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ABSTRACT

Despite recent advances in Large Language Models (LLMs), their ability to solve
complex reasoning problems remains limited by inconsistent planning and logical
flaws. We present a novel framework that significantly enhances LLMs’ problem-
solving capabilities by leveraging Monte Carlo Tree Search (MCTS) for plan gen-
eration. Unlike previous approaches that apply MCTS to solution search, our
method uniquely integrates MCTS into the planning phase, guided by special-
ized LLM-powered agents that evaluate plan quality. Experiments across diverse
benchmark datasets demonstrate that our approach improves problem-solving ac-
curacy by an average of 40.59% compared to zero-shot Chain-of-Thought prompt-
ing. Furthermore, we show that using smaller models for MCTS planning and
larger models for execution can maintain high performance while reducing com-
putational costs. This work opens new avenues for developing more robust and
efficient AI systems capable of tackling complex real-world problems, with po-
tential applications in fields requiring advanced logical reasoning and long-term
planning. Our code examples are publicly available at this Anonymous Github
Repository.

1 INTRODUCTION

In an era where artificial intelligence increasingly influences our daily lives, the quest for machines
capable of human-like reasoning remains a central challenge in computer science. Large Language
Models (LLMs) have emerged as powerful tools in natural language processing, demonstrating re-
markable capabilities across various tasks (Brown et al., 2020; Chowdhery et al., 2023). However,
when faced with complex, multi-step problems requiring logical consistency and long-term plan-
ning, even state-of-the-art models like GPT-4 (OpenAI et al., 2024) often falter, revealing a critical
gap between machine and human problem-solving abilities.

The limitations of LLMs in complex reasoning tasks stem from their struggle to maintain logical
consistency and handle long-term dependencies throughout extended problem-solving processes.
Existing approaches, such as Chain-of-Thought (CoT) prompting (Wei et al., 2022), have shown
promise in improving step-by-step reasoning. However, these methods often fail to address the fun-
damental challenge of generating and following a coherent, overarching plan (Wang et al., 2023b;
Yao et al., 2023). Similarly, current planning methods for LLMs, including task decomposition (Pa-
tel et al., 2022; Zhou et al., 2023) and explicit plan-and-solve approaches (Wang et al., 2023a; Yao
et al., 2023), are ultimately constrained by the LLM’s inherent reasoning abilities.

This research addresses a critical question: How can we enhance the planning capabilities of LLMs
to significantly improve their problem-solving performance in complex, multi-step tasks? We hy-
pothesize that by leveraging advanced search algorithms in the planning phase, we can generate
higher-quality plans that guide LLMs towards more effective and logically consistent solutions.

To this end, we propose a novel framework that integrates Monte Carlo Tree Search (MCTS) into the
planning process for LLMs. MCTS, renowned for its success in complex game-playing AI (Silver
et al., 2016), offers a powerful method for exploring vast search spaces and identifying optimal
strategies. Our approach uniquely applies MCTS to the generation of problem-solving plans, rather
than to direct solution search. This is achieved through a two-step process: first, MCTS explores the
space of possible plans, guided by specialized LLM-powered agents that evaluate plan quality; then,
the optimal plan is provided to the LLM for step-by-step execution.
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(1) Direct CoT Reasoning (2) Plan and Solve (3) Plan with MCTS and solve

(b) Reasoning Stage

(a) Planning Stage

Plan with CoT Plan with MCTS

Solid circle: reasoning state

Dashed circle: planning state 

Red dashed circle: incorrect state

Darker color indicates higher probability

Figure 1: Illustration of the proposed framework for enhancing LLM problem-solving with MCTS
planning. (a) CoT prompting generates planning and reasoning states interleavedly, while post states
may suffer from cumulative error. (b) Plan and solve framework separates planning and reasoning,
while planning is generated manually or based on CoT, which may not be optimal. (c) Our proposed
MCTS-enhanced planning approach explicitly generates high-quality plans using MCTS, which are
then executed by the LLM for problem-solving. Darker colors of each state indicate higher proba-
bility, which leads to better problem-solving performance.

The significance of this research extends beyond mere incremental improvements in LLM perfor-
mance. By enhancing the planning and problem-solving capabilities of LLMs, we pave the way
for more robust and reliable AI systems capable of tackling complex real-world problems. This
has far-reaching implications for fields such as automated reasoning, decision support systems, and
AI-assisted scientific discovery.

Our work makes several key contributions to the field of AI and natural language processing:

1. We introduce a novel paradigm for enhancing LLMs’ problem-solving abilities by applying
MCTS to the planning process, addressing a critical gap in current approaches.

2. We provide empirical evidence demonstrating significant improvements in problem-solving
accuracy across diverse benchmark datasets, with an average improvement of 40.59% com-
pared to zero-shot Chain-of-Thought prompting.

3. We offer insights into the interplay between planning, reasoning, and execution in LLM-
based problem-solving, contributing to a deeper understanding of AI cognition.

4. We propose an efficient approach using smaller models for MCTS planning and larger
models for execution, maintaining high performance while reducing computational costs.

