Towards Better Function Calling in LLLMs With a Path-Aware
Reinforcement Learning Framework

Anonymous ACL submission

Abstract

Large language models (LLMs) show great
promise in solving complex tasks through ex-
ternal tool use. However, existing approaches
largely focus on standard tool formats and
instruction-following, neglecting the broader
problem of generalizable and robust tool in-
teraction. In this paper, we explore three un-
derexamined challenges in LLMs’ tool-use ca-
pabilities: adaptation to counterintuitive tool
rules, autonomous discovery of tool function-
ality under incomplete specifications, and the
impact of historical memory on tool-use ef-
ficiency. To address these challenges, we
propose Path-Aware Reinforcement Learning
(PARL), a novel framework that integrates
trajectory-level reward assignment and history-
based contextualization. PARL assigns dy-
namic rewards based on path-level outcomes
and relative tool-use efficiency, while maintain-
ing a fixed-size memory window to guide pol-
icy learning. Experiments across diverse non-
standard tool-use scenarios demonstrate that
PARL consistently outperforms existing meth-
ods, achieving relative gains of up to 28.9% in
low-information settings and 19.8% in coun-
terfactual reasoning. Our work provides both
a diagnostic benchmark and an effective rein-
forcement learning strategy for advancing tool-
augmented LLMs.Our code and dataset will be
available at XXX

1 Introduction

Large language models (LLMs) have achieved re-
markable breakthroughs in processing human lan-
guage (Achiam et al., 2023; Chang et al., 2024;
Kumar et al., 2025), demonstrating exceptional ca-
pabilities in text comprehension and generation.
However, when solving many real-world problems,
LLMs require to invoke external tools (Brown et al.,
2020; Lewis et al., 2020; Resnik, 2025; Gu et al.,
2025). Establishing a mechanism that enables
better interactions between LLMs and tools, can

User Qusetion Dialogue system with limited information

Human: William spent all his pocket money on a toy in June, if
g used all the money to buy two pencils, how much money is left?

Agent System

pocket money William had in June and the price of a pencil.

Model : To solve this problem, I should find out how much @, \ /
Let me check which tools I can use.

Masked Toolkit

Agent System

Model: What should I do next ?
I need infer each tool’s function %
and plan how to use them later.

To complete the task , LLMs need to plan the call sequence
= and explore tool usage rules under limited information.

Figure 1: When faced with problems involving unknown
information, large language models decompose the task,
plan an appropriate tool invocation path, and generate
call instructions in a specific format based on tool defi-
nitions.

greatly extend the boundaries of model capabilities,
transforming them from pure text generators into
interactive intelligent agents (Schick et al., 2023;
Yao et al., 2023; Shen et al., 2023; Hu et al., 2025).
How to better interact with tools is still an open
problem. Most existing work improves tool-use
efficiency by optimizing tool formats,such as stan-
dardizing interfaces and compressing documenta-
tion (Qin et al., 2023; Yuan et al., 2024; Ni et al.,
2025; Li et al., 2023), which heavily rely on the
model’s instruction following ability. In addition,
post-training methods (Feng et al., 2025; Singh
et al., 2025; Kang et al., 2025) like supervised
fine-tuning and reinforcement learning have been
proposed to enhance invocation accuracy and rea-
soning capabilities. Although these methods per-
form well in specific scenarios, they generally rely
on strict parameter specifications and fixed input
formats, overemphasizing the model’s instruction-
following ability rather than its deep understanding
of tools. More critically, they focus solely on stan-
dard usage contexts and lack exploration of non-

standard scenarios, limiting our understanding of
the upper bound of LLMs’ tool-use capabilities.
In this paper, we investigate three fundamen-
tal questions about LLMs’ tool-use capabilities:
(1) Can models adapt to counterintuitive tool rules
when such rules are not explicitly provided? (2) To
what extent can models autonomously discover tool
functionalities without complete specifications? (3)
How does maintaining a memory of past interac-
tions affect tool-use performance? We design spe-
cialized experiments to address these questions,
including scenarios where mathematical operation
precedence is reversed and tool descriptions are
progressively obfuscated. Based on our findings,
we propose Path-Aware Reinforcement Learning
(PARL), a novel framework that enhances tool-use
capabilities through two key mechanisms: (1) fine-
grained reward signals based on intra-group relative
advantage and outcome correctness applied to en-
tire tool-invocation paths, and (2) a history-aware
training process that maintains a fixed-size mem-
ory window of past tool interactions. Experimen-
tal results demonstrate that our approach consis-
tently outperforms state-of-the-art methods across
all scenarios, achieving average improvements of
19.8% on counterfactual rule understanding, 28.9%
on tool discovery with minimal information, and
14.2% on complex tool composition tasks.In sum-
mary, the main contributions of our work are:

* We design a comprehensive evaluation frame-
work examining LL.Ms’ tool-use capabilities
in challenging scenarios.

* We propose Path-Aware Reinforcement Learn-
ing, a novel framework combining path-
dependent rewards with historical context to
enhance tool-use performance across diverse
scenarios.

* We demonstrate significant performance im-
provements, particularly in adapting to re-
versed mathematical rules and discovering
tool functionality without explicit descrip-
tions.

2 Related Work
2.1 Tool Integration in LLMs

Recent work has integrated external tools with
LLMs through various approaches: API invocation
frameworks, reasoning-action interleaving, and
model orchestration systems(Schick et al., 2023;

Yao et al., 2023; Shen et al., 2023). While spe-
cialized benchmarks and interface standardization
efforts have advanced the field(Li et al., 2023;
Huang et al., 2023; Basu et al., 2024), current ap-
proaches predominantly assume well-specified tool
interfaces and rely heavily on instruction-following
capabilities(Basu et al., 2024; Yuan et al., 2024).
This fundamental assumption limits adaptability
when tools exhibit non-standard behaviors or pro-
vide incomplete specifications(Basu et al., 2024;
Yang et al., 2024b). Most existing systems struggle
with counterfactual usage patterns or minimal docu-
mentation(Gao et al., 2024; Luo et al., 2025; Hsieh
et al., 2023), highlighting the need for more adap-
tive tool interaction mechanisms that can operate
effectively beyond familiar training distributions.

2.2 Post-Training Methods for Tool Learning

Post-training optimization for tool use primarily
follows two approaches: supervised fine-tuning and
reinforcement learning(Chen et al., 2024; Xu et al.,
2025; Wang et al., 2025). While fine-tuning meth-
ods can effectively capture tool-specific patterns
from demonstrations(Furuta et al., 2023; Shinn
et al., 2023; Qian et al., 2025), they often require
extensive examples and struggle with novel com-
positional tasks. Reinforcement learning offers
improved adaptability through techniques like rela-
tive advantage computation and reward shaping(Yu
et al., 2024; Lu et al., 2023), but current methods
typically evaluate only final outcomes and treat
each interaction in isolation(Lyu et al., 2024; Shi
et al.). These limitations restrict performance in
scenarios requiring adaptation to implicit rules or
tool discovery under minimal information. Our
work addresses these gaps through path-dependent
reward mechanisms that connect intermediate deci-
sions to final outcomes, combined with a historical
memory system that enables cumulative learning
from past interactions.

