
Towards Better Function Calling in LLMs With a Path-Aware
Reinforcement Learning Framework

Anonymous ACL submission

Abstract001

Large language models (LLMs) show great002
promise in solving complex tasks through ex-003
ternal tool use. However, existing approaches004
largely focus on standard tool formats and005
instruction-following, neglecting the broader006
problem of generalizable and robust tool in-007
teraction. In this paper, we explore three un-008
derexamined challenges in LLMs’ tool-use ca-009
pabilities: adaptation to counterintuitive tool010
rules, autonomous discovery of tool function-011
ality under incomplete specifications, and the012
impact of historical memory on tool-use ef-013
ficiency. To address these challenges, we014
propose Path-Aware Reinforcement Learning015
(PARL), a novel framework that integrates016
trajectory-level reward assignment and history-017
based contextualization. PARL assigns dy-018
namic rewards based on path-level outcomes019
and relative tool-use efficiency, while maintain-020
ing a fixed-size memory window to guide pol-021
icy learning. Experiments across diverse non-022
standard tool-use scenarios demonstrate that023
PARL consistently outperforms existing meth-024
ods, achieving relative gains of up to 28.9% in025
low-information settings and 19.8% in coun-026
terfactual reasoning. Our work provides both027
a diagnostic benchmark and an effective rein-028
forcement learning strategy for advancing tool-029
augmented LLMs.Our code and dataset will be030
available at XXX031

1 Introduction032

Large language models (LLMs) have achieved re-033

markable breakthroughs in processing human lan-034

guage (Achiam et al., 2023; Chang et al., 2024;035

Kumar et al., 2025), demonstrating exceptional ca-036

pabilities in text comprehension and generation.037

However, when solving many real-world problems,038

LLMs require to invoke external tools (Brown et al.,039

2020; Lewis et al., 2020; Resnik, 2025; Gu et al.,040

2025). Establishing a mechanism that enables041

better interactions between LLMs and tools, can042

Human: William spent all his pocket money on a toy in June, if
used all the money to buy two pencils, how much money is left?

User Qusetion

Agent System
Model : To solve this problem, I should find out how much
pocket money William had in June and the price of a pencil.
Let me check which tools I can use.

Masked Toolkit
Agent System

Model: What should I do next ?
I need infer each tool’s function
and plan how to use them later.

Tool_Name：ToolA
Dsecription：
Parameters：

To complete the task , LLMs need to plan the call sequence
and explore tool usage rules under limited information.

Dialogue system with limited information

Figure 1: When faced with problems involving unknown
information, large language models decompose the task,
plan an appropriate tool invocation path, and generate
call instructions in a specific format based on tool defi-
nitions.

