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Figure 1: Our method synthesizes high-quality, immersive 3D urban scenes solely from multi-
view satellite imagery, enabling realistic drone-view navigation without relying on additional
3D or street-level training data. Given multiple satellite images from diverse viewpoints and dates
(left), our method leverages 3D Gaussian Splatting combined with pre-trained text-to-image diffusion
models in an iterative refinement framework to generate realistic 3D block-scale city from limited
satellite-view input (right). Our method significantly enhances visual fidelity, geometric sharpness,
and semantic consistency, enabling real-time immersive exploration.

ABSTRACT

Synthesizing large-scale, explorable, and geometrically accurate 3D urban scenes is
a challenging yet valuable task in providing immersive and embodied applications.
The challenges lie in the lack of large-scale and high-quality real-world 3D scans
for training generalizable generative models. In this paper, we take an alternative
route to create large-scale 3D scenes by synergizing the readily available satellite
imagery that supplies realistic coarse geometry and the open-domain diffusion
model for creating high-quality close-up appearances. We propose Skyfall-GS,
a novel hybrid framework that synthesizes immersive city-block scale 3D urban
scenes by combining satellite reconstruction with diffusion refinement, eliminat-
ing the need for costly 3D annotations, also featuring real-time, immersive 3D
exploration. We tailor a curriculum-driven iterative refinement strategy to pro-
gressively enhance geometric completeness and photorealistic textures. Extensive
experiments demonstrate that Skyfall-GS provides improved cross-view consistent
geometry and more realistic textures compared to state-of-the-art approaches.

1 INTRODUCTION

Synthetic high-quality, immersive, and semantically plausible 3D urban scenes have crucial appli-
cations in gaming, filmmaking, and robotics. The ability to create a large-scale and 3D-grounded
environment supports realistic rendering and immersive experience for storytelling, demonstration,
and embodied physics simulation. However, due to limited 3D-informed data, building a generative
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model for realistic and navigable 3D cities remains challenging. It is expensive and labor-intensive
to acquire large-scale 3D and textured reconstructions of cities with detailed geometry, while using
Internet image collections face challenges in camera pose registration and excessive data noise
(e.g., transient objects and different times of the day). These constraints set back existing 3D city
generation frameworks from creating realistic and diverse appearances. With this observation, we
propose an alternative route for virtual city creation with a two-stage pipeline: partial and coarse
geometry reconstruction from multi-view satellite imagery, then close-up appearance completion and
hallucination using an open-domain diffusion model.

Satellite imagery offers a compelling alternative due to its extensive geographic coverage, automated
collection, and high-resolution capabilities. For instance, Maxar’s WorldView-3 satellite captures
approximately 680,000 km2 of imagery daily at resolutions up to 31 cm per pixel. Such data inherently
encodes semantically plausible representations of real-world environments, enabling scalable 3D
urban scene creation. However, in Figure 2(a), we show that directly applying 3D reconstruction
methods to satellite imagery is insufficient for creating navigable and immersive 3D cities. The
significant amount of invisible regions (e.g., building facades) and limited satellite-view parallax
create incorrect geometry and artifacts.

Completing and enhancing the geometry and texture in the ground view requires a significant influx
of extra information. In Figure 2(b), we study a few state-of-the-art methods in city generation (Xie
et al., 2024; 2025b). These methods produce oversimplified building geometries and unrealistic
appearances due to strong assumptions, particularly the reliance on semantic maps and height fields as
the sole inputs, and overfitting to small-scale, domain-specific datasets. Such an observation motivates
us to seek help from open-domain foundation vision models as an external information source, which
provides better zero-shot generalization and diversity. Noticing that the ground-view novel-view
renderings from the GS reconstructed scene exhibit noise-like patterns, we treat these renderings as
intermediate results in a denoising diffusion process. Then, we complete the remaining denoising
process to create hallucinated pseudo ground-truth for the GS scene optimization. To stabilize the
convergence, we carefully design a curriculum-based view selection and iterative refinement process,
where the sampled view angles gradually fall from the sky to the ground over time. Accordingly,
we name our framework Skyfall-GS. In Figure 1 and Figure 2, we show that Skyfall-GS yields
significantly enhanced texture with 3D-justified geometry compared to the relevant baselines.

Skyfall-GS is a novel hybrid framework that synthesizes immersive city-block scale 3D urban scenes
by combining satellite reconstruction with diffusion refinement, eliminating the need of fixed-domain
training on 3D data. Skyfall-GS operates on readily available satellite imagery as the only input,
then hallucinates realistic aerial-view appearances and maintains a strong satellite-to-ground 3D
consistency. Moreover, Skyfall-GS supports real-time and interactive rendering, as we design our
framework to produce GS results without sophisticated data structures. Through experiments on
diverse environments, we show that Skyfall-GS has better generalization and robustness compared
to state-of-the-art methods. Our ablation shows that each of our designs improves the perceptual
plausibility and semantic consistency. Skyfall-GS paves the way for scalable 3D urban virtual scene
creation, enabling applications in virtual entertainment, simulation, and robotics.

In summary, our contributions include:

• We introduce Skyfall-GS, the first method to synthesize immersive, real-time free-flight navigable
3D urban scenes solely from multi-view satellite imagery using generative refinement.

• An open-domain refinement approach leveraging pre-trained text-to-image diffusion models without
domain-specific training.

• A curriculum-learning-based iterative refinement strategy progressively enhances reconstruction
quality from higher to lower viewpoints, significantly improving visual fidelity in occluded areas.

2 RELATED WORK

Gaussian Splatting. 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) offers real-time view syn-
thesis rivaling NeRFs (Mildenhall et al., 2021; Barron et al., 2021; 2022; Müller et al., 2022;
Barron et al., 2023; Martin-Brualla et al., 2021). Mip-Splatting (Yu et al., 2024) fixes scale-
change issues via on-the-fly resizing. Recent advances target satellite and aerial reconstruction:
FusionRF (Sprintson et al., 2024) achieves 17% depth improvement from multispectral acquisitions,
while InstantSplat (Fan et al., 2024) enables 40-second pose-free reconstruction. “In-the-wild” vari-
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Naïve 3DGS Sat-NeRF Skyfall-GS (Ours) CityDreamer GaussianCity Skyfall-GS (Ours)

(a) 3D Reconstruction (b) City Generation

Figure 2: Limitations of existing novel-view synthesis methods from satellite imagery. (a) Sat-
NeRF (Marí et al., 2022) and naive 3DGS (Kerbl et al., 2023) yield blurred or distorted building
facades due to insufficient geometric detail and limited parallax from satellite viewpoints. (b)
City generation methods (Xie et al., 2024; 2025b) produce oversimplified building geometries and
unrealistic appearances, primarily due to strong assumptions about the input data, and overfitting
to small-scale, domain-specific datasets. In comparison, our method synthesizes more realistic
appearances and geometries from aerial views.

ants handle appearance and uncertainty (Xu et al., 2024; Sabour et al., 2024; Wang et al., 2024b;
Dahmani et al., 2024; Zhang et al., 2024a; Kulhanek et al., 2024; Hou et al., 2025), including Spec-
troMotion (Fan et al., 2025) for dynamic specular scenes, while large-scene methods use LOD and
partitioning (Kerbl et al., 2024; Liu et al., 2025c; 2024; Lin et al., 2024; Turki et al., 2022; Tancik
et al., 2022). CAT-3DGS (Zhan et al., 2025) achieves rate-distortion optimization via context-adaptive
triplanes. For sparse-view satellite imagery, depth or co-regularization priors guide reconstruction
(Li et al., 2024b; Zhang et al., 2024b; Zhu et al., 2023; Niemeyer et al., 2022; Lin et al., 2025), with
SparseSat-NeRF (Zhang & Rupnik, 2023) adding dense depth supervision.