3 Path-Aware Reinforcement Learning
Framework

We formulate tool learning as a sequential decision
process where a model generates a tool calling se-
quence s for a user query ¢ using available tools
T . To effectively address this challenge, we adopt
Grouped Relative Policy Optimization (GRPO)
(Shao et al., 2024)as our foundational framework
and design a path-aware reward mechanism.

'
User Qusetion " Prompts

Human: William spent all his pocket money on a toy b
g in June, if used all the money to buy two pencils, how i -
Agent System 1,
Model : To solve this problem, I should find out how much I
Let me check which tools I can use.
w3 TooLName: Get o price
[z} i‘ Dsecription

Parameters:

i
El Though The I
i

Toolkit With Missing Information Historical Memory "
AN

! History Memory
much money is left? H [gl/ &

pocket money William had in June and the price of a pencil. oy 11 (JJCIO@EOCOCO0O0O

0] Tool Information Masked

)
i
|

. I

Observation '
I
i
i
|
|

Completions Rewards

OOoCeeeeooooo
OoCeEEcooo
OOeecooo
OOCeecooo
Eaean | annew

Result-Based Evaluation

r-mean

std

R \format

\
|
:
i
i
Better Trajectory « Observation ~-, pink ﬂ& Thought: The question is asking... ~ StePT 1
- PR ! \| { Action: ToolA Action Input: {...} ,"]
1 -~ .
Worse Trajectory Calling | 1 1 '/' R _,.'l Observation: Wiong ... Unuseful Calling |
e > | \ " X i
Think 1 \ /' ::'/ !
i i
— Observation W yiny 1 i ,m Thought: The information ... so we need S7¢p2 1
i
5 Calling \ ,h > Action: ToolB Action Input: {...} '
Prompt [~ + Think = ! ¥ ... N Observation -1} o]
) 1 \| :,'/ Observation: XXX Useful Calling :
: \
FC“:I'I::;“ Observation | & Think ~.” \ :’q]
) | \ . . '
Think 3 4 Opservation =2 % Thought: XXX Step3 '
) \ > [82] Action: ToolC Action Input: {...} i
Think Fucntion \ Observation: XXX) i
Fuction Calling Calling Observation 4 Think ~ Useful Calling E
> - i .
Observation o LT </reasoning>]
i
. Final Answer Sicoll Stepll StepN <answer > Final Answer </answer > E

Figure 2: Overview of our Path-Aware Reinforcement Learning framework. The approach consists of three key
components: (a) GRPO-based optimization for stable policy updates, (b) path-dependent multi-level rewards that
assess both intermediate steps and final outcomes, and (c) historical memory mechanism that maintains context

from past interactions.

3.1 Training Objective

The GRPO framework optimizes model parameters
0 through the following loss function:

Larro(8) = Eqge [min (po(sla) A(s, 0),

clip(py(sla), 1 — 2,1+) A(s,0))]
(1
Here, 114 and o, are the mean and standard devia-
tion of rewards across all samples within the same
query group.And our overall reward is constructed
from three components:

Rﬁnal(sa Q) = Rformat(s)“‘Rresult(sa Q)+Rtool(37 Q)

(2)
where Riormat($) evaluates response format compli-
ance, Rresuit(S, ¢) measures final answer accuracy,
and Ryl (s, q) is our proposed path-aware tool call-
ing reward.

3.2 Path-Aware Reward Mechanism

To evaluate tool usage more holistically, we pro-
pose a path-aware reward mechanism that inte-
grates both the efficiency of tool invocation and
the correctness of the final outcome. Unlike prior
approaches that assign reward per isolated tool call,
our design treats the entire interaction trajectory
as a functional unit, allowing more accurate credit
assignment during reinforcement learning.

We first define the relative invocation ratio of a
sample s within a batch (or group) as:

n(s)

ngroup

Tcall(s) = (3)
where n(s) denotes the number of tool calls in the
sample s, and ngroup is the average tool usage
count across the batch.

The efficiency reward is then determined based
on the number of tool calls made and the unit re-
ward per call, capped by a maximum efficiency
bonus:

Reff(s) = min (n(s) * Tunit, Rmax) “

where rypit is the per-call reward and Rp,.x sets an
upper limit to prevent over-rewarding excessive but
unhelpful invocations.

We then assign the final reward based on the
model’s output correctness. If the answer is correct,
the efficiency reward is kept as is. If the answer is
incorrect, the reward is down-weighted:

Resr(s),
%Reff(S), incorrect

correct
Rtoo] (3) =

)
This formulation ensures that correct outputs re-
ceive the full efficiency-based reward, while incor-
rect outputs are still weakly rewarded in proportion
to their tool usage, helping the model learn from
failure without encouraging wasteful invocation.

Interaction Record Template

Query: [User query]

Tool called: [ToolName] Arguments: arguments
Observation: [Output returned by the tool]
Reasoning: [Model’s analysis and decision process]
Final answer: [Generated response]

Result: [Correct / Incorrect]

Table 1: Template for a single record in the historical
memory window.

3.3 Historical Memory Mechanism

Historical interactions provide crucial guidance for
the model’s tool-invocation decisions. To exploit
this, we incorporate a historical memory mecha-
nism into the PARL framework: during training, we
maintain a sliding window of up to 500 tokens cap-
turing the model’s most recent tool interactions. Be-
fore each new decision, these entries are prepended
to the model’s context, allowing it to draw on past
successes and failures. By observing patterns in
tool usage, the model learns to adopt more effective
invocation strategies and to avoid repeating prior
mistakes, even under ambiguous or incomplete tool
specifications.

Each record in the historical window follows
the structured template shown in Table 1. Unlike
conventional experience-replay buffers in reinforce-
ment learning, our approach integrates directly into
the language model’s context window, naturally
serving as an implicit replay buffer while preserv-
ing the simplicity of end-to-end training.

4 Experimental Setup

4.1 Dataset

In this section, we introduce two specialized
datasets for evaluating tool-calling capabilities: the
Calculator Tool Dataset and the Multi-Function
Tool Dataset. The former focuses on assessing
models’ adaptability to different computational
rules, while the latter tests their ability to com-
bine multiple tools for solving complex problems.
These datasets cover various tool invocation sce-
narios, from simple single-tool usage to complex
tool compositions, featuring two distinct sets of
tools (four arithmetic tools and four query tools)
designed to systematically evaluate models’ perfor-
mance across different tool-using contexts.

Calculator Tool Dataset The Calculator Tool
Dataset evaluates a model’s adaptability to tool
usage rules, particularly focusing on rule systems

that contradict pretrained knowledge. It contains
6,000 mathematical expressions, each comprising
up to eight sequential computational steps. To
quantitatively measure rule adaptability, we de-
fine three rule variants: the standard mathematical
precedence rule (Natural), the strict left-to-right
computation rule (Linear), and the inverted prece-
dence rule (Reversal). Models are required to exe-
cute these computations using four basic arithmetic
tools (addition, subtraction, multiplication, and di-
vision), with all outputs rounded to two decimal
places. Through Python preprocessing, we gener-
ate ground-truth answers for all expressions under
the three rule systems. For each rule system, we
split the 6,000 samples into 5,000 training sam-
ples and 1,000 testing samples, yielding a total of
15,000 training samples and 3,000 testing samples.