2 SEARCHING PLAN FOR BETTER PROBLEM-SOLVING

This section presents our novel approach to enhancing the problem-solving capabilities of LLMs
through the integration of MCTS in the planning process. We first provide the necessary back-
ground and problem formulation, followed by a detailed description of our MCTS-enhanced plan-
ning framework.

2.1 PRELIMINARY: FROM COT TO PLANNING

LLMs have demonstrated remarkable performance in various natural language processing tasks, yet
their ability to solve complex, multi-step problems remains limited. Existing approaches, such as
CoT prompting (Wei et al., 2022), often struggle to maintain logical consistency and handle long-
term dependencies in reasoning chains, especially as problem complexity increases (Wang et al.,
2023b; Yao et al., 2023).

Formally, we can view problem-solving with LLMs as a process of generating a solution Y given
a problem X and a context C, which can be represented as a conditional probability distribution

2
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Count Characters: Example 1

Problem: how many R’s are there in the word “Strawberry”?
—
CoT Prompt: Let’s think step by step.
CoT Result:
Here’s how to count the ’R’s in "strawberry":
1. **Identify the ’R’s:** Look for the letter ’R’ in the word.
2. **Count:** There are **two** ’R’s in the word "strawberry".
—
Planning Prompt:
To count the R’s in "strawberry." we can iterate throuoh each letter of the word, Initially, we’ll set a counter to zero, for each leter encountered, we’ll
check if itis an "R" character. If it is, we’ll increment our counter, This proess will continwe until we’ve examined all letters in the word, allowing us to
determine the final count of "R’s present.
Planning Result:
Following the plan:
1. **Initialize counter:** ‘r_count = 0‘.
2. **Iterate through the word:** Check each letter of "strawberry" for ’R’.
3. **Increment counter:** If the letter is ’R’, increment the counter (‘r_count = r_count + 1‘).
4. **Final Count:** The word "strawberry" contains **3** ’R’s.
—
MCTS Planning:
1. **Define the task:** Our goal is to count the number of "R’s present within the word "strawberry."
2. **Iterate through the word:** We will examine each letter of "strawberry" one at a time.
3. **Check for "R":** If the letter is an "R", increment a counter to keep track of our count.
4. **Increment counter:** If the letter is an "R", increment a counter to keep track of our count.
5. **Complete iteration:** We will continue this process until we have examined every letter.
6. **Return the count:** After processing all letters, the counter will hold the final number of "R’s.
MCTS Planning Result:
Here’s the breakdown:
1. **Define the task:** We need to count how many "R’s are in "strawberry".
2. **Iterate through the word:** Let’s examine each letter:
* **s** - Not an R, counter remains 0.
* **t** - Not an R, counter remains 0.
* **r** - **It’s an R! Increment the counter to 1.**
* **a** - Not an R, counter remains 1.
* **w** - Not an R, counter remains 1.
* **b** - Not an R, counter remains 1.
* **e** - Not an R, counter remains 1.
* **r** - **It’s an R! Increment the counter to 2.**
* **r** - **It’s an R! Increment the counter to 3.**
* **y** - Not an R, counter remains 3.
3. **Complete iteration:** After examining all letters, the counter holds **3** R’s.
4. **Result:** There are **3** R’s in the word "strawberry".

Figure 2: Character counting example

P (Y |X,C). In zero-shot CoT prompting, the context C is typically the problem itself, and the LLM
attempts to generate the solution directly through a series of reasoning steps X = {X1, X2, ..., Xn}.
This direct approach often leads to suboptimal solutions due to the intertwined nature of planning
and reasoning.

To address this challenge, we employ a planning-based approach that decouples planning from rea-
soning. We introduce a plan π as an ordered sequence of actions, where π ∈ Π, and Π represents
the space of all possible plans. In this framework, the context C can be decomposed into two parts:
the problem description Cproblem and a plan π generated based on the problem, which we denote as
Cplan. Thus, we can rewrite the conditional probability as:

P (Y |X,C) = P (Y |X,Cproblem, Cplan) (1)

Assuming that the solution Y depends on the problem X and the plan Cplan, but not directly on
the problem description Cproblem once the plan is given, we can factorize this probability using the
chain rule:

P (Y |X,Cplan) = P (Y |X,Cplan)P (X|C) (2)

This factorization highlights the two distinct stages of our approach:

1. Planning (P (X|C)): Generating a sequence of reasoning steps (X) based on the initial
context (C), which includes the problem description.

2. Reasoning (P (Y |X,Cplan)): Generating the solution (Y) given the problem (X) and the
plan (Cplan).

3
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By explicitly separating these stages, we aim to improve the logical consistency and coherence of
the problem-solving process. The planning stage focuses on finding an effective plan, while the
reasoning stage leverages the plan to guide the generation of the solution.

Instead of relying on the LLM to implicitly generate a plan within its reasoning process, we leverage
MCTS (Chaslot et al., 2008) to explicitly explore the plan space Π during the planning stage. MCTS
is a powerful heuristic search algorithm that has achieved remarkable success in complex game
AI (Silver et al., 2016). We adapt MCTS to the problem-solving domain by representing plans as
nodes in the search tree and using specialized LLM-powered agents to evaluate the quality of each
plan. These agents assess properties such as the logical consistency and feasibility of the plan,
providing feedback that guides the MCTS exploration.