greatly extend the boundaries of model capabilities, 043

transforming them from pure text generators into 044

interactive intelligent agents (Schick et al., 2023; 045

Yao et al., 2023; Shen et al., 2023; Hu et al., 2025). 046

How to better interact with tools is still an open 047

problem. Most existing work improves tool-use 048

efficiency by optimizing tool formats,such as stan- 049

dardizing interfaces and compressing documenta- 050

tion (Qin et al., 2023; Yuan et al., 2024; Ni et al., 051

2025; Li et al., 2023), which heavily rely on the 052

model’s instruction following ability. In addition, 053

post-training methods (Feng et al., 2025; Singh 054

et al., 2025; Kang et al., 2025) like supervised 055

fine-tuning and reinforcement learning have been 056

proposed to enhance invocation accuracy and rea- 057

soning capabilities. Although these methods per- 058

form well in specific scenarios, they generally rely 059

on strict parameter specifications and fixed input 060

formats, overemphasizing the model’s instruction- 061

following ability rather than its deep understanding 062

of tools. More critically, they focus solely on stan- 063

dard usage contexts and lack exploration of non- 064

1

standard scenarios, limiting our understanding of065

the upper bound of LLMs’ tool-use capabilities.066

In this paper, we investigate three fundamen-067

tal questions about LLMs’ tool-use capabilities:068

(1) Can models adapt to counterintuitive tool rules069

when such rules are not explicitly provided? (2) To070

what extent can models autonomously discover tool071

functionalities without complete specifications? (3)072

How does maintaining a memory of past interac-073

tions affect tool-use performance? We design spe-074

cialized experiments to address these questions,075

including scenarios where mathematical operation076

precedence is reversed and tool descriptions are077

progressively obfuscated. Based on our findings,078

we propose Path-Aware Reinforcement Learning079

(PARL), a novel framework that enhances tool-use080

capabilities through two key mechanisms: (1) fine-081

grained reward signals based on intra-group relative082

advantage and outcome correctness applied to en-083

tire tool-invocation paths, and (2) a history-aware084

training process that maintains a fixed-size mem-085

ory window of past tool interactions. Experimen-086

tal results demonstrate that our approach consis-087

tently outperforms state-of-the-art methods across088

all scenarios, achieving average improvements of089

19.8% on counterfactual rule understanding, 28.9%090

on tool discovery with minimal information, and091

14.2% on complex tool composition tasks.In sum-092

mary, the main contributions of our work are:093

• We design a comprehensive evaluation frame-094

work examining LLMs’ tool-use capabilities095

in challenging scenarios.096

• We propose Path-Aware Reinforcement Learn-097

ing, a novel framework combining path-098

dependent rewards with historical context to099

enhance tool-use performance across diverse100

scenarios.101

• We demonstrate significant performance im-102

provements, particularly in adapting to re-103

versed mathematical rules and discovering104

tool functionality without explicit descrip-105

tions.106

2 Related Work107

2.1 Tool Integration in LLMs108

Recent work has integrated external tools with109

LLMs through various approaches: API invocation110

frameworks, reasoning-action interleaving, and111

model orchestration systems(Schick et al., 2023;112

Yao et al., 2023; Shen et al., 2023). While spe- 113

cialized benchmarks and interface standardization 114

efforts have advanced the field(Li et al., 2023; 115

Huang et al., 2023; Basu et al., 2024), current ap- 116

proaches predominantly assume well-specified tool 117

interfaces and rely heavily on instruction-following 118

capabilities(Basu et al., 2024; Yuan et al., 2024). 119

This fundamental assumption limits adaptability 120

when tools exhibit non-standard behaviors or pro- 121

vide incomplete specifications(Basu et al., 2024; 122

Yang et al., 2024b). Most existing systems struggle 123

with counterfactual usage patterns or minimal docu- 124

mentation(Gao et al., 2024; Luo et al., 2025; Hsieh 125

et al., 2023), highlighting the need for more adap- 126

tive tool interaction mechanisms that can operate 127

effectively beyond familiar training distributions. 128

2.2 Post-Training Methods for Tool Learning 129

Post-training optimization for tool use primarily 130

follows two approaches: supervised fine-tuning and 131

reinforcement learning(Chen et al., 2024; Xu et al., 132

2025; Wang et al., 2025). While fine-tuning meth- 133

ods can effectively capture tool-specific patterns 134

from demonstrations(Furuta et al., 2023; Shinn 135

et al., 2023; Qian et al., 2025), they often require 136

extensive examples and struggle with novel com- 137

positional tasks. Reinforcement learning offers 138

improved adaptability through techniques like rela- 139

tive advantage computation and reward shaping(Yu 140

et al., 2024; Lu et al., 2023), but current methods 141

typically evaluate only final outcomes and treat 142

each interaction in isolation(Lyu et al., 2024; Shi 143

et al.). These limitations restrict performance in 144

scenarios requiring adaptation to implicit rules or 145

tool discovery under minimal information. Our 146

work addresses these gaps through path-dependent 147

reward mechanisms that connect intermediate deci- 148

sions to final outcomes, combined with a historical 149

memory system that enables cumulative learning 150

from past interactions. 151

3 Path-Aware Reinforcement Learning 152

Framework 153

We formulate tool learning as a sequential decision 154

process where a model generates a tool calling se- 155

quence s for a user query q using available tools 156

T . To effectively address this challenge, we adopt 157

Grouped Relative Policy Optimization (GRPO) 158

(Shao et al., 2024)as our foundational framework 159

and design a path-aware reward mechanism. 160

2

Human: William spent all his pocket money on a toy
in June, if used all the money to buy two pencils, how
much money is left?

User Qusetion Prompts Completions Rewards Advantages

Think

Fuction Calling

Observation

Final Answer

Prompt

Think

Think

Think

Observation

Observation

Observation

Observation

Fucntion
Calling

Fucntion
Calling

Fucntion
Calling

Fucntion
Calling

Think

Think

Think

Think

Observation

Observation

Observation

Observation

Answer

Answer

Answer

Answer

Answer

Rcorrect
...

...

...

...

...

<reasoning> Rformat

Thought: The question is asking ...
Action: ToolA Action Input: {...}
Observation: wrong ...

Step1

Thought: The information ... so we need
Action: ToolB Action Input: {...}
Observation: XXX

Step2

Thought: XXX
Action: ToolC Action Input: {...}
Observation: XXX

Step3

</reasoning>
<answer > </answer >

Rstep

Unuseful Calling

Useful Calling

Useful Calling

Observation

Tool Information Masked

History Memory

rm
r-mean

std

Result-Based Evaluation

Better Trajectory

Worse Trajectory

Agent System
Model : To solve this problem, I should find out how much
pocket money William had in June and the price of a pencil.
Let me check which tools I can use.

StepI StepII StepN

Toolkit With Missing Information

Tool_Name：Get_item_price
Dsecr iption：Query the unit price
Parameters：{item : str }

Historical Memory

Thought: The question is asking how
much money William has left after
buying two boxes of pencils.Action:
Tool_D.....

Figure 2: Overview of our Path-Aware Reinforcement Learning framework. The approach consists of three key
components: (a) GRPO-based optimization for stable policy updates, (b) path-dependent multi-level rewards that
assess both intermediate steps and final outcomes, and (c) historical memory mechanism that maintains context
from past interactions.

3.1 Training Objective161

The GRPO framework optimizes model parameters162

θ through the following loss function:163

LGRPO(θ) = E(q,s)

[
min

(
ρθ(s|q)A(s, q),

clip(ρθ(s|q), 1− ε, 1 + ε)A(s, q)
)]
(1)164

Here, µq and σq are the mean and standard devia-165

tion of rewards across all samples within the same166

query group.And our overall reward is constructed167

from three components:168

Rfinal(s, q) = Rformat(s)+Rresult(s, q)+Rtool(s, q)
(2)169

where Rformat(s) evaluates response format compli-170

ance, Rresult(s, q) measures final answer accuracy,171

and Rtool(s, q) is our proposed path-aware tool call-172

ing reward.173

3.2 Path-Aware Reward Mechanism174

To evaluate tool usage more holistically, we pro-175

pose a path-aware reward mechanism that inte-176

grates both the efficiency of tool invocation and177

the correctness of the final outcome. Unlike prior178

approaches that assign reward per isolated tool call,179

our design treats the entire interaction trajectory180

as a functional unit, allowing more accurate credit181

assignment during reinforcement learning.182

We first define the relative invocation ratio of a 183

sample s within a batch (or group) as: 184

rcall(s) =
n(s)

n̄group
(3) 185

where n(s) denotes the number of tool calls in the 186

sample s, and n̄group is the average tool usage 187

count across the batch. 188

The efficiency reward is then determined based 189

on the number of tool calls made and the unit re- 190

ward per call, capped by a maximum efficiency 191

bonus: 192

Reff(s) = min (n(s) · runit, Rmax) (4) 193

where runit is the per-call reward and Rmax sets an 194

upper limit to prevent over-rewarding excessive but 195

unhelpful invocations. 196

We then assign the final reward based on the 197

model’s output correctness. If the answer is correct, 198

the efficiency reward is kept as is. If the answer is 199

incorrect, the reward is down-weighted: 200

Rtool(s) =

{
Reff(s), correct
1
2Reff(s), incorrect

(5) 201

This formulation ensures that correct outputs re- 202

ceive the full efficiency-based reward, while incor- 203

rect outputs are still weakly rewarded in proportion 204

to their tool usage, helping the model learn from 205

failure without encouraging wasteful invocation. 206

3

Interaction Record Template

Query: [User query]
Tool called: [ToolName] Arguments: arguments
Observation: [Output returned by the tool]
Reasoning: [Model’s analysis and decision process]
Final answer: [Generated response]
Result: [Correct / Incorrect]

Table 1: Template for a single record in the historical
memory window.