Diffusion models for 3D reconstruction and editing. Diffusion models (Rombach et al., 2022;
Labs, 2024b) underpin image generation and editing. Early SDS pipelines DreamFusion (Poole et al.,
2022) and Magic3D (Lin et al., 2023a) enabled text-to-3D, with ProlificDreamer (Wang et al., 2023)
addressing over-smoothing via Variational Score Distillation. DreamGaussian (Tang et al., 2023)
achieves 10x speedup via progressive densification, while GaussianDreamer (Yi et al., 2024) bridges
2D and 3D diffusion models. SDEdit (Meng et al., 2022), DDIM inversion (Mokady et al., 2022;
Miyake et al., 2024), and FlowEdit (Kulikov et al., 2024) enable fine control. Extensions include
sparse-view reconstruction (Wu et al., 2023; Liu et al., 2023b; Chen et al., 2024), with MVDream (Shi
et al., 2023) enabling multi-view consistency. For 3D/4D generation (Gao et al., 2024b; Wu et al.,
2024b; Melas-Kyriazi et al., 2024; Chung et al., 2023; Liu et al., 2023a) and scene editing (Haque
et al., 2023; Wu et al., 2025; Ye et al., 2024b; Fang et al., 2024; Mirzaei et al., 2024; Dihlmann et al.,
2024; Weber et al., 2024; Wu et al., 2024a; Wang et al., 2025), SPIn-NeRF (Mirzaei et al., 2023)
handles occlusions via perceptual inpainting while CF-NeRF (Shen et al., 2022) provides uncertainty
quantification. CorrFill (Liu et al., 2025a) enhances faithfulness via correspondence guidance, while
AuraFusion360 (Wu et al., 2025) enables 360° scene inpainting for Gaussian Splatting. Instruct-
NeRF2NeRF (Haque et al., 2023) refines NeRF views iteratively with Instruct-Pix2Pix (Brooks et al.,
2023) for diffusion-driven 3D editing.

Urban scene modeling. Classic SfM-MVS pipelines extract DSMs from satellite pairs (Schönberger
& Frahm, 2016; Zhang et al., 2019; Gao et al., 2023a), with MVS3D (Bosch et al., 2016) benchmarks
for evaluation. Neural variants improve geometric fidelity (Derksen & Izzo, 2021; Marí et al., 2022;
2023; Zhou et al., 2024b; Leotta et al., 2019; Liu et al., 2025b; Qu & Deng, 2023; Gao et al., 2024a;
Savant Aira et al., 2025; Huang et al., 2025), including Sat-NeRF (Marí et al., 2022), which utilizes
NeRF for satellite imagery and SatMVS (Gao et al., 2021; 2023b) with RPC warping, yet both miss
occluded facades. Generative synthesis divides into: (i) street-view methods (Li et al., 2024c; 2021;
2024d; Toker et al., 2021; Qian et al., 2023; Shi et al., 2022; Ze et al., 2025; Deng et al., 2024; Xu &
Qin, 2025), including GeoDiffusion (Xiong et al., 2024) for mixed-view synthesis, Geospecific View
Generation (Xu & Qin, 2024) achieving 10x resolution gains, and SkyDiffusion (Ye et al., 2024a) with
Curved-BEV for street-to-satellite mapping, though lacking 3D consistency and temporal coherence;
and (ii) full-3D city generation (Lin et al., 2023b; Xie et al., 2024; 2025a;b; Sun et al., 2024; Zhou
et al., 2024a; Shang et al., 2024; Li et al., 2024a; Zhang et al., 2024c), with BEVFormer (Li et al.,
2022) and MagicDrive (Gao et al., 2023c) using spatiotemporal transformers for view consistency.
While Infinicity (Lin et al., 2023b) uses pixel-to-voxel rendering for infinite cities, and CityDreamer
(Xie et al., 2024) and GaussianCity (Xie et al., 2025b) use BEV neural fields or BEV-Point splats
for editable scenes, these remain constrained by input representations (semantic maps and height
fields) and training distributions, limiting synthesis of realistic textures and complex structures like
tunnels, bridges, and multi-level architectures. Our method uses pretrained diffusion priors to recover
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Figure 3: Overview of the proposed Skyfall-GS pipeline. Our method synthesizes immersive and
free-flight navigable city-block scale 3D scenes solely from multi-view satellite imagery in two stages.
(a) In the Reconstruction Stage, we first reconstruct the initial 3D scene using 3DGS, enhanced by
pseudo-camera depth supervision to address limited parallax in satellite images. We use an appearance
modeling component to handle varying illumination conditions across multi-date satellite images. (b)
In the Synthesis Stage, we introduce a curriculum-based Iterative Dataset Update (IDU) refinement
technique leveraging (c) a pre-trained T2I diffusion model (Labs, 2024b) with prompt-to-prompt
editing (Kulikov et al., 2024). By iteratively updating training datasets with progressively refined
renders, our approach significantly reduces visual artifacts, improving geometric accuracy and texture
realism, particularly in previously occluded areas such as building facades.

high-fidelity facades in occluded regions without dataset-specific training, respecting user constraints
more faithfully.

3 METHOD

Our two-stage pipeline (Figure 3) turns satellite images into immersive 3D cities. Reconstruction
Stage (Section 3.1): fit a 3D Gaussian Splatting model, adding illumination-adaptive appearance
modeling and regularizers for sparse, multi-date views. Synthesis Stage (Section 3.2): recover
occluded regions, e.g., facades, through curriculum Iterative Dataset Update, repeatedly refining
renders with text-guided diffusion edits. The loop keeps textures faithful to the satellite input while
preserving geometry, yielding complete, navigable urban scenes from satellite data alone.

Preliminary. 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) encodes a scene as Gaussians with
center µi, covariance Σi, opacity αi, and view-dependent color. Each Gaussian projects to the image
plane with covariance: Σ′

i = JWΣiW
TJT , where W is the viewing transformation and J is the

affine-projection Jacobian. Pixels are alpha-composited front-to-back. Parameters are trained with:

Lcolor = λD-SSIM DSSIM(Ĉ, C) + (1− λD-SSIM)∥Ĉ − C∥1 . (1)

3.1 INITIAL 3DGS RECONSTRUCTION FROM SATELLITE IMAGERY

The initial 3DGS reconstruction must faithfully preserve the texture and geometry of satellite imagery
to provide a robust foundation for synthesis. We employ appearance modeling to handle variations in
multi-date imagery. Since limited satellite parallax creates floating artifacts, we apply regularization
techniques to constrain both texture and geometry.

Approximated camera parameters. Satellite imagery typically uses the rational polynomial camera
(RPC) model, directly mapping image coordinates to geographic coordinates. To integrate with the
3DGS pipeline, we employ SatelliteSfM (Zhang et al., 2019) to approximate perspective camera
parameters (extrinsic and intrinsic) from RPC and generate sparse SfM points as initial 3DGS points.

Appearance modeling. As highlighted in Section 1, multi-date satellite imagery exhibits significant
appearance variations due to global illumination changes, seasonal factors, and transient objects, as
illustrated in Figure 3(a). Following WildGaussians (Kulhanek et al., 2024), we use trainable per-
image embeddings {ej}Nj=1 (with N training images) to handle varying illumination and atmospheric
conditions. We also employ trainable per-Gaussian embeddings gi to capture localized appearance
changes like shadow variations. A lightweight MLP f computes affine color transformation param-
eters (β, γ) as (β, γ) = f(ej , gi, c̄i), where ej is the per-image embedding, gi is the per-Gaussian
embedding, and c̄i denotes the 0-th order spherical harmonics (SH). Finally, the transformed color c̃i
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is then computed as c̃i(r) = γ · ĉi(r) + β, and used in the 3DGS rasterizer. To prevent modeling the
appearance changes as view-dependent effects, we limit SH to zero and first-order terms.

Opacity regularization. We observed that numerous floaters in reconstructed scenes exhibit low
opacity. To encourage geometry to adhere closely to actual surfaces, we propose entropy-based
opacity regularization:

Lop = −
∑
i

αi log(αi) + (1− αi) log(1− αi) . (2)

This regularization promotes binary opacity distributions, allowing low-opacity Gaussians to be
pruned during densification. Incorporating this term significantly sharpens geometric reconstruction,
providing a better foundation for subsequent synthesis.

Pseudo camera depth supervision. To further reduce floating artifacts, we sample pseudo-cameras
positioned closer to the ground during optimization. From these pseudo-cameras, we render RGB
images IRGB and corresponding alpha-blended depth maps D̂GS. We then use an off-the-shelf
monocular depth estimator, MoGe (Wang et al., 2024a), to predict scale-invariant depths D̂est from
these renders. We use the absolute value of Pearson correlation (PCorr) to supervise the depth:

Ldepth = ∥PCorr(D̂GS, D̂est)∥1 ; PCorr(D̂GS, D̂est) =
Cov(D̂GS, D̂est)√
Var(D̂GS)Var(D̂est)

. (3)

Optimization. Combining all components, the overall loss for the reconstruction stage is defined as:

Lsat(G,C) = Lcolor + λopLop + λdepthLdepth , (4)

where G is the 3DGS representation, C is the set of ground-truth satellite images, λop and λdepth
weight opacity regularization and depth supervision relative to the color reconstruction loss.