This approach differs significantly from previous work that has applied MCTS to LLMs. While some
studies have used Breadth First Search (BFS) or Depth First Search (DFS) to guide the selection of
reasoning steps in CoT (Yao et al., 2023), our framework focuses on using MCTS to optimize the
plan itself, providing a more structured and potentially more effective approach to complex problem-
solving.

By decoupling planning and reasoning, and by leveraging the strengths of MCTS and LLMs, our
proposed framework aims to enhance the problem-solving capabilities of LLMs, particularly in
scenarios requiring complex reasoning and long-term planning.

2.2 MONTE CARLO TREE SEARCH FOR PLANNING

To address the limitations of existing planning methods and improve the coherence and logical
consistency of LLM problem-solving, we propose leveraging MCTS for plan generation. Unlike
approaches that use MCTS to directly guide the reasoning process, our approach focuses on finding a
high-quality plan before the LLM begins to reason towards a solution. This corresponds to explicitly
searching for a good sequence of reasoning steps (X) in the probabilistic framework P (Y |X,Cplan)
discussed in Sec. 2.1.

Selection: Starting from the root node (which represents an initial plan, generated by prompting
the LLM with the problem description), we traverse the tree by selecting the child node with the
highest Upper Confidence Bound 1 (UCB1) value. UCB1 balances exploration and exploitation by
considering both the average reward of simulations passing through a node and the number of times
it has been visited:

UCB1(node) = Q(node) + C

√
ln(N(parent))

N(node)
(3)

where Q(node) is the average reward of simulations passing through the node, N(node) is the
number of times the node has been visited, N(parent) is the number of times the parent node has
been visited, and C is an exploration constant that controls the balance between exploration and
exploitation.

Expansion: When a leaf node is reached, a new node is added to the tree. This new node represents
a modified version of the parent node’s plan.

Plans are represented as sequences of natural language instructions that guide the LLM’s reasoning.
For example, a plan to solve a math word problem might be: "1. Identify the given quantities. 2.
Determine the relationship between the quantities. 3. Formulate an equation. 4. Solve the equation."

Simulation and Reward: The newly generated plan is then subjected to a simulation to estimate
its effectiveness. Instead of real execution in traditional MCTS (Chaslot et al., 2008; Silver et al.,
2016), we employ multi-agents to assess the quality of the plan inspired by (Zhang et al., 2024b),
including:

• Logical Consistency Agent: Checks for contradictions or inconsistencies in the plan.
• Feasibility Agent: Determines whether the plan is executable.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Each evaluation agent assigns a score (e.g., between 0 and 1) to the plan, and may also provide
textual feedback explaining its assessment. For example, the Logical Consistency Agent might give
a low score and feedback like: "Step 2 contradicts the information given in Step 1." This feedback
can be used to guide plan modification in subsequent expansion steps.

The individual scores from the evaluation agents are combined by a reward function to produce an
overall reward signal for the plan. The reward function can be a simple weighted average or a more
complex function that takes into account the relative importance of different evaluation criteria.

Backpropagation: The reward signal obtained from the simulation and evaluation is backpropa-
gated up the MCTS tree, updating the value estimates of all nodes along the path from the root to
the newly expanded node.

By iteratively applying these steps, MCTS builds a search tree of potential plans, gradually focusing
on areas of the plan space that are likely to lead to high-quality solutions. Once a predefined number
of rollouts have been completed, or a time limit is reached, the MCTS algorithm selects the node
with the highest average reward as the optimal plan. We present an illustrative example of the
MCTS planning process in Fig. 2 with counting “R”s in the word “Strawberry” and a more complex
example in Sec. A.1.

3 EXPERIMENTS

3.1 RESEARCH QUESTIONS

In this research, we would like to investigatee the potential of MCTS to enhance the planning and
problem-solving capabilities of LLMs, addressing limitations of existing methods like zero-shot
CoT (Kojima et al., 2022) and Plan-and-Solve (Wang et al., 2023a) prompting in handling complex
multi-step problems. Specifically, we explore two core research questions:

RQ1: Does MCTS-based planning improve LLM problem-solving performance? We will evaluate
this by comparing the accuracy of our proposed approach against baseline prompting and analyzing
the correlation between plan quality and LLM performance.

RQ2: How to optimize the MCTS parameters for planning in LLMs? We will investigate the impact
of different MCTS strategy, such as different LLM for planning, evaluating, and executing, on the
problem-solving performance of our approach.

By answering these questions, we aim to provide insights into the interplay between planning and
reasoning in LLMs, contributing to the development of more robust and reliable AI systems capable
of tackling complex real-world problems.

3.2 DATASET AND EVALUATION METRICS

Benchmark Datasets: To evaluate the effectiveness of our MCTS-enhanced planning approach,
we conduct experiments on a diverse set of benchmark datasets specifically chosen to assess its per-
formance across various problem-solving tasks and challenge the limitations of existing methods,
including (1) arithmatic: GSM8K (Cobbe et al., 2021), AddSub (Hosseini et al., 2014), Multi-
Arith (Roy & Roth, 2015), SVAMP (Patel et al., 2021), and SingleEq (Koncel-Kedziorski et al.,
2015) (2) commonsense reasonin: CommonsensQA (Talmor et al., 2019) (3) symbolic reasoning:
Last Letters (Wei et al., 2022) (4) Gaming reasoning: Object Tracking (Srivastava et al., 2023).

