Mitigating Spurious Correlation via Distributionally Robust Learning with Hierarchical Ambiguity Sets

Anonymous Author(s)

Affiliation Address email

Abstract

Conventional supervised learning methods are often vulnerable to spurious correlations, particularly under distribution shifts in test data. To address this issue, several approaches, most notably Group DRO, have been developed. While these methods are highly robust to subpopulation or group shifts, they remain vulnerable to intra-group distributional shifts, which frequently occur in minority groups with limited samples. We propose a hierarchical extension of Group DRO that addresses both inter-group and intra-group uncertainties, providing robustness to distribution shifts at multiple levels. We also introduce new benchmark settings that simulate realistic minority group distribution shifts—an important yet previously underexplored challenge in spurious correlation research. Our method demonstrates strong robustness under these conditions—where existing robust learning methods consistently fail—while also achieving superior performance on standard benchmarks. These results highlight the importance of broadening the ambiguity set to better capture both inter-group and intra-group distributional uncertainties.

5 1 Introduction

2

3

10

11

12

13

14

In recent years, machine learning methods have achieved remarkable success across a wide range of applications. An important objective of many machine learning methods is to learn model parameters that minimize the population risk, which is the population expectation of the loss function. Given training data and model parameters, the population risk can be approximated by the empirical risk, defined as the sample-averaged loss. Therefore, model parameters can be learned by minimizing the empirical risk, which is known as the empirical risk minimization (ERM) principle.

The underlying assumption of ERM-based methods is that the unseen future data, often referred to as test data, share the same distribution as the training data. However, in many real-world problems, the test data may follow a different distribution from the training data for various reasons. A notable example is subpopulation shift, where the training population consists of several groups (subpopulations), and the proportion of each group in the test data differs from that in the training data [42, 10, 52].

In many instances of subpopulation shifts, the group indicator is spuriously correlated with the target label or response variable. For example, in the widely studied Waterbirds dataset [42], the target label (e.g., "Waterbird" or "Landbird") is spuriously correlated with the background environment (e.g., water or land). As a result, ERM-based models tend to associate "Waterbird" primarily with water backgrounds, leading to significant performance degradation on minority groups, such as waterbirds appearing against land backgrounds. These vulnerabilities extend beyond controlled benchmarks, posing substantial risks in domains such as healthcare [54, 4], fairness [20, 9, 38], and autonomous driving [57].

Over the past few years, a growing body of research has focused on mitigating these spu-37 rious correlations to ensure more reliable and 38 stable model performance. Among the pro-39 posed methodologies, group distributionally 40 robust optimization (Group DRO) [42] has 41 emerged as a foundational approach. By parti-42 tioning the data into predefined groups and op-43 timizing for the worst group loss, Group DRO 44 effectively minimizes the model's reliance on 45 spurious correlations tied to specific subsets 46 of data. This framework has inspired a wide range of subsequent methods, such as JTT 48 [30], SAA [35], PG-DRO [17], DISC [51] and GIC [19], which commonly employ a two-step 50 strategy: first identifying latent groups and 51 then utilizing established robust training ap-52 proaches—frequently Group DRO itself—to 53 enhance model robustness. 54

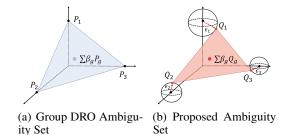


Figure 1: Comparison of the Group DRO ambiguity set (a) and our hierarchical extension (b). While Group DRO restricts uncertainty to mixtures of group distributions, our approach introduces additional within-group uncertainty (indicated by red dashed arrows), offering robustness to both intergroup and intra-group distributional shifts. (For visualization, we assume the 3-dimensional space in the figure represents a probability space, where each point corresponds to a probability distribution.)

While these methods have significantly advanced the field, they primarily focus on min-

imizing the worst-group loss under the assumption that each group's training distribution reliably represents its true underlying distribution. However, this assumption often fails in practice—especially for minority groups with limited samples—where within-group distributional shifts naturally arise as a consequence of underrepresentation in the training data [7, 13, 15]. This limitation highlights the need for a more flexible and robust approach that accounts for uncertainty not only across groups, but also within them.

In this work, we address these limitations by introducing a hierarchical ambiguity set within the Group DRO framework, capturing both inter-group and intra-group uncertainties. As illustrated in Figure 1, while conventional Group DRO focuses on robustness only to shifts in group proportions by minimizing the worst-group risk, our approach extends this perspective by additionally modeling uncertainty within individual groups.

Technically, we employ a Wasserstein-distance-based formulation, which has recently garnered significant theoretical and empirical support for its efficacy in designing distributionally robust learning methods [49, 28, 8, 5]. By defining a semantically meaningful cost function in a latent space, this formulation flexibly accommodates variations in the underlying data-generating mechanisms within each group. Consequently, our hierarchical ambiguity set enables the model to maintain robustness across a broader spectrum of distributional deviations, particularly for minority groups that are underrepresented in the training data.

75 Our main contributions are threefold:

76

77

78

79

80 81

82

83

84

85

86

87

88

- We re-examine Group DRO from a distributionally robust perspective and introduce a novel hierarchical ambiguity set that captures both inter-group and intra-group uncertainties, constituting a fundamental advancement over previous methods that build on Group DRO.
- We establish more realistic and challenging evaluation scenarios by modifying standard benchmarks—Waterbirds, CelebA, and CMNIST—to introduce minority group distribution shifts that prior work has overlooked. This enables more faithful assessment of robustness under real-world minority underrepresentation.
- Through extensive experiments, we show that our hierarchical approach consistently outperforms
 conventional Group DRO and related robust learning methods, underscoring the practical importance of a more flexible and theoretically grounded extension of the Group DRO framework. To
 the best of our knowledge, this is the first work to explicitly address intra-group distribution shifts
 alongside group-level spurious correlations in standard benchmark settings, highlighting a novel
 contribution to robust learning.

2 Related work

Using explicit group labels is a well-established approach to achieving robust performance on underrepresented subpopulations. [42] pioneered partitioning data by known group annotations and minimizing worst-group loss. Subsequent works extend this paradigm in multiple directions: Along similar lines, [27] expands Group DRO's ambiguity set from convex to affine combinations of group distributions, although it still assumes fixed conditional distributions within each group. Meanwhile, [24] rebalances distributions via subsampling, [12] employs a staged expansion of a group-balanced set, and [53] uses Mixup-based augmentations (e.g., CutMix, Manifold Mix) to learn more invariant features. [21] shows that even standard ERM can yield robust feature representations when combined with selective reweighting, and [40] further leverages inter-group interactions to identify shared features that enhance distributional robustness.

In parallel, a growing body of work addresses scenarios where group annotations are unavailable or prohibitively expensive, motivating the need to infer or approximate group structure. Building on [24], [29] extends last-layer retraining to settings with minimal or no group annotations. Some methods employ limited validation sets to discover latent groups and then apply Group DRO [42] for robust optimization [35, 17]. Indeed, the model's loss (or its alternatives) often helps identify underrepresented subpopulations; for example, [34, 30, 41] use high-loss samples to recognize minority groups. Other approaches draw on diverse cues: [1, 11] infer groups by maximizing violations of the invariant risk minimization principle [2], while [3] employs masking to reduce reliance on spurious features. [45, 44] instead cluster feature embeddings to discover latent groups and identify pseudo-attributes for debiasing. Likewise, [56] proposes a two-stage contrastive learning framework by aligning samples with the same class but different spurious attributes, and [51] constructs a "concept bank" of candidate spurious attributes for robust partitioning. Another line of work identifies spurious features by comparing the training set with a carefully selected reference dataset [19] or removes examples that disproportionately degrade worst-group accuracy [22].