3.2 SYNTHESIZE VIA CURRICULUM-LEARNING BASED ITERATIVE DATASETS UPDATE

The iterative dataset update (IDU) technique (Haque et al., 2023; Melas-Kyriazi et al., 2024) re-
peatedly executes render-edit-update cycles across multiple episodes to progressively synthesize 3D
scenes. Unlike previous methods that sample camera poses from original training views (Haque
et al., 2023) or simple orbits (Melas-Kyriazi et al., 2024), we introduce a curriculum-based refine-
ment schedule over Ne episodes that specifically addresses satellite imagery’s geometric and visual
limitations, producing structurally accurate and photorealistic reconstructions of occluded areas.

Curriculum learning strategy. As illustrated in Figure 4, we observe that 3DGS trained from
satellite imagery produces higher-quality renders at higher elevation angles but degenerates at lower
elevation angles. Leveraging this insight, we introduce a curriculum-based synthesizing strategy,
which progressively lowering viewpoints across optimization episodes. Specifically, we define Np

look-at points {Pi}
Np

i=1 uniformly placed throughout the scene and uniformly sample Nv camera
positions along orbital trajectories with controlled elevation angles and radii. Our iterative dataset
update (IDU) process starts from higher elevations, progressively moving toward lower perspectives.
This approach gradually reveals previously occluded regions, improving geometric detail and texture
realism, as validated in our ablation studies (Section 4.2).

Render refinement by text-to-image diffusion model. As illustrated in Figure 5(a), renderings
from initial 3DGS contain blurry texture and artifacts. To address this, we leverage prompt-to-
prompt editing with pre-trained text-to-image diffusion models to synthesize disocclusion areas,
remove artifacts, and enhance geometry. Prompt-to-prompt editing (Hertz et al., 2022) modifies
input images, which are described by the source prompt, to align with the target prompt while
preserving structural content. Although typically used on real or diffusion-generated photos, we
demonstrate its effectiveness for refining degraded satellite-trained 3DGS renders. We employ
FlowEdit (Kulikov et al., 2024) with the pre-trained FLUX.1 [dev] diffusion model (Labs, 2024a),
using prompt pairs that transform degenerate renders into high-quality imagery. Our prompts
specifically describe the degraded features in original renders and specify the desired high-quality
attributes in target prompts, see Section A.1 for prompts detail. As illustrated in Figure 5, this
approach significantly improves the visual quality of renders, including sharper geometric details,
enhanced texture richness, and physically coherent shadows, strengthening the 3DGS training dataset
for more accurate reconstructions.
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Figure 4: The motivation of curricu-
lum strategy. Renderings of the initial
3D reconstruction from varied elevation
angles reveal progressive degradation as
the viewing angle decreases.
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Figure 5: Render refinement. (a) Original 3DGS render
with artifacts and blurry textures; (b) Refined result show-
ing enhanced geometry and texture quality.

Multiple diffusion samples. While diffusion models effectively refine individual 3DGS renders,
independently applying them across viewpoints introduces inconsistencies. Furthermore, 3DGS
is well known to suffer from overfitting on single views, as pointed out by CoR-GS (Zhang et al.,
2024b), causing artifacts when rendering from novel viewpoints.

Ideally, the optimal denoising diffusion process should produce a distribution where all views
maintain synchronized 3D appearance. However, independent 2D denoising on each view does
not preserve 3D consistency, resulting in a denoising trajectory distribution that is a super-set of
the optimal trajectories. Selecting a single denoising trajectory from this expanded distribution has
negligible probability of yielding the optimal 3D-consistent result, leading to the artifacts observed in
Figure 9(c).

To mitigate this, we synthesize Ns independently refined samples per view, effectively sampling
multiple trajectories from the denoising distribution. During optimization, the photometric loss Lcolor
implicitly averages over these Ns samples. Rather than committing to a single potentially suboptimal
denoising path, this approach allows the 3DGS optimization to find a consensus representation
that balances fidelity to individual samples while promoting geometric coherence across views.
Ablation studies (Section 4.2) and Figure 9(c) confirm that this strategy successfully balances detail
preservation with structural coherence.

Iterative dataset update. Our curriculum-based Iterative Dataset Update (IDU), detailed in Al-
gorithm 1, optimizes the 3DGS over Ne episodes. In each episode, we render curriculum-guided
views and refine them using FlowEdit (Kulikov et al., 2024) with specified prompts and strengths to
generate a new training set. As the curriculum descends to lower altitudes, rendering quality steadily
improves, particularly in previously occluded regions, as illustrated in Figure 6. We provide detailed
parameters in Section A.1.

Algorithm 1 3DGS Refinement via Iterative Dataset Updates
Input: Ne: Number of episodes
Input: Nv , Ns, Np: Number of views per point, samples per view and look-at points
Input: {Pi}Np

i=1: A set of Np target look-at points
Input: {Ri}Ne

i=1, {Ei}Ne
i=1: Decreasing sequences for radius and elevation with lengths of Ne

Input: Tsrc, Ttgt, nmin, nmax: FlowEdit parameters
Input: G: Initial 3DGS from satellite-view training
Output: G′: Refined 3DGS
1: G′ ← G
2: for i = 1 to Ne do
3: radius← Ri

4: elevation← Ei

5: cam_views← ORBITVIEWS({P},radius,elevation, Nv) ▷ Generate Np ×Nv views
6: render_views← RENDER(G′,cam_views) ▷ Render RGB images
7: refine_views← FLOWEDITREFINE(render_views, Tsrc, Ttgt, nmin, nmax, Ns) ▷ Refine

renders using FlowEdit
8: G′ ← TRAIN(G′,refine_views) ▷ Update 3DGS using refined views
9: end for

10: return G′

Optimization. For each episode i, we optimize the 3DGS using:

LIDU(Gi−1, C̃i) = Lcolor + λdepthLdepth , (5)

6
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(a) After Reconstruction Stage (b) After Episode 1 (c) After Episode 2

(d) After Episode 3 (e) After Episode 4 (f) After Episode 5 (Final)

Figure 6: Visualization of progressive refinement. This figure illustrates the step-by-step evolution
of the synthesized 3D scene. Starting from the initial reconstruction state (a), the geometry and
texture are progressively refined through successive stages of the iterative process (b-e), culminating
in the final high-fidelity result (f).

where Gi−1 denotes the previous episode’s 3DGS model, and C̃i are the current refined images. We
provide more implementation details in Section A.1.

4 EXPERIMENTS

Datasets. We evaluate on high-resolution RGB satellite imagery from two sources. First, the
2019 IEEE GRSS Data Fusion Contest (DFC2019) (Le Saux et al., 2019) featuring WorldView-3
captures of Jacksonville, Florida (2048×2048 pixels, 35 cm/pixel resolution). Camera parameters and
sparse points were generated using SatelliteSfM (Zhang et al., 2019). We evaluate on four standard
AOIs: JAX_004, JAX_068, JAX_214, and JAX_260, following Sat-NeRF (Marí et al., 2022) and
EOGS (Savant Aira et al., 2025) protocols. Second, for geographic diversity, we use the GoogleEarth
dataset (Xie et al., 2024) (training data for CityDreamer (Xie et al., 2024) and GaussianCity (Xie
et al., 2025b)) containing NYC scenes. We use four scenes (004, 010, 219, 336) with training views
rendered at an 80° elevation to approximate satellite conditions. Google Earth Studio (GES) (Google,
2024) renders serve as ground truth for both datasets. See Section A.2 for more detail about datasets.

Baselines. Our method connects satellite-based 3D reconstruction and city generation, requiring
baselines from both fields. For satellite reconstruction, we compare with Sat-NeRF (Marí et al.,
2022) and EOGS (Savant Aira et al., 2025) on DFC2019 (they require RPC input unavailable in
GoogleEarth), plus Mip-Splatting (Yu et al., 2024) (enhanced with our appearance modeling) and CoR-
GS Zhang et al. (2024b) on both datasets.1 For city generation, we compare with CityDreamer (Xie
et al., 2024) and GaussianCity (Xie et al., 2025b) on GoogleEarth (their training dataset). We use
official implementations with default settings. All experiments run on a single RTX A6000 GPU.