With these datasets, we aim to cover a wide range of problem-solving tasks, including arithmetic,
commonsense reasoning, symbolic reasoning, and gaming reasoning, to evaluate the generalizability
of our approach.

Evaluation Metrics: We employ accuracy as our primary evaluation metric across all datasets,
measuring the percentage of correctly solved problems. Accuracy provides a direct measure of the
LLM’s problem-solving capabilities and allows for straightforward comparison between different
approaches.

5
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Table 1: Comparison of MCTS Planning and Zero-shot CoT on different datasets.
Dataset AddSub CommonsensQA GSM8K Last Letters MultiArith Object Tracking SingleEq SVAMP

Type Model

Zero-shot CoT Qwen2.5-7B-Instruct 85.06 63.72 80.89 21.00 95.33 74.80 77.17 83.40
( (Kojima et al., 2022)) Meta-Llama-3.1-8B-Instruct 28.61 63.80 57.32 26.40 38.17 49.33 39.76 27.00

CoT Plan Qwen2.5-0.5B-Instruct 36.96 31.20 17.82 0.00 37.00 31.87 44.09 29.90
( (Wang et al., 2023a)) Qwen2.5-1.5B-Instruct 28.61 44.23 35.03 7.20 44.67 29.87 34.84 33.90

Qwen2.5-7B-Instruct 87.59 78.62 88.84 55.20 98.33 79.33 93.70 91.90
Meta-Llama-3.1-8B-Instruct 78.23 57.14 74.77 15.40 91.58 57.94 84.65 79.20

MCTS Plan (Ours) Qwen2.5-0.5B-Instruct 58.23 32.43 29.80 0.20 68.33 27.20 69.69 43.80
Qwen2.5-1.5B-Instruct 75.70 58.72 64.29 6.40 86.50 26.40 83.66 72.10

Qwen2.5-7B-Instruct 88.10 79.20 90.14 56.60 98.67 79.33 92.91 92.90
Meta-Llama-3.1-8B-Instruct 80.51 68.57 77.28 12.80 92.76 55.43 87.99 81.20

CoT Plan Avg. 57.85 52.80 54.12 19.45 67.89 49.75 64.32 58.73
MCTS Plan Avg. 75.63 59.73 65.38 19.00 86.56 47.09 83.56 72.50
Changes +17.79 +6.93 +11.26 -0.45 +18.67 -2.66 +19.24 +13.77

3.3 RQ1: ENHANCED PROBLEM-SOLVING THROUGH MCTS-GUIDED PLANNING

Existing methods for enhancing LLM problem-solving often face challenges in maintaining logical
consistency and handling long-term dependencies in complex multi-step problems. This is primar-
ily because these methods rely heavily on the LLM’s inherent reasoning capabilities, which can be
limited in such scenarios. We hypothesize that applying MCTS to the planning process can ad-
dress these limitations by generating higher-quality, more logically sound plans that guide the LLM
towards more effective solutions. MCTS excels at exploring large search spaces and identifying
optimal strategies through its balance of exploration and exploitation. By leveraging MCTS to gen-
erate plans, we aim to overcome the inherent limitations of relying solely on the LLM’s reasoning
for planning.

To investigate the impact of MCTS-generated plans on LLM problem-solving, we conduct experi-
ments comparing the performance of our MCTS-enhanced planning approach against two baselines:
(1) standard CoT prompting (Kojima et al., 2022) and (2) a plan-and-solve approach (Wang et al.,
2023a) where the LLM first generates a plan and then executes it. We evaluate these methods on a
diverse set of datasets introduced in Sec. 3.2.

We employ two state-of-the-art open-sourced LLMs: LLama 3.1 (8B parameters) (Dubey et al.,
2024) and Qwen 2.5 (0.5B, 1.5B, and 7B parameters) (Yang et al., 2024). These models represent
a strong baseline for current LLM capabilities and allow for a fair comparison between different
planning approaches. Notably, we include smaller variants of Qwen 2.5 (0.5B and 1.5B) for MCTS
to investigate the impact of model size on planning performance and computational efficiency, es-
pecially considering the potentially high computational cost of MCTS.

We adopt a zero-shot setting for both CoT and MCTS to assess the methods’ ability to generalize
to new problems without task-specific fine-tuning. For the CoT baseline, we use code and data
from (Kong et al., 2024) and (Kojima et al., 2022). We leverage the SGLang platform (Zheng et al.,
2024) for hosting and interacting with the LLMs.

Tab. 1 presents the comparison of MCTS Planning and Zero-shot CoT on different datasets. Over-
all, the MCTS-enhanced planning approach outperforms the CoT baseline across most datasets, with
an average improvement of 40.59%. This substantial improvement highlights the effectiveness of
MCTS in generating high-quality plans for LLMs. As expected, larger models generally perform
better across all methods. However, the performance gap between small and large models is nar-
rower for MCTS Planning compared to CoT, suggesting that our approach can partially compensate
for the limitations of smaller models.

