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Abstract

Conventional supervised learning methods are often vulnerable to spurious cor-
relations, particularly under distribution shifts in test data. To address this issue,
several approaches, most notably Group DRO, have been developed. While these
methods are highly robust to subpopulation or group shifts, they remain vulnerable
to intra-group distributional shifts, which frequently occur in minority groups with
limited samples. We propose a hierarchical extension of Group DRO that addresses
both inter-group and intra-group uncertainties, providing robustness to distribution
shifts at multiple levels. We also introduce new benchmark settings that simulate
realistic minority group distribution shifts—an important yet previously underex-
plored challenge in spurious correlation research. Our method demonstrates strong
robustness under these conditions—where existing robust learning methods consis-
tently fail—while also achieving superior performance on standard benchmarks.
These results highlight the importance of broadening the ambiguity set to better
capture both inter-group and intra-group distributional uncertainties.

1 Introduction

In recent years, machine learning methods have achieved remarkable success across a wide range of
applications. An important objective of many machine learning methods is to learn model parameters
that minimize the population risk, which is the population expectation of the loss function. Given
training data and model parameters, the population risk can be approximated by the empirical risk,
defined as the sample-averaged loss. Therefore, model parameters can be learned by minimizing the
empirical risk, which is known as the empirical risk minimization (ERM) principle.

The underlying assumption of ERM-based methods is that the unseen future data, often referred to as
test data, share the same distribution as the training data. However, in many real-world problems,
the test data may follow a different distribution from the training data for various reasons. A
notable example is subpopulation shift, where the training population consists of several groups
(subpopulations), and the proportion of each group in the test data differs from that in the training
data [42, 10, 52].

In many instances of subpopulation shifts, the group indicator is spuriously correlated with the target
label or response variable. For example, in the widely studied Waterbirds dataset [42], the target label
(e.g., “Waterbird” or “Landbird”) is spuriously correlated with the background environment (e.g.,
water or land). As a result, ERM-based models tend to associate “Waterbird” primarily with water
backgrounds, leading to significant performance degradation on minority groups, such as waterbirds
appearing against land backgrounds. These vulnerabilities extend beyond controlled benchmarks,
posing substantial risks in domains such as healthcare [54, 4], fairness [20, 9, 38], and autonomous
driving [57].
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Over the past few years, a growing body of
research has focused on mitigating these spu-
rious correlations to ensure more reliable and
stable model performance. Among the pro-
posed methodologies, group distributionally
robust optimization (Group DRO) [42] has
emerged as a foundational approach. By parti-
tioning the data into predefined groups and op-  (a) Group DRO Ambigu- (b) Proposed Ambiguity
timizing for the worst group loss, Group DRO ity Set Set

effectively minimizes the model’s reliance on

spurious correlations tied to specific subsets Figure 1: Comparison of the Group DRO ambiguity
of data. This framework has inspired a wide set (a) and our hierarchical extension (b). While
range of subsequent methods, such as JTT Group DRO restricts uncertainty to mixtures of
[30], SAA [35], PG-DRO [17], DISC [S1] and group distributions, our approach introduces addi-
GIC [19], which commonly employ a two-step tional within-group uncertainty (indicated by red
strategy: first identifying latent groups and dashed arrows), offering robustness to both inter-
then utilizing established robust training ap- group and intra-group distributional shifts. (For vi-
proaches—frequently Group DRO itself—to sualization, we assume the 3-dimensional space in
enhance model robustness. the figure represents a probability space, where each
point corresponds to a probability distribution.)

While these methods have significantly ad-
vanced the field, they primarily focus on min-
imizing the worst-group loss under the assumption that each group’s training distribution reliably
represents its true underlying distribution. However, this assumption often fails in practice—especially
for minority groups with limited samples—where within-group distributional shifts naturally arise as
a consequence of underrepresentation in the training data [7, 13, 15]. This limitation highlights the
need for a more flexible and robust approach that accounts for uncertainty not only across groups, but
also within them.

In this work, we address these limitations by introducing a hierarchical ambiguity set within the
Group DRO framework, capturing both inter-group and intra-group uncertainties. As illustrated in
Figure 1, while conventional Group DRO focuses on robustness only to shifts in group proportions
by minimizing the worst-group risk, our approach extends this perspective by additionally modeling
uncertainty within individual groups.

Technically, we employ a Wasserstein-distance-based formulation, which has recently garnered
significant theoretical and empirical support for its efficacy in designing distributionally robust
learning methods [49, 28, 8, 5]. By defining a semantically meaningful cost function in a latent space,
this formulation flexibly accommodates variations in the underlying data-generating mechanisms
within each group. Consequently, our hierarchical ambiguity set enables the model to maintain
robustness across a broader spectrum of distributional deviations, particularly for minority groups
that are underrepresented in the training data.

Our main contributions are threefold:

* We re-examine Group DRO from a distributionally robust perspective and introduce a novel
hierarchical ambiguity set that captures both inter-group and intra-group uncertainties, constituting
a fundamental advancement over previous methods that build on Group DRO.

* We establish more realistic and challenging evaluation scenarios by modifying standard bench-
marks—Waterbirds, CelebA, and CMNIST—to introduce minority group distribution shifts that
prior work has overlooked. This enables more faithful assessment of robustness under real-world
minority underrepresentation.

» Through extensive experiments, we show that our hierarchical approach consistently outperforms
conventional Group DRO and related robust learning methods, underscoring the practical impor-
tance of a more flexible and theoretically grounded extension of the Group DRO framework. To
the best of our knowledge, this is the first work to explicitly address intra-group distribution shifts
alongside group-level spurious correlations in standard benchmark settings, highlighting a novel
contribution to robust learning.
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2 Related work

Using explicit group labels is a well-established approach to achieving robust performance on
underrepresented subpopulations. [42] pioneered partitioning data by known group annotations and
minimizing worst-group loss. Subsequent works extend this paradigm in multiple directions: Along
similar lines, [27] expands Group DRO’s ambiguity set from convex to affine combinations of group
distributions, although it still assumes fixed conditional distributions within each group. Meanwhile,
[24] rebalances distributions via subsampling, [12] employs a staged expansion of a group-balanced
set, and [53] uses Mixup-based augmentations (e.g., CutMix, Manifold Mix) to learn more invariant
features. [21] shows that even standard ERM can yield robust feature representations when combined
with selective reweighting, and [40] further leverages inter-group interactions to identify shared
features that enhance distributional robustness.