3.3 Historical Memory Mechanism207

Historical interactions provide crucial guidance for208

the model’s tool-invocation decisions. To exploit209

this, we incorporate a historical memory mecha-210

nism into the PARL framework: during training, we211

maintain a sliding window of up to 500 tokens cap-212

turing the model’s most recent tool interactions. Be-213

fore each new decision, these entries are prepended214

to the model’s context, allowing it to draw on past215

successes and failures. By observing patterns in216

tool usage, the model learns to adopt more effective217

invocation strategies and to avoid repeating prior218

mistakes, even under ambiguous or incomplete tool219

specifications.220

Each record in the historical window follows221

the structured template shown in Table 1. Unlike222

conventional experience-replay buffers in reinforce-223

ment learning, our approach integrates directly into224

the language model’s context window, naturally225

serving as an implicit replay buffer while preserv-226

ing the simplicity of end-to-end training.227

4 Experimental Setup228

4.1 Dataset229

In this section, we introduce two specialized230

datasets for evaluating tool-calling capabilities: the231

Calculator Tool Dataset and the Multi-Function232

Tool Dataset. The former focuses on assessing233

models’ adaptability to different computational234

rules, while the latter tests their ability to com-235

bine multiple tools for solving complex problems.236

These datasets cover various tool invocation sce-237

narios, from simple single-tool usage to complex238

tool compositions, featuring two distinct sets of239

tools (four arithmetic tools and four query tools)240

designed to systematically evaluate models’ perfor-241

mance across different tool-using contexts.242

Calculator Tool Dataset The Calculator Tool243

Dataset evaluates a model’s adaptability to tool244

usage rules, particularly focusing on rule systems245

that contradict pretrained knowledge. It contains 246

6,000 mathematical expressions, each comprising 247

up to eight sequential computational steps. To 248

quantitatively measure rule adaptability, we de- 249

fine three rule variants: the standard mathematical 250

precedence rule (Natural), the strict left-to-right 251

computation rule (Linear), and the inverted prece- 252

dence rule (Reversal). Models are required to exe- 253

cute these computations using four basic arithmetic 254

tools (addition, subtraction, multiplication, and di- 255

vision), with all outputs rounded to two decimal 256

places. Through Python preprocessing, we gener- 257

ate ground-truth answers for all expressions under 258

the three rule systems. For each rule system, we 259

split the 6,000 samples into 5,000 training sam- 260

ples and 1,000 testing samples, yielding a total of 261

15,000 training samples and 3,000 testing samples. 262

Multi-Function Tool Dataset The Multi- 263

Function Tool Dataset evaluates a model’s ability 264

to discover tool functionalities and compose 265

multiple tools effectively. This dataset features 266

four distinct query tools: get_financial_statement 267

(retrieving financial data),query_date (accessing 268

calendar information), query_item_price (retriev- 269

ing product prices), and get_relationship_chain 270

(querying relationships between entities), each 271

designed for specific information retrieval tasks. 272

Based on complexity, we divide the dataset 273

into three categories: Single-Tool (requiring 1 274

tool only), Dual-Tool (requiring 2 tools), and 275

Multi-Tool (requiring 3 or more tools), where 276

models must invoke the appropriate combination 277

of tools to obtain necessary information for 278

answering questions correctly. We constructed 279

this dataset through template-based generation 280

followed by human verification. Each category 281

contains 800 training samples and 200 testing 282

samples, yielding a total of 2,400 training samples 283

and 600 testing samples. 284

4.2 Baseline Methods 285

To comprehensively evaluate the effectiveness of 286

our approach, we select the following represen- 287

tative baselines that span various technical ap- 288

proaches from zero-shot to supervised learning to 289

reinforcement learning: (1) Base Model: The orig- 290

inal large language model without any additional 291

training, evaluated using the same prompts, serving 292

as a performance baseline. (2) Think_SFT (Jaech 293

et al., 2024): A supervised fine-tuning method that 294

first extracts thought trajectories and tool invoca- 295

4

Rule Method SFT/RL Qwen-1.5B Qwen-7B Qwen-think Llama-3B

Natural

Base - 61.90 64.50 69.70 43.80
Think_SFT SFT 66.40 ↑4.50 68.80 ↑4.30 71.40 ↑1.70 47.90 ↑4.10
GRPO RL 78.00 ↑16.10 78.60 ↑14.10 82.20 ↑12.50 52.50 ↑8.70
Tool_RL RL 79.20 ↑17.30 81.00 ↑16.50 81.30 ↑11.60 53.10 ↑9.30
Ours RL 82.50 ↑20.60 84.40 ↑19.90 84.20 ↑14.50 55.30 ↑11.50

Linear

Base - 14.70 14.10 15.00 13.70
Think_SFT SFT 18.80 ↑4.10 20.20 ↑6.10 19.40 ↑4.40 17.60 ↑3.90
GRPO RL 48.40 ↑33.70 54.50 ↑40.40 58.00 ↑43.00 33.20 ↑19.50
Tool_RL RL 51.00 ↑36.30 53.80 ↑39.70 59.50 ↑44.50 35.80 ↑22.10
Ours RL 53.50 ↑38.80 57.10 ↑43.00 62.40 ↑47.40 42.00 ↑28.30

Reversal

Base - 1.60 1.50 2.00 1.50
Think_SFT SFT 8.80 ↑7.20 7.60 ↑6.10 10.20 ↑8.20 7.80 ↑6.30
GRPO RL 32.80 ↑31.20 26.20 ↑24.70 27.10 ↑25.10 19.80 ↑18.30
Tool_RL RL 31.20 ↑29.60 28.80 ↑27.30 29.50 ↑27.50 23.70 ↑22.20
Ours RL 33.20 ↑31.60 37.10 ↑35.60 40.60 ↑38.60 26.50 ↑25.00

Table 2: Accuracy (%) of different models on the calculator task under three mathematical rule systems. Bold
numbers indicate the highest accuracy in each column, and subscripts denote absolute improvement percentages
over the Base model.