The improvements are particularly pronounced in tasks that require complex reasoning and long-
term planning. For example, on arithmetic tasks (MultiArith, SingleEq, and AddSub), MCTS Plan-
ning shows average improvements of 18.67%, 19.24%, and 17.79%, respectively. Similarly, on
problem-solving tasks (GSM8K and SVAMP), we observe improvements of 11.26% and 13.77%,
respectively.

These results strongly support our hypothesis that MCTS can enhance LLM problem-solving by
providing more structured and coherent plans that guide the reasoning process effectively. The
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Table 2: Performance Comparison of Language Models
Model Max Depth Number of Rollouts

1 3 5 7 10 20 50 100 1 3 5 7 10 20

Meta-Llama-3.1-8B-Instruct 74.22 75.97 76.12 76.42 76.80 76.42 77.18 77.41 79.08 76.88 76.04 76.57 76.19 77.48
Qwen2.5-7B-Instruct 87.64 88.17 88.02 88.40 88.32 88.48 88.55 88.78 89.01 89.76 89.08 89.23 90.14 89.92

Table 3: Performance Cmparison of Different Evaluation Agents for MCTS.
Model Evaluator AddSub CommonsensQA GSM8K Last Letters MultiArith Object Tracking SingleEq SVAMP

Qwen2.5-7B-Instruct Feasibility 88.1 71.3 89.5 58.4 97.7 65.5 91.5 92.2
Qwen2.5-7B-Instruct Logical Consistency 86.6 70.9 89.2 58.2 97.2 65.0 91.5 91.4
Qwen2.5-7B-Instruct Combined (Ours) 88.1 79.2 90.1 56.6 98.7 79.3 92.9 92.9

superior performance in complex tasks suggests that MCTS is particularly adept at decomposing
multi-step problems and maintaining logical consistency throughout the solution process.

To investigate the key factors influencing the effectiveness of MCTS in planning for LLMs, we con-
duct an ablation study to analyze the impact of different components of our approach. Specifically,
we evaluate the following factors on the GSM8K dataset: (1) the maximum depth of the search tree,
(2) the number of rollouts in MCTS, and (3) different evaluation agents for reward computation.

Tab. 2 illustrates the results of our ablation study. We observe that:

Depth: The performance of MCTS Planning generally improves with increasing depth, indicating
that deeper search trees allow for more thorough exploration of the plan space and lead to higher-
quality plans. The rate of improvement slows down as depth increases, suggesting that the plan
can be easily optimized in the first few steps, while later steps are more difficult to optimize. This
behavior implies that the MCTS may early-stop the search when evaluator agents give high scores
to the plan.

Rollouts: The number of rollouts also impacts the performance of MCTS Planning. Initially, in-
creasing the number of rollouts from a small number yields significant improvements. However,
the uncertainty of performance improvement increases as the number of rollouts grows, indicating
that with an expanding search space and higher computational cost, the performance gains may di-
minish. We implemented backpropagate in a zero-sum game manner, which may contribute to the
increased uncertainty in performance improvement. Future work could explore alternative improve-
ment strategies to address this issue.

Evaluation Agents: We tested different evaluation agents for computing rewards in the MCTS
process. Tab. 3 shows the results of using feasibility and logical consistency evaluators compared to
our final approach. While both evaluators improved performance over the baseline, our combined
approach yielded the best results across most datasets.

These results demonstrate the effectiveness of our MCTS-guided planning approach in enhancing
the problem-solving capabilities of LLMs. By generating high-quality plans through MCTS, we
enable LLMs to tackle complex reasoning tasks more effectively, maintaining logical consistency
and coherence throughout the problem-solving process. However, it is important to note that the
computational cost of MCTS may be a limiting factor in some applications, and future work should
explore ways to optimize the algorithm for efficiency without sacrificing performance.

3.4 RQ2: ENHANCING THE EFFICIENCY OF MCTS IN PLANNING FOR LLMS

As demonstrated in Sec. 3.3, MCTS-based planning can significantly improve the problem-solving
performance of LLMs. However, the computational cost of MCTS poses challenges for real-world
applications, particularly when using large models for complex problem-solving tasks. Interestingly,
our observations from Tab. 1 suggest that smaller models can benefit substantially from MCTS
planning. This finding presents a promising direction for optimizing the efficiency of MCTS in
planning for LLMs. We therefore pose the following research question: Can we leverage small
LLMs for optimal plan search and large LLMs for plan execution to enhance the efficiency
and effectiveness of MCTS-based planning for LLMs?