In parallel, a growing body of work addresses scenarios where group annotations are unavailable
or prohibitively expensive, motivating the need to infer or approximate group structure. Building
on [24], [29] extends last-layer retraining to settings with minimal or no group annotations. Some
methods employ limited validation sets to discover latent groups and then apply Group DRO [42]
for robust optimization [35, 17]. Indeed, the model’s loss (or its alternatives) often helps identify
underrepresented subpopulations; for example, [34, 30, 41] use high-loss samples to recognize
minority groups. Other approaches draw on diverse cues: [1, 11] infer groups by maximizing
violations of the invariant risk minimization principle [2], while [3] employs masking to reduce
reliance on spurious features. [45, 44] instead cluster feature embeddings to discover latent groups
and identify pseudo-attributes for debiasing. Likewise, [56] proposes a two-stage contrastive learning
framework by aligning samples with the same class but different spurious attributes, and [51]
constructs a “concept bank” of candidate spurious attributes for robust partitioning. Another line of
work identifies spurious features by comparing the training set with a carefully selected reference
dataset [19] or removes examples that disproportionately degrade worst-group accuracy [22].

Beyond these established techniques, emerging efforts explore scenarios with imperfect group par-
titions [59] or multiple spurious attributes [39, 23]. These studies challenge the assumption that
spurious attributes remain fixed or neatly separated, prompting methods that better accommodate
complex, real-world data. Notably, group-inference approaches, such as those proposed by [30] and
[41], primarily focus on identifying underrepresented samples. However, these methods pay less
attention to how faithfully those samples reflect the underlying distribution. Our work explicitly chal-
lenges the assumption that minority-group data reliably mirror their underlying distribution, modeling
potential discrepancies within these subpopulations and underscoring the need for frameworks that
capture not only which groups matter but also how accurately they represent real-world conditions.

3 Preliminaries

Problem Setup. We consider a supervised learning problem where each observation consists of
input features X € X and a label Y € Y. Let {(x;,y;)}?; be the training data and © be the
parameter space. Assuming that the test data follows the same distribution as the training data, an
important goal of various machine learning methods is to minimize the risk (also referred to as the
test or generalization error)

Ep[L(f(X).Y)] (M)

over ©, where f 9 is a function parametrized by 6, L is a standard loss function, such as the cross-
entropy, and Ep denotes the expectation under the population distribution P. To achieve this, one
may solve the following optimization problem:

. IRS
inf {ww; () =3 <xmyi>)} ,
often referred to as the ERM problem, where P is the empirical measure and £(6; (X, Y’)) is shorthand
for L(f(X),Y).

In addition to the above basic setting, we assume that the data are partitioned into multiple groups,
with an indicator variable G € G; thus, the training data can be expressed as {(z;, ¥i,9:) ;. In
particular, we assume that this indicator variable is spuriously correlated with the label Y. More
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specifically, in all our examples, we assume the existence of a spurious attribute A € A, and that the
group variable G = (Y, A) is a pair involving the response variable Y. Hence, G = ) x A. With
adjusted notation, we write G = {1,...,m}.

In the Waterbirds dataset, for example, the task is to classify birds as Waterbird or Landbird, with
a spurious attribute being the background type (Water Background or Land Background), which
results in four distinct groups. This dataset provides a classic example of spurious correlation: most
waterbirds (Y = Waterbird) are found against water backgrounds (A = Water Background), leading
models to rely excessively on background features. This overreliance substantially diminishes the
performance of ERM on underrepresented groups, such as waterbirds on land backgrounds.

Group DRO. Group DRO [42] was devised to address the aforementioned issue caused by the
spurious attribute. In the Group DRO, the training data are modeled as instances from a mixture
distribution P = Z _, ag Py, where P, denotes the conditional distribution of (X,Y") given G = ¢,

and o = (aq, .. am) represents the mixing proportion. Thus, each group forms a subpopulation
within the training data. Instead of minimizing the population risk (1), Group DRO aims to minimize
emf mapr [6(0; (X, Y))], 2)

€6

which corresponds to the risk of the worst-performing group. Consequently, this procedure is highly
robust to the subpopulation shift described in the introduction.

The Group DRO formulation (2) involves optimization over the discrete group variable g, posing a
computational challenge for practical use. [42] showed that the problem can be reformulated into an
equivalent form

inf sup ZﬁqEP 0; (X,Y))],

9€e BEAm lg 1
that involves continuous variables only, where A,,,_1 = {8 : 8, > 0, Z;nzl By = 1} is the
(m — 1)-simplex.

Group DRO can be understood as an instance of standard DRO [6, 14] with a specific ambiguity set.
Note that the standard DRO formulation is given as

inf s Eq[0(6; (X,Y))], 3)

where Q is a class of distributions, commonly referred to as the ambiguity (or uncertainty) set. The
Group DRO formulation (2) is a specific case of DRO (3), with

Q:= {Zﬂng : BeAm_l}. @)

g=1

Note that in frequently used DRO frameworks, the ambiguity set Q is often defined as a small
neighborhood with respect to a standard (pseudo-)metric, such as the Wasserstein distance [33, 16]
and f-divergence [36, 32].

4 Proposed Method

4.1 Hierarchical Ambiguity Sets

In this section, we propose a hierarchical extension of Group DRO to be robust to distribution shifts
at multiple levels. The proposed method is devised to capture both inter-group and intra-group
uncertainties in modeling the distributional shifts.

High-level Formulation As in Group DRO, we model the training distribution as a mixture of the
form P = Z _1 ¢ P;. To model the distributional uncertainty, we consider the DRO formulation

(3) with a hlerarchlcal ambiguity set Q, defined as

B € Am_1, di(B,a) <
{ZﬁgQg (0, P) < ey Vg } (5)
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where d; and ds are suitable metrics on A, and the class of distributions for (X, Y"), respectively,
and p, €, > 0 are radii that determine the size of the ambiguity set.

The ambiguity set Q has a two-level hierarchy. The first level is controlled by the mixing proportion
(. It accounts for uncertainty in the proportion of each subpopulation or group. Such uncertainty can
arise, for example, if certain minority groups appear more frequently in evaluation settings than in the
training set, thereby increasing their probability of occurrence and potentially amplifying spurious
correlations if not properly addressed [47]. At the second level, the distributional shift in each group
is considered to capture within-group variability.

By jointly accounting for changes in the group proportion o and the conditional distributions { Py } 7" 1,
the proposed framework provides two levels of robustness: inter-group generalization and resilience
to intra-group variability. This dual modeling of real-world uncertainties enables the proposed method
to address a broader range of distributional shifts compared to Group DRO (2) alone or standard
DRO (3), which uses a standard (pseudo-)metric neighborhood as its ambiguity set.

Relationship to Group DRO and Standard DRO. The ambiguity set (4) used in Group DRO is a
special case of the proposed ambiguity set (5). In particular, (4) can be obtained by setting p = co
and e, = 0.

While standard DRO, which uses a standard metric neighborhood as an ambiguity set, can also be
understood as a special case of the proposed method, the philosophy of the proposed ambiguity
set differs from that of the standard ones. In standard DRO, the ambiguity set is taken as a small
neighborhood with respect to a standard (pseudo-)metric. In contrast, we allow a large value for p,
the radius that determines robustness to group proportions. Hence, distributions that are far from P
with respect to standard metrics can also belong to the ambiguity set (5).

