intricate commonsense scenarios, LLMs often struggle to devise and maintain a coherent plan,
leading to suboptimal or incorrect solutions.

Our research addresses this gap by integrating MCTS into the planning phase. Unlike previous work
focusing on solution search, we leverage MCTS to explicitly generate high-quality plans before the
LLM starts reasoning. By systematically exploring the plan space and evaluating quality with spe-
cialized LLM agents, we aim to generate more effective and logically consistent plans, significantly
enhancing LLM problem-solving accuracy and reliability in complex tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 CONCLUSION AND DISCUSSION

This paper introduced a novel framework for enhancing the problem-solving capabilities of LLMs by
leveraging MCTS for plan generation. Our approach explicitly separates the planning and reasoning
stages of problem-solving, using MCTS to explore the space of possible plans before the LLM be-
gins to reason towards a solution. Experiments on a diverse set of benchmark datasets demonstrated
that MCTS-enhanced planning significantly improves LLM problem-solving accuracy compared to
standard Chain-of-Thought prompting and existing plan-and-solve methods.

Our findings highlight the effectiveness of MCTS in generating high-quality, logically consistent
plans that guide the LLM towards more effective solutions, particularly in complex reasoning tasks.
We also observed that MCTS planning offers a stronger performance boost for smaller LLMs, sug-
gesting it can partially compensate for limited reasoning capabilities in resource-constrained set-
tings. Further analysis revealed that the performance of MCTS planning is influenced by factors
such as search depth and the number of rollouts, with deeper search and more rollouts generally
leading to better plans.

To address the computational cost of MCTS, we explored the use of smaller LLMs for planning
and larger LLMs for evaluation and execution. Our results demonstrated that this approach can
significantly enhance efficiency while maintaining high problem-solving performance, offering a
promising direction for optimizing MCTS planning in real-world applications.

We believe that our research contributes to a deeper understanding of the interplay between planning
and reasoning in LLMs and opens new avenues for improving AI problem-solving capabilities. The
integration of MCTS and LLMs holds significant promise for developing more robust and reliable
AI systems capable of tackling complex real-world problems.

ETHICAL CONSIDERATIONS

This research enhances LLM problem-solving via MCTS planning. While our benchmark datasets
pose minimal direct ethical concerns, the potential impact of improved AI problem-solving necessi-
tates broader ethical consideration.

Integrating MCTS introduces unique challenges. Unlike CoT methods, MCTS explores a wider
range of plans, some potentially ethical yet logically sound. For instance, directly plan and executing
a toxic action could be rejected by LLM with alignment to ethical principles. However, if the
search objective is to find such a plan, MCTS may escape the LLM’s ethical constraints. In this
context, Mitigation strategies warrant investigation. Incorporating fairness constraints into MCTS,
adversarial training for agents, and human-in-the-loop plan review could enhance ethical outcomes.

LIMITATIONS

While our MCTS-enhanced planning approach demonstrates significant improvements in LLM
problem-solving capabilities, it is important to acknowledge several limitations of our current work.

Firstly, the computational cost of MCTS, particularly for larger language models, remains a signif-
icant challenge. Although we have shown that using smaller models for planning can mitigate this
issue to some extent, further research is needed to optimize the efficiency of MCTS in the context
of LLMs. Future work could explore pruning techniques or more sophisticated heuristics to reduce
the search space without compromising plan quality.

Secondly, our study primarily focused on a specific set of benchmark datasets. While these datasets
cover a range of problem types, they may not fully represent the diversity of real-world problems
that LLMs might encounter. Expanding our evaluation to a broader set of tasks and domains would
provide a more comprehensive assessment of our method’s generalizability and robustness.

Despite these limitations, we believe that our work represents a significant step forward in enhancing
the problem-solving capabilities of LLMs. By explicitly addressing these challenges, we hope to
inspire further research that will lead to even more powerful and reliable AI systems capable of
tackling complex real-world problems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 17682–17690, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
https://arxiv.org/abs/2005.14165.

Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck. Monte-carlo tree search: A
new framework for game ai. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 4, pp. 216–217, 2008.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,

11

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vítor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

12

https://arxiv.org/abs/2407.21783

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Alessandro Moschitti, Bo Pang, and
Walter Daelemans (eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 523–533, Doha, Qatar, October 2014. Association for Com-
putational Linguistics. doi: 10.3115/v1/D14-1058. URL https://aclanthology.org/
D14-1058.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-
sawa. Large language models are zero-shot reasoners. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 22199–22213. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas
Ang. Parsing algebraic word problems into equations. Transactions of the Association for Com-
putational Linguistics, 3:585–597, 2015.

Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang, and
Xiaohang Dong. Better zero-shot reasoning with role-play prompting. In Proceedings of the 2024
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 4099–4113, 2024.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Zifu Wang, Huazhong Yang, and Yu Wang. Skeleton-of-
thought: Prompting LLMs for efficient parallel generation. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
mqVgBbNCm9.

OpenAI. Openai o1 system card, 2024. URL https://cdn.openai.com/
o1-system-card.pdf.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, ukasz Kaiser, Ali Kamali,
Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
ukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming
Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Pa-
tricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski,
Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Chris-
tine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick, Luke
Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing,
Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe, Jakub Pa-
chocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel Parish,

13

https://aclanthology.org/D14-1058
https://aclanthology.org/D14-1058
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://openreview.net/forum?id=mqVgBbNCm9
https://openreview.net/forum?id=mqVgBbNCm9
https://cdn.openai.com/o1-system-card.pdf
https://cdn.openai.com/o1-system-card.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila
Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle
Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul
Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra Rim-
bach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani
Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla
Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric
Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang
Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 2080–2094,
2021.

Pruthvi Patel, Swaroop Mishra, Mihir Parmar, and Chitta Baral. Is a question decomposition unit
all we need? In Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, pp. 4553–4569, 2022.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pp. 1743–1752, 2015.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W. Ko-
curek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda
Askell, Amanda Dsouza, Ambrose Slone, Ameet Rahane, Anantharaman S. Iyer, Anders Johan
Andreassen, Andrea Madotto, Andrea Santilli, Andreas Stuhlmüller, Andrew M. Dai, Andrew
La, Andrew Lampinen, Andy Zou, Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta,
Anna Gottardi, Antonio Norelli, Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul
Menezes, Arun Kirubarajan, Asher Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat,
Aykut Erdem, Ayla Karakaş, B. Ryan Roberts, Bao Sheng Loe, Barret Zoph, Bartłomiej Bo-
janowski, Batuhan Özyurt, Behnam Hedayatnia, Behnam Neyshabur, Benjamin Inden, Benno
Stein, Berk Ekmekci, Bill Yuchen Lin, Blake Howald, Bryan Orinion, Cameron Diao, Cameron
Dour, Catherine Stinson, Cedrick Argueta, Cesar Ferri, Chandan Singh, Charles Rathkopf, Chen-
lin Meng, Chitta Baral, Chiyu Wu, Chris Callison-Burch, Christopher Waites, Christian Voigt,
Christopher D Manning, Christopher Potts, Cindy Ramirez, Clara E. Rivera, Clemencia Siro,
Colin Raffel, Courtney Ashcraft, Cristina Garbacea, Damien Sileo, Dan Garrette, Dan Hendrycks,
Dan Kilman, Dan Roth, C. Daniel Freeman, Daniel Khashabi, Daniel Levy, Daniel Moseguí
González, Danielle Perszyk, Danny Hernandez, Danqi Chen, Daphne Ippolito, Dar Gilboa,
David Dohan, David Drakard, David Jurgens, Debajyoti Datta, Deep Ganguli, Denis Emelin,
Denis Kleyko, Deniz Yuret, Derek Chen, Derek Tam, Dieuwke Hupkes, Diganta Misra, Dilyar
Buzan, Dimitri Coelho Mollo, Diyi Yang, Dong-Ho Lee, Dylan Schrader, Ekaterina Shutova,
Ekin Dogus Cubuk, Elad Segal, Eleanor Hagerman, Elizabeth Barnes, Elizabeth Donoway, El-
lie Pavlick, Emanuele Rodolà, Emma Lam, Eric Chu, Eric Tang, Erkut Erdem, Ernie Chang,
Ethan A Chi, Ethan Dyer, Ethan Jerzak, Ethan Kim, Eunice Engefu Manyasi, Evgenii Zheltonozh-
skii, Fanyue Xia, Fatemeh Siar, Fernando Martínez-Plumed, Francesca Happé, Francois Chol-
let, Frieda Rong, Gaurav Mishra, Genta Indra Winata, Gerard de Melo, Germán Kruszewski,