7
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Table 4: Performance Comparison of Different LLMs for Planning and Execution.
Dataset AddSub CommonsensQA GSM8K Last Letters MultiArith Object Tracking SingleEq SVAMP

Planner Model Evaluator Model Executor Model

Qwen2.5-1.5B-Instruct Qwen2.5-1.5B-Instruct Qwen2.5-1.5B-Instruct 75.70 58.72 64.29 6.40 86.50 26.40 83.66 72.10
gemma-2-2b-it gemma-2-2b-it gemma-2-2b-it 81.52 17.16 52.67 4.47 86.83 20.00 86.02 69.40

Qwen2.5-1.5B-Instruct Qwen2.5-1.5B-Instruct Qwen2.5-72B-Instruct 88.86 78.49 86.96 47.20 96.83 80.40 95.28 90.70
Qwen2.5-72B-Instruct Qwen2.5-1.5B-Instruct 86.58 68.36 81.35 28.20 92.50 47.12 88.78 81.40
Qwen2.5-72B-Instruct Qwen2.5-72B-Instruct 90.63 80.71 92.80 76.80 98.67 89.47 94.88 92.00

gemma-2-2b-it gemma-2-2b-it Qwen2.5-72B-Instruct 91.39 77.72 88.48 69.40 97.67 83.87 95.67 92.30
Qwen2.5-72B-Instruct gemma-2-2b-it 90.89 34.64 79.83 54.60 95.00 35.87 92.13 84.00
Qwen2.5-72B-Instruct Qwen2.5-72B-Instruct 92.41 78.54 92.42 78.20 98.33 80.53 95.87 93.00

Qwen2.5-72B-Instruct Qwen2.5-72B-Instruct Qwen2.5-72B-Instruct 91.14 83.95 94.62 85.60 98.67 97.86 95.08 93.40

To investigate this question, we designed an experimental setup using two small LLMs (Qwen2.5-
1.5B-Instruct and Gemma-2-2b-it (Team et al., 2024)) for plan search, and a large LLM (Qwen2.5-
72B-Instruct) for plan evaluation or execution. We evaluated this approach across the benchmark
datasets introduced in Sec. 3.2, comparing various combinations of small and large models for plan-
ning, evaluation, and execution tasks.

Tab. 4 presents a comprehensive performance comparison of different LLM combinations for plan-
ning and execution tasks. Our key findings include:

Small-Large Model Synergy: Using a small model for planning and a large model for execution
significantly improved problem-solving performance across all datasets. For instance, the Qwen2.5-
1.5B-Instruct (planner) + Qwen2.5-72B-Instruct (evaluator+executor) combination achieved an av-
erage improvement of 23.87% compared to using Qwen2.5-1.5B-Instruct alone.

Efficiency Gains: The small-large model combination approached the performance of the large
model (Qwen2.5-72B-Instruct) used alone, while potentially offering significant computational sav-
ings during the planning phase. For example, on the GSM8K dataset, the small-large combination
achieved 92.80% accuracy, compared to 94.62% for the large model alone.

Model-Specific Performance: Interestingly, the Gemma-2-2b-it model, despite its smaller size,
showed competitive performance when used for planning. This suggests that model architecture and
training, not just size, play crucial roles in planning effectiveness.

Our findings demonstrate that leveraging small LLMs for planning and large LLMs for execution
can significantly enhance the efficiency of MCTS-based planning while maintaining high problem-
solving performance. This approach offers several advantages:

1. Computational Efficiency: By using smaller models for the computationally intensive
planning phase, we can reduce the overall computational requirements without significantly
sacrificing performance.

2. Scalability: This method allows for more efficient scaling of MCTS-based planning to
larger and more complex problem spaces.

3. Resource Optimization: Organizations can optimize their use of computational resources,
potentially reducing costs and environmental impact.

However, it’s important to note potential limitations, such as the need for careful model selection
and the possibility of suboptimal plans due to the use of smaller models in the planning phase.
Future work should investigate these trade-offs more thoroughly and explore techniques to mitigate
potential drawbacks.

In conclusion, our research demonstrates a promising approach to enhancing the efficiency and
effectiveness of MCTS-based planning for LLMs, opening new avenues for improving AI problem-
solving capabilities in resource-constrained environments.
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4 RELATED WORK

4.1 CHAIN-OF-THOUGHT PROMPTING

Chain-of-Thought (CoT) prompting has emerged as a prominent technique to improve the reasoning
abilities of LLMs by encouraging step-by-step problem-solving (Wei et al., 2022). By decomposing
complex tasks into smaller, manageable steps, CoT aims to enhance logical consistency and reduce
errors in multi-step reasoning. Subsequent studies have explored various enhancements to CoT,
such as self-consistency approaches (Wang et al., 2023b) and tree-of-thought methods (Yao et al.,
2023), which attempt to maintain logical coherence over extended reasoning paths. Despite these
advancements, CoT methods often struggle with maintaining overall logical flow in highly complex
scenarios, leading to inconsistencies and suboptimal solutions. How to maintain logical consistency
and coherence in multi-step reasoning tasks is a research frontier in the field.

4.2 PLANNING TECHNIQUES FOR LLMS

Beyond CoT, several planning-based approaches have been proposed to bolster the problem-solving
capabilities of LLMs. Task decomposition techniques (Patel et al., 2022; Zhou et al., 2023) involve
breaking down complex problems into simpler sub-tasks, which the LLM can solve sequentially.
Explicit plan-and-solve frameworks (Wang et al., 2023a; Besta et al., 2024) require the LLM to
generate a plan before executing it, aiming to structure the reasoning process more effectively. Ad-
vanced methods like Skeleton-of-Thoughts (Ning et al., 2024) and Graph-of-Thought (Besta et al.,
2024) introduce more sophisticated representations of plans to capture dependencies and improve
coherence. However, these methods remain constrained by the LLM’s inherent reasoning limita-
tions, often failing to produce optimal plans in the face of complex, multi-step problems. How to
generate high-quality plans for LLMs remains a challenging research question in the field.