Multi-Function Tool Dataset The Multi-
Function Tool Dataset evaluates a model’s ability
to discover tool functionalities and compose
multiple tools effectively. This dataset features
four distinct query tools: get_financial_statement
(retrieving financial data),query_date (accessing
calendar information), query_item_price (retriev-
ing product prices), and get_relationship_chain
(querying relationships between entities), each
designed for specific information retrieval tasks.
Based on complexity, we divide the dataset
into three categories: Single-Tool (requiring 1
tool only), Dual-Tool (requiring 2 tools), and
Multi-Tool (requiring 3 or more tools), where
models must invoke the appropriate combination
of tools to obtain necessary information for
answering questions correctly. We constructed
this dataset through template-based generation
followed by human verification. Each category
contains 800 training samples and 200 testing
samples, yielding a total of 2,400 training samples
and 600 testing samples.

4.2 Baseline Methods

To comprehensively evaluate the effectiveness of
our approach, we select the following represen-
tative baselines that span various technical ap-
proaches from zero-shot to supervised learning to
reinforcement learning: (1) Base Model: The orig-
inal large language model without any additional
training, evaluated using the same prompts, serving
as a performance baseline. (2) Think_SFT (Jaech
et al., 2024): A supervised fine-tuning method that
first extracts thought trajectories and tool invoca-

Rule Method SFT/RL Qwen-1.5B Qwen-7B Qwen-think Llama-3B
Base - 61.90 64.50 69.70 43.80
Think_SFT ~ SFT 66.40 1450 68.801430 71404170 47.90 4410

Natural GRPO RL 78.00 116.10 78.60 114.10 82.20 112.50 52.50 18.70
TOOI_RL RL 79.20 117.30 81.00 116.50 81.30 111.60 53.10 19.30
Ours RL 82.50 120.60 84.40 119.90 84.20 114.50 55.30 1+11.50
Base - 14.70 14.10 15.00 13.70
Think_SFT ~ SFT 18801410 20201610 19401440 17.60 13.90

Linear GRPO RL 48.40 133.70 54.50 140.40 58.00 143.00 33.20 119.50
TOOI_RL RL 51.00 136.30 53.80 139.70 59.50 144.50 35.80 122.10
Ours RL 53.50 138.80 57.10 143.00 62.40 147.40 42.00 128.30
Base - 1.60 1.50 2.00 1.50
Think_SFT SFT 8.80 17.20 7.60 16.10 10.20 18.20 7.80 16.30

Reversal GRPO RL 32.80 131.20 26.20 124.70 27.10 125.10 19.80 118.30
TOO]_RL RL 31.20 129.60 28.80 1+27.30 29.50 127.50 23.70 122.20
Ours RL 33.20 131.60 37.10 135.60 40.60 138.60 26.50 125.00

Table 2: Accuracy (%) of different models on the calculator task under three mathematical rule systems. Bold
numbers indicate the highest accuracy in each column, and subscripts denote absolute improvement percentages

over the Base model.

tion sequences from the high-performing Deepseek-
R1 model under identical inputs, then trains the tar-
get model using this data containing intermediate
reasoning processes. (3) GRPO (Guo et al., 2024):
The Group Relative Policy Optimization approach
proposed by Deepseek, which guides the model to
generate correct outputs through a multi-faceted
reward mechanism combining format awareness
and result correctness. This method represents a
mainstream reinforcement learning approach for
tool-use training.(4) ToolRL (Qian et al., 2025):A
reinforcement learning approach that treats tool use
as compositional reasoning, featuring fine-grained
reward signals for tool name selection, parame-
ter filling, and execution efficiency, with dynam-
ically adjusted reward weights throughout train-
ing. This method represents recent advances in the
tool-calling domain.(5) Ours: Our proposed path-
aware reinforcement learning framework as shown
in Section(§ 3).

4.3 Evaluation Setup

We use accuracy as our evaluation metric, defined
as the match rate between model-generated and
ground-truth answers . To assess generalizability
across diverse model architectures, we conduct ex-
periments on: Qwen2.5-3B-instruct and Qwen2.5-
7B-instruct (Qwen-1.5B, Qwen-7B) (Yang et al.,
2024a), Qwen3-1.7B-MOE (Qwen-think) (Yang
et al., 2025), and Llama3-8B-instruct (Llama-3B)
(Grattafiori et al., 2024). For our methods, we set
the batch size to 16 and the generate-num to 8 .
Tool invocations were formatted in JSON, with

a maximum sequence length of 4096. For more
details on the dataset and training, please refer to
Appendix A and Appendix B.

S Experiments

5.1 Exp-I: Can LLMs Discover Latent Rules
in Tool Composition?

In this experiment, we investigate whether LLMs
can acquire specific tool usage rules—particularly
counterfactual through post-training adaptation.
We utilize the calculator dataset introduced in Sec-
tion 4.1 and conduct training and evaluation under
three distinct mathematical rule systems. During
training, no explicit instructions about tool usage
rules are provided; instead, the model must explore
different computational strategies and tool compo-
sitions through interaction (detailed prompts are
provided in Appendix C). As shown in Table 2, all
models perform best under the Natural rule sys-
tem, while performance drops significantly under
the Linear and Reversal rule systems, which con-
tradict standard mathematical conventions. For
Think_SFT, even with access to ground-truth rea-
soning paths and tool invocation trajectories, accu-
racy improvements under counterfactual settings
remain limited , suggesting that supervised fine-
tuning struggles to override the model’s pretrained
mathematical knowledge. In contrast, reinforce-
ment learning (RL)-based methods consistently
outperform supervised fine-tuning across all rule
types.Under the most challenging Reversal rule,
our method achieves an average improvement of
32.70% across all model sizes, with particularly

Details Base SFT GRPO Tool_RL Ours
Qwen-1.5B
Full 6.70 11.83 29.17 33.33 45.17
TD 1.50 9.17 27.33 31.50 36.67
PD 2.67 8.50 25.50 32.83 33.67
Hidden 0.17 7.67 23.00 26.00 29.67
Qwen-7B
Full 6.00 14.17 28.16 41.00 45.00
TD 5.17 12.50 27.17 28.50 36.17
PD 433 14.83 29.67 30.83 36.50
Hidden 1.83 12.17 25.00 28.50 33.00
Qwen-think (MoE)
Full 26.67 33.67 56.83 71.33 78.83
TD 15.00 2450 37.17 37.50 58.67
PD 9.00 28.83 43.50 41.00 65.17
Hidden 2.17 16.67 23.83 39.67 41.67

Table 3: Accuracy (%) of five training strategies on
three model sizes under varying tool-composition com-
plexities.

strong performance on the Qwen3-think model
(40.60%). This indicates that RL can effectively
reshape the model’s internal computation strate-
gies beyond surface-level pattern matching. By
leveraging reward signals, RL encourages explo-
ration of high-reward behaviors that may conflict
with pretrained biases, facilitating the discovery of
rule-compliant tool-use strategies even when they
contradict conventional mathematical principles.