Evaluation metrics. We primarily use distribution-based metrics to quantify quality and diver-
sity. We report FIDCLIP (Kynkäänniemi et al., 2023) and CMMD (Jayasumana et al., 2024) that
use the CLIP (Radford et al., 2021) backbone. This is based on their observations that the Incep-
tionV3 (Szegedy et al., 2016) used in the classic FID (Heusel et al., 2017) and KID (Binkowski et al.,
2018) is unsuitable for modern generative models. We complement these with user studies for percep-
tual quality assessment. We also report pixel-aligned metrics (PSNR (Huynh-Thu & Ghanbari, 2008),
SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018)) as secondary references. While generally
unsuitable for generative tasks, these metrics are meaningful for the Google Earth dataset, where all
images come from the same consistent GES 3D representation, eliminating temporal variations.

1Many methods lack available code or models: Sat2Scene (Li et al., 2024d), Sat2Vid (Li et al., 2021), EO-
NeRF (Marí et al., 2023), Sat-DN (Liu et al., 2025b), SatelliteRF (Zhou et al., 2024b), Sat-Mesh (Qu & Deng,
2023), CrossViewDiff (Li et al., 2024c), SkySplat (Huang et al., 2025), and others.
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Table 1: Quantitative comparison of different
methods on DFC2019 (Le Saux et al., 2019).
The results show that our method consistently
achieves the best performance, indicating supe-
rior perceptual fidelity compared to all baselines.
Metrics are computed between renders from each
method and reference frames from GES.

Distribution Metrics Pixel-level Metrics*

Methods FIDCLIP ↓ CMMD ↓ PSNR ↑ SSIM ↑ LPIPS ↓
3D Reconstruction

Sat-NeRF (Marí et al., 2022) 88.36 4.868 10.05 0.269 0.864
EOGS (Savant Aira et al., 2025) 87.74 5.286 7.26 0.168 0.959
Mip-Splatting (Yu et al., 2024) 87.19 5.405 11.89 0.318 0.819
CoR-GS (Zhang et al., 2024b) 89.03 5.241 11.55 0.350 0.948

Our Approach
Ours 27.35 2.086 12.38 0.321 0.791

Table 2: Quantitative comparison of different
methods on GoogleEarth dataset (Xie et al.,
2024). The results show that our approach consis-
tently achieves the best performance, indicating
superior perceptual fidelity compared to all base-
lines. Metrics are computed between renders from
each method and reference frames from GES.

Distribution Metrics Pixel-level Metrics

Methods FIDCLIP ↓ CMMD ↓ PSNR ↑ SSIM ↑ LPIPS ↓
City Generation

CityDreamer (Xie et al., 2024) 36.52 4.152 12.58 0.267 0.558
GaussianCity (Xie et al., 2025b) 28.73 2.917 13.41 0.291 0.541

3D Reconstruction
CoR-GS (Zhang et al., 2024b) 27.32 3.752 12.85 0.291 0.455

Our Approach
Ours 9.91 2.009 14.28 0.298 0.394

4.1 COMPARISONS WITH BASELINES

Quantitative comparison. We evaluate against both satellite reconstruction and city generation
methods using distribution-based metrics. Evaluation images are created by dividing rendered frames
into 144 patches (512 × 512 pixels). For comparison in the DFC2019 dataset, we render GES
reference videos at 17° elevation, extracting 30 frames per AOI (4,320 images total). For comparison
in the GoogleEarth dataset, we use 45◦ elevation with 24 frames per scene (3,456 images total).
We generate matching videos from all methods using identical camera parameters. Our method
consistently outperforms all baselines across all metrics on both the DFC2019 and Google Earth
datasets (Tables 1 and 2), demonstrating effective reconstruction across diverse urban environments.

Qualitative comparison. Figure 7(a) presents comparisons on the DFC2019 dataset against Sat-
NeRF (Marí et al., 2022), EOGS (Savant Aira et al., 2025), and Mip-Splatting (Yu et al., 2024).
All baselines exhibit significant distortions and blurry textures at lower viewpoints, while our
baseline without IDU improves geometry but still shows floating artifacts and lacks facade detail.
Our full approach achieves superior image quality. Figure 7(b) compares our approach on the
GoogleEarth dataset against CityDreamer (Xie et al., 2024), GaussianCity (Xie et al., 2025b), and
CoR-GS (Zhang et al., 2024b). While CityDreamer and GaussianCity generate plausible scenes,
they produce oversimplified geometry and inaccurate textures, missing distinctive features such as
the red pavement in scene 010 that our method correctly synthesizes. In contrast, our complete
method achieves sharper building contours, enhanced texture fidelity, and reduced artifacts across
both comparison scenarios. Notably, our approach successfully synthesizes plausible details for
building facades occluded in the input satellite imagery and accurately reconstructs complex features
including vegetation and multi-level architectures with finer surface details that better match the
reference images. The visual quality approaches GES reference renders despite using only satellite
imagery without ground-level data. Additional qualitative results are presented in Section A.2.

User studies. We conducted two comparative evaluations with 89 participants each: first, participants
assessed the satellite input, GES reference video, Sat-NeRF, EOGS, CoR-GS, and our approach;
second, participants compared the satellite input, GES reference video, CityDreamer, GaussianCity,
CoR-GS, and our approach. Both studies evaluated geometric accuracy, spatial alignment, and overall
quality, with full survey details in Section A.2. On the DFC2019 dataset, our method achieved
dominant winrates of ≈97%/97%/97% vs. Sat-NeRF’s ≈3%/3%/3%, while EOGS and CoR-GS
achieved 0%/0%/0%. On the GoogleEarth dataset, our approach maintained a clear advantage with
≈90%/90%/92% winrates vs. CityDreamer’s ≈4%/3%/3%, GaussianCity’s ≈3%/3%/3%, and CoR-
GS’s ≈3%/4%/2%. These results consistently validate that our approach significantly outperforms all
baselines under human perception across geometric accuracy, spatial alignment, and overall quality.

Rendering efficiency. Our method achieves 11 FPS on the modest NVIDIA T4 GPU, significantly
outperforming CityDreamer’s 0.18 FPS despite running on the far more powerful NVIDIA A100,
which offers 5× the CUDA cores and 10× the memory bandwidth. GaussianCity reaches comparable
speeds (10.72 FPS) but requires the high-end A100. Furthermore, our fused representation enables
real-time rendering at 40 FPS on consumer hardware (MacBook Air M2), demonstrating that our
method enables high-quality 3D urban navigation without specialized computing resources.

4.2 ABLATION STUDIES

We conduct ablation studies on the JAX_068 AOI.
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Figure 7: Qualitative comparison on (a) DFC2019 and (b) GoogleEarth datasets. The leftmost
column shows one representative example of the input satellite images. Our method outperforms
all baselines in geometric accuracy and texture quality in low-altitude novel views, demonstrating
enhanced building geometry, detailed facades, and reduced floating artifacts. Notably, our approach
correctly preserves distinctive features such as the red pavement in scene 010 that competing methods
miss. Unlike CityDreamer (Xie et al., 2024) and GaussianCity (Xie et al., 2025b), our method
operates directly on satellite imagery without requiring pixel-aligned semantic maps or height-fields,
enabling synthesis of complex geometric structures that more closely match GES references.
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Figure 8: User study results. Our method consistently outperforms Sat-NeRF (Marí et al., 2022),
EOGS (Savant Aira et al., 2025), CoR-GS (Zhang et al., 2024b), CityDreamer (Xie et al., 2024) and
GaussianCity (Xie et al., 2025b), achieving particularly high scores in geometric accuracy and overall
perceptual quality. (a) details the comparison on the DFC2019 dataset (Le Saux et al., 2019), while
subfigure (b) details the comparison on the GoogleEarth dataset (Xie et al., 2024).

Ablation on the reconstruction stage. We ablate appearance modeling, opacity regularization,
and pseudo-camera depth supervision (see Table 3 and Figure 9). For this ablation, we evaluate at
higher elevation angles to assess the quality of renders during the IDU process, rather than testing the
final low-angle performance. Appearance modeling is crucial for multi-date convergence, opacity
regularization removes floating artifacts (Figure 9(a)), and depth supervision flattens planar regions
(Figure 9(b)). Together, they yield the lowest FIDCLIP/CMMD scores. Furthermore, we validate
geometric accuracy using LiDAR data from the DFC2019 dataset (Le Saux et al., 2019). To quantify
this, we unproject 3DGS depth renders into point clouds and rasterize them into Digital Surface
Models (DSMs) for comparison. Our results show that both opacity regularization and pseudo-depth
supervision improve geometric accuracy, with their combination achieving the lowest MAE/RMSE.