Detailed Formulation. The choice of d; is not critical because most reasonable metrics are
equivalent. In the remainder of this paper, we set p = oco.

For ds, we consider the infinite-order Wasserstein distance for computational convenience. Recall the
definition of the Wasserstein distance of order p € [1,00):

Wy(Q, P) = inf { (/0((93,31)7 («',y")" dv) ;} ,

where the infimum is taken over every coupling y of @ and P, and c(-,-) is a cost function. The
infinite-order Wasserstein distance is defined as Wo. (Q, P) = sup,>; W, (Q, P), with a variational
representation

(6)

Woo(Q,P)—inf{e>o _QA) < P(AY) }

" for every Borel set A
where A€ denotes the e-enlargement of A; see [18].

The cost function is defined in a latent semantic space, which is more effective than defining it in the
space of raw data [55, 26]. Specifically, we employ a deep neural network f¢ of depth L, defined as

Py =11 (fia (- @)

and take the output of the (L — 1)-th layer (before the final fully connected layer) as the semantic
representation:

2(z) = fl_, (ff_g (fle(x))) @)
We then define the cost function c(-, -) as

C((ﬂﬂ,y),(x’,y’)) _ {”z(l’)—Z(l‘/)H, ify =y,

00, otherwise.

Note that under our definition, W,(P, Q) = oo if the marginals P and ) of Y differ. In all our
applications, the group indicator G is defined as a pair (Y, A); hence, this definition does not cause
any issues.
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Proposed Hierarchical DRO Formulation. To sum up, the proposed hierarchical DRO can be
written in the standard form (3) with the ambiguity set

. Be Amfla
Q = : ] g
{;59% Woo(Qg, Py) < €4 Vg} )

The flexibility in 5 € A,,,_; allows the group proportion to differ from «, which enables adaptation
to new or changing subpopulation frequencies without introducing entirely new groups. With the
constraint W (Qg, P;) < €,, we accommodate plausible instance-level shifts within each group.
Leveraging the semantic cost ¢(-, -) allows the model to capture meaningful perturbations in high-
dimensional feature spaces without conflating different class labels.

4.2 Algorithm

In this subsection, we provide an algorithm to solve the proposed DRO with the ambiguity set (8). We
seteg =€/ \/Ttg» Where n is the size of group g in the training data, and € is a tunable hyperparameter
that controls the degree of robustness to within-group distributional shifts. Intuitively, the fewer
samples a group has, the more cautiously its potential distributional variations must be accounted for.
See Section 4.3 for details on the selection of the tuning parameter .

Due to the hierarchical structure of the ambiguity set in (8), solving the resulting DRO problem
is not straightforward. We therefore begin by reformulating the hierarchical DRO into a tractable
optimization problem. We formally state the resulting formulation in the following theorem. The
proof is provided in Appendix A.

Theorem 4.1. Let Q be the ambiguity set defined in (8). Then, the corresponding distributionally
robust optimization problem

inf sup Eq[f(0; (X,Y
duf, sup Eqlf(6: (X, Y))]

is upper-bounded by the following surrogate objective:

m

inf sup B.Ep sup L(fe(2),Y)]. 9)
HegﬁeAWl; T =2 () 1<, (2 )

Intuitively, Theorem 4.1 shows that the worst-case risk over our hierarchical ambiguity set can be
conservatively over-approximated by an adversarial perturbation problem in the latent space, where
the inner maximization is weighted by the worst-case group proportions 3. We therefore minimize
the surrogate objective (9) via a coordinate-wise procedure, as detailed next.

Proposed Iterative Training Procedure. For a given 0, let z; denote the maximizer of the map
Z/ = E(fg(zl)7 yz)

over the set {2 : ||z’ — z(z;)|| < €, }. To solve the optimization problem (9), we iteratively update
(3, 8 and semantic variables z; coordinate-wise as below. A pseudo-code for a minibatch size of 1 is
provided in Algorithm 1.

1. Update of z'. For given 6, z. can be approximated by one-step projected gradient ascent, ensuring
that |2 — z(z;)|| < €4,. (Lines 6-8)

2. Update of . For given 6 and 2, 8 can be computed using exponentiated gradient ascent, a variant
of mirror descent with negative Shannon entropy [42]. (Lines 10-12)

3. Update of 0. For a given (8 and z}, we update 6 using stochastic gradient descent. (Line 13)

A convergence guarantee under convexity assumptions is established in Appendix B, showing that
the algorithm achieves an O(1/v/T)) convergence rate.

4.3 Selection of ¢

As is common in DRO problems, the selection of the size of an ambiguity set, € in our problem, is
a challenging task. To address this challenge, we propose a heuristic data-driven procedure that is
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Algorithm 1 DRO with a Hierarchical Ambiguity Set

1: Input: Step sizes 1g, 19, 7-; initial parameters 0, 3O); number of iterations 7'
2: fort =1to T do

Sample g ~ Uniform(1,...,m)

Sample (z,y) ~ P,

Initialize 2’ < 2(x)

22+ nzvzfﬁ( g(t_l)(z'),y)

if ||2" — z(z)|| > €4 then

2 = Projr () 2e, ()
9: endif
10:  Update 8 + 8¢~V

’ (t—1)

11:  Update 8; < B, exp (maﬁ( 14 ('), y))
12:  Normalize 8% « B8’/ Zﬂ;/
13:  Update 0 — pt—b _ neﬂy)veﬂ(fg(hl) (), y)
14: end for

A A

similar to cross-validation, but partitions the training data based on the order of a one-dimensional
t-SNE [48] feature. Similar procedures have been considered in the literature [15].

Specifically, we project each z(z;) onto a one-dimensional space using t-SNE. This allows us to rank
samples within each group and split them into five quantiles. We focus on two extreme quantiles (the
top 20% and bottom 20%), each held out as a validation set in turn, with the remaining 80% used for
training. By training and evaluating on these opposite extremes, we simulate realistic distribution
shifts that disproportionately affect minority groups.

We then measure the model’s performance under both setups and select the value of ¢ that maximizes
minority-group accuracy on average. This ensures that the chosen perturbation radius is robust
to distributional shifts and provides meaningful protection for underrepresented subpopulations in
practice.

S Experiments

5.1 Dataset

We conduct experiments on three widely used benchmark datasets, CMNIST, Waterbirds, and CelebA,
each exhibiting known spurious correlations between the label and an irrelevant attribute. All datasets
include a minority group that is underrepresented, rendering them susceptible to distributional shifts.

Original Datasets.

* CMINIST [2]: A colored variant of MNIST, split into four groups based on digit label (digits 0—4
as label 0, and digits 5-9 as label 1) and color (red vs. green). The color is spuriously correlated
with the digit label in the training set.