Beyond these established techniques, emerging efforts explore scenarios with imperfect group partitions [59] or multiple spurious attributes [39, 23]. These studies challenge the assumption that spurious attributes remain fixed or neatly separated, prompting methods that better accommodate complex, real-world data. Notably, group-inference approaches, such as those proposed by [30] and [41], primarily focus on identifying underrepresented samples. However, these methods pay less attention to how faithfully those samples reflect the underlying distribution. Our work explicitly challenges the assumption that minority-group data reliably mirror their underlying distribution, modeling potential discrepancies within these subpopulations and underscoring the need for frameworks that capture not only which groups matter but also how accurately they represent real-world conditions.

3 Preliminaries

Problem Setup. We consider a supervised learning problem where each observation consists of input features $X \in \mathcal{X}$ and a label $Y \in \mathcal{Y}$. Let $\{(x_i, y_i)\}_{i=1}^n$ be the training data and Θ be the parameter space. Assuming that the test data follows the same distribution as the training data, an important goal of various machine learning methods is to minimize the risk (also referred to as the test or generalization error)

$$\mathbb{E}_P \left[\mathcal{L}(f^{\theta}(X), Y) \right] \tag{1}$$

over Θ , where f^{θ} is a function parametrized by θ , \mathcal{L} is a standard loss function, such as the crossentropy, and \mathbb{E}_P denotes the expectation under the population distribution P. To achieve this, one may solve the following optimization problem:

$$\inf_{\theta \in \Theta} \left\{ \mathbb{E}_{\hat{P}}[\ell(\theta; (X, Y))] = \frac{1}{n} \sum_{i=1}^{n} \ell(\theta; (x_i, y_i)) \right\},\,$$

often referred to as the ERM problem, where \hat{P} is the empirical measure and $\ell(\theta;(X,Y))$ is shorthand for $\mathcal{L}(f^{\theta}(X),Y)$.

In addition to the above basic setting, we assume that the data are partitioned into multiple groups, with an indicator variable $G \in \mathcal{G}$; thus, the training data can be expressed as $\{(x_i, y_i, g_i)\}_{i=1}^n$. In particular, we assume that this indicator variable is spuriously correlated with the label Y. More

specifically, in all our examples, we assume the existence of a spurious attribute $A \in \mathcal{A}$, and that the group variable G = (Y, A) is a pair involving the response variable Y. Hence, $\mathcal{G} = \mathcal{Y} \times \mathcal{A}$. With adjusted notation, we write $\mathcal{G} = \{1, \dots, m\}$.

In the Waterbirds dataset, for example, the task is to classify birds as Waterbird or Landbird, with a spurious attribute being the background type (Water Background or Land Background), which results in four distinct groups. This dataset provides a classic example of spurious correlation: most waterbirds (Y = Waterbird) are found against water backgrounds (A = Water Background), leading models to rely excessively on background features. This overreliance substantially diminishes the performance of ERM on underrepresented groups, such as waterbirds on land backgrounds.

Group DRO. Group DRO [42] was devised to address the aforementioned issue caused by the spurious attribute. In the Group DRO, the training data are modeled as instances from a mixture distribution $P = \sum_{g=1}^{m} \alpha_g P_g$, where P_g denotes the conditional distribution of (X,Y) given G=g, and $\alpha=(\alpha_1,\ldots,\alpha_m)$ represents the mixing proportion. Thus, each group forms a subpopulation within the training data. Instead of minimizing the population risk (1), Group DRO aims to minimize

$$\inf_{\theta \in \Theta} \max_{g \in \mathcal{G}} \mathbb{E}_{P_g} [\ell(\theta; (X, Y))], \tag{2}$$

which corresponds to the risk of the worst-performing group. Consequently, this procedure is highly robust to the subpopulation shift described in the introduction.

The Group DRO formulation (2) involves optimization over the discrete group variable g, posing a computational challenge for practical use. [42] showed that the problem can be reformulated into an equivalent form

$$\inf_{\theta \in \Theta} \sup_{\beta \in \Delta_{m-1}} \sum_{g=1}^{m} \beta_g \mathbb{E}_{P_g} [\ell(\theta; (X, Y))],$$

that involves continuous variables only, where $\Delta_{m-1}=\{\beta:\beta_g\geq 0,\sum_{g=1}^m\beta_g=1\}$ is the (m-1)-simplex.

Group DRO can be understood as an instance of standard DRO [6, 14] with a specific ambiguity set.
Note that the standard DRO formulation is given as

$$\inf_{\theta \in \Theta} \sup_{Q \in \mathcal{Q}} \mathbb{E}_{Q} [\ell(\theta; (X, Y))], \tag{3}$$

where Q is a class of distributions, commonly referred to as the *ambiguity (or uncertainty) set*. The Group DRO formulation (2) is a specific case of DRO (3), with

$$Q := \left\{ \sum_{g=1}^{m} \beta_g P_g : \beta \in \Delta_{m-1} \right\}. \tag{4}$$

Note that in frequently used DRO frameworks, the ambiguity set Q is often defined as a small neighborhood with respect to a standard (pseudo-)metric, such as the Wasserstein distance [33, 16] and f-divergence [36, 32].

4 Proposed Method

165

166

4.1 Hierarchical Ambiguity Sets

In this section, we propose a hierarchical extension of Group DRO to be robust to distribution shifts at multiple levels. The proposed method is devised to capture both inter-group and intra-group uncertainties in modeling the distributional shifts.

High-level Formulation. As in Group DRO, we model the training distribution as a mixture of the form $P = \sum_{g=1}^{m} \alpha_g P_g$. To model the distributional uncertainty, we consider the DRO formulation (3) with a hierarchical ambiguity set \mathcal{Q} , defined as

$$Q = \left\{ \sum_{g=1}^{m} \beta_g Q_g : \begin{array}{l} \beta \in \Delta_{m-1}, \ d_1(\beta, \alpha) \le \rho, \\ d_2(Q_g, P_g) \le \epsilon_g \ \forall g \end{array} \right\}, \tag{5}$$

where d_1 and d_2 are suitable metrics on Δ_{m-1} and the class of distributions for (X,Y), respectively, and ρ , $\epsilon_q > 0$ are radii that determine the size of the ambiguity set.

The ambiguity set Q has a two-level hierarchy. The first level is controlled by the mixing proportion β . It accounts for uncertainty in the proportion of each subpopulation or group. Such uncertainty can arise, for example, if certain minority groups appear more frequently in evaluation settings than in the training set, thereby increasing their probability of occurrence and potentially amplifying spurious correlations if not properly addressed [47]. At the second level, the distributional shift in each group is considered to capture within-group variability.

By jointly accounting for changes in the group proportion α and the conditional distributions $\{P_g\}_{g=1}^m$, the proposed framework provides two levels of robustness: inter-group generalization and resilience to intra-group variability. This dual modeling of real-world uncertainties enables the proposed method to address a broader range of distributional shifts compared to Group DRO (2) alone or standard DRO (3), which uses a standard (pseudo-)metric neighborhood as its ambiguity set.

Relationship to Group DRO and Standard DRO. The ambiguity set (4) used in Group DRO is a special case of the proposed ambiguity set (5). In particular, (4) can be obtained by setting $\rho=\infty$ and $\epsilon_q=0$.