Ablation on the synthesis stage. We isolate two key factors: multi-sample diffusion and curriculum
view progression. As Figure 9(c) shows, Ns = 2 achieves the optimal visual results. Although
Ns = 5 yields the lowest CMMD, it requires a 1.5× increase in training time with marginal returns
in quality; thus, we adopt Ns = 2 for all experiments. Additionally, Figure 9(d) highlights that
employing a curriculum strategy (vs. random views) effectively restores geometry in occluded
areas, a benefit confirmed by Table 4. We further benchmark our refinement module against the
SDEdit (Meng et al., 2022) baseline. As evident in Figure 9(e), SDEdit causes significant degradation,
primarily due to its inability to hallucinate details while maintaining the structural integrity defined
by the satellite imagery. Finally, we evaluate prompt sensitivity by utilizing generic context-free
prompts. The negligible visual difference in Figure 9(e) confirms that our method is robust to prompt
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Table 3: Ablation on the reconstruction stage. Appear-
ance modeling secures convergence. Opacity regulariza-
tion and depth supervision enhance visual fidelity and geo-
metric accuracy.

Components Perceptual Metrics Geometric Metrics

App.
Mod.

Op.
Reg.

Depth
Sup. FIDCLIP ↓ CMMD ↓ MAE (m)↓ RMSE (m)↓

✗ ✗ ✗ Failed Failed Failed Failed
✓ ✗ ✗ 41.90 2.45 3.542 5.218
✓ ✓ ✗ 39.95 2.40 2.980 4.527
✓ ✓ ✓ 38.01 2.31 2.250 3.483

Table 4: Ablation on the synthesis
stage. We evaluate sample counts (Ns),
core components, and compare against
baselines.

Method Variation FIDCLIP ↓ CMMD ↓ Time (h)

Multiple Samples (Ns)
Ns = 1 34.11 3.19 3.44
Ours (Ns = 2) 28.35 2.88 6.37
Ns = 3 28.64 2.77 7.19
Ns = 5 29.17 2.68 9.80

Component Ablation
w/o Curriculum 33.79 3.36 -
w/ Context-free Pmt. 30.78 2.98 -
Replaced w/ SDEdit 64.74 4.14 -

Randomly sample Curriculum learning

(d) (e)

Ours Replaced w/ SDEditContext-free Prompt

w/o op. reg. w/ op. reg. w/o depth super. w/ depth super.

(c)(b)(a)

𝑁! = 1 𝑁! = 2 𝑁! = 3 𝑁! = 5

Figure 9: Satellite-view training and IDU refinement ablation. (a) Opacity regularization reduces
floating artifacts and yields denser reconstructions. (b) Pseudo-camera depth supervision improves
geometry in planar, texture-less areas like rooftops and roads. (c) Using multiple diffusion samples
per view enhances texture consistency and reduces high-frequency geometric noise, Ns = 2 achieves
the optimal visual results. (d) Curriculum learning progressively introduces challenging views,
significantly improving geometric coherence in previously occluded regions compared to random
sampling. (e) Refinement analysis: Using a generic context-free prompt results in a minor degradation
of facade details but maintains structure, demonstrating robustness. In contrast, replacing our
refinement method with SDEdit leads to a severe drop in quality, as standard noising-denoising
struggles to hallucinate details while preserving the underlying geometry defined by the satellite
imagery.

engineering and driven primarily by the diffusion model’s internal priors. Please refer to Table 10 for
the specific text prompts.

5 CONCLUSION

Skyfall-GS synthesizes real-time, immersive 3D urban scenes from multi-view satellite imagery,
using 3D Gaussian Splatting and text-to-image diffusion models in a curriculum-based iterative
refinement approach. Our method surpasses existing methods like Sat-NeRF, , EOGS, CityDreamer,
and GaussianCity, effectively addressing challenges such as limited parallax, illumination variations,
and occlusions. Future work includes scaling to larger environments and dynamic scenes.

Limitations. Our method requires significant computational resources, primarily due to the refine-
ment process. The fixed heuristic camera trajectory creates blind spots in complex urban geome-
tries, particularly in heavily occluded regions and scene boundaries. This results in artifacts and
over-smoothed textures at extreme street-level perspectives. Additionally, our hybrid reconstruction-
generation framework requires off-nadir satellite views. It cannot synthesize facades from purely
top-down (nadir) imagery.
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ETHICS STATEMENT

This work included a small-scale user study where anonymous participants were asked to compare
our results with baselines through an online survey. No personally identifiable information was
collected, and all responses were stored anonymously. Participation was entirely voluntary, and no
risks were posed to participants. The study did not require institutional review board (IRB) approval
under our institution’s policies, as it involved only anonymous survey responses with minimal risk.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. Implementation details of
our reconstruction and synthesis pipeline are provided in Section 3, including the architecture, loss
functions, and optimization objectives. All hyperparameters, training schedules, and regularization
terms are described in Section 3 and Section A.1. Details of datasets, splits, and evaluation protocols
are described in Section 4 and Section A.2, with clear references to the publicly available DFC2019
dataset and GoogleEarth dataset. Details of the user study are described in Section A.2. We will
release our source code upon acceptance to further support transparency and reproducibility.
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A APPENDIX

This supplementary material provides additional details that complement our main paper. We include:

1. Implementation Details: This section details the pseudo-camera depth supervision strategy,
3DGS reconstruction parameters for satellite imagery, and the FlowEdit-based refinement
process. We also provide a detailed breakdown of training time and memory consumption.
Furthermore, we include a discussion on the validity of the RPC to perspective camera
model approximation, including quantitative error analysis.

2. Experiments Detail: We provide dataset details, including training image counts and geo-
graphical coordinates for each Area of Interest (AOI), alongside the user study methodology
and evaluation protocol.

3. Additional Qualitative Results: We present extended visual comparisons with state-of-
the-art methods and results on four additional AOIs of the DFC2019 dataset. Furthermore,
we provide visualizations of renders conditioned on varying per-image embeddings ej to
illustrate temporal stability.

4. Additional Experiments & Results: We encompass a comprehensive set of new experi-
ments, including: (i) synthesis results for complex, irregular geometries (e.g., castles and
cathedrals) to demonstrate the framework’s robustness; (ii) a sensitivity analysis of refine-
ment text prompts;(iii) an episode-vs-coverage analysis to quantify the effectiveness of the
curriculum strategy; and (iv) synthesized results with different random seed.

Additionally, we provide an interactive HTML visualization (available in the folder, main.html)
that allows readers to explore our video results and compare reconstructions across different viewing
conditions and scenes. This visualization enables direct comparison of our method’s geometric
accuracy, spatial alignment, and overall perceptual quality against baseline approaches and Google
Earth Studio reference video.

We also provide example datasets via Zenodo, which can be accessed at this URL. However, due to
storage limitations, we only provide training data for an AOI as an example. We plan to release the
complete dataset upon acceptance.

A.1 IMPLEMENTATION DETAILS

Codebase. Our method extends the Mip-Splatting (Yu et al., 2024) codebase with custom modules
for satellite imagery processing and our curriculum-based IDU refinement pipeline.

Pseudo camera depth supervision. We sample cameras with varied azimuths and decreasing
elevations, using random per-image embeddings. MoGe (Wang et al., 2024a) provides scale-invariant
depth estimation. We sample 24 views every 10 iterations, with look-at points (x, y, z), where
x, y ∼ N (0, 128) and z = 0, as illustrated in Figure 10. Camera azimuths are uniformly sampled
between 0 and 2π, while elevation angles and radii linearly decrease from 80◦ to 45◦ and 300 to 250
units, respectively. Rendered RGB images (IRGB) are 1024× 1024 pixels. We illustrate the 3DGS
rendered RGB image IRGB, scale-invariant depth Dest estimated by MoGe (Wang et al., 2024a) and
depth from 3DGS DGS in Figure 11.