5.2 Exp-II: Can LLMs Discover Tool
Functions Under Limited Information?

In this section, we investigate whether language
models are capable of autonomously discovering
tool functionalities and invoking them correctly
under limited descriptive information. Tool invo-
cation is regarded as an extension of the model’s
instruction-following capability, which typically
relies on access to complete tool specifications.
To systematically evaluate the impact of informa-
tion constraints on tool-use behavior, we design
four progressively weakened settings, where all
tool names are replaced with abstract identifiers
(Tool-N):(1) FULL: Full access to tool descrip-
tions, including both functionality and parameter
information.(2) Tool Description (TD): Only func-
tional descriptions are provided; parameter infor-
mation is removed. The model must infer how
to use the parameters based on the textual con-
tent.(3) Parameter Description (PD): Only pa-
rameter format is preserved; functional descrip-
tions and usage strategies are replaced with abstract
identifiers, offering minimal semantic guidance.(4)

Model Fuction_Call_Reward over Training Steps

500
—— Qwen1.58 400
Qwen’.5B-history

—— Quen-think 300
—— Qwen-think-history

Model Response Length over Training Steps

°
=

g 8
8 8

_Call_Reward
S o
> N

2 N

g 3

8 8

g

—— Qwent.58
Quen?.58-history

—— Quen-think

—— Qwen-think-history

Average_Fuction
o o

S o
Response Length

°

[200 400 600 800 1000 1200 0 200 400 600
Steps Steps

800 1000 1200

GRPO Accuracy over Training Steps

35
. /
25 — Quwenl58
Quen?.58-history
20 = Qwen-think
—— Qwen-think-history
15

— Qwen15B

Quen1.58-history 10 |
—— Quen-think

== Qwen-think-history 5

SFT Accuracy over Training Steps

XEREE

SFT Accuracy

GRPO Accuracy

3 8

°

200 400 600 800 1000 1200 0 200 400 600
Steps Steps

800 1000 1200

Figure 3: Impact of historical memory on learning effi-
ciency across training steps. The four panels show: (a)
Average reward signals, (b) Output sequence length ,(c)
RL method accuracy with/without history information
and (d) SFT method accuracy with/without history in-
formation.

Hidden: All descriptive and semantic information
is removed. The model must rely solely on inter-
active feedback to explore tool functionalities. For
supervised fine-tuning experiments, we apply strict
string-matching filters to remove all tool-relevant
reasoning content, ensuring that models cannot di-
rectly learn tool semantics from demonstration data.
We train and evaluate on the four query tools in-
troduced in Section 4.1, with results summarized
in Table 3.The results show that base models rely
heavily on explicit tool information—Qwen-1.5B’s
accuracy drops from 6.70% (FULL) to 0.17% (Hid-
den). Similar trends are observed across all model
sizes. In contrast, reinforcement learning consis-
tently outperforms supervised fine-tuning under all
levels of information constraint, with our method
achieving the highest accuracy, especially under
the most challenging Hidden setting. These find-
ings suggest that RL not only improves generaliza-
tion but also enables active exploration, allowing
models to infer tool usage strategies from limited
feedback rather than relying solely on imitation.

5.3 Exp-III: Can LLMs Learn Effectively
from Historical Interactions?

This section investigates the effect of historical
interaction memory on the efficiency of learning
tool-use strategies, including question formulation,
tool invocation, and observation interpretation. In
our experimental setup, we maintain a 500-token
sliding window that records past tool interactions

[Base [Think SFT B GRPO [Tool RL [Ours*
Qwen-3B Qwen-7B Qwen-1.7B (MoE)
80 - . . _

9 -
g 60 s —
©
o
9 40 . .
[0
(O]
s
" JWH [_ _

0 1 1 1 1 1 1 1 1 1

o\ o\ \S o\ o\ \S o\ o\ \S
S“\Q\e"o dga\"o «\\)\{\3‘oo S.\“g\e"o dua\’to m\)\{\"oo S“\g\e"o d\)a\’to m\,\{\f‘oo

Figure 4: Performance of different models across increasing tool composition complexity in Experiment III.
Accuracy declines as composition complexity increases, highlighting the limitations of supervised learning and the
robustness of reinforcement learning in multi-tool reasoning tasks.

and relevant context, such as previous tool inputs,
outputs, and environmental feedback. To capture
the dynamics of learning, we sample multiple train-
ing checkpoints across the entire training trajectory.
We compare three configurations: Think_SFT , our
reinforcement learning method without memory,
and our reinforcement learning method augmented
with historical memory. The evaluation centers on
four key metrics: (a) progression of the average
reward signal, (b) output sequence length, and the
accuracy of both RL and SFT approaches, denoted
as (¢) and (d), respectively. Figure 3 presents the
temporal evolution of these indicators over training
steps.Experimental results demonstrate that inte-
grating historical memory significantly improves
learning efficiency in reinforcement learning set-
tings. Models equipped with access to past inter-
actions not only receive stronger reward signals
in early training but also achieve faster and more
stable convergence in accuracy. These models con-
sistently outperform their history-free counterparts
across all metrics. We attribute these improvements
to two key advantages: (1) historical records pro-
vide informative behavioral patterns that help mod-
els identify effective tool-use strategies; and (2)
they act as a lightweight, implicit replay buffer,
mitigating instability in policy learning and reduc-
ing the likelihood of suboptimal convergence. Al-
though supervised fine-tuning also benefits slightly
from history, the gains are marginal due to its static
and imitative nature, where historical context can-
not influence exploration. In contrast, reinforce-

Method Expl Exp2 Exp3
Base Model 28.90 2.17 47.10
+ FAR 30.85 18.60 57.25
+ Tool 42.80 32.50 51.40
+ Step 56.40 34.67 53.85
Ours 62.40 41.67 68.75

Table 4: Ablation results comparing different reward
strategies under different reward settings.

ment learning thrives on dynamic feedback, allow-
ing history to play an active role in guiding policy
optimization. Additionally, our history-aware RL
models generate shorter, more targeted tool-use se-
quences while maintaining high correctness, lead-
ing to improvements in both reasoning efficiency
and computational cost.

6 Discussion

6.1 Ablation Study on Reward Design

We conduct ablation studies to evaluate the con-
tribution of individual reward components in our
framework. Using qwen-think as our base model,
we compare five configurations: 1)Base:Base
Model without post-training; 2)FAR: Format and
Result correctness rewards only; 3) Tool: Tool us-
age rewards only; 4) Step: Result-conditioned tool
step rewards; 5)Ours: Full reward system combin-
ing all components with path-aware optimization.
Experience results are shown in Table 4 .Experi-
mental results show that different reward functions

much money is left?

Model Answer of 200 steps

<reasoning>

Thought : The question is asking William’s pocket money and
how much money has left after buying pencils.

Action: Tool_A Action Input: {"Personal": "William"}
Observation: Query failed.

Thought : ToolA query failed, so we need to try another
approach....

Action: Tool B Action Input: {"Personal": "William"}
Observation: Query failed.

Thought : ToolB query also failed. We need to try...
Action: Tool_C Action Input: {"Personal": "William"}
Observation: Query failed.

</reasoning>
<answer>The information about William's pocket money is not
available through the provided tools.

60 :
</answer> 9 Failed

Question: William spent all his pocket money on a toy in June. If William used all the money to buy two pencils, how

Model Answer of 1200 steps
<reasoning>

Thought: The question is asking how much money William has left after buying
two boxes of pencils.