While standard DRO, which uses a standard metric neighborhood as an ambiguity set, can also be understood as a special case of the proposed method, the philosophy of the proposed ambiguity set differs from that of the standard ones. In standard DRO, the ambiguity set is taken as a small neighborhood with respect to a standard (pseudo-)metric. In contrast, we allow a large value for ρ , the radius that determines robustness to group proportions. Hence, distributions that are far from P with respect to standard metrics can also belong to the ambiguity set (5).

Detailed Formulation. The choice of d_1 is not critical because most reasonable metrics are equivalent. In the remainder of this paper, we set $\rho = \infty$.

For d_2 , we consider the infinite-order Wasserstein distance for computational convenience. Recall the definition of the Wasserstein distance of order $p \in [1, \infty)$:

$$W_p(Q, P) = \inf_{\gamma} \left\{ \left(\int c((x, y), (x', y'))^p d\gamma \right)^{\frac{1}{p}} \right\},\,$$

where the infimum is taken over every coupling γ of Q and P, and $c(\cdot,\cdot)$ is a cost function. The infinite-order Wasserstein distance is defined as $W_{\infty}(Q,P)=\sup_{p\geq 1}W_p(Q,P)$, with a variational representation

$$W_{\infty}(Q, P) = \inf \left\{ \epsilon > 0 : \begin{array}{l} Q(A) \le P(A^{\epsilon}) \\ \text{for every Borel set } A \end{array} \right\}, \tag{6}$$

where A^{ϵ} denotes the ϵ -enlargement of A; see [18].

The cost function is defined in a latent semantic space, which is more effective than defining it in the space of raw data [55, 26]. Specifically, we employ a deep neural network f^{θ} of depth L, defined as

$$f^{\theta}(x) = f_L^{\theta} \left(f_{L-1}^{\theta} \left(\dots f_1^{\theta}(x) \right) \right),$$

and take the output of the (L-1)-th layer (before the final fully connected layer) as the semantic representation:

$$z(x) := f_{L-1}^{\theta} \left(f_{L-2}^{\theta} \left(\dots f_1^{\theta}(x) \right) \right). \tag{7}$$

We then define the cost function $c(\cdot, \cdot)$ as

$$c\big((x,y),(x',y')\big) \;=\; \begin{cases} \|z(x)-z(x')\|, & \text{if } y=y',\\ \infty, & \text{otherwise}. \end{cases}$$

Note that under our definition, $W_p(P,Q) = \infty$ if the marginals P and Q of Y differ. In all our applications, the group indicator G is defined as a pair (Y,A); hence, this definition does not cause any issues.

Proposed Hierarchical DRO Formulation. To sum up, the proposed hierarchical DRO can be written in the standard form (3) with the ambiguity set

$$Q = \left\{ \sum_{g=1}^{m} \beta_g Q_g : \frac{\beta \in \Delta_{m-1},}{W_{\infty}(Q_g, P_g) \le \epsilon_g} \ \forall g \right\}.$$
 (8)

The flexibility in $\beta \in \Delta_{m-1}$ allows the group proportion to differ from α , which enables adaptation to new or changing subpopulation frequencies without introducing entirely new groups. With the constraint $W_{\infty}(Q_g, P_g) \leq \epsilon_g$, we accommodate plausible instance-level shifts within each group. Leveraging the semantic cost $c(\cdot, \cdot)$ allows the model to capture meaningful perturbations in high-dimensional feature spaces without conflating different class labels.

4.2 Algorithm

218

In this subsection, we provide an algorithm to solve the proposed DRO with the ambiguity set (8). We set $\epsilon_g = \epsilon/\sqrt{n_g}$, where n_g is the size of group g in the training data, and ϵ is a tunable hyperparameter that controls the degree of robustness to within-group distributional shifts. Intuitively, the fewer samples a group has, the more cautiously its potential distributional variations must be accounted for. See Section 4.3 for details on the selection of the tuning parameter ϵ .

Due to the hierarchical structure of the ambiguity set in (8), solving the resulting DRO problem is not straightforward. We therefore begin by reformulating the hierarchical DRO into a tractable optimization problem. We formally state the resulting formulation in the following theorem. The proof is provided in Appendix A.

Theorem 4.1. Let Q be the ambiguity set defined in (8). Then, the corresponding distributionally robust optimization problem

$$\inf_{\theta \in \Theta} \sup_{Q \in \mathcal{Q}} \mathbb{E}_Q[\ell(\theta; (X, Y))]$$

is upper-bounded by the following surrogate objective:

$$\inf_{\theta \in \Theta} \sup_{\beta \in \Delta_{m-1}} \sum_{g=1}^{m} \beta_g \mathbb{E}_{P_g} \left[\sup_{z': \|z' - z(X)\| \le \epsilon_g} \mathcal{L}(f_L^{\theta}(z'), Y) \right]. \tag{9}$$

Intuitively, Theorem 4.1 shows that the worst-case risk over our hierarchical ambiguity set can be conservatively over-approximated by an adversarial perturbation problem in the latent space, where the inner maximization is weighted by the worst-case group proportions β . We therefore minimize the surrogate objective (9) via a coordinate-wise procedure, as detailed next.

Proposed Iterative Training Procedure. For a given θ , let z_i' denote the maximizer of the map

$$z' \mapsto \mathcal{L}(f_L^{\theta}(z'), y_i)$$

over the set $\{z': \|z'-z(x_i)\| \le \epsilon_{g_i}\}$. To solve the optimization problem (9), we iteratively update β , θ and semantic variables z_i' coordinate-wise as below. A pseudo-code for a minibatch size of 1 is provided in Algorithm 1.

- 1. Update of z'. For given θ , z'_i can be approximated by one-step projected gradient ascent, ensuring that $\|z' z(x_i)\| \le \epsilon_{g_i}$. (Lines 6–8)
- 241 2. Update of β . For given θ and z_i' , β can be computed using exponentiated gradient ascent, a variant of mirror descent with negative Shannon entropy [42]. (Lines 10–12)
- 3. Update of θ . For a given β and z'_i , we update θ using stochastic gradient descent. (Line 13)

A convergence guarantee under convexity assumptions is established in Appendix B, showing that the algorithm achieves an $O(1/\sqrt{T})$ convergence rate.

4.3 Selection of ϵ

246

As is common in DRO problems, the selection of the size of an ambiguity set, ϵ in our problem, is a challenging task. To address this challenge, we propose a heuristic data-driven procedure that is

Algorithm 1 DRO with a Hierarchical Ambiguity Set

```
1: Input: Step sizes \eta_{\beta}, \eta_{\theta}, \eta_{z}; initial parameters \theta^{(0)}, \beta^{(0)}; number of iterations T
 2: for t = 1 to T do
           Sample q \sim \text{Uniform}(1, \dots, m)
 4:
           Sample (x,y) \sim P_g
 5:
           Initialize z' \leftarrow z(x)
           z' \leftarrow z' + \eta_z \nabla_{z'} \mathcal{L}(f_L^{\theta^{(t-1)}}(z'), y)
 6:
           if ||z'-z(x)|| > \epsilon_g then
 7:
                z' \leftarrow \text{Proj}_{\|z'-z(x)\| \leq \epsilon_q}(z')
 8:
 9:
            end if
           Update \beta' \leftarrow \beta^{(t-1)}
10:
           Update \beta_g' \leftarrow \beta_g' \exp\left(\eta_\beta \mathcal{L}\left(f_L^{\theta^{(t-1)}}(z'), y\right)\right)
11:
            Normalize \beta^{(t)} \leftarrow \beta' / \sum \beta'_{g'}
12:
            Update \theta^{(t)} \leftarrow \theta^{(t-1)} - \eta_{\theta} \beta_g^{(t)} \nabla_{\theta} \mathcal{L} \left( f_L^{\theta^{(t-1)}}(z'), y \right)
13:
14: end for
```

similar to cross-validation, but partitions the training data based on the order of a one-dimensional t-SNE [48] feature. Similar procedures have been considered in the literature [15].