3DGS reconstruction from satellite imagery. Our satellite-view optimization process runs for
30,000 iterations, with densification enabled between iterations 1,000 and 21,000. We modify several
key parameters in the standard 3DGS implementation to address satellite imagery’s unique challenges.
First, to prevent undesirable Gaussian elongation artifacts common with overhead views, we reduce
the scaling learning rate from 0.005 to 0.001. Second, we address sparsity issues of Gaussian points
in close-up renderings by lowering the densification gradient threshold from 0.002 to 0.001, ensuring
sufficient detail when viewed from ground level. Furthermore, we implement pruning of Gaussians
with maximum covariance exceeding 20 to eliminate floating artifacts. The loss function weights are
set to λD-SSIM = 0.2, λop = 10, and λdepth = 0.5 for optimal reconstruction quality. For appearance
modeling, we adopt the architecture from WildGaussians (Kulhanek et al., 2024), implementing
an appearance MLP with 2 hidden layers (128 neurons each) and ReLU activation functions. The
per-image and per-Gaussian embedding dimensions are set to 32 and 24 respectively, with learning
rates of 0.001, 0.005, and 0.0005 for per-image embeddings ej , per-Gaussian embeddings gi, and the
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The Pseudo Camera Sampling Strategy

Figure 10: The sampling strategy of pseudo camera. In this example, we sample 240 points using
the strategy.

Render RGB IRGB Estimated Depth Dest 3DGS Depth DGS

Figure 11: Pseudo-cam Depth Supervision. We use MoGe (Li et al., 2024c) to estimate the scale-
invariant depth Dest from the rendered RGB image IRGB. The rightmost figures show the rasterized
depth DGS from 3DGS.

appearance MLP f , respectively. The complete satellite-view training requires approximately 1 hour
on a single NVIDIA RTX A6000 GPU.

FlowEdit-based refinement. We set FlowEdit noise parameters nmin = 4 and nmax = 10 to balance
artifact removal with detail preservation. Our source prompt (“Satellite image of an urban area with
modern and older buildings, roads, green spaces. Some areas appear distorted, with blurring and
warping artifacts.”) characterizes initial renders, while the target prompt (“Clear satellite image
of an urban area with sharp buildings, smooth edges, natural lighting, and well-defined textures.”)
guides refinement. These parameters were determined through experimentation, with lower noise
values preserving more original structure but removing fewer artifacts, and higher values creating
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more significant changes but potentially altering underlying geometry. All other FlowEdit parameters
use default values.

Curriculum-based refinement details. Our IDU process comprises Ne = 5 episodes of 10,000
iterations each, with densification through iteration 9,000. At the start of IDU, we randomly select
and fix a single per-image appearance embedding ej . Opacity regularization is disabled during IDU,
as our curriculum naturally mitigates floating artifacts through multi-view consistency, enabling
Gaussians to retain variable opacities beneficial for semi-transparent structures (Kerbl et al., 2023).
For DFC2019 (Le Saux et al., 2019) dataset, we utilize Np = 9 look-at points in a 3× 3 grid (512
units wide, centered at origin), with Nv = 6 cameras per point and Ns = 2 samples per view.
Camera elevations decrease from 85◦ to 45◦ and radii from 300 to 250 units across episodes. For
GoogleEarth (Xie et al., 2024) dataset, we utilize Np = 16 look-at point at origin, with Nv = 6
cameras per point and Ns = 2 samples per view. Camera elevations decrease from 85◦ to 45◦ and
radius is fixed 600-unit across episodes. All training images are rendered at 2048× 2048 resolution.
Our training strategy samples 75% from refined images and 25% from original satellite images, this
sampling strategy makes sure that the final 3DGS scene faithfully follows the semantic and layout
in the input satellite imagery. The complete synthesizing stage requires approximately 6 hours on a
single NVIDIA RTX A6000 GPU.

Detail of training time. All time measurements were conducted on the JAX_214 AOI using a
single NVIDIA RTX A6000 (48GB) GPU. The total training time increases from approximately
1 hour 35 minutes for the baseline reconstruction (30K iterations) to 6 hours 45 minutes for the
full pipeline. The majority of this additional cost is attributed to the Curriculum-based Iterative
Dataset Update (IDU) process (5 episodes), which accounts for approximately 5 hours and 10 minutes
combined. Specifically, a single IDU episode requires roughly 1 hour, where the computational load
is split almost evenly between render refinement (∼30 min) and 3DGS reconstruction update (∼32
min), while the initial rendering step is negligible (∼4 s). While this results in a total training time
increase of approximately 4.3×, we view this as a justifiable offline investment to bypass physical
data collection limitations.

Detail of memory consumption. We distinguish between peak memory and final memory. The
peak memory usage reaches 46 GB during the synthesis stage, driven by the overhead of loading the
diffusion model (FLUX.1) and temporary densification of Gaussians. However, the final training
memory footprint is significantly lower (28.04 GB) as our method actively prunes redundant and
low-opacity points. In terms of scene complexity, the refinement process densifies the scene by
approximately 27%, increasing the Gaussian count from ∼1.65 million (reconstruction stage) to
∼2.1 million, specifically targeting the vertical facade geometry missing in the initial satellite
reconstruction.

Validity of RPC to perspective approximation. We adopt the methodology proposed in Satel-
liteSfM (Zhang et al., 2019) to approximate the satellite linear pushbroom sensor as a perspective
camera. This approximation relies on the “weak perspective” assumption, which holds valid when
the satellite altitude (Z) is significantly larger than the depth variation within the scene (∆Z), i.e.,
Z ≫ ∆Z. Given that satellites orbit at distances of hundreds of kilometers while terrestrial depth
variations are limited to a few hundred meters, the ratio ∆Z/Z remains negligible, allowing the
geometry to converge to a perspective model. The approximation is achieved by generating a dense
grid of 3D-2D correspondences using the rigorous RPC model and solving for a projection ma-
trix P via the Direct Linear Transformation (DLT) method, which is subsequently decomposed
(P = K[R|t]) to recover camera parameters. Quantitative evaluations demonstrate that this process
introduces negligible error: the average maximum forward projection error against the rigorous RPC
model is only 0.126 pixels, and the difference in triangulated 3D points is typically less than 5 cm.
Furthermore, this initialization allows Bundle Adjustment to achieve sub-pixel accuracy, with median
reprojection errors recorded at 0.864 pixels, confirming the suitability of this approximation for
high-fidelity 3D reconstruction.

A.2 MAIN PAPER EXPERIMENTS DETAIL & RESULTS

DFC2019 (Le Saux et al., 2019) dataset details. The number of training images and geographical
coordinates for each AOI is provided in Table 5. We also include four additional AOIs from
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Table 5: Number of training images and geographical coordinate per Area of Interest (AOI).
These AOIs correspond to standard evaluation scenarios established by previous works, ensuring
consistent and fair comparisons with existing baselines (e.g., Sat-NeRF (Marí et al., 2022)).

AOI JAX_004 JAX_068 JAX_214 JAX_260

# of training image 9 17 21 15
Geographical coordinate 81.70643◦W, 30.35782◦N 81.66375◦W, 30.34880◦N 81.66353◦W, 30.31646◦N 81.66350◦W, 30.31184◦N

Table 6: Number of training images and geographical coordinates for additional AOIs. We
selected 4 additional AOIs with distinct characteristics: JAX_164 features a city hall building,
JAX_175 contains an American football stadium, while the remaining two AOIs present other notable
urban structures.

AOI JAX_164 JAX_168 JAX_175 JAX_264

# of training image 20 21 21 21
Geographical coordinate 81.66362◦W, 30.33032◦N 81.65297◦W, 30.33037◦N 81.63696◦W, 30.32583◦N 81.65285◦W, 30.31189◦N

Jacksonville to demonstrate our method’s robustness across varying scene characteristics. The
number of training images and geographical coordinates for these additional AOIs is provided in
Table 6. These additional AOIs feature distinct characteristics: one contains a city hall building
(JAX_164), another includes an American football stadium (JAX_175), while the remaining two
exhibit other notable urban features (JAX_168 and JAX_264).

GoogleEarth (Xie et al., 2024) dataset details. The GoogleEarth dataset, introduced by City-
Dreamer (Xie et al., 2024), contains semantic maps, height fields and renders from Google Earth
Studio (Google, 2024) of New York City. This dataset is used to train the generative model in
CityDreamer (Xie et al., 2024) and GaussianCity (Xie et al., 2025b). We pick four AOIs which
contain diverse city elements, including complex architectures (004), squares (010), resident area
(219) and riverside (336). However, original GES renders provided in GoogleEarth dataset are
rendered from a lower elevation angle, which is not similar to satellite imagery. Therefore, for each
AOI, we render 60 images from GES using an orbit trajectory with 80◦ of elevation angle and 2219 of
radius. These new renders serve as the input of our methods. The AOI ID, geographical coordinates,
and the number of input images are detailed in Table 7.

User study details. We asked participants three specific questions and instructed them to select one
video that best addressed each question:

1. Geometric Accuracy: "Which video’s 3D structures (buildings, terrain, objects) more
accurately represent the real-world geometry when compared to the ground truth video?"