14

https://arxiv.org/abs/2303.08774

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Giambattista Parascandolo, Giorgio Mariani, Gloria Xinyue Wang, Gonzalo Jaimovitch-Lopez,
Gregor Betz, Guy Gur-Ari, Hana Galijasevic, Hannah Kim, Hannah Rashkin, Hannaneh Ha-
jishirzi, Harsh Mehta, Hayden Bogar, Henry Francis Anthony Shevlin, Hinrich Schuetze, Hi-
romu Yakura, Hongming Zhang, Hugh Mee Wong, Ian Ng, Isaac Noble, Jaap Jumelet, Jack
Geissinger, Jackson Kernion, Jacob Hilton, Jaehoon Lee, Jaime Fernández Fisac, James B Si-
mon, James Koppel, James Zheng, James Zou, Jan Kocon, Jana Thompson, Janelle Wingfield,
Jared Kaplan, Jarema Radom, Jascha Sohl-Dickstein, Jason Phang, Jason Wei, Jason Yosinski,
Jekaterina Novikova, Jelle Bosscher, Jennifer Marsh, Jeremy Kim, Jeroen Taal, Jesse Engel, Je-
sujoba Alabi, Jiacheng Xu, Jiaming Song, Jillian Tang, Joan Waweru, John Burden, John Miller,
John U. Balis, Jonathan Batchelder, Jonathan Berant, Jörg Frohberg, Jos Rozen, Jose Hernandez-
Orallo, Joseph Boudeman, Joseph Guerr, Joseph Jones, Joshua B. Tenenbaum, Joshua S. Rule,
Joyce Chua, Kamil Kanclerz, Karen Livescu, Karl Krauth, Karthik Gopalakrishnan, Katerina
Ignatyeva, Katja Markert, Kaustubh Dhole, Kevin Gimpel, Kevin Omondi, Kory Wallace Math-
ewson, Kristen Chiafullo, Ksenia Shkaruta, Kumar Shridhar, Kyle McDonell, Kyle Richardson,
Laria Reynolds, Leo Gao, Li Zhang, Liam Dugan, Lianhui Qin, Lidia Contreras-Ochando, Louis-
Philippe Morency, Luca Moschella, Lucas Lam, Lucy Noble, Ludwig Schmidt, Luheng He, Luis
Oliveros-Colón, Luke Metz, Lütfi Kerem Senel, Maarten Bosma, Maarten Sap, Maartje Ter Ho-
eve, Maheen Farooqi, Manaal Faruqui, Mantas Mazeika, Marco Baturan, Marco Marelli, Marco
Maru, Maria Jose Ramirez-Quintana, Marie Tolkiehn, Mario Giulianelli, Martha Lewis, Martin
Potthast, Matthew L Leavitt, Matthias Hagen, Mátyás Schubert, Medina Orduna Baitemirova,
Melody Arnaud, Melvin McElrath, Michael Andrew Yee, Michael Cohen, Michael Gu, Michael
Ivanitskiy, Michael Starritt, Michael Strube, Michał Swędrowski, Michele Bevilacqua, Michi-
hiro Yasunaga, Mihir Kale, Mike Cain, Mimee Xu, Mirac Suzgun, Mitch Walker, Mo Ti-
wari, Mohit Bansal, Moin Aminnaseri, Mor Geva, Mozhdeh Gheini, Mukund Varma T, Nanyun
Peng, Nathan Andrew Chi, Nayeon Lee, Neta Gur-Ari Krakover, Nicholas Cameron, Nicholas
Roberts, Nick Doiron, Nicole Martinez, Nikita Nangia, Niklas Deckers, Niklas Muennighoff, Ni-
tish Shirish Keskar, Niveditha S. Iyer, Noah Constant, Noah Fiedel, Nuan Wen, Oliver Zhang,
Omar Agha, Omar Elbaghdadi, Omer Levy, Owain Evans, Pablo Antonio Moreno Casares, Parth