Specifically, we project each $z(x_i)$ onto a one-dimensional space using t-SNE. This allows us to rank samples within each group and split them into five quantiles. We focus on two extreme quantiles (the top 20% and bottom 20%), each held out as a validation set in turn, with the remaining 80% used for training. By training and evaluating on these opposite extremes, we simulate realistic distribution shifts that disproportionately affect minority groups.

We then measure the model's performance under both setups and select the value of ϵ that maximizes minority-group accuracy on average. This ensures that the chosen perturbation radius is robust to distributional shifts and provides meaningful protection for underrepresented subpopulations in practice.

260 5 Experiments

261 5.1 Dataset

We conduct experiments on three widely used benchmark datasets, CMNIST, Waterbirds, and CelebA, each exhibiting known spurious correlations between the label and an irrelevant attribute. All datasets include a minority group that is underrepresented, rendering them susceptible to distributional shifts.

265 Original Datasets.

- CMNIST [2]: A colored variant of MNIST, split into four groups based on digit label (*digits 0–4* as label 0, and digits 5–9 as label 1) and color (red vs. green). The color is spuriously correlated with the digit label in the training set.
- Waterbirds [42]: Created by combining bird images from CUB [50] with backgrounds from Places [58], yielding four groups based on (bird type, background). The minority group (waterbird, land background) typically has few samples.
- **CelebA** [31]: A facial attribute dataset used here for classifying *blond* vs. *non-blond* hair, where *gender* acts as a spurious attribute. The minority group (*blond hair, male*) is significantly underrepresented.

Modified Datasets with Minority Group Shifts. To rigorously test our approach under more realistic distribution shifts, we construct modified versions of the above datasets by inducing intragroup shifts specifically in each minority group:

- **Shifted CMNIST**: Rotate all images in the minority group (*label 1, red*) by 90° at test time, while keeping them unrotated at training time.
- **Shifted Waterbirds**: Restrict the training set's minority group (*waterbird*, *land background*) to only *waterfowls*, and the test set's minority group to only *seabirds*.

Table 1: Worst-group and average accuracy on CMNIST, Waterbirds, and CelebA under shifted distributions. All results are averaged over three runs with different random seeds. Boldface indicates the best performance, while underlined numbers denote the second-best.

Method	Group label	Shifted CMNIST		Shifted Waterbirds		Shifted CelebA	
		Worst Acc	Average Acc	Worst Acc	Average Acc	Worst Acc	Average Acc
GroupDRO	✓	65.9±8.2	74.0±0.7	91.7±0.3	94.9±0.1	59.8±3.2	92.4±0.3
LISA	✓	42.9 ± 10.0	59.8 ± 4.5	$\overline{79.1} \pm 1.8$	94.2 ± 0.3	60.6 ± 1.1	92.1 ± 0.2
DFR ^{tr}	✓	28.0 ± 4.9	47.8 ± 1.9	89.2 ± 1.5	96.3 ± 0.4	$\overline{50.3} \pm 3.5$	90.5 ± 0.4
PDE	\checkmark	65.3 ± 11.1	71.3 ± 6.2	84.4 ± 4.6	92.0 ± 0.6	56.3 ± 11.2	91.6 ± 0.4
Ours	✓	71.8 ±2.8	75.0±0.4	93.7 ±0.2	94.6±0.1	72.1 ±2.0	91.3±0.1

Table 2: Worst-group and average accuracy on CMNIST, Waterbirds, and CelebA under their original (unshifted) distributions.

Method	Group label	CMNIST		Waterbirds		CelebA	
		Worst Acc	Average Acc	Worst Acc	Average Acc	Worst Acc	Average Acc
ERM	×	3.4±0.9	12.9±0.8	62.6±0.3	97.3±1.0	47.7±2.1	94.9±0.3
JTT	×	67.3 ± 5.1	76.4 ± 3.3	83.8 ± 1.2	89.3 ± 0.7	81.5 ± 1.7	88.1 ± 0.3
CnC	×	_	_	88.5 ± 0.3	90.9 ± 0.1	88.8 ± 0.9	89.9 ± 0.5
GIC	×	72.2 ± 0.5	73.2 ± 0.2	86.3 ± 0.1	89.6 ± 1.3	89.4 ± 0.2	91.9 ± 0.1
SSA	×	71.1 ± 0.4	75.0 ± 0.3	89.0 ± 0.6	92.2 ± 0.9	89.8 ± 1.3	92.8 ± 0.1
GroupDRO	✓	73.1 ± 0.3	74.8 ± 0.2	90.6 ± 0.2	92.7 ± 0.1	89.3 ± 1.3	92.6 ± 0.3
LISA	✓	73.3 ± 0.2	74.0 ± 0.1	89.2 ± 0.6	91.8 ± 0.3	89.3 ± 1.1	92.4 ± 0.4
DFR ^{tr}	✓	$\overline{59.8} \pm 0.4$	62.1 ± 0.2	90.2 ± 0.8	97.0 ± 0.3	80.7 ± 2.4	90.6 ± 0.7
PDE	\checkmark	72.6 ± 0.7	73.0 ± 0.4	90.3 ± 0.3	92.4 ± 0.8	$91.0 \!\pm\! 0.4$	92.0 ± 0.6
Ours	✓	73.6 ±0.3	75.1±0.5	90.8 ±0.2	92.6±0.2	<u>90.4</u> ±0.3	92.7±0.0

• **Shifted CelebA**: For minority group (*blond hair, male*), include only *no-glasses* images in training and only *with-glasses* images at test time.

These modifications reflect real-world scenarios where underrepresented groups not only appear more frequently but also exhibit subtle changes. Further details and illustrative examples are provided in Appendix D.

5.2 Baselines

We compare our method to several representative baselines: ERM, Group DRO [42], JTT [30], CnC [56], SAA [35], LISA [53], DFR [24], PDE [12], and GIC [19]. These methods range from direct robust learning (e.g., Group DRO) to two-step pipelines that first infer group membership and then apply robust training (e.g., SAA, GIC). Detailed descriptions are provided in Appendix E.

For our newly constructed datasets incorporating minority-group distribution shifts, we conducted experiments focusing on Group DRO, LISA, DFR, and PDE. Unlike methods that infer group labels and then rely on a separate robust training step, these four baselines—like our proposed approach—directly utilize known group information. This distinction provides a more consistent and fair comparison in scenarios where explicit group labels are available.

5.3 Evaluation

Metrics. We consider two metrics: *worst-group accuracy* and *average accuracy*. The worst-group accuracy is obtained by evaluating accuracy on each group and taking the minimum across all groups, providing insight into how a method performs if the test distribution is heavily skewed toward the most challenging subgroup. Meanwhile, the average accuracy is computed as the weighted average of group accuracy, where the weights are proportional to the group sizes in the training data, reflecting overall performance but offering less visibility into group-specific disparities.

Model Selection. Following [42] and related methods, we select hyperparameters and stopping criteria based on the highest worst-group validation accuracy. In particular, for scenarios involving minority group shifts, we adopt the data-driven tuning procedure from Section 4.3 to determine the perturbation parameter ϵ .