* Waterbirds [42]: Created by combining bird images from CUB [50] with backgrounds from
Places [58], yielding four groups based on (bird type, background). The minority group (waterbird,
land background) typically has few samples.

* CelebA [31]: A facial attribute dataset used here for classifying blond vs. non-blond hair, where
gender acts as a spurious attribute. The minority group (blond hair, male) is significantly underrep-
resented.

Modified Datasets with Minority Group Shifts. To rigorously test our approach under more
realistic distribution shifts, we construct modified versions of the above datasets by inducing intra-
group shifts specifically in each minority group:

* Shifted CMNIST: Rotate all images in the minority group (label I, red) by 90° at test time, while
keeping them unrotated at training time.

 Shifted Waterbirds: Restrict the training set’s minority group (waterbird, land background) to
only waterfowls, and the test set’s minority group to only seabirds.
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Table 1: Worst-group and average accuracy on CMNIST, Waterbirds, and CelebA under shifted distributions.
All results are averaged over three runs with different random seeds. Boldface indicates the best performance,
while underlined numbers denote the second-best.

Method Group label Shifted CMNIST Shifted Waterbirds Shifted CelebA
Worst Acc Average Acc  Worst Acc  Average Acc Worst Acc  Average Acc
GroupDRO v 65.9+48.2 74.0£0.7 91.740.3 94.940.1 59.843.2 92.440.3
LISA v 42.9410.0 59.8+4.5 79.1+1.8 94.240.3 60.6+1.1 92.140.2
DFR" ' 28.0+4.9 47.84+1.9 89.2+15 96.3+0.4 50.3+3.5 90.5+0.4
PDE v 65.3+11.1 71.3+6.2 84.4+4.6 92.040.6 5634112 91.6+04
Ours v 71.8+2.8 75.0+0.4 93.740.2 94.6+0.1 72.14+2.0 91.340.1

Table 2: Worst-group and average accuracy on CMNIST, Waterbirds, and CelebA under their original (unshifted)
distributions.

Method Group label CMNIST Waterbirds CelebA
Worst Acc Average Acc  Worst Acc  Average Acc  Worst Acc  Average Acc

ERM X 3.440.9 12.9+40.8 62.6+0.3 97.3+1.0 47.7+2.1 94.940.3
JIT X 67.3£5.1 76.4+3.3 83.8+1.2 89.3+0.7 81.5+1.7 88.1+03
CnC X - - 88.54+0.3 90.940.1 88.840.9 89.940.5
GIC X 722405 73.24+02 86.340.1 89.6+13 89.440.2 91.9+0.1
SSA X 71.14+04 75.0+0.3 89.0+0.6 92.240.9 89.8+1.3 92.840.1
GroupDRO v 73.14+0.3 74.840.2 90.64+0.2 92.740.1 89.3+£13 92.6+0.3
LISA v 73.3+0.2 74.0+0.1 89.2+0.6 91.84+0.3 89.3+1.1 924404
DFR" v 59.8+04 62.1+0.2 90.2+0.8 97.0+0.3 80.7+2.4 90.61+0.7
PDE v 72.6+0.7 73.0+0.4 90.340.3 92.440.8 91.0+0.4 92.0+0.6
Ours v 73.6+0.3 75.1£0.5 90.8+0.2 92.6+0.2 90.4+0.3 92.740.0

* Shifted CelebA: For minority group (blond hair, male), include only no-glasses images in training
and only with-glasses images at test time.

These modifications reflect real-world scenarios where underrepresented groups not only appear more
frequently but also exhibit subtle changes. Further details and illustrative examples are provided in
Appendix D.

5.2 Baselines

We compare our method to several representative baselines: ERM, Group DRO [42], JTT [30], CnC
[56], SAA [35], LISA [53], DFR [24], PDE [12], and GIC [19]. These methods range from direct
robust learning (e.g., Group DRO) to two-step pipelines that first infer group membership and then
apply robust training (e.g., SAA, GIC). Detailed descriptions are provided in Appendix E.

For our newly constructed datasets incorporating minority-group distribution shifts, we conducted
experiments focusing on Group DRO, LISA, DFR, and PDE. Unlike methods that infer group
labels and then rely on a separate robust training step, these four baselines—Ilike our proposed
approach—directly utilize known group information. This distinction provides a more consistent and
fair comparison in scenarios where explicit group labels are available.

5.3 Evaluation

Metrics. We consider two metrics: worst-group accuracy and average accuracy. The worst-group
accuracy is obtained by evaluating accuracy on each group and taking the minimum across all groups,
providing insight into how a method performs if the test distribution is heavily skewed toward the
most challenging subgroup. Meanwhile, the average accuracy is computed as the weighted average of
group accuracy, where the weights are proportional to the group sizes in the training data, reflecting
overall performance but offering less visibility into group-specific disparities.

Model Selection. Following [42] and related methods, we select hyperparameters and stopping
criteria based on the highest worst-group validation accuracy. In particular, for scenarios involving
minority group shifts, we adopt the data-driven tuning procedure from Section 4.3 to determine the
perturbation parameter e.



308

309
310
311
312
313
314
315
316
317

318
319
320
321
322
323
324
325
326
327

329
330
331
332
333
334
335

336
337
338
339
340
341
342
343
344
345

346

347
348
349
350
351
352
353

354
355
356
357
358
359

5.4 Results

Performance on Shifted Distributions. Taple 3: Worst-group and average accuracy on Waterbirds
Under shifted distributions (Table 1), our ynder minority group shifted distributions and Corrected Wa-
method demonstrates clear superiority in terbirds on the original dataset with corrected labels.

worst-group accuracy across all three
benchmarks (CMNIST, Waterbirds, and  Method
CelebA). On CMNIST, LISA and DFR de-
grade substantially, highlighting their vul-
nerability to intra-group shifts. By contrast,
our framework maintains high worst-group accuracy.

Shifted Waterbirds Corrected Waterbirds
Worst Acc Avg Acc Worst Acc Avg Acc

Group DRO 91.7£03  94.9+0.1 94.1+0.6  94.7+0.0
Ours 93.7+0.2  94.6+0.1  95.1+04  96.340.0

For Waterbirds, which involves a moderate shift in species composition within the minority group,
most baselines experience notable drops in worst-group accuracy. In contrast, our approach maintains
robust worst-group accuracy, indicating its capacity to adapt to intra-group variability. Interestingly,
both Group DRO and our method report higher worst-group accuracy in the shifted case than in the
original Waterbirds dataset (Table 2); however, this discrepancy arises from a known mislabeling
issue [3], where three bird species labeled as “waterbird” should actually be “landbird.” To verify
this, we correct the mislabeled samples in the original dataset and report results in Table 3: under the
corrected labels, both Group DRO and our method exhibit the expected pattern, performing better in
the unshifted setting than under the minority-group shift. Notably, our approach outperforms Group
DRO in both scenarios, confirming its robustness even after label corrections.