Doshi, Pascale Fung, Paul Pu Liang, Paul Vicol, Pegah Alipoormolabashi, Peiyuan Liao, Percy
Liang, Peter W Chang, Peter Eckersley, Phu Mon Htut, Pinyu Hwang, Piotr Miłkowski, Piyush
Patil, Pouya Pezeshkpour, Priti Oli, Qiaozhu Mei, Qing Lyu, Qinlang Chen, Rabin Banjade,
Rachel Etta Rudolph, Raefer Gabriel, Rahel Habacker, Ramon Risco, Raphaël Millière, Rhythm
Garg, Richard Barnes, Rif A. Saurous, Riku Arakawa, Robbe Raymaekers, Robert Frank, Rohan
Sikand, Roman Novak, Roman Sitelew, Ronan Le Bras, Rosanne Liu, Rowan Jacobs, Rui Zhang,
Russ Salakhutdinov, Ryan Andrew Chi, Seungjae Ryan Lee, Ryan Stovall, Ryan Teehan, Rylan
Yang, Sahib Singh, Saif M. Mohammad, Sajant Anand, Sam Dillavou, Sam Shleifer, Sam Wise-
man, Samuel Gruetter, Samuel R. Bowman, Samuel Stern Schoenholz, Sanghyun Han, Sanjeev
Kwatra, Sarah A. Rous, Sarik Ghazarian, Sayan Ghosh, Sean Casey, Sebastian Bischoff, Sebas-
tian Gehrmann, Sebastian Schuster, Sepideh Sadeghi, Shadi Hamdan, Sharon Zhou, Shashank
Srivastava, Sherry Shi, Shikhar Singh, Shima Asaadi, Shixiang Shane Gu, Shubh Pachchigar,
Shubham Toshniwal, Shyam Upadhyay, Shyamolima Shammie Debnath, Siamak Shakeri, Simon
Thormeyer, Simone Melzi, Siva Reddy, Sneha Priscilla Makini, Soo-Hwan Lee, Spencer Torene,
Sriharsha Hatwar, Stanislas Dehaene, Stefan Divic, Stefano Ermon, Stella Biderman, Stephanie
Lin, Stephen Prasad, Steven Piantadosi, Stuart Shieber, Summer Misherghi, Svetlana Kiritchenko,
Swaroop Mishra, Tal Linzen, Tal Schuster, Tao Li, Tao Yu, Tariq Ali, Tatsunori Hashimoto, Te-Lin
Wu, Théo Desbordes, Theodore Rothschild, Thomas Phan, Tianle Wang, Tiberius Nkinyili, Timo
Schick, Timofei Kornev, Titus Tunduny, Tobias Gerstenberg, Trenton Chang, Trishala Neeraj,
Tushar Khot, Tyler Shultz, Uri Shaham, Vedant Misra, Vera Demberg, Victoria Nyamai, Vikas
Raunak, Vinay Venkatesh Ramasesh, vinay uday prabhu, Vishakh Padmakumar, Vivek Sriku-
mar, William Fedus, William Saunders, William Zhang, Wout Vossen, Xiang Ren, Xiaoyu Tong,
Xinran Zhao, Xinyi Wu, Xudong Shen, Yadollah Yaghoobzadeh, Yair Lakretz, Yangqiu Song,
Yasaman Bahri, Yejin Choi, Yichi Yang, Yiding Hao, Yifu Chen, Yonatan Belinkov, Yu Hou,
Yufang Hou, Yuntao Bai, Zachary Seid, Zhuoye Zhao, Zijian Wang, Zijie J. Wang, Zirui Wang,
and Ziyi Wu. Beyond the imitation game: Quantifying and extrapolating the capabilities of lan-
guage models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvosj.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A ques-
tion answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and