5.4 Results

Performance on Shifted Distributions.
Under shifted distributions (Table 1), our
method demonstrates clear superiority in
worst-group accuracy across all three
benchmarks (CMNIST, Waterbirds, and

CelebA). On CMNIST, LISA and DFR degrade substantially, highlighting their vulnerability to intra-group shifts. By contrast,

Table 3: Worst-group and average accuracy on Waterbirds under minority group shifted distributions and Corrected Waterbirds on the original dataset with corrected labels.

Method	Shifted W	aterbirds	Corrected Waterbirds		
Welloa	Worst Acc	Avg Acc	Worst Acc	Avg Acc	
Group DRO Ours	91.7±0.3 93.7 ±0.2	94.9±0.1 94.6±0.1	94.1±0.6 95.1 ±0.4	94.7±0.0 96.3±0.0	

our framework maintains high worst-group accuracy.

For Waterbirds, which involves a moderate shift in species composition within the minority group, most baselines experience notable drops in worst-group accuracy. In contrast, our approach maintains robust worst-group accuracy, indicating its capacity to adapt to intra-group variability. Interestingly, both Group DRO and our method report higher worst-group accuracy in the shifted case than in the original Waterbirds dataset (Table 2); however, this discrepancy arises from a known mislabeling issue [3], where three bird species labeled as "waterbird" should actually be "landbird." To verify this, we correct the mislabeled samples in the original dataset and report results in Table 3: under the corrected labels, both Group DRO and our method exhibit the expected pattern, performing better in the unshifted setting than under the minority-group shift. Notably, our approach outperforms Group DRO in both scenarios, confirming its robustness even after label corrections.

On the more challenging CelebA benchmark, our advantage grows more pronounced. While PDE shows slightly higher worst-group accuracy on the original dataset (Table 2), its performance drops sharply (by about 34.7%) when the minority-group distribution is shifted. These observations underscore the importance of modeling both inter-group and intra-group uncertainties—especially given that minority groups in Waterbirds and CelebA constitute only about 1% of the data and thus are more susceptible to distributional changes. Furthermore, our results highlight that relying on pre-defined test splits with uniformly distributed attributes may offer an overly optimistic view of real-world robustness.

Performance on Original Distributions. On the original (unshifted) versions of CMNIST, Waterbirds, and CelebA (Table 2), our method consistently achieves top-tier worst-group accuracy. It secures the highest or near-highest scores across all three benchmarks, confirming that the proposed framework not only excels under distributional shifts but also remains effective when intra-group distributions are stable. Notably, even in these unshifted settings, methods such as Group DRO rely on the strong assumption that each group's training distribution remains valid at test time. As our results show, explicitly modeling distributional uncertainty within minority groups can yield more reliable robustness, highlighting the limitations of approaches that treat group distributions as fixed. By addressing potential discrepancies at both the inter-group and intra-group levels, our framework provides a stronger foundation for real-world applications.

6 Conclusion

We introduced a distributionally robust optimization framework with a hierarchical ambiguity set that explicitly models both inter-group and intra-group distribution shifts—an often overlooked yet practically crucial scenario for underrepresented subpopulations. We find that even small, realistic shifts in how minority group samples are split between training and testing—without altering group definitions—can result in significant degradation of performance in existing robust methods. In contrast, our approach maintains strong performance by modeling latent variability within each group, offering a theoretically grounded and robust foundation for real-world deployment.

Limitations and Future Work. Our experiments focus on image datasets with clear feature labels (e.g., species type, presence of glasses) that enable controlled intra-group shifts. Extending the method to other modalities such as text, where such labels are less accessible, is a promising direction. In addition, the radius parameter ϵ is chosen heuristically; a more principled or automated selection method is worth investigating. Finally, since real-world data may involve multiple spurious features, extending the framework to multi-spurious settings is a promising future direction.

References

- [1] Faruk Ahmed, Yoshua Bengio, Harm Van Seijen, and Aaron Courville. Systematic generalisation with group invariant predictions. In *Proc. International Conference on Learning Representations*, 2021.
- [2] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant risk minimization. arXiv preprint arXiv:1907.02893, 2019.
- Saeid Asgari, Aliasghar Khani, Fereshte Khani, Ali Gholami, Linh Tran, Ali Mahdavi Amiri,
 and Ghassan Hamarneh. Masktune: Mitigating spurious correlations by forcing to explore. In
 Proc. Advances in Neural Information Processing Systems, 2022.
- [4] Marcus A Badgeley, John R Zech, Luke Oakden-Rayner, Benjamin S Glicksberg, Manway Liu,
 William Gale, Michael V McConnell, Bethany Percha, Thomas M Snyder, and Joel T Dudley.
 Deep learning predicts hip fracture using confounding patient and healthcare variables. NPJ
 Digital Medicine, 2(1):31, 2019.
- [5] Xingjian Bai, Guangyi He, Yifan Jiang, and Jan Obloj. Wasserstein distributional robustness of neural networks. In *Proc. Advances in Neural Information Processing Systems*, 2024.
- [6] A. Ben-Tal, D. Den Hertog, A. De Waegenaere, B. Melenberg, and G. Rennen. Robust solutions of optimization problems affected by uncertain probabilities. *Management Science*, 2013.
- [7] Aharon Ben-Tal and Arkadi Nemirovski. Robust optimization-methodology and applications. *Mathematical Programming*, 92:453–480, 2002.
- [8] Jose Blanchet, Lin Chen, and Xun Yu Zhou. Distributionally robust mean-variance portfolio selection with wasserstein distances. *Management Science*, 68(9):6382–6410, 2022.
- [9] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial gender classification. In *Proc. Conference on Fairness, Accountability and Transparency*, pages 77–91, 2018.
- [10] Tianle Cai, Ruiqi Gao, Jason Lee, and Qi Lei. A theory of label propagation for subpopulation
 shift. In *Proc. International Conference on Machine Learning*, pages 1170–1182, 2021.
- [11] Elliot Creager, Jörn-Henrik Jacobsen, and Richard Zemel. Environment inference for invariant
 learning. In *Proc. International Conference on Machine Learning*, pages 2189–2200, 2021.
- Yihe Deng, Yu Yang, Baharan Mirzasoleiman, and Quanquan Gu. Robust learning with progressive data expansion against spurious correlation. In *Proc. Advances in Neural Information Processing Systems*, 2024.
- [13] Luc Devroye, László Györfi, and Gábor Lugosi. A Probabilistic Theory of Pattern Recognition.
 Springer Science & Business Media, 2013.
- [14] J. C. Duchi, P. W. Glynn, and H. Namkoong. Statistics of robust optimization: A generalized
 empirical likelihood approach. *Mathematics of Operations Research*, 2021.
- ³⁹⁵ [15] John C Duchi and Hongseok Namkoong. Learning models with uniform performance via distributionally robust optimization. *Annals of Statistics*, 49(3):1378–1406, 2021.
- ³⁹⁷ [16] Rui Gao, Xi Chen, and Anton J Kleywegt. Wasserstein distributionally robust optimization and variation regularization. *Operations Research*, 72(3):1177–1191, 2024.
- Soumya Suvra Ghosal and Yixuan Li. Distributionally robust optimization with probabilistic group. In *Proc. AAAI Conference on Artificial Intelligence*, pages 11809–11817, 2023.
- [18] Clark R Givens and Rae Michael Shortt. A class of wasserstein metrics for probability distributions. *The Michigan Mathematical Journal*, 31(2):231–240, 1984.
- Yujin Han and Difan Zou. Improving group robustness on spurious correlation requires preciser
 group inference. In *Proc. International Conference on Machine Learning*, pages 17480–17504,
 2024.