On the more challenging CelebA benchmark, our advantage grows more pronounced. While PDE
shows slightly higher worst-group accuracy on the original dataset (Table 2), its performance drops
sharply (by about 34.7%) when the minority-group distribution is shifted. These observations
underscore the importance of modeling both inter-group and intra-group uncertainties—especially
given that minority groups in Waterbirds and CelebA constitute only about 1% of the data and thus
are more susceptible to distributional changes. Furthermore, our results highlight that relying on
pre-defined test splits with uniformly distributed attributes may offer an overly optimistic view of
real-world robustness.

Performance on Original Distributions. On the original (unshifted) versions of CMNIST, Wa-
terbirds, and CelebA (Table 2), our method consistently achieves top-tier worst-group accuracy. It
secures the highest or near-highest scores across all three benchmarks, confirming that the proposed
framework not only excels under distributional shifts but also remains effective when intra-group
distributions are stable. Notably, even in these unshifted settings, methods such as Group DRO rely
on the strong assumption that each group’s training distribution remains valid at test time. As our
results show, explicitly modeling distributional uncertainty within minority groups can yield more
reliable robustness, highlighting the limitations of approaches that treat group distributions as fixed.
By addressing potential discrepancies at both the inter-group and intra-group levels, our framework
provides a stronger foundation for real-world applications.

6 Conclusion

We introduced a distributionally robust optimization framework with a hierarchical ambiguity set
that explicitly models both inter-group and intra-group distribution shifts—an often overlooked yet
practically crucial scenario for underrepresented subpopulations. We find that even small, realistic
shifts in how minority group samples are split between training and testing—without altering group
definitions—can result in significant degradation of performance in existing robust methods. In
contrast, our approach maintains strong performance by modeling latent variability within each group,
offering a theoretically grounded and robust foundation for real-world deployment.

Limitations and Future Work. Our experiments focus on image datasets with clear feature labels
(e.g., species type, presence of glasses) that enable controlled intra-group shifts. Extending the
method to other modalities such as text, where such labels are less accessible, is a promising direction.
In addition, the radius parameter e is chosen heuristically; a more principled or automated selection
method is worth investigating. Finally, since real-world data may involve multiple spurious features,
extending the framework to multi-spurious settings is a promising future direction.
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A Proof of Theorem 4.1

Proof. We begin with a lemma adapted from [46], with minor adjustments to match our framework.
This lemma provides an equivalent form for the inner supremum problem of DRO with a W -
neighborhood, which is closely related to the representation (6) of W.

Lemma A.1. [46, Proposition 3.1] Let 0 be fixed model parameters, and let ¢(-,-) be a metric on the
input space X. For any distribution P on X x ) and for any ¢ > 0,

Ep sup  L(0;(z,y))| = sup  Eqll(6;(X,Y))].
(2,9)€B(X,Y) Woe (Q,P)<e

where Be(x,y) = {(2/,y') : c((z,y), (2',y)) <€}

With the ambiguity set (8), the DRO (3) is equivalent to

inf { sup sup Eq[e(0; (X,Y))] ¢, (10)
€O BEAMm -1 Wee (Qg,Pg)<eq
g=1,...m

where Q = Z;"’:l B4Qg-
For a fixed 6, the double supremum in (10) can equivalently be written as

m

sup sup Z By Eq, [(0; (X,Y))]
BEA L1 Woo(ngpg)Seg g=1
g=1,....m
= sup > By sup  Eg [6(6; (X, V)]
6€Am—1 g:1 Woo(Q_qug)SE.q

By applying Lemma A.1, one can upper-bound the inner supremum in the previous display as

Ep, sup £0;(x,Y))| =Ep, sup L(fl(2(z)),Y)
z:||z(z) —2(X)||<eq z:||z(z) —2(X)[|<eq
<Ep, sup L(fi(z),Y)],
2|2 —2(X) || <eg

where = — z(z) denotes the feature map defined in (7). Thus, the original optimization problem is
upper-bounded by

m

inf  sup ZﬁgEPg

0/ 1
sup L 2'),Y
0co BEA, 1 g=1 (fL( ) )

2|2 —z(X) || <eq

)

and completes the proof. O

B Convergence Analysis of Algorithm 1

. . —(1:T
We analyze convergence via e of the average iterate 9( ) :

o —(1:T) B .
i R £ G

where L(0,8) = 7", B4Ep, {SUPZI;Hz'—z(X)ngg L (fg(z’),Y)] In the convex setting, our
method achieves O(1/v/T).

14



s40  Proposition B.1 (Convergence of Algorithm 1). Suppose E( 2(2), y) is non-negative, convex in 0,
541 By-Lipschitz in 0, and bounded by By for all (x,y) in X x Y. In addition, let ||0||2 < Be for all
sa2 0 in some convex set © C RY, and assume the feature map z(x) is fixed w.r.t. §. Then, the average
543 iterate of Algorithm 1 achieves an expected error at the rate

2 2 2
E[ET] < 2m\/10(B@ng Bj logm)

544 Proof. Each iteration samples G ~ Unif{1,...,m} and (X,Y’) ~ Pg. The resulting joint sample
s4s &= (X,Y,G) is drawn i.i.d. from the mixture distribution ¢ := L Z;Ll P,.

s46  For each group g € {1,...,m}, define the stochastic loss function

Fy(0:6) :==m-1[G=g]-  sup  L(fi(),Y),

llz" =2(X)l<eq

547 and let

f4(0) :=Ep, sup  L(fL(<),Y)
=Xl <eg

s4s The total objective is then L(0, 3) = >°1"; By f4(0).

s49  We now verify the conditions required to apply the standard online mirror descent (OMD) regret
550 bound [37]:

551 (A) Convexity. For each g, the inner function £(f?(2'),Y) is convex and non-negative in 6,
552 and the supremum preserves convexity via Danskin’s theorem. Thus, f,(#) is convex.
553 (B) Expectation form. We have
1 - ! 0.
Eeq[Fy(0;8)] = = Z Exy)~p, [m- 1[¢' =g]- sup L(fL(Z),Y)| = fy(0).
m 4= 12/ —=(X) | <e
g'=1 g
554 (C) Unbiased subgradients. By Danskin’s theorem, the mapping 6 — sup,, L(f2(z"),Y) is
555 subdifferentiable. Hence, Vg Fy(6; &) is an unbiased subgradient:

Eeq[VoFy(0;€)] = Vafe(0).
ss6  With the conditions (A)—(C) established, and using the boundedness assumptions:
[0l < Be, [IVoL|l < By, L < By,
557 the standard OMD regret bound [37, 42] yields

10(B3B% + B?1
Eler] < 2m\/ (55 o em),

ss8 completing the proof. O

sss, C  Interpreting Latent Perturbation Regularization

s60 To clarify the intuition behind our latent perturbation framework, we employ a first-order Taylor
s61 expansion of the loss function. This approximation shows that the innermost supremum in our opti-
s62 mization problem can be interpreted as the original loss £(f?(z),) plus an additional regularization
563 term involving the dual norm of the gradient with respect to the latent representation. Specifically,
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o L(fL(2)y) = Lo L(f2(2(x) + (' = 2(2))), )
T (£ (F2((@)),0) + VoL (fL=(@),0) | (2 = 2())

—L(f@)y)+ sup  V.L(f((2)y) (¢ - 2(x)

|z —=z(z)l[<e

=L (f%@),y) +e| VL (=) 9)], -

where || - ||« denotes the dual norm corresponding to || - ||. This added regularization term penalizes
large gradients in the latent space, promoting robustness by ensuring that small perturbations in z(z)
do not lead to significant changes in the loss. By minimizing this term alongside the original loss, the
model gains stability and improved performance under real-world distributional shifts.