tion sequences from the high-performing Deepseek-296

R1 model under identical inputs, then trains the tar-297

get model using this data containing intermediate298

reasoning processes. (3) GRPO (Guo et al., 2024):299

The Group Relative Policy Optimization approach300

proposed by Deepseek, which guides the model to301

generate correct outputs through a multi-faceted302

reward mechanism combining format awareness303

and result correctness. This method represents a304

mainstream reinforcement learning approach for305

tool-use training.(4) ToolRL (Qian et al., 2025):A306

reinforcement learning approach that treats tool use307

as compositional reasoning, featuring fine-grained308

reward signals for tool name selection, parame-309

ter filling, and execution efficiency, with dynam-310

ically adjusted reward weights throughout train-311

ing. This method represents recent advances in the312

tool-calling domain.(5) Ours: Our proposed path-313

aware reinforcement learning framework as shown314

in Section(§ 3).315

4.3 Evaluation Setup316

We use accuracy as our evaluation metric, defined317

as the match rate between model-generated and318

ground-truth answers . To assess generalizability319

across diverse model architectures, we conduct ex-320

periments on: Qwen2.5-3B-instruct and Qwen2.5-321

7B-instruct (Qwen-1.5B, Qwen-7B) (Yang et al.,322

2024a), Qwen3-1.7B-MOE (Qwen-think) (Yang323

et al., 2025), and Llama3-8B-instruct (Llama-3B)324

(Grattafiori et al., 2024). For our methods, we set325

the batch size to 16 and the generate-num to 8 .326

Tool invocations were formatted in JSON, with327

a maximum sequence length of 4096. For more 328

details on the dataset and training, please refer to 329

Appendix A and Appendix B. 330

5 Experiments 331

5.1 Exp-I: Can LLMs Discover Latent Rules 332

in Tool Composition? 333

In this experiment, we investigate whether LLMs 334

can acquire specific tool usage rules—particularly 335

counterfactual through post-training adaptation. 336

We utilize the calculator dataset introduced in Sec- 337

tion 4.1 and conduct training and evaluation under 338

three distinct mathematical rule systems. During 339

training, no explicit instructions about tool usage 340

rules are provided; instead, the model must explore 341

different computational strategies and tool compo- 342

sitions through interaction (detailed prompts are 343

provided in Appendix C). As shown in Table 2, all 344

models perform best under the Natural rule sys- 345

tem, while performance drops significantly under 346

the Linear and Reversal rule systems, which con- 347

tradict standard mathematical conventions. For 348

Think_SFT, even with access to ground-truth rea- 349

soning paths and tool invocation trajectories, accu- 350

racy improvements under counterfactual settings 351

remain limited , suggesting that supervised fine- 352

tuning struggles to override the model’s pretrained 353

mathematical knowledge. In contrast, reinforce- 354

ment learning (RL)-based methods consistently 355

outperform supervised fine-tuning across all rule 356

types.Under the most challenging Reversal rule, 357

our method achieves an average improvement of 358

32.70% across all model sizes, with particularly 359

5

Details Base SFT GRPO Tool_RL Ours

Qwen-1.5B
Full 6.70 11.83 29.17 33.33 45.17
TD 1.50 9.17 27.33 31.50 36.67
PD 2.67 8.50 25.50 32.83 33.67
Hidden 0.17 7.67 23.00 26.00 29.67

Qwen-7B
Full 6.00 14.17 28.16 41.00 45.00
TD 5.17 12.50 27.17 28.50 36.17
PD 4.33 14.83 29.67 30.83 36.50
Hidden 1.83 12.17 25.00 28.50 33.00

Qwen-think (MoE)
Full 26.67 33.67 56.83 71.33 78.83
TD 15.00 24.50 37.17 37.50 58.67
PD 9.00 28.83 43.50 41.00 65.17
Hidden 2.17 16.67 23.83 39.67 41.67

Table 3: Accuracy (%) of five training strategies on
three model sizes under varying tool-composition com-
plexities.

strong performance on the Qwen3-think model360

(40.60%). This indicates that RL can effectively361

reshape the model’s internal computation strate-362

gies beyond surface-level pattern matching. By363

leveraging reward signals, RL encourages explo-364

ration of high-reward behaviors that may conflict365

with pretrained biases, facilitating the discovery of366

rule-compliant tool-use strategies even when they367

contradict conventional mathematical principles.368

5.2 Exp-II: Can LLMs Discover Tool369

Functions Under Limited Information?370

In this section, we investigate whether language371

models are capable of autonomously discovering372

tool functionalities and invoking them correctly373

under limited descriptive information. Tool invo-374

cation is regarded as an extension of the model’s375

instruction-following capability, which typically376

relies on access to complete tool specifications.377

To systematically evaluate the impact of informa-378

tion constraints on tool-use behavior, we design379

four progressively weakened settings, where all380

tool names are replaced with abstract identifiers381

(Tool-N):(1) FULL: Full access to tool descrip-382

tions, including both functionality and parameter383

information.(2) Tool Description (TD): Only func-384

tional descriptions are provided; parameter infor-385

mation is removed. The model must infer how386

to use the parameters based on the textual con-387

tent.(3) Parameter Description (PD): Only pa-388

rameter format is preserved; functional descrip-389

tions and usage strategies are replaced with abstract390

identifiers, offering minimal semantic guidance.(4)391

0 200 400 600 800 1000 1200
Steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e_

Fu
ct

io
n_

C
al

l_
R

ew
ar

d

Model Fuction_Call_Reward over Training Steps

Qwen1.5B
Qwen1.5B-history
Qwen-think
Qwen-think-history

0 200 400 600 800 1000 1200
Steps

300

400

500

600

700

800

900

R
es

po
ns

e
Le

ng
th

Model Response Length over Training Steps

Qwen1.5B
Qwen1.5B-history
Qwen-think
Qwen-think-history

0 200 400 600 800 1000 1200
Steps

10

20

30

40

50

60

70

80

90

G
R

P
O

 A
cc

ur
ac

y

GRPO Accuracy over Training Steps

Qwen1.5B
Qwen1.5B-history
Qwen-think
Qwen-think-history

0 200 400 600 800 1000 1200
Steps

5

10

15

20

25

30

35

S
FT

 A
cc

ur
ac

y

SFT Accuracy over Training Steps

Qwen1.5B
Qwen1.5B-history
Qwen-think
Qwen-think-history

Figure 3: Impact of historical memory on learning effi-
ciency across training steps. The four panels show: (a)
Average reward signals, (b) Output sequence length ,(c)
RL method accuracy with/without history information
and (d) SFT method accuracy with/without history in-
formation.

Hidden: All descriptive and semantic information 392

is removed. The model must rely solely on inter- 393

active feedback to explore tool functionalities. For 394

supervised fine-tuning experiments, we apply strict 395

string-matching filters to remove all tool-relevant 396

reasoning content, ensuring that models cannot di- 397

rectly learn tool semantics from demonstration data. 398

We train and evaluate on the four query tools in- 399

troduced in Section 4.1, with results summarized 400

in Table 3.The results show that base models rely 401

heavily on explicit tool information—Qwen-1.5B’s 402

accuracy drops from 6.70% (FULL) to 0.17% (Hid- 403

den). Similar trends are observed across all model 404

sizes. In contrast, reinforcement learning consis- 405

tently outperforms supervised fine-tuning under all 406

levels of information constraint, with our method 407

achieving the highest accuracy, especially under 408

the most challenging Hidden setting. These find- 409

ings suggest that RL not only improves generaliza- 410

tion but also enables active exploration, allowing 411

models to infer tool usage strategies from limited 412

feedback rather than relying solely on imitation. 413

5.3 Exp-III: Can LLMs Learn Effectively 414

from Historical Interactions? 415

This section investigates the effect of historical 416

interaction memory on the efficiency of learning 417

tool-use strategies, including question formulation, 418

tool invocation, and observation interpretation. In 419

our experimental setup, we maintain a 500-token 420

sliding window that records past tool interactions 421

6

Figure 4: Performance of different models across increasing tool composition complexity in Experiment III.
Accuracy declines as composition complexity increases, highlighting the limitations of supervised learning and the
robustness of reinforcement learning in multi-tool reasoning tasks.