2. Spatial Alignment: "Which video’s layout and positioning of elements better matches the
satellite imagery reference?"

3. Overall Perceptual Quality: "Considering all aspects (geometry, textures, lighting, consis-
tency), which video presents a more convincing and high-quality 3D representation of the
scene?"

For the user study on DFC2019 dataset, each participant viewed videos from Sat-NeRF (Marí et al.,
2022), our method without IDU, and our complete method, alongside Google Earth Studio reference
footage and the original satellite imagery. For the user study on the GoogleEarth dataset, each
participant viewed videos from CityDreamer (Xie et al., 2024), GaussianCity (Xie et al., 2025b) and
our complete method, alongside Google Earth Studio reference footage and the reference satellite
imagery.

Comparison details. For quantitative comparisons with Sat-NeRF (Marí et al., 2022), Mip-
Splatting (Yu et al., 2024) and our method without IDU refinement, we used consistent camera
parameters across all methods: 17◦ elevation angle, 328-unit radius, and 20◦ field of view, with
cameras targeting the AOI’s origin. For comparisons with CityDreamer (Xie et al., 2024) and Gaus-
sianCity (Xie et al., 2025b), we use 45◦ elevation angle, 1067-unit radius, and 20◦ field of view,
with cameras also targeting the AOI’s origin. These parameters were selected to ensure equitable
comparison with similar scene coverage across methods.
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Table 7: Number of training images and geographical coordinate per Area of Interest (AOI). We
pick 4 AOIs from the GoogleEarth (Xie et al., 2024) dataset, ensuring fair comparisons with existing
baselines (e.g., CityDreamer (Xie et al., 2024) and GaussianCity (Xie et al., 2025b))

AOI 4WorldFinancialCtr (004) 10UnionSquareE#5P (010) 219E12thSt (219) 336AlbanySt (336)

# of training image 60 60 60 60
Geographical coordinate 74.01587◦W, 40.71473◦N 73.98975◦W, 40.73482◦N 73.98690◦W, 40.73187◦N 74.01753◦W, 40.71020◦N
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Figure 12: Additional qualitative comparison on the DFC2019 dataset with Sat-NeRF (Marí
et al., 2022), Mip-Splatting (Yu et al., 2024), CoR-GS (Zhang et al., 2024b), and EOGS (Sa-
vant Aira et al., 2025). Our method significantly outperforms baseline approaches in both geometric
accuracy and texture quality when rendering low-altitude novel views. Note the superior building
geometry, facade details, and reduced floating artifacts in our final result.

Per-scene quantitative comparison. We provide per-scene quantitative comparison in Tables 8
and 9.

Additional qualitative comparisons. Due to space constraints in the main paper, we present
additional qualitative comparison results in this supplementary material for scenes JAX_004 and
JAX_260 from the DFC2019 dataset, and scenes 004 and 219 from the GoogleEarth dataset. Figure 12
shows orbital view comparisons with Sat-NeRF (Marí et al., 2022), Mip-Splatting (Yu et al., 2024),
CoR-GS (Zhang et al., 2024b), and EOGS (Savant Aira et al., 2025), while Figure 13 presents
city-scale view comparisons with CityDreamer (Xie et al., 2024), GaussianCity (Xie et al., 2025b),
and CoR-GS (Zhang et al., 2024b). These additional results further demonstrate the consistent
superiority of our method across diverse urban environments.

Additional visual results. We also provide qualitative results on four additional AOIs from Jack-
sonville to demonstrate our method’s robustness across diverse urban environments. As shown in
Figure 19 and Figure 20, these AOIs contain distinctive architectural features: JAX_004 showcases a
residential area with mixed housing types and green spaces; JAX_164 features a prominent city hall
building with its characteristic dome and symmetrical facade; JAX_175 encompasses an American
football stadium with its distinctive oval structure and surrounding parking facilities; JAX_168
contains a commercial district with varied building heights and dense urban layout. Despite these
varied urban typologies, our method successfully generates coherent three-dimensional renderings
that preserve the spatial relationships and architectural features present in the satellite imagery. These
additional results further validate the generalizability of our approach across diverse urban landscapes
without requiring scene-specific parameter adjustments.

Multi-date appearance variation. The use of multi-date satellite imagery introduces a significant
challenge, as images of the same location, when captured on different days, exhibit drastic varia-
tions in appearance. As shown in Figure 21, these differences can fundamentally alter the scene’s
geometry and texture. Effectively synthesizing novel views requires a model capable of intelligently
disentangling the static 3D scene structure from these challenging, temporally-varying appearance
factors.

A.3 ADDITIONAL EXPERIMENTS

Qualitative results on complex geometries. To demonstrate the robustness of our framework beyond
standard city-block layouts, we evaluate our method on scenes featuring irregular and historically
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Figure 13: Additional qualitative comparison on the GoogleEarth dataset with CityDreamer (Xie
et al., 2024), GaussianCity (Xie et al., 2025b), and CoR-GS (Zhang et al., 2024b). Our method is
able to synthesize texture and geometry that is closer to the reference GES render.

Table 8: Quantitative comparison on each AOI of DFC2019 (Le Saux et al., 2019). Our method
consistently outperforms baseline methods on distribution metrics and most pixel-level metrics,
indicating superior image synthesis quality. Metrics are computed between renders from each method
and reference frames from GES.

Distribution Metrics Pixel-level Metrics*

Scene Methods FIDCLIP ↓ CMMD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

JAX_004

Sat-NeRF 79.97 3.838 11.95 0.2290 0.8700
EOGS 107.23 5.913 8.22 0.1271 1.0174
Mip-Splatting 85.33 4.986 13.06 0.2412 0.8157
CoR-GS 91.01 5.131 11.25 0.2554 0.9793
Ours 24.45 1.474 12.90 0.2446 0.846

JAX_068

Sat-NeRF 93.70 5.376 9.86 0.2607 0.8414
EOGS 85.57 5.516 6.39 0.1593 0.9953
Mip-Splatting 92.95 6.163 11.64 0.2900 0.8444
CoR-GS 90.34 5.864 11.77 0.3230 1.0073
Ours 28.35 2.845 11.79 0.2931 0.8210

JAX_214

Sat-NeRF 90.76 5.376 8.97 0.2684 0.8394
EOGS 71.02 4.342 7.40 0.2293 0.8883
Mip-Splatting 82.04 5.088 11.23 0.3844 0.8048
CoR-GS 86.33 5.258 11.66 0.4074 0.9079
Ours 26.69 1.964 12.24 0.3881 0.7420

JAX_260

Sat-NeRF 89.00 4.881 9.43 0.3172 0.9068
EOGS 87.15 5.372 7.04 0.1574 0.9342
Mip-Splatting 88.42 5.385 11.61 0.3579 0.8130
CoR-GS 88.44 4.710 11.50 0.4162 0.8977
Ours 29.83 2.076 12.59 0.3574 0.7540

significant architectures. As shown in Figure 20, we present synthesis results for Neuschwanstein
Castle and Wells Cathedral. These scenes pose significant challenges due to their intricate non-
Manhattan geometries, including sharp spires, varying elevations, and gothic architectural details.
Despite these complexities, our method successfully disentangles the underlying geometry from the
satellite input and hallucinates plausible high-frequency details for facades that are heavily occluded
in the nadir views. This confirms that our hybrid reconstruction-generation approach is not limited to
simple urban prisms but extends effectively to complex, free-form structures.

Synthesis of bridges. In addition to dense building clusters, we evaluate our method’s performance
on scenes with complex topological structures, such as bridges. Figure 16 illustrates renders of
bridges in JAX_068, JAX_214 and JAX_175, a typically difficult case for standard photogrammetry
due to the thin structural components. Our method successfully recovers the connectivity of the
bridge span while synthesizing realistic water textures. The diffusion-based refinement effectively

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 9: Quantitative comparison with CityDreamer (Xie et al., 2024), GaussianCity (Xie et al.,
2025b), CoR-GS (Zhang et al., 2024b) on each AOI of the GoogleEarth dataset (Xie et al., 2024).
The results show that our approach consistently achieves the best performance, indicating superior
geometric and perceptual fidelity compared to all baselines. Metrics are computed between renders
from each method and reference frames from GES.