D Dataset Details

D.1 Original Dataset

Colored MNIST (CMNIST) [2]. The CMNIST dataset is designed for a noisy digit recognition
task, incorporating color as a spurious attribute. The dataset is divided into four distinct groups based
on class and color: g; = {0, green}, go = {1, green}, g3 = {0, red}, and g4 = {1, red}. It involves
two classes: class 0 includes the digits (0,1, 2, 3,4) and class 1 includes the digits (5,6, 7,8,9). The
training set consists of 30,000 samples, where for class 0, the ratio of red to green samples is 8 : 2,
while for class 1, this ratio is 2 : 8. The validation set, which comprises 10,000 samples, maintains
an equal distribution of color across both classes, with a 1 : 1 ratio of red to green samples for each
class. The test set includes 20,000 samples and introduces a more pronounced group distribution
shift: class O has a red to green sample ratio of 1 : 9, and class 1 has a ratio of 9 : 1. Following the
approach proposed by [2], labels in the dataset are flipped with a probability of 0.25.

(a) 0, green (b) 1, green (c) 0, red (d) 1, red

Figure 2: Example images from the CMNIST dataset. The groups are g1 = {0, green}, go =
{1, green}, g3 = {0,red}, and g4 = {1,red}.

Waterbirds [42]. The Waterbirds dataset is designed to classify images of birds into two categories:
“waterbirds” and “landbirds”, with a deliberate introduction of spurious correlations between the
bird type and the background. The dataset is divided into four distinct groups based on bird type
and background: ¢g; = {landbird, land}, go = {landbird, water}, g3 = {waterbird, land}, and
g4 = {waterbird, water}. This synthetic dataset is created by combining bird images from the
Caltech-UCSD Birds 200-2011 (CUB) dataset [50] with backgrounds from the Places dataset [58].
Waterbird species, such as albatross, auklet, cormorant, frigatebird, and others, are grouped together,
while all other species are classified as landbirds. The dataset comprises 4,795 training samples
distributed as follows: 3,498 landbirds on land backgrounds, 1,057 waterbirds on water backgrounds,
184 landbirds on water backgrounds, and 56 waterbirds on land backgrounds. This setup highlights
the minority groups and the inherent spurious correlations. In contrast to the training set, the validation
and test sets are constructed to have an equal number of samples for each group within each class.
The minority group, waterbirds on land, emphasizes the skewed distribution of the dataset, making
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it suitable for studying the impact of spurious correlations on model performance. The Waterbirds
dataset is accessible through the Wilds library in PyTorch [25].

%&w

(a) landbird, land (b) landbird, water (c) waterbird, land (d) waterbird, water

=

Figure 3: Example images from the Waterbirds dataset. The groups are g; = {landbird, land},
g2 = {landbird, water}, g3 = {waterbird, land}, and g, = {waterbird, water}.

CelebA [31]. The CelebA dataset is used for a hair-color prediction task with facial images
of celebrities, where the target labels are “blond” and “non-blond” hair colors. For experimen-
tal purposes, the dataset is divided into four distinct groups based on hair color and gender:
g1 = {non-blond hair, female}, go = {non-blond hair, male}, g3 = {blond hair, female}, and
g4 = {blond hair, male}. Gender serves as a spurious feature, introducing correlations between
the hair color and gender of individuals. The training set consists of 162,770 images distributed as
follows: 71,629 females with non-blond hair, 66,874 males with non-blond hair, 22,880 females with
blond hair, and 1,387 males with blond hair. The validation set includes 19,867 images, with 8,535
females with non-blond hair, 8,276 males with non-blond hair, 2,874 females with blond hair, and
182 males with blond hair. The test set comprises 19,962 images, with 9,767 females with non-blond
hair, 7,535 males with non-blond hair, 2,480 females with blond hair, and 180 males with blond hair.
The minority group in this dataset is males with blond hair, which constitutes a small fraction of the
data, highlighting the skewed distribution and the presence of spurious correlations.

-

(a) non-blond, female (b) non-blond, male (c) blond, female (d) blond, male

Figure 4: Example images from the CelebA dataset. The groups are g; = {non-blond hair, female},
g2 = {non-blond hair, male}, g3 = {blond hair, female}, and g4 = {blond hair, male}.

D.2 Modified Datasets

Building on the previously introduced datasets—CMNIST, Waterbirds, and CelebA—we constructed
modified versions of these datasets by applying conditional distribution shifts to the minority groups,
simulating real-world scenarios. Below, we detail the modifications for each dataset and illustrate
these shifts with corresponding figures.

Modified CMNIST. In the CMNIST dataset, we created a modified version where the minority
group’s images (label 1, red) were rotated by 90 degrees in the test set, while they remained unrotated
in the training set. This manipulation simulates conditional distribution shifts often encountered in
real-world applications. Figure 5 provides an illustration of this shift, showing example images from
the train and test sets.
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(a) Train set (b) Test set

Figure 5: Example of conditional distribution shift in the CMNIST dataset, where the minority group
(label 1, red) images are rotated by 90 degrees in the test set, while they are unrotated in the training
set.

Modified Waterbirds. For the Waterbirds dataset, we constructed a modified version where the
minority group (waterbird, land background) was designed to have a shift in species composition
between the train and test sets. Specifically, the training set included only waterfowl species, such
as Gadwall, Grebe, Mallard, Merganser, and Pacific Loon, while the test set contained exclusively
seabird species, including Albatross, Auklet, Cormorant, Frigatebird, Fulmar, Gull, Jaeger, Kittiwake,
Pelican, Puffin, Tern, and Guillemot. During the dataset construction process, we identified and
corrected a mislabeling issue involving three species—Western Wood-Pewee, Eastern Towhee, and
Western Meadowlark—which had been incorrectly labeled as waterbirds instead of landbirds [3].
Figure 6 illustrates this shift, highlighting the separation of species between the train and test sets.