15

https://openreview.net/forum?id=uyTL5Bvosj

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1421. URL https://aclanthology.org/
N19-1421.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Fer-
ret, Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Char-
line Le Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin,
Nikola Momchev, Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur,
Olivier Bachem, Alanna Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchi-
son, Alvin Abdagic, Amanda Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge,
Antonia Paterson, Ben Bastian, Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar,
Chris Perry, Chris Welty, Christopher A. Choquette-Choo, Danila Sinopalnikov, David Wein-
berger, Dimple Vijaykumar, Dominika Rogoziska, Dustin Herbison, Elisa Bandy, Emma Wang,
Eric Noland, Erica Moreira, Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin,
Gary Wei, Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna Klimczak-Pluciska, Harleen Ba-
tra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha
Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van
Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed, Kar-
tikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,
Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel
Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,
Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moyni-
han, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao,
Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil
Botarda, Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culli-
ton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni,
Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Perrin, Sébastien
M. R. Arnold, Sebastian Krause, Shengyang Dai, Shruti Garg, Shruti Sheth, Sue Ronstrom,
Susan Chan, Timothy Jordan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas Kocisky, Tulsee
Doshi, Vihan Jain, Vikas Yadav, Vilobh Meshram, Vishal Dharmadhikari, Warren Barkley, Wei
Wei, Wenming Ye, Woohyun Han, Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, Zichuan
Wei, Victor Cotruta, Phoebe Kirk, Anand Rao, Minh Giang, Ludovic Peran, Tris Warkentin, Eli
Collins, Joelle Barral, Zoubin Ghahramani, Raia Hadsell, D. Sculley, Jeanine Banks, Anca Dra-
gan, Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Fara-
bet, Elena Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Armand Joulin, Kathleen Kenealy,
Robert Dadashi, and Alek Andreev. Gemma 2: Improving open language models at a practical
size, 2024. URL https://arxiv.org/abs/2408.00118.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. In Proceedings of the 61st Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 2609–2634, 2023a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023b. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 24824–24837. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,

16

https://aclanthology.org/N19-1421
https://aclanthology.org/N19-1421
https://arxiv.org/abs/2408.00118
https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jin-
gren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 11809–11822. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search, 2024a. URL https://arxiv.org/abs/
2406.03816.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agar-
wal. Generative verifiers: Reward modeling as next-token prediction, 2024b. URL https:
//arxiv.org/abs/2408.15240.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett, and Ying Sheng. Sglang:
Efficient execution of structured language model programs, 2024. URL https://arxiv.
org/abs/2312.07104.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
urmans, Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting
enables complex reasoning in large language models. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
WZH7099tgfM.

17

https://arxiv.org/abs/2407.10671
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2406.03816
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 COUNT CHARACTERS: EXAMPLE

Count Characters: Example 2.1

Problem: how many R’s are there in the word "Pneumonoultramicroscopicsilicovolcanoconiosis"?
—
CoT Prompt: Let’s think step by step.
CoT Result:
1. **Identify the letter:** We’re looking for the letter ’R’.
2. **Scan the word:** Carefully read through the word "Pneumonoultramicroscopicsilicovolcanoco-
niosis".
3. **Count the occurrences:** Count each instance of the letter ’R’. There is only one ’R’.
Therefore, there is only **one** ’R’ in the word "Pneumonoultramicroscopicsilicovolcanoconiosis".
— Planning Prompt:
To count the R’s in "Pneumonoultramicroscopicsilicovolcanoconiosis." we can iterate throuoh each
letter of the word, Initially, we’ll set a counter to zero, for each leter encountered, we’ll check if itis an
"R" character. If it is, we’ll increment our counter, This proess will continwe until we’ve examined all
letters in the word, allowing us to determine the final count of "R’s present.
Planning Result:
Following the plan:
1. **Initialization:** Set a counter to zero (e.g., ‘r_count = 0‘).
2. **Iteration:** Iterate through each letter of the word "Pneumonoultramicroscopicsilicovolcanoco-
niosis".
3. **Comparison:** For each letter, check if it is equal to "R".
4. **Increment:** If the letter is "R", increment the counter (‘r_count = r_count + 1‘).
5. **Final Count:** After iterating through all letters, the value of ‘r_count‘ will be the total number
of "R"s.
Let’s apply this to the word:
The word "Pneumonoultramicroscopicsilicovolcanoconiosis" contains **one** "R".