Action: Tool_D Action Input: {"Personal": "William"}

Observation: William's neighbor is David.

Thought: The information provided by the tool is not helpful for solving the
question .

Action: Tool B Action Input: {"Item": "pencils"}

Observation: For pencils, the unit price is $3.5.

Thought: The information provided by the tool is helpful for solving the question.
Action: Tool A Action Input: {"Personal": "William"}

Observation:William's pocket money in June was $654

...... Thought: William's pocket money in June was $654. He spent all the money to
buy two pencils,which cost $3.5 x 2 = $7. So, the money left is $654 - $7 = $647.
</reasoning>

<answer> Final Answer: $647 </answer>

Figure 5: Case study comparing qwen-think model behavior after 200 steps (left) versus 1200 steps (right) of RL
training. The example shows progressive improvement in: (a) tool selection strategy, (b) error recovery capabilities,
and (c) compositional reasoning under tool-obfuscated settings, where no tool descriptions are provided.

all contribute positively to the model’s tool-use rea-
soning, with our method achieving the best overall
performance.

6.2 Post-training evaluation of capabilities in
tool-composition scenarios.

In the Section (§ 5.2) experiments, we examined
the model’s ability to adapt to tool usage rules and
to autonomously discover tool functionality. This
section further investigates the upper bound of tool
composition capabilities under full information set-
tings, with a particular focus on the comparative
advantages of reinforcement learning over tradi-
tional supervised learning in compositional tasks.In
this experiment, models are provided with com-
plete tool descriptions and are allowed to use all
tools introduced in Experiments I and II. As shown
in Figure 4, across all model scales and training
strategies, accuracy consistently decreases as the
complexity of tool composition increases. This
indicates that even with full access to tool informa-
tion, multi-tool reasoning remains a core bottleneck
for current models.

6.3 Case Study

We present a case study based on outputs from the
gwen-think model (Figure 5). The model must (i)
retrieve William’s pocket money and (ii) query the
pencil price, without access to tool descriptions or
parameter schemas. At an early stage of training,

the model frequently calls irrelevant tools, reflect-
ing limited understanding but some exploratory
behavior. After 1200 RL steps, it adopts more reli-
able strategies discarding uninformative results and
switching tools efficiently. Despite no explicit tool
guidance, it demonstrates improved accuracy and
reasoning efficiency, indicating implicit learning of
tool functionalities. Appendix D for details.

7 Conclusion

This work investigates the limitations of cur-
rent LLM tool-use approaches in handling non-
standard, under-specified, or counterintuitive sce-
narios. We introduce three challenge settings that
probe models’ ability to reason beyond format com-
pliance and instruction-following. In response,
we propose Path-Aware Reinforcement Learn-
ing (PARL), a reinforcement learning framework
that enhances tool-use by incorporating trajectory-
based reward assignment and historical interaction
memory. Empirical results show that PARL sig-
nificantly improves performance across all tasks,
particularly in tool function discovery and counter-
factual rule adaptation. These findings highlight
the importance of path-sensitive optimization and
context accumulation in developing more robust,
generalizable LLM agents.

Limitations

Despite the significant performance gains achieved,
our work has two main limitations. First, in line
with previous studies, we find that convergence
during the reinforcement-learning phase remains
highly sensitive to reward shaping, and the train-
ing dynamics can oscillate without careful tuning.
We release all hyper-parameters to facilitate repro-
ducibility and further adjustment, but model per-
formance still hinges on precise reward scaling.
Second, our experiments are constrained by lim-
ited computational resources to models of 7 B pa-
rameters or fewer. The response of larger models
to RL signals—and their ability to generalise in
more complex settings—has yet to be systemati-
cally evaluated. This will be a key focus of future
work.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Kinjal Basu, Ibrahim Abdelaziz, Kiran Kate, Mayank
Agarwal, Maxwell Crouse, Yara Rizk, Kelsey Brad-
ford, Asim Munawar, Sadhana Kumaravel, Saurabh
Goyal, and 1 others. 2024. Nestful: A benchmark
for evaluating llms on nested sequences of api calls.
arXiv preprint arXiv:2409.03797.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877-1901.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, and 1 others. 2024.
A survey on evaluation of large language models.
ACM transactions on intelligent systems and technol-
0gy, 15(3):1-45.

Jie Chen, Xintian Han, Yu Ma, Xun Zhou, and Liang
Xiang. 2024. Unlock the correlation between su-
pervised fine-tuning and reinforcement learning in

training code large language models. arXiv preprint
arXiv:2406.10305.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang,
Yujia Qin, Baoquan Zhong, Chengquan Jiang, Jinxin
Chi, and Wanjun Zhong. 2025. Retool: Reinforce-
ment learning for strategic tool use in llms. arXiv
preprint arXiv:2504.11536.

Hiroki Furuta, Yutaka Matsuo, Aleksandra Faust, and
Izzeddin Gur. 2023. Exposing limitations of lan-
guage model agents in sequential-task compositions
on the web. arXiv preprint arXiv:2311.18751.

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang,
Xin Xin, Pengjie Ren, Zhumin Chen, Jun Ma, and
Zhaochun Ren. 2024. Confucius: Iterative tool learn-
ing from introspection feedback by easy-to-difficult
curriculum. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 18030-
18038.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Alex Gu, Naman Jain, Wen-Ding Li, Manish Shetty, Yi-
jia Shao, Ziyang Li, Diyi Yang, Kevin Ellis, Koushik
Sen, and Armando Solar-Lezama. 2025. Challenges
and paths towards ai for software engineering. arXiv
preprint arXiv:2503.22625.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, and 1 others. 2024. Deepseek-
coder: When the large language model meets
programming—the rise of code intelligence. arXiv
preprint arXiv:2401.14196.

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr-
ishna, and Tomas Pfister. 2023. Tool documenta-

tion enables zero-shot tool-usage with large language
models (2023). arXiv preprint arXiv:2308.00675.

Li Hu, Guogiang Chen, Xiuwei Shang, Shaoyin Cheng,
Benlong Wu, Gangyang Li, Xu Zhu, Weiming
Zhang, and Nenghai Yu. 2025. Compileagent: Au-
tomated real-world repo-level compilation with tool-
integrated 1lm-based agent system. arXiv preprint
arXiv:2505.04254.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhenqgiang Gong, and 1 others. 2023. Meta-
tool benchmark for large language models: Deciding
whether to use tools and which to use. arXiv preprint
arXiv:2310.03128.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, and 1
others. 2024. Openai ol system card. arXiv preprint
arXiv:2412.16720.

Minki Kang, Jongwon Jeong, and Jaewoong Cho. 2025.
T1: Tool-integrated self-verification for test-time
compute scaling in small language models. arXiv
preprint arXiv:2504.04718.

Komal Kumar, Tajamul Ashraf, Omkar Thawakar,
Rao Muhammad Anwer, Hisham Cholakkal,
Mubarak Shah, Ming-Hsuan Yang, Phillip HS Torr,

Fahad Shahbaz Khan, and Salman Khan. 2025. LIm
post-training: A deep dive into reasoning large lan-
guage models. arXiv preprint arXiv:2502.21321.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, and 1 others. 2020. Retrieval-augmented gen-
eration for knowledge-intensive nlp tasks. Advances
in neural information processing systems, 33:9459—
9474,

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehensive
benchmark for tool-augmented llms. arXiv preprint
arXiv:2304.08244.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and
Jianfeng Gao. 2023. Chameleon: Plug-and-play com-
positional reasoning with large language models. Ad-
vances in Neural Information Processing Systems,

36:43447-43478.