(a) Train set (b) Test set

Figure 6: Example of conditional distribution shift in the Waterbirds dataset, where the minority
group (waterbird on land background) consists of waterfowl in the training set and seabirds in the test
set.

To further highlight the impact of this modification, Figure 7 compares the original distribution and
the modified distribution shift scenarios. In the original dataset (Figure 7(a)), bird species in the
minority group are relatively evenly distributed across train, validation, and test sets. However, in
the modified version (Figure 7(b)), the training set contains only waterfowl, while the test set is
composed entirely of seabirds, creating a distinct distribution shift.

Modified CelebA. In the CelebA dataset, we modified the minority group (blond hair, male) to
have different attributes between the train and test sets. Specifically, the training set contained only
images without glasses, while the test set contained only images with glasses. This modification
reflects real-world distribution shifts where rare attributes in small minority groups may change across
different distributions, impacting model performance. Figure 8 shows example images demonstrating
this shift.

Figure 9 provides a detailed comparison of the original and modified distributions for the CelebA
dataset. In the original distribution (Figure 9(a)), the minority group is predominantly represented by
the “Without Eyeglasses” category across train, validation, and test sets, with relatively few examples
in the “With Eyeglasses” category. In the modified version (Figure 9(b)), the training set consists
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(a) Original distribution of the minority group. (b) Distribution shift of the minority group (only water-
fowl in training, only seabirds in testing).

Figure 7: Comparing the original and shifted distributions of the minority group (waterbird, land
background) in the Waterbirds dataset (left: seabirds, right: waterfowl, split by dashed line).

(a) Train set (b) Test set

Figure 8: Example of conditional distribution shift in the CelebA dataset, where the minority group

(blond hair, male) included only images without glasses in the training set and images with glasses in
the test set.

e42 exclusively of “Without Eyeglasses” images, while the test set contains only “With Eyeglasses”,
643 creating a clear disjoint in key attributes between training and testing phases.
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(a) Original distribution of the minority group. (b) Distribution shift of the minority group (only “With-
out Eyeglasses” in training, only “With Eyeglasses” in
testing).

Figure 9: Comparing the original and shifted distributions of the minority group (blond hair, male) in
the CelebA dataset (left: “Without Eyeglasses”, right: “With Eyeglasses™).

644 By introducing these conditional distribution shifts, our modified datasets simulate real-world chal-
645 lenges, particularly in scenarios where small minority groups are highly susceptible to such changes.
e46 These constructions not only reflect practical settings but also provide realistic benchmarks for

647 evaluating the robustness and generalization capabilities of machine learning models under diverse
e4s and challenging conditions.
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E Baseline Details

We compare our method against a range of representative baselines:

* ERM: ERM optimizes average accuracy on the training set without any robust objective or group-
specific considerations.

* Group DRO [42]: A canonical approach for mitigating spurious correlations using known group
labels. By partitioning data into predefined groups and minimizing the worst-case group loss,
Group DRO aims to improve the worst-group accuracy relative to standard ERM.

* JTT [30]: A two-step method that first trains an ERM model to identify misclassified samples
(viewed as proxies for minority groups), then upsamples these samples and retrains a classifier.

* CnC [56]: Identifies samples that share the same true class but differ in spurious attributes by
analyzing ERM outputs, then trains a robust model with a contrastive learning objective. This does
not require explicit group labels.

* SAA [35]: Infers latent groups via a loss-based criterion, then applies Group DRO to improve
robustness. This method partially automates the discovery of group boundaries without needing
full group labels.

» LISA [53]: Mitigates spurious correlations by using Mixup strategies. Depending on the dataset,
LISA employs different Mixup variants (e.g., classic Mixup, CutMix, Manifold Mix) to interpolate
images within the same label or same spurious attribute, thereby reducing reliance on superficial
cues.

99

* DFR [24]: Balances the dataset by subsampling to match the minority group size (the “Subsample
strategy), then retrains an ERM model on this balanced data. This simple yet effective approach
can substantially improve worst-group performance. For a fair comparison, following [12], we
evaluate DFR using only the training dataset for both training and fine-tuning, ensuring consistency
across methods, which is denoted as DFRY.

* PDE [12]: Progressively expands the training dataset during the training process, starting with a
balanced subset to prevent the model from learning spurious correlations. This approach aims to
enhance robustness across all groups, including underrepresented ones.

* GIC [19]: Uses a two-step pipeline where group membership is partially inferred, then a robust
optimization (e.g., Group DRO) is applied. Similar to LISA, it can incorporate tailored Mixup
strategies depending on the dataset’s characteristics.

F Implementation Details

For experiments involving our newly constructed datasets, we reimplemented both our proposed
method and the relevant baselines. When certain baselines lacked reported results for a given
dataset, we used the performance from [56] and [19] if available; otherwise, we performed our own
reimplementations under consistent settings. In particular, for the original CMNIST dataset, we
reimplemented experiments for DFR and PDE, since their original papers did not include CMNIST
results. In all other cases, we referenced performance metrics from each baseline’s primary source.
All experiments were conducted on an NVIDIA GeForce RTX 3090 GPU.

Across all datasets, we employed the torchvision implementation of ResNet-50 pretrained
on ImageNet, training with SGD at a momentum of 0.9 and a batch size of 128, fol-
lowing [42]. Our approach also introduces a perturbation parameter ¢ to control within-
group uncertainty. Specifically, we define ¢, = ¢/,/n,, where n, represents the size of
group ¢ in the training data. To determine e, we performed a grid search over the set
{12/255, 24/255, 36/255, 48/255, 60/255, 72/255, 84/255, 96/255}, scaling each value by
/Nmin. Here, npi, = ming ng, denotes the smallest group size in the training set. Additionally,
we tuned the generalization adjustment parameter C over {0, 1, 2, 3}, as described in Section 3.3 of
[42]. This setup was applied consistently across every dataset.

For CMNIST, we conducted a grid search over learning rates {1074, 1073, 1072} and /5 penalties
{1071, 1072, 10~*} for 50 epochs. Due to instability in training with the selected parameter com-
binations in the original Group DRO implementation, we applied a ReduceLROnPlateau scheduler
starting at a learning rate of 0.01, using it consistently for both our method and Group DRO to ensure
fairness. For Waterbirds, the learning rate was tuned over {1073, 10™#, 107°} and the ¢, penalty
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over {10~%, 1071, 1}, with training conducted for 300 epochs. For CelebA, the learning rate was
tuned over {10~%, 107°} and the /5 penalty over {10~%, 10=2, 1} for 30 epochs. We referred to
prior works including [53] and [17] to guide these hyperparameter search ranges.

G Experimental Result Details

G.1 Visualizing t-SNE Ordering for Minority Groups

To highlight the utility of t-SNE ordering in simulating realistic distribution shifts (as discussed in
Section 4.3), we present visual examples of waterbirds from the top 20% and bottom 20% quantiles of
the t-SNE projections. This approach effectively partitions samples based on semantically meaningful
intra-group differences, enabling validation splits that closely mimic real-world distribution shifts.