Figure 3: Count Characters Example of “R” in the word “Pneumonoultramicroscopicsilicovol-
canoconiosis” with CoT and Planning.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Count Characters: Example 2.2

MCTS Planning Prompt:
1. **Define the task:** Our goal is to count the number of "R’s present within the word
"strawberry."
2. **Iterate through the word:** We will examine each letter of "strawberry" one at a time.
3. **Check for "R":** If the letter is an "R", increment a counter to keep track of our count.
4. **Increment counter:** If the letter is an "R", increment a counter to keep track of our
count.
5. **Complete iteration:** We will continue this process until we have examined every
letter in the word.
6. **Return the count:** After processing all letters, the counter will hold the final number
of "R’s in the word.
MCTS Planning Result:
Okay, let’s adapt your plan to count the R’s in "Pneumonoultramicroscopicsilicovolcanoco-
niosis":
Define the task: Our goal is to count the number of "R’s" present within the word
"Pneumonoultramicroscopicsilicovolcanoconiosis".
Iterate through the word: We will examine each letter of "Pneumonoultramicroscopic-
silicovolcanoconiosis" one at a time.
Let’s start with a counter set to 0.
* **P** - Not an R, counter remains 0.
* **n** - Not an R, counter remains 0.
* **e** - Not an R, counter remains 0.
* **u** - Not an R, counter remains 0.
* **m** - Not an R, counter remains 0.
* **o** - Not an R, counter remains 0.
* **n** - Not an R, counter remains 0.
* **o** - Not an R, counter remains 0.
* **u** - Not an R, counter remains 0.
* **l** - Not an R, counter remains 0.
* **t** - Not an R, counter remains 0.
* **r** - **It’s an R! Increment the counter to 1.**
* **a** - Not an R, counter remains 1.
* **m** - Not an R, counter remains 1.
* **i** - Not an R, counter remains 1.
* **c** - Not an R, counter remains 1.
* **r** - **It’s an R! Increment the counter to 2.**
* **o** - Not an R, counter remains 2.
* **s** - Not an R, counter remains 2.
* **i** - Not an R, counter remains 2.
* **l** - Not an R, counter remains 2.
* **i** - Not an R, counter remains 2.
* **c** - Not an R, counter remains 2.
* **o** - Not an R, counter remains 2.
* **v** - Not an R, counter remains 2.
* **o** - Not an R, counter remains 2.
SKIP FOR SPACE

Complete iteration: We have now processed all letters, and the counter holds the final
number of "R’s" in the word.
Result: There are **2** R’s in the word "Pneumonoultramicroscopicsilicovolcanoco-
niosis".

Figure 4: Count Characters Example of “R” in the word “Pneumonoultramicroscopicsilicovol-
canoconiosis” with MCTS Planning.

19

	Introduction
	Searching Plan for Better Problem-Solving
	Preliminary: From CoT to Planning
	Monte Carlo Tree Search for Planning

	Experiments
	Research Questions
	Dataset and Evaluation Metrics
	RQ1: Enhanced Problem-Solving through MCTS-Guided Planning
	RQ2: Enhancing the Efficiency of MCTS in Planning for LLMs

	Related Work
	Chain-of-Thought Prompting
	Planning Techniques for LLMs
	Monte Carlo Tree Search
	Research Gap and Our Contribution

	Conclusion and Discussion
	Appendix
	Count Characters: Example