Ne Luo, Aryo Pradipta Gema, Xuanli He, Emile
van Krieken, Pietro Lesci, and Pasquale Minervini.
2025. Self-training large language models for
tool-use without demonstrations. arXiv preprint
arXiv:2502.05867.

Bohan Lyu, Yadi Cao, Duncan Watson-Parris, Leon
Bergen, Taylor Berg-Kirkpatrick, and Rose Yu. 2024.
Adapting while learning: Grounding Ilms for scien-
tific problems with intelligent tool usage adaptation.
arXiv preprint arXiv:2411.00412.

Xinyi Ni, Qiuyang Wang, Yukun Zhang, and Pengyu
Hong. 2025. Toolfactory: Automating tool genera-
tion by leveraging llm to understand rest api docu-
mentations. arXiv preprint arXiv:2501.16945.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang,
Xiusi Chen, Dilek Hakkani-Tiir, Gokhan Tur, and
Heng Ji. 2025. Toolrl: Reward is all tool learning
needs. arXiv preprint arXiv:2504.13958.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, and 1 others. 2023. Toolllm: Facilitating
large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1—
16. IEEE.

10

Philip Resnik. 2025. Large language models are biased
because they are large language models. Computa-
tional Linguistics, pages 1-21.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36:68539—68551.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-
math: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint
arXiv:2402.03300.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends
in hugging face. Advances in Neural Information
Processing Systems, 36:38154-38180.

Z Shi, S Gao, X Chen, Y Feng, L Yan, H Shi, D Yin,
Z Chen, S Verberne, and Z Ren. Chain of tools:
Large language model is an automatic multi-tool
learner (2024). arXiv preprint arXiv:2405.16533.

Noah Shinn, Federico Cassano, Beck Labash, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu
Yao. 2023. Reflexion: Language agents with ver-
bal reinforcement learning, 2023. URL https://arxiv.
org/abs/2303.11366.

Joykirat Singh, Raghav Magazine, Yash Pandya, and
Akshay Nambi. 2025. Agentic reasoning and tool
integration for llms via reinforcement learning. arXiv
preprint arXiv:2505.01441.

Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen,
Jiahao Qiu, Shijue Huang, Bowen Jin, Mengdi Wang,
Kam-Fai Wong, and Heng Ji. 2025. Otc: Optimal
tool calls via reinforcement learning. arXiv preprint
arXiv:2504.14870.

Qiancheng Xu, Yongqi Li, Heming Xia, Fan Liu, Min
Yang, and Wenjie Li. 2025. Petoolllm: Towards
personalized tool learning in large language models.
arXiv preprint arXiv:2502.18980.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayi-
heng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge,
Haoran Wei, Huan Lin, Jialong Tang, and 41 oth-
ers. 2025. Qwen3 technical report. arXiv preprint
arXiv:2505.09388.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, and 22 others.
2024a. Qwen?2.5 technical report. arXiv preprint
arXiv:2412.15115.

Seungbin Yang, ChaeHun Park, Tachee Kim, and Jaegul
Choo. 2024b. Can tool-augmented large language
models be aware of incomplete conditions? arXiv
preprint arXiv:2406.12307.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao.
2023. React: Synergizing reasoning and act-
ing in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Yuanging Yu, Zhefan Wang, Weizhi Ma, Zhicheng Guo,
Jingtao Zhan, Shuai Wang, Chuhan Wu, Zhiqgiang
Guo, and Min Zhang. 2024. Steptool: A step-grained
reinforcement learning framework for tool learning
in llms. arXiv preprint arXiv:2410.07745.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,
Yongliang Shen, Ren Kan, Dongsheng Li, and De-
qing Yang. 2024. Easytool: Enhancing llm-based
agents with concise tool instruction. arXiv preprint
arXiv:2401.06201.

11

A Dataset Construction

As described in Section 4, we construct two tool-
oriented datasets. The quantity and data splits of
each dataset are shown in Table 5. The detailed
construction process of the datasets is outlined be-
low.

A.1 Rule Understanding Dataset

We first define three rule regimes. The Natural
regime follows conventional operator precedence;
the Linear regime processes every operator strictly
left-to-right; the Reverse regime applies addition
and subtraction before multiplication and division
once parentheses are resolved. We synthesise ex-
pressions with a probabilistic context-free gram-
mar. Operator probabilities are set to 0.30 for addi-
tion, 0.25 for subtraction, 0.30 for multiplication,
and 0.15 for division. Expression complexity rises
from two to more than six operators, and we raise
the chance of inserting brackets from 0.20 to 0.60
as complexity grows. Operands are sampled uni-
formly from the interval [—20, 20] for basic expres-
sions and [—50, 50] for intermediate and advanced
ones. Nested brackets never exceed depth three,
and a deterministic executor produces the gold an-
swers under each rule. In total we generate 5 000
training and 1 000 test expressions, applying the
above three rules to each expression.

A.2 Tool-Combination Dataset

We design nine synthetic APIs grouped into
four functional themes: person information, date
queries, price queries, and relation analysis. Each
APT accepts JSON input and yields a short textual
observation. To create a task, we sample one to four
relevant APIs, instantiate their parameters from a
curated entity pool, then write a natural-language
question whose answer demands concatenating the
returned observations. All questions are verified
automatically to ensure the tool sequence executes
without error and that the final answer is unique
and deterministic. The corpus contains 2,400 train-
ing and 600 test samples. Training data include
800 single-tool, 800 dual-tool, and 800 multi-tool
queries; the test set mirrors this 1-1-1 balance with
200 instances per tier. We release generation code
and corpora upon publication to enable full repro-
ducibility. Get_financial_statement tool accepts a
person’s name as input and returns a description of
that person’s financial situation. Query_item_price
tool returns the unit price of the product according

12

to the product name, which is used as the basis for
subsequent calculations. Query_data tool queries
the month corresponding to the subject context,
which can be used as a condition to filter the infor-
mation obtained from the get_financial_statement
tool. Get_relationship_chain tool receives a per-
son’s name and returns the corresponding relation-
ship chain, which is used for dual-tool and multi-
tool queries construction. Definition details of the
four retrieval tools as shown in figure 6, The model
needs to plan the tool usage order and query rele-
vant information before arriving at the correct an-
SWer.

B Hyperparameters Setting

During the reinforcement learning training process,
we used eight NVIDIA A100 GPUs together with
the vLLM (Kwon et al., 2023) framework to ac-
celerate both training and inference. We set the
number of epochs to three and employed early
stopping to prevent reward hacking. The learning
rate was 1 e-6, gradient accumulation steps were 2,
and the number of generations was 8. We used a
batch size of 16 for both the Qwen2.5-3B-Instruct
and Qwen?2.5-7B-Instruct models, and likewise a
batch size of 16 for the Qwen2.5-1.5B-Instruct
and Qwen3-1.7B models. All experiments utilized
DeepSpeed’s ZeRO-3 (Rajbhandari et al., 2020)op-
timization.