and relevant context, such as previous tool inputs,422

outputs, and environmental feedback. To capture423

the dynamics of learning, we sample multiple train-424

ing checkpoints across the entire training trajectory.425

We compare three configurations: Think_SFT , our426

reinforcement learning method without memory,427

and our reinforcement learning method augmented428

with historical memory. The evaluation centers on429

four key metrics: (a) progression of the average430

reward signal, (b) output sequence length, and the431

accuracy of both RL and SFT approaches, denoted432

as (c) and (d), respectively. Figure 3 presents the433

temporal evolution of these indicators over training434

steps.Experimental results demonstrate that inte-435

grating historical memory significantly improves436

learning efficiency in reinforcement learning set-437

tings. Models equipped with access to past inter-438

actions not only receive stronger reward signals439

in early training but also achieve faster and more440

stable convergence in accuracy. These models con-441

sistently outperform their history-free counterparts442

across all metrics. We attribute these improvements443

to two key advantages: (1) historical records pro-444

vide informative behavioral patterns that help mod-445

els identify effective tool-use strategies; and (2)446

they act as a lightweight, implicit replay buffer,447

mitigating instability in policy learning and reduc-448

ing the likelihood of suboptimal convergence. Al-449

though supervised fine-tuning also benefits slightly450

from history, the gains are marginal due to its static451

and imitative nature, where historical context can-452

not influence exploration. In contrast, reinforce-453

Method Exp1 Exp2 Exp3

Base Model 28.90 2.17 47.10

+ FAR 30.85 18.60 57.25
+ Tool 42.80 32.50 51.40
+ Step 56.40 34.67 53.85

Ours 62.40 41.67 68.75

Table 4: Ablation results comparing different reward
strategies under different reward settings.

ment learning thrives on dynamic feedback, allow- 454

ing history to play an active role in guiding policy 455

optimization. Additionally, our history-aware RL 456

models generate shorter, more targeted tool-use se- 457

quences while maintaining high correctness, lead- 458

ing to improvements in both reasoning efficiency 459

and computational cost. 460

6 Discussion 461

6.1 Ablation Study on Reward Design 462

We conduct ablation studies to evaluate the con- 463

tribution of individual reward components in our 464

framework. Using qwen-think as our base model, 465

we compare five configurations: 1)Base:Base 466

Model without post-training; 2)FAR: Format and 467

Result correctness rewards only; 3) Tool: Tool us- 468

age rewards only; 4) Step: Result-conditioned tool 469

step rewards; 5)Ours: Full reward system combin- 470

ing all components with path-aware optimization. 471

Experience results are shown in Table 4 .Experi- 472

mental results show that different reward functions 473

7

Model Answer of 1200 steps
<reasoning>
Thought: The question is asking how much money William has left after buying
two boxes of pencils.
Action: Tool_D Action Input: {"Personal": "William"}
Observation: William's neighbor is David.
Thought: The information provided by the tool is not helpful for solving the
question .
Action: Tool_B Action Input: {"Item": "pencils"}
Observation: For pencils, the unit price is $3.5.
Thought: The information provided by the tool is helpful for solving the question.
Action: Tool_A Action Input: {"Personal": "William"}
Observation: William's pocket money in June was $654
Thought: William's pocket money in June was $654. He spent all the money to
buy two pencils,which cost $3.5 × 2 = $7. So, the money left is $654 - $7 = $647.
</reasoning>
<answer> Final Answer: $647 </answer>

Question：William spent all his pocket money on a toy in June. If William used all the money to buy two pencils, how
much money is left?

Model Answer of 200 steps
<reasoning>
Thought : The question is asking William’s pocket money and
how much money has left after buying pencils.
Action: Tool_A Action Input: {"Personal": "William"}
Observation: Query failed.
Thought : ToolA query failed, so we need to try another
approach....
Action: Tool_B Action Input: {"Personal": "William"}
Observation: Query failed.
Thought : ToolB query also failed. We need to try...
Action: Tool_C Action Input: {"Personal": "William"}
Observation: Query failed.
......
</reasoning>
<answer>The information about William's pocket money is not
available through the provided tools.
</answer> SuccessFailed

Figure 5: Case study comparing qwen-think model behavior after 200 steps (left) versus 1200 steps (right) of RL
training. The example shows progressive improvement in: (a) tool selection strategy, (b) error recovery capabilities,
and (c) compositional reasoning under tool-obfuscated settings, where no tool descriptions are provided.

all contribute positively to the model’s tool-use rea-474

soning, with our method achieving the best overall475

performance.476

6.2 Post-training evaluation of capabilities in477

tool-composition scenarios.478

In the Section (§ 5.2) experiments, we examined479

the model’s ability to adapt to tool usage rules and480

to autonomously discover tool functionality. This481

section further investigates the upper bound of tool482

composition capabilities under full information set-483

tings, with a particular focus on the comparative484

advantages of reinforcement learning over tradi-485

tional supervised learning in compositional tasks.In486

this experiment, models are provided with com-487

plete tool descriptions and are allowed to use all488

tools introduced in Experiments I and II. As shown489

in Figure 4, across all model scales and training490

strategies, accuracy consistently decreases as the491

complexity of tool composition increases. This492

indicates that even with full access to tool informa-493

tion, multi-tool reasoning remains a core bottleneck494

for current models.495

6.3 Case Study496

We present a case study based on outputs from the497

qwen-think model (Figure 5). The model must (i)498

retrieve William’s pocket money and (ii) query the499

pencil price, without access to tool descriptions or500

parameter schemas. At an early stage of training,501

the model frequently calls irrelevant tools, reflect- 502

ing limited understanding but some exploratory 503

behavior. After 1200 RL steps, it adopts more reli- 504

able strategies discarding uninformative results and 505

switching tools efficiently. Despite no explicit tool 506

guidance, it demonstrates improved accuracy and 507

reasoning efficiency, indicating implicit learning of 508

tool functionalities. Appendix D for details. 509

7 Conclusion 510

This work investigates the limitations of cur- 511

rent LLM tool-use approaches in handling non- 512

standard, under-specified, or counterintuitive sce- 513

narios. We introduce three challenge settings that 514

probe models’ ability to reason beyond format com- 515

pliance and instruction-following. In response, 516

we propose Path-Aware Reinforcement Learn- 517

ing (PARL), a reinforcement learning framework 518

that enhances tool-use by incorporating trajectory- 519

based reward assignment and historical interaction 520

memory. Empirical results show that PARL sig- 521

nificantly improves performance across all tasks, 522

particularly in tool function discovery and counter- 523

factual rule adaptation. These findings highlight 524

the importance of path-sensitive optimization and 525

context accumulation in developing more robust, 526

generalizable LLM agents. 527

8

Limitations528

Despite the significant performance gains achieved,529

our work has two main limitations. First, in line530

with previous studies, we find that convergence531

during the reinforcement-learning phase remains532

highly sensitive to reward shaping, and the train-533

ing dynamics can oscillate without careful tuning.534

We release all hyper-parameters to facilitate repro-535

ducibility and further adjustment, but model per-536

formance still hinges on precise reward scaling.537

Second, our experiments are constrained by lim-538

ited computational resources to models of 7 B pa-539

rameters or fewer. The response of larger models540

to RL signals—and their ability to generalise in541

more complex settings—has yet to be systemati-542

cally evaluated. This will be a key focus of future543

work.544

References545

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama546
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,547
Diogo Almeida, Janko Altenschmidt, Sam Altman,548
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-549
cal report. arXiv preprint arXiv:2303.08774.550