- [20] Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang. Fairness
 without demographics in repeated loss minimization. In *Proc. International Conference on Machine Learning*, pages 1929–1938, 2018.
- [21] Pavel Izmailov, Polina Kirichenko, Nate Gruver, and Andrew G Wilson. On feature learning in the presence of spurious correlations. In *Proc. Advances in Neural Information Processing Systems*, 2022.
- [22] Saachi Jain, Kimia Hamidieh, Kristian Georgiev, Andrew Ilyas, Marzyeh Ghassemi, and
 Aleksander Madry. Improving subgroup robustness via data selection. In *Proc. Advances in Neural Information Processing Systems*, 2024.
- [23] Nayeong Kim, Juwon Kang, Sungsoo Ahn, Jungseul Ok, and Suha Kwak. Improving robust-ness to multiple spurious correlations by multi-objective optimization. In *Proc. International Conference on Machine Learning*, pages 24040–24058, 2024.
- 418 [24] Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient for robustness to spurious correlations. In *Proc. International Conference on Learning Representations*, 2023.
- [25] P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsubramani, W. Hu, M. Yasunaga, R. L. Phillips, I. Gao, et al. Wilds: A benchmark of in-the-wild distribution shifts. In
 Proc. International Conference on Machine Learning, pages 5637–5664, 2021.
- 424 [26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. *Communications of the ACM*, 60(6):84–90, 2017.
- [27] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
 Zhang, Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapolation (rex). In *Proc. International Conference on Machine Learning*, pages 5815–5826,
 2021.
- 430 [28] Daniel Kuhn, Peyman Mohajerin Esfahani, Viet Anh Nguyen, and Soroosh Shafieezadeh-431 Abadeh. Wasserstein distributionally robust optimization: Theory and applications in machine 432 learning. In *Operations Research & Management Science in the Age of Analytics*, pages 433 130–166. Informs, 2019.
- [29] Tyler LaBonte, Vidya Muthukumar, and Abhishek Kumar. Towards last-layer retraining for
 group robustness with fewer annotations. In *Proc. Advances in Neural Information Processing* Systems, 2024.
- [30] Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
 Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
 group information. In *Proc. International Conference on Machine Learning*, pages 6781–6792,
 2021.
- [31] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In *Proc. International Conference on Computer Vision*, pages 3730–3738, 2015.
- [32] Ronak Mehta, Vincent Roulet, Krishna Pillutla, and Zaid Harchaoui. Distributionally robust
 optimization with bias and variance reduction. In *Proc. International Conference on Learning Representations*, 2024.
- [33] Peyman Mohajerin Esfahani and Daniel Kuhn. Data-driven distributionally robust optimization
 using the wasserstein metric: Performance guarantees and tractable reformulations. *Mathematical Programming*, 171(1):115–166, 2018.
- Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning from failure:
 De-biasing classifier from biased classifier. In *Proc. Advances in Neural Information Processing Systems*, 2020.
- [35] Junhyun Nam, Jaehyung Kim, Jaeho Lee, and Jinwoo Shin. Spread spurious attribute: Improving
 worst-group accuracy with spurious attribute estimation. In *Proc. International Conference on Learning Representations*, 2022.

- [36] Hongseok Namkoong and John C Duchi. Stochastic gradient methods for distributionally robust
 optimization with f-divergences. In *Proc. Advances in Neural Information Processing Systems*,
 2016.
- 458 [37] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approximation approach to stochastic programming. *SIAM Journal on optimization*, 19(4):1574–1609, 2009.
- Image: Ima
- [39] Bhargavi Paranjape, Pradeep Dasigi, Vivek Srikumar, Luke Zettlemoyer, and Hannaneh Ha jishirzi. AGRO: Adversarial discovery of error-prone groups for robust optimization. In *Proc. International Conference on Learning Representations*, 2023.
- [40] Vihari Piratla, Praneeth Netrapalli, and Sunita Sarawagi. Focus on the common good: Group distributional robustness follows. In *Proc. International Conference on Learning Representations*,
 2022.
- 470 [41] Shikai Qiu, Andres Potapczynski, Pavel Izmailov, and Andrew Gordon Wilson. Simple and
 471 fast group robustness by automatic feature reweighting. In *Proc. International Conference on*472 *Machine Learning*, pages 28448–28467, 2023.
- 473 [42] S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang. Distributionally robust neural networks 474 for group shifts: On the importance of regularization for worst-case generalization. In *Proc.* 475 *International Conference on Learning Representations*, 2020.
- Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In *Proc. International Conference on Computer Vision*, pages 618–626, 2017.
- 479 [44] Seonguk Seo, Joon-Young Lee, and Bohyung Han. Unsupervised learning of debiased rep-480 resentations with pseudo-attributes. In *Proc. Conference on Computer Vision and Pattern* 481 *Recognition*, pages 16742–16751, 2022.
- [45] Nimit Sohoni, Jared Dunnmon, Geoffrey Angus, Albert Gu, and Christopher Ré. No subclass left
 behind: Fine-grained robustness in coarse-grained classification problems. In *Proc. Advances* in Neural Information Processing Systems, 2020.
- M. Staib and S. Jegelka. Distributionally robust deep learning as a generalization of adversarial training. In *NeurIPS Workshop on Machine Learning and Computer Security*, 2017.
- [47] M. Sugiyama and A. J. Storkey. Mixture regression for covariate shift. In *Proc. Advances in Neural Information Processing Systems*, 2006.
- 489 [48] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. *Journal of Machine Learning Research*, 9(86):2579–2605, 2008.
- [49] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and Silvio
 Savarese. Generalizing to unseen domains via adversarial data augmentation. In *Proc. Advances* in Neural Information Processing Systems, 2018.
- [50] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011
 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.
- Shirley Wu, Mert Yuksekgonul, Linjun Zhang, and James Zou. Discover and cure: Concept aware mitigation of spurious correlation. In *Proc. International Conference on Machine Learning*, pages 37765–37786, 2023.
- Yuzhe Yang, Haoran Zhang, Dina Katabi, and Marzyeh Ghassemi. Change is hard: A closer look at subpopulation shift. In *Proc. International Conference on Machine Learning*, pages 39584–39622, 2023.

- [53] Huaxiu Yao, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea Finn.
 Improving out-of-distribution robustness via selective augmentation. In *Proc. International Conference on Machine Learning*, pages 25407–25437, 2022.
- John R Zech, Marcus A Badgeley, Manway Liu, Anthony B Costa, Joseph J Titano, and Eric Karl Oermann. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. *PLoS Medicine*, 15(11):e1002683, 2018.
- [55] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In *Proc. European Conference on Computer Vision*, pages 818–833, 2014.
- [56] Michael Zhang, Nimit S Sohoni, Hongyang R Zhang, Chelsea Finn, and Christopher Re.
 Correct-N-Contrast: A contrastive approach for improving robustness to spurious correlations.
 In Proc. International Conference on Machine Learning, pages 26484–26516, 2022.
- Yang Zhang, Philip David, and Boqing Gong. Curriculum domain adaptation for semantic segmentation of urban scenes. In *Proc. International Conference on Computer Vision*, pages 2020–2030, 2017.
- [58] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. Places: A 10 million image database for scene recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, pages 1452–1464, 2017.
- 520 [59] Chunting Zhou, Xuezhe Ma, Paul Michel, and Graham Neubig. Examining and combating spurious features under distribution shift. In *Proc. International Conference on Machine Learning*, pages 12857–12867, 2021.