For specific reward settings, the format reward
is usually set to 1. If the model has a strong ability
to follow instructions, the reward value should be
appropriately lowered, otherwise it will affect the
model’s ability to summarize and reflect. The cor-
rectness reward is divided into two levels. When
the model’s answer is completely matched, the re-
ward value is set to 3, because the result will be
correct only when all steps are correct, so a larger
reward value is given. When the model solves the
problem correctly but does not answer according
to the specified requirements, the reward value is
set to 0.2. When the model correctly calls the tool
in the required question, the reward value is set to
1. If the model incorrectly calls the tool, the reward
value is set to 0.005, which is used to encourage
the model to summarize the reasons for the error
and try again. When the information of the tool is
reduced, the model tends to refuse to answer. At
this time, the two reward values for tool calls need
to be adjusted up to train normally.

Rule Understanding Dataset

Tool-Combination Dataset

Split
Nature Linear Reverse Single-Tool Dual-Tool Multi-Tool
Train S5k Sk Sk 800 800 800
Test 1k 1k 1k 200 200 200
All 6k 6k 6k 1k 1k 1k

Table 5: The quantity and data splits of two datasets.

C System Prompt

In system prompt, we used the <reasoning> and
<answer> tags to encourage the model to think. In
order to enable the model to fully learn how to use
the tools, we then introduced in detail the purpose
and specific usage rules of each tool. Finally, we
explained the complete question-and-answer for-
mat, including the detailed format of calling tools
and answer specifications. The complete system
prompt is shown in Table 6.

D Case Study

When the model calls a simple tool, it can succeed
once. However, when the input requirements of the
tool are more complex, the model needs to modify
the input based on the feedback of the tool call
failure and then call the tool again. In other words,
the model can correct itself through tool feedback
and learn the correct tool call method. An example
is shown in figure 7.

In the early stages of training, the model cannot
handle dual-tool and multi-tool queries correctly.
As shown in figure 8, the model tries to use one tool
to obtain information that can only be obtained by
calling two tools in sequence. However, due to the
setting of reward functions for different tools, the
model can learn how to split complex problems and
call tools sequentially during training. An example
of a model correctly splitting a problem in the later
stages of training is shown in figure 12.

After removing the detailed description of the
tool, the model showed a strong tendency to aban-
don the use of the tool. Even though the tool name
already suggested that the tool could be used to ob-
tain the corresponding information, the model still
refused to use it. An example is shown in figure 9.

After removing the detailed description of the
tool, the tool becomes more difficult to understand.
After the model gets the result of the tool call, it
needs to further understand the purpose of the tool
based on the result. Therefore, in the early stage

13

of training, it is difficult to take into account both
the ability to understand the tool and the ability
to summarize and analyze the tool. The tool is
called correctly but errors are made in the sum-
mary. As shown in the figure 10, it is incredible
that the model actually got an outrageous result of
2.8%5=15.2!

During the training process, the model can learn
to call tools and use them through tool call rewards.
On this basis, the model can improve its summary
and planning capabilities through correct result re-
wards. Therefore, after removing the description,
the model starts to try different tools through train-
ing, and plans the next path based on the tool feed-
back. After obtaining all the information, it can
summarize and answer the question correctly. An
example is shown in figure 11.

. {
"name_for_human": "Get Financial Statement", "name_for_human": "Query Date",
"name_for_model'": "get_financial_statement", "name_for_model": "query_date",
"description_for_model": “Get a person’s pocket money. "description_for_model": "Query the month in which the person is
Format parameters as a JSON object.", currently. Format parameters as a JSON object.",
"parameters": | "parameters"’: [
{ {
"name": "Personal", "name": "Personal",
“description”: “The person to whom the pocket money belong.", "description': "The name of the person.",
"required": True, # Set to False if it is an optional parameter. "required": True, # Set to False if it is an optional parameter.
"schema": {"type": "str"}, "schema': {""type": "str"},
} }
| |
} }
\, N
” %
¢ £
"name_for_human": "Query Item Price", "name_for_human": "Get Relationship Chain",
"name_for_model": "query_item_price", "name_for_model": "get_relationship_chain",
"description_for_model": "Query the unit price of an item. ""description_for_model'": "Get someone's relationship chain.
Format parameters as a JSON object.", Format parameters as a JSON object.",
"parameters"’: ["parameters": [
{ i
""name": "Ttem", "name": "Personal",
"description": "The name of the item. Please retain "description": "The name of the person.",
the complete entity expression after the preposition of", "required'': True, # Set to False if it is an optional parameter.
"required": True, # Set to False if it is an optional parameter. "schema': {"type": "str"},
"schema'': {"type": "str"}, }
} 1
1 }
}
- AN

Figure 6: Tool card of Tool-Combination Dataset.

Question:
Michael bought three rolls of stickers. How much did he spend in total? Please think step by step.

<reasoning>

Thought and Plan: The question provides the information that Michael bought three rolls of stickers, but it does not
specify the price of a single roll. Therefore, we need to determine the price of a roll to calculate the total cost.
Action: query_item_price

Action Input: {"Item": "roll of stickers"}

Observation: Query failed. Please retain the complete entity expression after the preposition 'of'.

Thought and Plan: The query for the price of a roll of stickers failed. I need to try a different approach to find the
price of a roll of stickers.

Action: query_item_price

Action Input: {"Item": "stickers"}

Observation: For stickers, The unit price is $3.7.

Final Answer: Michael spent $3.7 * 3 = $11.1 on three rolls of stickers.

</reasoning>

<answer>

Michael spent $11.1 on three rolls of stickers.

</answer>

Figure 7: The model correct its tool use methods in generating path.

14

Instruction Format

Instruction:

A conversation between User and Assistant. The user asks a question, and the Assistant solves it.The assistant first
thinks about the reasoning process in the mind and then provides the user with the answer.The reasoning process and
answer are enclosed within <reasoning> </reasoning> and <answer></answer>tags, respectively, i.e.,

<reasoning>

reasoning process here

</reasoning>

<answer>

answer here

</answer>

Available Tools:

To answer the questions correctly, you can choose to call the tools. You need to try to understand the function of each
tool.Proper use of all tools can achieve functions such as calculation and information acquisition, and each tool has a
specific function.Please try to explore the functions of different tools and the correct parameter input. You have access to
the following APIs:

{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API
useful for? {description_for_model} Parameters: {parameters}

Use the following format:

Format Specifications:

Question: the question asked by the user

<reasoning>

Tool Usage Guidelines:

Thought: you should always think about what to do Action: the action to take, should be one of [{name_for_model},
......] Action Input: the input to the action Observation: the results of the actions

Note: If you need to call the tool again (re-call the same tool or call a new tool), repeat the following structure: (this
Thought/Action/Action Input/Observation),that is, this structure: Thought/Action/Action Input/Observation can be
repeated zero or more times.

</reasoning>

<answer>

Thought: I now know the final answer

Final Answer: the final answer to the original input question

</answer>

Begin!

Table 6: Structured reasoning and tool-use interaction format for Assistant responses.

15

Question:
How much pocket money did Gregory's classmate have in June? Please think step by step.