4.3 MONTE CARLO TREE SEARCH

MCTS is a heuristic search algorithm renowned for its success in game-playing AI, particularly in
games with vast search spaces like Go and Chess (Silver et al., 2016). MCTS operates through four
main phases: selection, expansion, simulation, and backpropagation (Chaslot et al., 2008). Its ability
to balance exploration and exploitation makes it highly effective in navigating large decision trees
to identify optimal strategies. Recent research has begun to explore the application of MCTS in the
context of LLMs, particularly for solution search in CoT processes (OpenAI, 2024) or self-training
process (Zhang et al., 2024a). These studies have demonstrated that MCTS can enhance the search
for high-quality solutions by efficiently exploring the space of possible reasoning paths. However,
the direct application of MCTS to LLMs presents challenges, such as the computational expense of
evaluating generated content and the difficulty in effectively integrating heuristic evaluations within
the planning process. We investigate these challenges in our research and propose to use smaller
LLM for planning and larger LLM for evaluation and execution to address these challenges.

4.4 RESEARCH GAP AND OUR CONTRIBUTION

While MCTS has shown promise in enhancing solution search for LLMs, its application to the plan-
ning process remains largely unexplored. Existing planning methods for LLMs, including Chain-
of-Thought prompting and plan-and-solve frameworks, predominantly rely on the LLM’s inherent
reasoning abilities to generate plans. However, these reasoning abilities can be inconsistent and
prone to errors, particularly when dealing with complex, multi-step problems requiring long-term
planning and logical consistency. For instance, in tasks involving multi-step mathematical reasoning
or intricate commonsense scenarios, LLMs often struggle to devise and maintain a coherent plan,
leading to suboptimal or incorrect solutions.

Our research addresses this gap by integrating MCTS into the planning phase. Unlike previous work
focusing on solution search, we leverage MCTS to explicitly generate high-quality plans before the
LLM starts reasoning. By systematically exploring the plan space and evaluating quality with spe-
cialized LLM agents, we aim to generate more effective and logically consistent plans, significantly
enhancing LLM problem-solving accuracy and reliability in complex tasks.
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5 CONCLUSION AND DISCUSSION

This paper introduced a novel framework for enhancing the problem-solving capabilities of LLMs by
leveraging MCTS for plan generation. Our approach explicitly separates the planning and reasoning
stages of problem-solving, using MCTS to explore the space of possible plans before the LLM be-
gins to reason towards a solution. Experiments on a diverse set of benchmark datasets demonstrated
that MCTS-enhanced planning significantly improves LLM problem-solving accuracy compared to
standard Chain-of-Thought prompting and existing plan-and-solve methods.

Our findings highlight the effectiveness of MCTS in generating high-quality, logically consistent
plans that guide the LLM towards more effective solutions, particularly in complex reasoning tasks.
We also observed that MCTS planning offers a stronger performance boost for smaller LLMs, sug-
gesting it can partially compensate for limited reasoning capabilities in resource-constrained set-
tings. Further analysis revealed that the performance of MCTS planning is influenced by factors
such as search depth and the number of rollouts, with deeper search and more rollouts generally
leading to better plans.

To address the computational cost of MCTS, we explored the use of smaller LLMs for planning
and larger LLMs for evaluation and execution. Our results demonstrated that this approach can
significantly enhance efficiency while maintaining high problem-solving performance, offering a
promising direction for optimizing MCTS planning in real-world applications.

We believe that our research contributes to a deeper understanding of the interplay between planning
and reasoning in LLMs and opens new avenues for improving AI problem-solving capabilities. The
integration of MCTS and LLMs holds significant promise for developing more robust and reliable
AI systems capable of tackling complex real-world problems.

ETHICAL CONSIDERATIONS

This research enhances LLM problem-solving via MCTS planning. While our benchmark datasets
pose minimal direct ethical concerns, the potential impact of improved AI problem-solving necessi-
tates broader ethical consideration.

Integrating MCTS introduces unique challenges. Unlike CoT methods, MCTS explores a wider
range of plans, some potentially ethical yet logically sound. For instance, directly plan and executing
a toxic action could be rejected by LLM with alignment to ethical principles. However, if the
search objective is to find such a plan, MCTS may escape the LLM’s ethical constraints. In this
context, Mitigation strategies warrant investigation. Incorporating fairness constraints into MCTS,
adversarial training for agents, and human-in-the-loop plan review could enhance ethical outcomes.

LIMITATIONS

While our MCTS-enhanced planning approach demonstrates significant improvements in LLM
problem-solving capabilities, it is important to acknowledge several limitations of our current work.

Firstly, the computational cost of MCTS, particularly for larger language models, remains a signif-
icant challenge. Although we have shown that using smaller models for planning can mitigate this
issue to some extent, further research is needed to optimize the efficiency of MCTS in the context
of LLMs. Future work could explore pruning techniques or more sophisticated heuristics to reduce
the search space without compromising plan quality.