Kinjal Basu, Ibrahim Abdelaziz, Kiran Kate, Mayank551
Agarwal, Maxwell Crouse, Yara Rizk, Kelsey Brad-552
ford, Asim Munawar, Sadhana Kumaravel, Saurabh553
Goyal, and 1 others. 2024. Nestful: A benchmark554
for evaluating llms on nested sequences of api calls.555
arXiv preprint arXiv:2409.03797.556

Tom Brown, Benjamin Mann, Nick Ryder, Melanie557
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind558
Neelakantan, Pranav Shyam, Girish Sastry, Amanda559
Askell, and 1 others. 2020. Language models are560
few-shot learners. Advances in neural information561
processing systems, 33:1877–1901.562

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,563
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,564
Cunxiang Wang, Yidong Wang, and 1 others. 2024.565
A survey on evaluation of large language models.566
ACM transactions on intelligent systems and technol-567
ogy, 15(3):1–45.568

Jie Chen, Xintian Han, Yu Ma, Xun Zhou, and Liang569
Xiang. 2024. Unlock the correlation between su-570
pervised fine-tuning and reinforcement learning in571
training code large language models. arXiv preprint572
arXiv:2406.10305.573

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang,574
Yujia Qin, Baoquan Zhong, Chengquan Jiang, Jinxin575
Chi, and Wanjun Zhong. 2025. Retool: Reinforce-576
ment learning for strategic tool use in llms. arXiv577
preprint arXiv:2504.11536.578

Hiroki Furuta, Yutaka Matsuo, Aleksandra Faust, and 579
Izzeddin Gur. 2023. Exposing limitations of lan- 580
guage model agents in sequential-task compositions 581
on the web. arXiv preprint arXiv:2311.18751. 582

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang, 583
Xin Xin, Pengjie Ren, Zhumin Chen, Jun Ma, and 584
Zhaochun Ren. 2024. Confucius: Iterative tool learn- 585
ing from introspection feedback by easy-to-difficult 586
curriculum. In Proceedings of the AAAI Conference 587
on Artificial Intelligence, volume 38, pages 18030– 588
18038. 589

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 590
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 591
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, 592
Alex Vaughan, and 1 others. 2024. The llama 3 herd 593
of models. arXiv preprint arXiv:2407.21783. 594

Alex Gu, Naman Jain, Wen-Ding Li, Manish Shetty, Yi- 595
jia Shao, Ziyang Li, Diyi Yang, Kevin Ellis, Koushik 596
Sen, and Armando Solar-Lezama. 2025. Challenges 597
and paths towards ai for software engineering. arXiv 598
preprint arXiv:2503.22625. 599

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 600
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 601
Yu Wu, YK Li, and 1 others. 2024. Deepseek- 602
coder: When the large language model meets 603
programming–the rise of code intelligence. arXiv 604
preprint arXiv:2401.14196. 605

Cheng-Yu Hsieh, Si-An Chen, Chun-Liang Li, Yasuhisa 606
Fujii, Alexander Ratner, Chen-Yu Lee, Ranjay Kr- 607
ishna, and Tomas Pfister. 2023. Tool documenta- 608
tion enables zero-shot tool-usage with large language 609
models (2023). arXiv preprint arXiv:2308.00675. 610

Li Hu, Guoqiang Chen, Xiuwei Shang, Shaoyin Cheng, 611
Benlong Wu, Gangyang Li, Xu Zhu, Weiming 612
Zhang, and Nenghai Yu. 2025. Compileagent: Au- 613
tomated real-world repo-level compilation with tool- 614
integrated llm-based agent system. arXiv preprint 615
arXiv:2505.04254. 616

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan 617
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan, 618
Neil Zhenqiang Gong, and 1 others. 2023. Meta- 619
tool benchmark for large language models: Deciding 620
whether to use tools and which to use. arXiv preprint 621
arXiv:2310.03128. 622

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard- 623
son, Ahmed El-Kishky, Aiden Low, Alec Helyar, 624
Aleksander Madry, Alex Beutel, Alex Carney, and 1 625
others. 2024. Openai o1 system card. arXiv preprint 626
arXiv:2412.16720. 627

Minki Kang, Jongwon Jeong, and Jaewoong Cho. 2025. 628
T1: Tool-integrated self-verification for test-time 629
compute scaling in small language models. arXiv 630
preprint arXiv:2504.04718. 631

Komal Kumar, Tajamul Ashraf, Omkar Thawakar, 632
Rao Muhammad Anwer, Hisham Cholakkal, 633
Mubarak Shah, Ming-Hsuan Yang, Phillip HS Torr, 634

9

Fahad Shahbaz Khan, and Salman Khan. 2025. Llm635
post-training: A deep dive into reasoning large lan-636
guage models. arXiv preprint arXiv:2502.21321.637

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying638
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.639
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-640
cient memory management for large language model641
serving with pagedattention. In Proceedings of the642
ACM SIGOPS 29th Symposium on Operating Systems643
Principles.644

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio645
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-646
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-647
täschel, and 1 others. 2020. Retrieval-augmented gen-648
eration for knowledge-intensive nlp tasks. Advances649
in neural information processing systems, 33:9459–650
9474.651

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,652
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,653
and Yongbin Li. 2023. Api-bank: A comprehensive654
benchmark for tool-augmented llms. arXiv preprint655
arXiv:2304.08244.656

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-657
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and658
Jianfeng Gao. 2023. Chameleon: Plug-and-play com-659
positional reasoning with large language models. Ad-660
vances in Neural Information Processing Systems,661
36:43447–43478.662

Ne Luo, Aryo Pradipta Gema, Xuanli He, Emile663
van Krieken, Pietro Lesci, and Pasquale Minervini.664
2025. Self-training large language models for665
tool-use without demonstrations. arXiv preprint666
arXiv:2502.05867.667

Bohan Lyu, Yadi Cao, Duncan Watson-Parris, Leon668
Bergen, Taylor Berg-Kirkpatrick, and Rose Yu. 2024.669
Adapting while learning: Grounding llms for scien-670
tific problems with intelligent tool usage adaptation.671
arXiv preprint arXiv:2411.00412.672

Xinyi Ni, Qiuyang Wang, Yukun Zhang, and Pengyu673
Hong. 2025. Toolfactory: Automating tool genera-674
tion by leveraging llm to understand rest api docu-675
mentations. arXiv preprint arXiv:2501.16945.676

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang,677
Xiusi Chen, Dilek Hakkani-Tür, Gokhan Tur, and678
Heng Ji. 2025. Toolrl: Reward is all tool learning679
needs. arXiv preprint arXiv:2504.13958.680

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan681
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,682
Bill Qian, and 1 others. 2023. Toolllm: Facilitating683
large language models to master 16000+ real-world684
apis. arXiv preprint arXiv:2307.16789.685