<reasoning>

Thought and Plan: The question asks about the amount of pocket money Gregory's classmate had in June.
However, there is no specific information provided about Gregory's classmate or the amount of pocket money.
Therefore, I need to determine if there is any available data or if T need to use a tool to find the answer.

Thought and Plan: The query for 'Pocket money' failed. I need to try another approach to find the answer.
Action: query_date

Action Input: {"Personal": "Gregory's classmate"}

Observation: Query failed.

Thought and Plan: The query for 'Gregory's classmate' failed. I need to try another approach to find the answer.
Action: get relationship_chain

Action Input: {"Personal": "Gregory's classmate"}

Observation: Query failed.

Thought and Plan: The query for 'Gregory's classmate' failed. I need to try another approach to find the answer.
Action: get financial statement

Action Input: {"Personal": "Gregory's classmate"}

Observation: Query failed.

Thought and Plan: The query for 'Pocket money’ failed. I need to try another approach to find the answer.
Action: query date
Action Input: {"Personal": "Gregory's classmate"}

Observation: Query failed.

Figure 8: The model tries the tools and aggregates the feedback to get the correct answer.

Question:
Robert bought one dozen erasers. How much did he spend in total? Please think step by step.

<reasoning>

Thought and Plan: The question is asking about how much Robert spent in total after buying
one dozen erasers. However, the provided tools do not include any that can calculate the cost of
items based on their price per unit. The available tools are for financial statements, item prices,
dates, and relationship chains. Since no tool is available to calculate the total cost, the question
cannot be answered using the provided tools.

Action: None

Action Input: None

Figure 9: After removing the description, the initial training model refuses to use the tool.

16

Question:
Michael bought five packs of file folders. How much did he spend in total? Please think step by step.

<reasoning>

Thought and Plan: The question asks for the total amount Michael spent when he bought five packs of file
folders. However, the question does not provide the price of a single pack of file folders. Therefore, we need to use
a tool to get the price of a pack of file folders.

Action: query_item_price

Action Input: {"Item": "file folders"}

Observation: For file folders, The unit price is $2.8.

Thought and Plan: Now that we know the unit price of file folders, we can calculate the total cost by multiplying
the unit price by the number of packs Michael bought.

Action: get_financial statement

Action Input: {"Personal": "Michael"}

Observation: Michael's pocket money in January was $716. Michael's pocket money in February was $516. -+
Thought: The information about Michael's pocket money in the financial statement does not help in calculating
the total amount he spent on file folders. The tool is not applicable for this question.

Final Answer: Michael spent $15.2 on file folders.
</reasoning>

<answer>

Michael spent $15.2 on file folders.

</answer>

-

J

Figure 10: The model is trained to correctly call the tool without the description, but an error occurs when

summarizing.

17

Question:
Michael bought three bundles of rulers. How much did he spend in total? Please think step by step.

<reasoning>

Thought: The question provides information that Michael bought three bundles of rulers, but it does not specify
the price per bundle or the total cost. Therefore, there is not enough information to calculate the total cost.
Action: tool A

Action Input: {"Param_A": "Michael"}

Observation: Michael's pocket money in January was $716. Michael's pocket money in February was $516------

Thought: The provided information about Michael's pocket money does not relate to the question about the cost
of three bundles of rulers.

Action: tool B

Action Input: {" Param_A ": "Michael"}

Observation: Query failed. Please retain the complete entity expression after the preposition 'of”.

Thought: The question is about the total cost of three bundles of rulers, but no information is provided about the
price per bundle. Therefore, it is impossible to calculate the total cost.

Action: tool C

Action Input: {" Param_A ": "Michael"}

Observation: Michael spent all his pocket money on a toy in January.

Thought: The provided information about Michael's pocket money does not relate to the question about the cost
of three bundles of rulers.

Action: tool D

Action Input: {" Param A ": "Michael"}

Observation: Michael's classmate is Robert.

Thought: The provided information about Michael's classmate does not relate to the question about the cost of
three bundles of rulers.

Action: tool B

Action Input: {"Param_A": "rulers"}

Observation: For rulers, The unit price is $6.5.

Thought: The total cost of three bundles of rulers is 3 * $6.5 = $19.5.
</reasoning>

<answer>

Final Answer: $19.5

</answer>

Figure 11: The problem of using two tools cannot be solved in the early stage of model training

18

Question:
How much pocket money did Edward's neighbor have in August? Please think step by step.

<reasoning>

Thought and Plan: The question asks for the amount of pocket money Edward's neighbor had in August. However, there is no
direct information provided about the neighbor's pocket money or any specific data related to August. Therefore, I need to
determine if there is any available information or if I need to use a tool to find the answer.

Action: tool A

Action Input: {"Param_A": "Edward"}

Observation: Edward's pocket money in January was $867. Edward's pocket money in February was $661---+-

Thought and Plan: The information provided in the observation shows Edward's pocket money in August. However, the
question asks about Edward's neighbor's pocket money in August. Therefore, [need to determine if there is any additional
information or if [need to use another tool to find the answer.

Action: tool B

Action Input: {"Param_A": "Edward"}

Observation: Query failed.

Thought and Plan: The information provided in the observation shows Edward's pocket money in August. However, the
question asks about Edward's neighbor's pocket money in August. Therefore, I need to determine if there is any additional
information or if [need to use another tool to find the answer.

Action: tool_C

Action Input: {"Param_A": "Edward"}

Observation: Edward spent all his pocket money on a toy in September

Thought and Plan: The information provided in the observation shows Edward's pocket money in August. However, the
question asks about Edward's neighbor's pocket money in August. Therefore, I need to determine if there is any additional
information or if [need to use another tool to find the answer.

Action: tool D

Action Input: {"Param_A": "Edward"}

Observation: Edward's neighbor is Ronald.

Thought and Plan: The information provided in the observation shows Edward's pocket money in August. However, the
question asks about Edward's neighbor's pocket money in August. Therefore, I need to determine if there is any additional
information or if need to use another tool to find the answer..

Action: : tool A

Action Input: {"Param_A": " Ronald"}

Observation: Ronald's pocket money in January was $702. Ronald's pocket money in February was $829------

Thought and Plan: The information provided in the observation shows Ronald's pocket money in August. Therefore, the
answer to the question is $752.

Final Answer: $752

</reasoning>

<answer>

Final Answer: $752

</answer>
N\ J/

Figure 12: The model tries the tools and collects feedback to correctly solve the problem of removing descriptions
and combining tools

19

	Introduction
	Related Work
	Tool Integration in LLMs
	Post-Training Methods for Tool Learning

	Path-Aware Reinforcement Learning Framework
	Training Objective
	Path-Aware Reward Mechanism
	Historical Memory Mechanism

	Experimental Setup
	Dataset
	Baseline Methods
	Evaluation Setup

	Experiments
	Exp-I: Can LLMs Discover Latent Rules in Tool Composition?
	Exp-II: Can LLMs Discover Tool Functions Under Limited Information?
	Exp-III: Can LLMs Learn Effectively from Historical Interactions?

	Discussion
	Ablation Study on Reward Design
	Post-training evaluation of capabilities in tool-composition scenarios.
	Case Study

	Conclusion
	Dataset Construction
	Rule Understanding Dataset
	Tool-Combination Dataset

	Hyperparameters Setting
	System Prompt
	Case Study