Distribution Metrics Pixel-level Metrics

Scene Methods FIDCLIP ↓ CMMD ↓ PSNR ↑ SSIM ↑ LPIPS ↓

004

CityDreamer 39.88 3.869 13.06 0.3519 0.5643
GaussianCity 28.71 2.710 14.00 0.3786 0.5656
CoR-GS 33.69 4.203 11.55 0.3440 0.6120
Ours 10.43 2.491 15.09 0.3793 0.3978

010

CityDreamer 34.29 4.270 12.24 0.1387 0.5544
GaussianCity 29.67 2.850 12.90 0.1661 0.5335
CoR-GS 29.75 3.672 12.90 0.1807 0.4209
Ours 11.03 1.631 13.58 0.1769 0.4073

219

CityDreamer 42.38 4.372 11.63 0.1344 0.5471
GaussianCity 32.83 2.883 12.37 0.1676 0.5254
CoR-GS 29.55 3.958 12.64 0.1792 0.3974
Ours 7.83 2.635 13.12 0.1699 0.3975

336

CityDreamer 29.53 4.097 13.39 0.4431 0.5654
GaussianCity 23.72 3.224 14.36 0.4533 0.5382
CoR-GS 16.29 3.173 14.29 0.4592 0.3879
Ours 10.36 1.279 15.32 0.4662 0.3719

regularizes the geometry, preventing the characteristic "melting" artifacts often observed in thin
structures when using satellite-only reconstruction.

Visualizing transient object handling via per-image embeddings. A key challenge in multi-date
satellite reconstruction is the handling of dynamic elements, such as moving vehicles and pedestrians,
which can introduce ghosting artifacts. Our approach addresses this by learning per-image appearance
embeddings ej that capture photometric variations specific to each capture date. As visualized in
Figure 14, rendering the same viewpoint across 20 distinct appearance embeddings reveals that
transient objects exhibit significant variability, appearing clearly in some embeddings while fading
or vanishing in others. This qualitative evidence suggests that our appearance modeling effectively
acts as a “sink” for transient data that does not align with the static 3D geometry. By absorbing
these inconsistencies into the appearance code rather than the geometric parameters, the optimization
naturally disentangles transient elements from the underlying static structure, ensuring a clean and
consistent geometric reconstruction.

Episode-vs-coverage analysis of curriculum strategy. To quantify the effectiveness of the IDU
module in revealing occluded regions, we present an Episode-vs-Coverage analysis (Figure 18). Since
ground truth 3D geometry is unavailable for these satellite scenes, we use the final converged 3DGS
model as a proxy for the total scene surface. We compute the cumulative coverage by optimizing
a visibility attribute for every Gaussian point against the camera poses utilized in each episode.
As shown in the figure, the coverage ratio steadily increases from ∼0.50 in Episode 1 to ∼0.75 in
Episode 5. This consistent gain confirms that our curriculum strategy, which progressively lowers
camera elevation from 85◦ to 45◦, successfully reveals and reconstructs vertical facade geometry
that was initially occluded in the top-down satellite views. However, we acknowledge a limitation in
this metric: because it calculates coverage based on reconstructed points, it cannot account for “true
holes” (surface areas that were never generated at all because they were completely occluded from
all sampled views). Future work could address this by dynamically sampling IDU cameras to target
specific geometric uncertainties or detected holes.

Stochastic appearance diversity. To demonstrate the generative capacity of our hybrid framework,
we evaluate the stochastic diversity of the synthesized textures in Figure 22. By varying the random
seed during the diffusion refinement stage while maintaining the same geometric initialization, our
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Emb. 00 Emb. 01 Emb. 02 Emb. 03 Emb. 04

Emb. 05 Emb. 06 Emb. 07 Emb. 08 Emb. 09

Emb. 10 Emb. 11 Emb. 12 Emb. 13 Emb. 14

Emb. 15 Emb. 16 Emb. 17 Emb. 18 Emb. 19

Figure 14: Visualizing transient object handling via per-image embeddings. We render the same
viewpoint using 20 different learned appearance embeddings (Emb. 00–19). Observe that transient
objects, such as the vehicles on the road, exhibit varying degrees of visibility across different em-
beddings (e.g., clearly visible in some, faded or absent in others), while the static building geometry
remains consistent. This qualitatively demonstrates that our per-image appearance modeling effec-
tively disentangles transient elements from the underlying static 3D structure, preventing dynamic
artifacts from corrupting the geometric reconstruction.

method produces diverse yet plausible surface details for identical underlying structures, 5643].
As illustrated in the figure, detailed features such as the text on the red building signage vary
distinctively (e.g., “Outeil” vs. “CUTAN”). Crucially, the macroscopic building footprint remains
geometrically fixed, confirming that our framework successfully disentangles the reconstruction of
physical geometry (grounded in satellite constraints) from the generative synthesis of high frequency
appearance.

A.4 LLM USAGE DISCLOSURE

Large language models (LLMs) were used to assist in improving the clarity and conciseness of the
writing and in searching for related work. All technical ideas, algorithm designs, experiments, and
analysis were conceived, implemented, and validated by the authors. The authors have carefully
verified all content and take full responsibility for the correctness and integrity of this paper.
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Figure 15: Qualitative results on complex geometries. Visualization of satellite image inputs
and corresponding rendered frames. We demonstrate the model’s capability on irregular historical
architectures, including Neuschwanstein Castle and Wells Cathedral, showing the synthesis of
complex geometry.

(a) JAX_068 (b) JAX_175 (c) JAX_214

Figure 16: Qualitative results for bridges. We present the render results for bridges appears in
JAX_068, JAX_214 and JAX_175, demonstrating the method’s ability to handle complex topological
structures and water surfaces that are typically challenging for standard reconstruction pipelines.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 17: Refine renders with different prompt strategies.
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Table 10: List of text prompts used in sensitivity analysis. We evaluate six different prompting
strategies to test the robustness of our method.

Strategy Source Prompt (Psrc) Target Prompt (Ptar)

Baseline Satellite image of an urban area with modern
and older buildings, roads, green spaces. Some
areas appear distorted, with blurring and warping
artifacts.

Clear satellite image of an urban area with sharp
buildings, smooth edges, natural lighting, and
well-defined textures.

Vague Source A blurry satellite image of an urban area. Clear satellite image of an urban area with sharp
buildings, smooth edges, natural lighting, and
well-defined textures.

Vague Target Satellite image of an urban area with modern
and older buildings, roads, green spaces. Some
areas appear distorted, with blurring and warping
artifacts.

A clear satellite image of an urban area.

Focus Geometry Satellite image of an urban area with modern
and older buildings, roads, green spaces. Some
areas appear distorted, with blurring and warping
artifacts.

Clear satellite image of an urban area with
geometrically precise buildings, flat rooftops,
straight edges, and well-defined roads.

Focus Texture Satellite image of an urban area with modern
and older buildings, roads, green spaces. Some
areas appear distorted, with blurring and warping
artifacts.

Clear satellite image of an urban area with real-
istic, high-resolution textures, detailed facades,
clear vegetation, and natural lighting.

Context Free distorted, blurring, warping artifacts clear, sharp, smooth edges, natural lighting, well-
defined textures

1 2 3 4 5
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Figure 18: Episode-vs-Coverage analysis. The plot illustrates the cumulative surface coverage ratio
increasing across refinement episodes. The curriculum-based strategy effectively exposes occluded
regions, particularly vertical facades, as the camera elevation descends.
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Figure 19: Qualitative results across primary scenes. Visualization of satellite image inputs and
corresponding rendered frames for our four main AOIs.
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Figure 20: Qualitative results across additional scenes. Visualization of satellite image inputs and
corresponding rendered frames for four additional AOIs with distinctive characteristics: JAX_164
features a city hall building, JAX_175 contains an American football stadium, while JAX_168 and
JAX_264 present other notable urban structures.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

21
4

26
0

Sample 3Sample 1 Sample 2 Sample 4

00
4

06
8

Figure 21: Visualization of multi-date satellite imagery of the DFC2019 dataset. Note the substan-
tial shifts in appearance, including changes in illumination, cloud cover, and surface characteristics,
which introduce challenges for consistent 3D reconstruction.
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Figure 22: Demonstration of stochastic appearance diversity while preserving geometric con-
sistency. Our method generates diverse plausible textures for identical underlying geometry across
different random seeds. Notice how the red signage text on the building facade varies distinctively
(e.g., “Outeil” vs. “CUTAN”) while the building’s structural footprint remains fixed, confirming that
our framework successfully disentangles geometric reconstruction (grounded in satellite data) from
generative appearance synthesis (variable via diffusion).
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