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,686
and Yuxiong He. 2020. Zero: Memory optimizations687
toward training trillion parameter models. In SC20:688
International Conference for High Performance Com-689
puting, Networking, Storage and Analysis, pages 1–690
16. IEEE.691

Philip Resnik. 2025. Large language models are biased 692
because they are large language models. Computa- 693
tional Linguistics, pages 1–21. 694

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 695
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle- 696
moyer, Nicola Cancedda, and Thomas Scialom. 2023. 697
Toolformer: Language models can teach themselves 698
to use tools. Advances in Neural Information Pro- 699
cessing Systems, 36:68539–68551. 700

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, 701
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan 702
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek- 703
math: Pushing the limits of mathematical reason- 704
ing in open language models. arXiv preprint 705
arXiv:2402.03300. 706

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, 707
Weiming Lu, and Yueting Zhuang. 2023. Hugging- 708
gpt: Solving ai tasks with chatgpt and its friends 709
in hugging face. Advances in Neural Information 710
Processing Systems, 36:38154–38180. 711

Z Shi, S Gao, X Chen, Y Feng, L Yan, H Shi, D Yin, 712
Z Chen, S Verberne, and Z Ren. Chain of tools: 713
Large language model is an automatic multi-tool 714
learner (2024). arXiv preprint arXiv:2405.16533. 715

Noah Shinn, Federico Cassano, Beck Labash, Ash- 716
win Gopinath, Karthik Narasimhan, and Shunyu 717
Yao. 2023. Reflexion: Language agents with ver- 718
bal reinforcement learning, 2023. URL https://arxiv. 719
org/abs/2303.11366. 720

Joykirat Singh, Raghav Magazine, Yash Pandya, and 721
Akshay Nambi. 2025. Agentic reasoning and tool 722
integration for llms via reinforcement learning. arXiv 723
preprint arXiv:2505.01441. 724

Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen, 725
Jiahao Qiu, Shijue Huang, Bowen Jin, Mengdi Wang, 726
Kam-Fai Wong, and Heng Ji. 2025. Otc: Optimal 727
tool calls via reinforcement learning. arXiv preprint 728
arXiv:2504.14870. 729

Qiancheng Xu, Yongqi Li, Heming Xia, Fan Liu, Min 730
Yang, and Wenjie Li. 2025. Petoolllm: Towards 731
personalized tool learning in large language models. 732
arXiv preprint arXiv:2502.18980. 733

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, 734
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, 735
Chengen Huang, Chenxu Lv, Chujie Zheng, Dayi- 736
heng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao Ge, 737
Haoran Wei, Huan Lin, Jialong Tang, and 41 oth- 738
ers. 2025. Qwen3 technical report. arXiv preprint 739
arXiv:2505.09388. 740

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 741
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 742
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian- 743
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, 744
Jingren Zhou, Junyang Lin, Kai Dang, and 22 others. 745
2024a. Qwen2.5 technical report. arXiv preprint 746
arXiv:2412.15115. 747

10

Seungbin Yang, ChaeHun Park, Taehee Kim, and Jaegul748
Choo. 2024b. Can tool-augmented large language749
models be aware of incomplete conditions? arXiv750
preprint arXiv:2406.12307.751

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak752
Shafran, Karthik Narasimhan, and Yuan Cao.753
2023. React: Synergizing reasoning and act-754
ing in language models, 2023. URL https://arxiv.755
org/abs/2210.03629.756

Yuanqing Yu, Zhefan Wang, Weizhi Ma, Zhicheng Guo,757
Jingtao Zhan, Shuai Wang, Chuhan Wu, Zhiqiang758
Guo, and Min Zhang. 2024. Steptool: A step-grained759
reinforcement learning framework for tool learning760
in llms. arXiv preprint arXiv:2410.07745.761

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan,762
Yongliang Shen, Ren Kan, Dongsheng Li, and De-763
qing Yang. 2024. Easytool: Enhancing llm-based764
agents with concise tool instruction. arXiv preprint765
arXiv:2401.06201.766