3 % ,v,‘ Ry N
P 5&“ / > § s ¥ ) é.‘ ) ‘o v

2 /»

(b) Example images from the bottom 20% of t-SNE ordering

Figure 10: t-SNE-based ordering reveals subtle distinctions within the minority group. (a) The top
quantile features waterbirds with longer beaks, while (b) the bottom quantile features those with
shorter beaks.

As shown in Figure 10, the t-SNE ordering captures nuanced intra-group differences within this
minority group. In the top 20% quantile (Figure 10(a)), waterbirds with longer beaks dominate; in
the bottom 20% quantile (Figure 10(b)), shorter-beaked waterbirds are more prevalent. This contrast
illustrates how a t-SNE-driven partition can create validation splits that mimic real-world distribution
shifts. This method not only emphasizes variations within groups but also systematically evaluates
the model’s robustness under challenging real-world conditions.

G.2 Impact of ¢ on Robustness

The perturbation parameter € plays a critical role in improving robustness under minority group shifts.
Figures 11(a) and 11(b) show how increasing e affects worst-group accuracy for the Waterbirds
and CelebA datasets, respectively. Notably, both datasets achieve significant gains in worst-group
accuracy when ¢ is set above zero, indicating enhanced resilience to distributional shifts.

As illustrated in Figure 11(a), larger e values consistently improve worst-group accuracy on Water-
birds, enabling the model to better manage intra-group variations and subpopulation shifts. A similar
trend appears in Figure 11(b) for CelebA, further validating the robustness gained by appropriately
increasing e.
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(a) Waterbirds dataset under a minority group shift. (b) CelebA dataset under a minority group shift.

Figure 11: Impact of ¢ on robustness. The x-axis represents € values scaled by 255, and the y-axis
indicates accuracy. Each point is the mean of 3 runs (solid lines), and the shaded regions show the
standard deviation. For this analysis, the learning rate and ¢5 penalty were fixed to isolate the effect
of e.

These findings underscore the importance of incorporating conditional distribution uncertainty into
the training framework. By effectively capturing within-group variability, our approach significantly
enhances worst-group performance, making it well-suited for handling realistic distributional shifts.

G.3 Grad-CAM Results and Analysis

To gain further insight into where each model focuses its attention under minority-group shifts, we
visualize Grad-CAM [43] heatmaps on misclassified examples (by Group DRO) that our method
classifies correctly. Figure 12 shows examples on the Waterbirds dataset, while Figure 13 presents
examples from CelebA.

Group DRO

Figure 12: Grad-CAM visualizations for Waterbirds test images from a minority-group shift scenario.
Each column shows an input image (top row), Grad-CAM for Group DRO (middle row), and Grad-
CAM for our method (bottom row).

Waterbirds. In Figure 12, the minority-group shift involves species changes not observed in the
training set. While Group DRO often localizes on a narrow region of the bird—sometimes near
the torso or background—our method exhibits a more distributed attention, covering details like
the wings, beak, or feet. This broader localization helps the model rely on features invariant to
previously unseen waterbird species, enabling robust classification despite changes in the specific
types of waterbirds encountered.

CelebA. Figure 13 shows examples from the minority group (blond-hair, male) in which the
test images include glasses—an attribute absent from the training set. In these cases, Group DRO
erroneously directs attention toward the facial or eyewear regions rather than focusing on hair
color. By contrast, our method more reliably highlights the hair region, aligning with the intended
classification objective and enabling correct predictions even under previously unseen attributes.
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Figure 13: Grad-CAM visualizations for CelebA test images from the minority-group shift scenario.
Each column shows the input image (top row), Grad-CAM for Group DRO (middle row), and
Grad-CAM for our method (bottom row).

Overall, these visualizations confirm that, under challenging distribution shifts, our hierarchical DRO
framework is less prone to confounding features and more successful in focusing on the task-relevant
regions. This broader and more contextually aligned attention helps maintain strong performance
even when encountering unseen or spurious attributes.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction clearly describe both the hierarchical extension

of Group DRO and the evaluation under realistic distribution shifts, which are supported by
theoretical and empirical results in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper explicitly discusses limitations in the final section, including
challenges in generalizing to other modalities, the heuristic choice of the perturbation radius,
and the focus on single-spurious-feature settings.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The paper includes theoretical results (e.g., Theorem 1) with full assumptions
and proofs provided in the appendix for completeness.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper describes all necessary implementation details including dataset
modifications, model architectures, optimization settings, and hyperparameter tuning proce-
dures for reproducing the main experiments (Section 4 and Appendix F).

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The supplemental material includes anonymized code and instructions for
reproducing the main experiments.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5 and Appendix F provide detailed descriptions of training/test splits,
hyperparameters, optimizers, and other experimental settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Tables 1, 2, and 3 report the standard deviation over three independent random
seeds to indicate variability in performance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide details on the compute resources used in Appendix F.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics, with no violations of
ethical standards in data usage, experimental design, or reporting.

Guidelines:
¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The Conclusion section discusses the positive societal impact of improving
robustness for underrepresented groups; we do not foresee any negative societal impacts
from this work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper uses publicly available benchmark datasets (e.g., Waterbirds,
CelebA, CMNIST) that are widely adopted in the community and do not pose high risks for
misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and code used in this work are properly cited and their licenses
and terms of use are clearly stated in the supplemental material.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

28



1014
1015
1016
1017

1018
1019

1020
1021
1022

1023
1024

1025

1026
1027
1028

1029

1030
1031
1032
1033
1034
1035
1036
1037

1038
1039
1040
1041
1042
1043
1044

1045
1046
1047
1048
1049
1050
1051
1052

1053
1054

1055
1056
1057
1058
1059
1060

1061

1062
1063
1064
1065
1066

13.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We introduce modified benchmark datasets simulating minority group distri-

bution shifts, and provide documentation and implementation details in the supplemental
material.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|

Justification: The paper does not involve any crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve any research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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1067 * We recognize that the procedures for this may vary significantly between institutions

1068 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1069 guidelines for their institution.

1070 * For initial submissions, do not include any information that would break anonymity (if
1071 applicable), such as the institution conducting the review.

1072 16. Declaration of LLM usage

1073 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1074 non-standard component of the core methods in this research? Note that if the LLM is used
1075 only for writing, editing, or formatting purposes and does not impact the core methodology,
1076 scientific rigorousness, or originality of the research, declaration is not required.

1077 Answer: [NA]

1078 Justification: LLM was used for editing, not for core research content.

1079 Guidelines:

1080 * The answer NA means that the core method development in this research does not
1081 involve LLMs as any important, original, or non-standard components.

1082 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1083 for what should or should not be described.
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