3 A Proof of Theorem 4.1

- *Proof.* We begin with a lemma adapted from [46], with minor adjustments to match our framework.
- This lemma provides an equivalent form for the inner supremum problem of DRO with a W_{∞} -
- neighborhood, which is closely related to the representation (6) of W_{∞} .
- Lemma A.1. [46, Proposition 3.1] Let θ be fixed model parameters, and let $c(\cdot, \cdot)$ be a metric on the input space \mathcal{X} . For any distribution P on $\mathcal{X} \times \mathcal{Y}$ and for any $\epsilon \geq 0$,

$$\mathbb{E}_{P}\left[\sup_{(x,y)\in B_{\epsilon}(X,Y)}\ell(\theta;(x,y))\right] = \sup_{W_{\infty}(Q,P)\leq\epsilon}\mathbb{E}_{Q}[\ell(\theta;(X,Y))].$$

- 529 where $B_{\epsilon}(x,y) = \{(x',y') : c((x,y),(x',y')) \le \epsilon\}$
- 530 With the ambiguity set (8), the DRO (3) is equivalent to

$$\inf_{\theta \in \Theta} \left\{ \sup_{\substack{\beta \in \Delta_{m-1} \ W_{\infty}(Q_g, P_g) \le \epsilon_g \\ g = 1, \dots, m}} \mathbb{E}_Q[\ell(\theta; (X, Y))] \right\},\tag{10}$$

- where $Q = \sum_{g=1}^{m} \beta_g Q_g$
- For a fixed θ , the double supremum in (10) can equivalently be written as

$$\begin{split} \sup_{\beta \in \Delta_{m-1}} \sup_{\substack{W_{\infty}(Q_g, P_g) \leq \epsilon_g \\ g = 1, \dots, m}} \sum_{g = 1}^m \beta_g \, \mathbb{E}_{Q_g}[\ell(\theta; (X, Y))] \\ = \sup_{\beta \in \Delta_{m-1}} \sum_{g = 1}^m \beta_g \, \sup_{\substack{W_{\infty}(Q_g, P_g) \leq \epsilon_g}} \mathbb{E}_{Q_g}[\ell(\theta; (X, Y))]. \end{split}$$

By applying Lemma A.1, one can upper-bound the inner supremum in the previous display as

$$\begin{split} \mathbb{E}_{P_g} \left[\sup_{x: \|z(x) - z(X)\| \le \epsilon_g} \ell(\theta; (x, Y)) \right] &= \mathbb{E}_{P_g} \left[\sup_{x: \|z(x) - z(X)\| \le \epsilon_g} \mathcal{L} \left(f_L^{\theta}(z(x)), Y \right) \right] \\ &\le \mathbb{E}_{P_g} \left[\sup_{z': \|z' - z(X)\| \le \epsilon_g} \mathcal{L} \left(f_L^{\theta}(z'), Y \right) \right], \end{split}$$

where $x \mapsto z(x)$ denotes the feature map defined in (7). Thus, the original optimization problem is upper-bounded by

$$\inf_{\theta \in \Theta} \sup_{\beta \in \Delta_{m-1}} \sum_{g=1}^{m} \beta_g \mathbb{E}_{P_g} \left[\sup_{z': \|z'-z(X)\| \le \epsilon_g} \mathcal{L}(f_L^{\theta}(z'), Y) \right],$$

and completes the proof.

537 B Convergence Analysis of Algorithm 1

We analyze convergence via ε_T of the average iterate $\overline{\theta}^{(1:T)}$:

$$\varepsilon_T = \max_{\beta \in \Delta_{m-1}} L(\overline{\theta}^{(1:T)}, \beta) - \min_{\theta \in \Theta} \max_{\beta \in \Delta_{m-1}} L(\theta, \beta),$$

where $L(\theta,\beta) := \sum_{g=1}^{m} \beta_g \mathbb{E}_{P_g} \left[\sup_{z': \|z'-z(X)\| \leq \epsilon_g} \mathcal{L}\left(f_L^{\theta}(z'), Y\right) \right]$. In the convex setting, our method achieves $O(1/\sqrt{T})$.

Proposition B.1 (Convergence of Algorithm 1). Suppose $\mathcal{L}(f_L^{\theta}(z), y)$ is non-negative, convex in θ , B_{∇} -Lipschitz in θ , and bounded by B_{ℓ} for all (x,y) in $\mathcal{X} \times \mathcal{Y}$. In addition, let $\|\theta\|_2 \leq B_{\Theta}$ for all θ in some convex set $\Theta \subset \mathbb{R}^d$, and assume the feature map z(x) is fixed w.r.t. θ . Then, the average iterate of Algorithm 1 achieves an expected error at the rate

$$\mathbb{E}\big[\varepsilon_T\big] \; \leq \; 2\,m\,\sqrt{\frac{10\,\big(B_\Theta^2\,B_\nabla^2\; + \; B_\ell^2\,\log m\big)}{T}}.$$

Proof. Each iteration samples $G \sim \mathrm{Unif}\{1,\ldots,m\}$ and $(X,Y) \sim P_G$. The resulting joint sample $\xi = (X,Y,G)$ is drawn i.i.d. from the mixture distribution $q := \frac{1}{m} \sum_{g=1}^m P_g$.

For each group $g \in \{1, \dots, m\}$, define the stochastic loss function

$$F_g(\theta;\xi) := m \cdot \mathbf{1}[G = g] \cdot \sup_{\|z' - z(X)\| \le \epsilon_g} \mathcal{L}\big(f_L^{\theta}(z'), Y\big),$$

547 and let

554

555

$$f_g(\theta) := \mathbb{E}_{P_g} \left[\sup_{\|z' - z(X)\| \le \epsilon_g} \mathcal{L}(f_L^{\theta}(z'), Y) \right].$$

The total objective is then $L(\theta, \beta) = \sum_{g=1}^{m} \beta_g f_g(\theta)$.

We now verify the conditions required to apply the standard online mirror descent (OMD) regret bound [37]:

- (A) Convexity. For each g, the inner function $\mathcal{L}(f_L^{\theta}(z'), Y)$ is convex and non-negative in θ , and the supremum preserves convexity via Danskin's theorem. Thus, $f_g(\theta)$ is convex.
 - B (B) Expectation form. We have

$$\mathbb{E}_{\xi \sim q} \big[F_g(\theta; \xi) \big] = \frac{1}{m} \sum_{g'=1}^m \mathbb{E}_{(X,Y) \sim P_{g'}} \left[m \cdot \mathbf{1}[g'=g] \cdot \sup_{\|z'-z(X)\| \le \epsilon_g} \mathcal{L} \big(f_L^{\theta}(z'), Y \big) \right] = f_g(\theta).$$

(C) Unbiased subgradients. By Danskin's theorem, the mapping $\theta \mapsto \sup_{z'} \mathcal{L}(f_L^{\theta}(z'), Y)$ is subdifferentiable. Hence, $\nabla_{\theta} F_g(\theta; \xi)$ is an unbiased subgradient:

$$\mathbb{E}_{\xi \sim q} \big[\nabla_{\theta} F_g(\theta; \xi) \big] = \nabla_{\theta} f_g(\theta).$$

With the conditions (A)–(C) established, and using the boundedness assumptions:

$$\|\theta\|_2 \leq B_{\Theta}, \quad \|\nabla_{\theta}\mathcal{L}\| \leq B_{\nabla}, \quad \mathcal{L} \leq B_{\ell},$$

the standard OMD regret bound [37, 42] yields

$$\mathbb{E}[\varepsilon_T] \leq 2m \sqrt{\frac{10(B_{\Theta}^2 B_{\nabla}^2 + B_{\ell}^2 \log m)}{T}},$$

completing the proof.