Secondly, our study primarily focused on a specific set of benchmark datasets. While these datasets
cover a range of problem types, they may not fully represent the diversity of real-world problems
that LLMs might encounter. Expanding our evaluation to a broader set of tasks and domains would
provide a more comprehensive assessment of our method’s generalizability and robustness.

Despite these limitations, we believe that our work represents a significant step forward in enhancing
the problem-solving capabilities of LLMs. By explicitly addressing these challenges, we hope to
inspire further research that will lead to even more powerful and reliable AI systems capable of
tackling complex real-world problems.
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A APPENDIX

A.1 COUNT CHARACTERS: EXAMPLE

Count Characters: Example 2.1

Problem: how many R’s are there in the word "Pneumonoultramicroscopicsilicovolcanoconiosis"?
—
CoT Prompt: Let’s think step by step.
CoT Result:
1. **Identify the letter:** We’re looking for the letter ’R’.
2. **Scan the word:** Carefully read through the word "Pneumonoultramicroscopicsilicovolcanoco-
niosis".
3. **Count the occurrences:** Count each instance of the letter ’R’. There is only one ’R’.
Therefore, there is only **one** ’R’ in the word "Pneumonoultramicroscopicsilicovolcanoconiosis".
— Planning Prompt:
To count the R’s in "Pneumonoultramicroscopicsilicovolcanoconiosis." we can iterate throuoh each
letter of the word, Initially, we’ll set a counter to zero, for each leter encountered, we’ll check if itis an
"R" character. If it is, we’ll increment our counter, This proess will continwe until we’ve examined all
letters in the word, allowing us to determine the final count of "R’s present.
Planning Result:
Following the plan:
1. **Initialization:** Set a counter to zero (e.g., ‘r_count = 0‘).
2. **Iteration:** Iterate through each letter of the word "Pneumonoultramicroscopicsilicovolcanoco-
niosis".
3. **Comparison:** For each letter, check if it is equal to "R".
4. **Increment:** If the letter is "R", increment the counter (‘r_count = r_count + 1‘).
5. **Final Count:** After iterating through all letters, the value of ‘r_count‘ will be the total number
of "R"s.
Let’s apply this to the word:
The word "Pneumonoultramicroscopicsilicovolcanoconiosis" contains **one** "R".

Figure 3: Count Characters Example of “R” in the word “Pneumonoultramicroscopicsilicovol-
canoconiosis” with CoT and Planning.
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Count Characters: Example 2.2

MCTS Planning Prompt:
1. **Define the task:** Our goal is to count the number of "R’s present within the word
"strawberry."
2. **Iterate through the word:** We will examine each letter of "strawberry" one at a time.
3. **Check for "R":** If the letter is an "R", increment a counter to keep track of our count.
4. **Increment counter:** If the letter is an "R", increment a counter to keep track of our
count.
5. **Complete iteration:** We will continue this process until we have examined every
letter in the word.
6. **Return the count:** After processing all letters, the counter will hold the final number
of "R’s in the word.
MCTS Planning Result:
Okay, let’s adapt your plan to count the R’s in "Pneumonoultramicroscopicsilicovolcanoco-
niosis":
**Define the task:** Our goal is to count the number of "R’s" present within the word
"Pneumonoultramicroscopicsilicovolcanoconiosis".
**Iterate through the word:** We will examine each letter of "Pneumonoultramicroscopic-
silicovolcanoconiosis" one at a time.
Let’s start with a counter set to 0.
* **P** - Not an R, counter remains 0.
* **n** - Not an R, counter remains 0.
* **e** - Not an R, counter remains 0.
* **u** - Not an R, counter remains 0.
* **m** - Not an R, counter remains 0.
* **o** - Not an R, counter remains 0.
* **n** - Not an R, counter remains 0.
* **o** - Not an R, counter remains 0.
* **u** - Not an R, counter remains 0.
* **l** - Not an R, counter remains 0.
* **t** - Not an R, counter remains 0.
* **r** - **It’s an R! Increment the counter to 1.**
* **a** - Not an R, counter remains 1.
* **m** - Not an R, counter remains 1.
* **i** - Not an R, counter remains 1.
* **c** - Not an R, counter remains 1.
* **r** - **It’s an R! Increment the counter to 2.**
* **o** - Not an R, counter remains 2.
* **s** - Not an R, counter remains 2.
* **i** - Not an R, counter remains 2.
* **l** - Not an R, counter remains 2.
* **i** - Not an R, counter remains 2.
* **c** - Not an R, counter remains 2.
* **o** - Not an R, counter remains 2.
* **v** - Not an R, counter remains 2.
* **o** - Not an R, counter remains 2.
SKIP FOR SPACE

**Complete iteration:** We have now processed all letters, and the counter holds the final
number of "R’s" in the word.
**Result:** There are **2** R’s in the word "Pneumonoultramicroscopicsilicovolcanoco-
niosis".

Figure 4: Count Characters Example of “R” in the word “Pneumonoultramicroscopicsilicovol-
canoconiosis” with MCTS Planning.
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