11

A Dataset Construction767

As described in Section 4, we construct two tool-768

oriented datasets. The quantity and data splits of769

each dataset are shown in Table 5. The detailed770

construction process of the datasets is outlined be-771

low.772

A.1 Rule Understanding Dataset773

We first define three rule regimes. The Natural774

regime follows conventional operator precedence;775

the Linear regime processes every operator strictly776

left-to-right; the Reverse regime applies addition777

and subtraction before multiplication and division778

once parentheses are resolved. We synthesise ex-779

pressions with a probabilistic context-free gram-780

mar. Operator probabilities are set to 0.30 for addi-781

tion, 0.25 for subtraction, 0.30 for multiplication,782

and 0.15 for division. Expression complexity rises783

from two to more than six operators, and we raise784

the chance of inserting brackets from 0.20 to 0.60785

as complexity grows. Operands are sampled uni-786

formly from the interval [−20, 20] for basic expres-787

sions and [−50, 50] for intermediate and advanced788

ones. Nested brackets never exceed depth three,789

and a deterministic executor produces the gold an-790

swers under each rule. In total we generate 5 000791

training and 1 000 test expressions, applying the792

above three rules to each expression.793

A.2 Tool-Combination Dataset794

We design nine synthetic APIs grouped into795

four functional themes: person information, date796

queries, price queries, and relation analysis. Each797

API accepts JSON input and yields a short textual798

observation. To create a task, we sample one to four799

relevant APIs, instantiate their parameters from a800

curated entity pool, then write a natural-language801

question whose answer demands concatenating the802

returned observations. All questions are verified803

automatically to ensure the tool sequence executes804

without error and that the final answer is unique805

and deterministic. The corpus contains 2,400 train-806

ing and 600 test samples. Training data include807

800 single-tool, 800 dual-tool, and 800 multi-tool808

queries; the test set mirrors this 1-1-1 balance with809

200 instances per tier. We release generation code810

and corpora upon publication to enable full repro-811

ducibility. Get_financial_statement tool accepts a812

person’s name as input and returns a description of813

that person’s financial situation. Query_item_price814

tool returns the unit price of the product according815

to the product name, which is used as the basis for 816

subsequent calculations. Query_data tool queries 817

the month corresponding to the subject context, 818

which can be used as a condition to filter the infor- 819

mation obtained from the get_financial_statement 820

tool. Get_relationship_chain tool receives a per- 821

son’s name and returns the corresponding relation- 822

ship chain, which is used for dual-tool and multi- 823

tool queries construction. Definition details of the 824

four retrieval tools as shown in figure 6, The model 825

needs to plan the tool usage order and query rele- 826

vant information before arriving at the correct an- 827

swer. 828

B Hyperparameters Setting 829

During the reinforcement learning training process, 830

we used eight NVIDIA A100 GPUs together with 831

the vLLM (Kwon et al., 2023) framework to ac- 832

celerate both training and inference. We set the 833

number of epochs to three and employed early 834

stopping to prevent reward hacking. The learning 835

rate was 1 e-6, gradient accumulation steps were 2, 836

and the number of generations was 8. We used a 837

batch size of 16 for both the Qwen2.5-3B-Instruct 838

and Qwen2.5-7B-Instruct models, and likewise a 839

batch size of 16 for the Qwen2.5-1.5B-Instruct 840

and Qwen3-1.7B models. All experiments utilized 841

DeepSpeed’s ZeRO-3 (Rajbhandari et al., 2020)op- 842

timization. 843

For specific reward settings, the format reward 844

is usually set to 1. If the model has a strong ability 845

to follow instructions, the reward value should be 846

appropriately lowered, otherwise it will affect the 847

model’s ability to summarize and reflect. The cor- 848

rectness reward is divided into two levels. When 849

the model’s answer is completely matched, the re- 850

ward value is set to 3, because the result will be 851

correct only when all steps are correct, so a larger 852

reward value is given. When the model solves the 853

problem correctly but does not answer according 854

to the specified requirements, the reward value is 855

set to 0.2. When the model correctly calls the tool 856

in the required question, the reward value is set to 857

1. If the model incorrectly calls the tool, the reward 858

value is set to 0.005, which is used to encourage 859

the model to summarize the reasons for the error 860

and try again. When the information of the tool is 861

reduced, the model tends to refuse to answer. At 862

this time, the two reward values for tool calls need 863

to be adjusted up to train normally. 864

12

Split Rule Understanding Dataset Tool-Combination Dataset

Nature Linear Reverse Single-Tool Dual-Tool Multi-Tool

Train 5k 5k 5k 800 800 800
Test 1k 1k 1k 200 200 200
All 6k 6k 6k 1k 1k 1k

Table 5: The quantity and data splits of two datasets.

C System Prompt865

In system prompt, we used the <reasoning> and866

<answer> tags to encourage the model to think. In867

order to enable the model to fully learn how to use868

the tools, we then introduced in detail the purpose869

and specific usage rules of each tool. Finally, we870

explained the complete question-and-answer for-871

mat, including the detailed format of calling tools872

and answer specifications. The complete system873

prompt is shown in Table 6.874

D Case Study875

When the model calls a simple tool, it can succeed876

once. However, when the input requirements of the877

tool are more complex, the model needs to modify878

the input based on the feedback of the tool call879

failure and then call the tool again. In other words,880

the model can correct itself through tool feedback881

and learn the correct tool call method. An example882

is shown in figure 7.883

In the early stages of training, the model cannot884

handle dual-tool and multi-tool queries correctly.885

As shown in figure 8, the model tries to use one tool886

to obtain information that can only be obtained by887

calling two tools in sequence. However, due to the888

setting of reward functions for different tools, the889

model can learn how to split complex problems and890

call tools sequentially during training. An example891

of a model correctly splitting a problem in the later892

stages of training is shown in figure 12.893

After removing the detailed description of the894

tool, the model showed a strong tendency to aban-895

don the use of the tool. Even though the tool name896

already suggested that the tool could be used to ob-897

tain the corresponding information, the model still898

refused to use it. An example is shown in figure 9.899

After removing the detailed description of the900

tool, the tool becomes more difficult to understand.901

After the model gets the result of the tool call, it902

needs to further understand the purpose of the tool903

based on the result. Therefore, in the early stage904

of training, it is difficult to take into account both 905

the ability to understand the tool and the ability 906

to summarize and analyze the tool. The tool is 907

called correctly but errors are made in the sum- 908

mary. As shown in the figure 10, it is incredible 909

that the model actually got an outrageous result of 910

2.8*5=15.2! 911

During the training process, the model can learn 912

to call tools and use them through tool call rewards. 913

On this basis, the model can improve its summary 914

and planning capabilities through correct result re- 915

wards. Therefore, after removing the description, 916

the model starts to try different tools through train- 917

ing, and plans the next path based on the tool feed- 918

back. After obtaining all the information, it can 919

summarize and answer the question correctly. An 920

example is shown in figure 11. 921

13

Figure 6: Tool card of Tool-Combination Dataset.

Figure 7: The model correct its tool use methods in generating path.

14

Instruction Format

Instruction:
A conversation between User and Assistant. The user asks a question, and the Assistant solves it.The assistant first
thinks about the reasoning process in the mind and then provides the user with the answer.The reasoning process and
answer are enclosed within <reasoning> </reasoning> and <answer></answer>tags, respectively, i.e.,
<reasoning>
reasoning process here
</reasoning>
<answer>
answer here
</answer>

Available Tools:
To answer the questions correctly, you can choose to call the tools. You need to try to understand the function of each
tool.Proper use of all tools can achieve functions such as calculation and information acquisition, and each tool has a
specific function.Please try to explore the functions of different tools and the correct parameter input. You have access to
the following APIs:
```
{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API
useful for? {description_for_model} Parameters: {parameters}
```

Use the following format:

Format Specifications:
Question: the question asked by the user
<reasoning>
Tool Usage Guidelines:
```
Thought: you should always think about what to do Action: the action to take, should be one of [{name_for_model},
. . . . . . ] Action Input: the input to the action Observation: the results of the actions
```
Note: If you need to call the tool again (re-call the same tool or call a new tool), repeat the following structure: (this
Thought/Action/Action Input/Observation),that is, this structure: Thought/Action/Action Input/Observation can be
repeated zero or more times.
</reasoning>
<answer>
Thought: I now know the final answer
Final Answer: the final answer to the original input question
</answer>

Begin!

Table 6: Structured reasoning and tool-use interaction format for Assistant responses.

15

Figure 8: The model tries the tools and aggregates the feedback to get the correct answer.

Figure 9: After removing the description, the initial training model refuses to use the tool.

16

Figure 10: The model is trained to correctly call the tool without the description, but an error occurs when
summarizing.

17

Figure 11: The problem of using two tools cannot be solved in the early stage of model training

18

Figure 12: The model tries the tools and collects feedback to correctly solve the problem of removing descriptions
and combining tools

19

	Introduction
	Related Work
	Tool Integration in LLMs
	Post-Training Methods for Tool Learning

	Path-Aware Reinforcement Learning Framework
	Training Objective
	Path-Aware Reward Mechanism
	Historical Memory Mechanism

	Experimental Setup
	Dataset
	Baseline Methods
	Evaluation Setup

	Experiments
	Exp-I: Can LLMs Discover Latent Rules in Tool Composition?
	Exp-II: Can LLMs Discover Tool Functions Under Limited Information?
	Exp-III: Can LLMs Learn Effectively from Historical Interactions?

	Discussion
	Ablation Study on Reward Design
	Post-training evaluation of capabilities in tool-composition scenarios.
	Case Study

	Conclusion
	Dataset Construction
	Rule Understanding Dataset
	Tool-Combination Dataset

	Hyperparameters Setting
	System Prompt
	Case Study