559 C Interpreting Latent Perturbation Regularization

To clarify the intuition behind our latent perturbation framework, we employ a first-order Taylor expansion of the loss function. This approximation shows that the innermost supremum in our optimization problem can be interpreted as the original loss $\mathcal{L}(f^{\theta}(x), y)$ plus an additional regularization term involving the dual norm of the gradient with respect to the latent representation. Specifically,

$$\begin{split} \sup_{\|z'-z(x)\| \leq \epsilon} \mathcal{L}(f_L^{\theta}(z'), y) &= \sup_{\|z'-z(x)\| \leq \epsilon} \mathcal{L}\left(f_L^{\theta}(z(x) + (z'-z(x))), y\right) \\ &\approx \sup_{\|z'-z(x)\| \leq \epsilon} \left[\mathcal{L}\left(f_L^{\theta}(z(x)), y\right) + \nabla_z \mathcal{L}\left(f_L^{\theta}(z(x)), y\right)^{\top}(z'-z(x)) \right] \\ &= \mathcal{L}\left(f^{\theta}(x), y\right) + \sup_{\|z'-z(x)\| \leq \epsilon} \nabla_z \mathcal{L}\left(f_L^{\theta}(z(x)), y\right)^{\top}(z'-z(x)) \\ &= \mathcal{L}\left(f^{\theta}(x), y\right) + \epsilon \left\|\nabla_z \mathcal{L}\left(f_L^{\theta}(z(x)), y\right)\right\|_*, \end{split}$$

where $\|\cdot\|_*$ denotes the dual norm corresponding to $\|\cdot\|$. This added regularization term penalizes 564 large gradients in the latent space, promoting robustness by ensuring that small perturbations in z(x)565 do not lead to significant changes in the loss. By minimizing this term alongside the original loss, the 566 model gains stability and improved performance under real-world distributional shifts.

Dataset Details D

567

568

569

570

571

572

573

574

575

576

580

581

582

583

584

585

586

587

588

589

590

591

Original Dataset D.1

Colored MNIST (CMNIST) [2]. The CMNIST dataset is designed for a noisy digit recognition task, incorporating color as a spurious attribute. The dataset is divided into four distinct groups based on class and color: $g_1 = \{0, \text{green}\}, g_2 = \{1, \text{green}\}, g_3 = \{0, \text{red}\}, \text{ and } g_4 = \{1, \text{red}\}.$ It involves two classes: class 0 includes the digits (0, 1, 2, 3, 4) and class 1 includes the digits (5, 6, 7, 8, 9). The training set consists of 30,000 samples, where for class 0, the ratio of red to green samples is 8:2, while for class 1, this ratio is 2:8. The validation set, which comprises 10,000 samples, maintains an equal distribution of color across both classes, with a 1:1 ratio of red to green samples for each class. The test set includes 20,000 samples and introduces a more pronounced group distribution shift: class 0 has a red to green sample ratio of 1:9, and class 1 has a ratio of 9:1. Following the approach proposed by [2], labels in the dataset are flipped with a probability of 0.25.

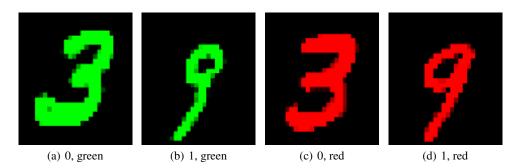


Figure 2: Example images from the CMNIST dataset. The groups are $g_1 = \{0, \text{green}\}, g_2 = \{0, \text{green}\}$ $\{1, \text{green}\}, g_3 = \{0, \text{red}\}, \text{ and } g_4 = \{1, \text{red}\}.$

Waterbirds [42]. The Waterbirds dataset is designed to classify images of birds into two categories: "waterbirds" and "landbirds", with a deliberate introduction of spurious correlations between the bird type and the background. The dataset is divided into four distinct groups based on bird type and background: $g_1 = \{\text{landbird}, \text{land}\}, g_2 = \{\text{landbird}, \text{water}\}, g_3 = \{\text{waterbird}, \text{land}\}, \text{ and}$ $g_4 = \{$ waterbird, water $\}$. This synthetic dataset is created by combining bird images from the Caltech-UCSD Birds 200-2011 (CUB) dataset [50] with backgrounds from the Places dataset [58]. Waterbird species, such as albatross, auklet, cormorant, frigatebird, and others, are grouped together, while all other species are classified as landbirds. The dataset comprises 4,795 training samples distributed as follows: 3,498 landbirds on land backgrounds, 1,057 waterbirds on water backgrounds, 184 landbirds on water backgrounds, and 56 waterbirds on land backgrounds. This setup highlights the minority groups and the inherent spurious correlations. In contrast to the training set, the validation and test sets are constructed to have an equal number of samples for each group within each class. The minority group, waterbirds on land, emphasizes the skewed distribution of the dataset, making

it suitable for studying the impact of spurious correlations on model performance. The Waterbirds dataset is accessible through the Wilds library in PyTorch [25].

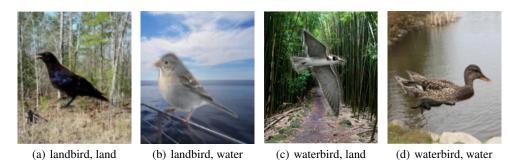


Figure 3: Example images from the Waterbirds dataset. The groups are $g_1 = \{\text{landbird}, \text{land}\}, g_2 = \{\text{landbird}, \text{water}\}, g_3 = \{\text{waterbird}, \text{land}\}, \text{ and } g_4 = \{\text{waterbird}, \text{water}\}.$

CelebA [31]. The CelebA dataset is used for a hair-color prediction task with facial images of celebrities, where the target labels are "blond" and "non-blond" hair colors. For experimental purposes, the dataset is divided into four distinct groups based on hair color and gender: $g_1 = \{\text{non-blond hair, female}\}$, $g_2 = \{\text{non-blond hair, male}\}$, $g_3 = \{\text{blond hair, female}\}$, and $g_4 = \{\text{blond hair, male}\}$. Gender serves as a spurious feature, introducing correlations between the hair color and gender of individuals. The training set consists of 162,770 images distributed as follows: 71,629 females with non-blond hair, 66,874 males with non-blond hair, 22,880 females with blond hair, and 1,387 males with blond hair. The validation set includes 19,867 images, with 8,535 females with non-blond hair, 8,276 males with non-blond hair, 2,874 females with blond hair, and 182 males with blond hair. The test set comprises 19,962 images, with 9,767 females with non-blond hair, 7,535 males with non-blond hair, 2,480 females with blond hair, and 180 males with blond hair. The minority group in this dataset is males with blond hair, which constitutes a small fraction of the data, highlighting the skewed distribution and the presence of spurious correlations.

Figure 4: Example images from the CelebA dataset. The groups are $g_1 = \{\text{non-blond hair, female}\}$, $g_2 = \{\text{non-blond hair, male}\}$, $g_3 = \{\text{blond hair, female}\}$, and $g_4 = \{\text{blond hair, male}\}$.

D.2 Modified Datasets

Building on the previously introduced datasets—CMNIST, Waterbirds, and CelebA—we constructed modified versions of these datasets by applying conditional distribution shifts to the minority groups, simulating real-world scenarios. Below, we detail the modifications for each dataset and illustrate these shifts with corresponding figures.

Modified CMNIST. In the CMNIST dataset, we created a modified version where the minority group's images (label 1, red) were rotated by 90 degrees in the test set, while they remained unrotated in the training set. This manipulation simulates conditional distribution shifts often encountered in real-world applications. Figure 5 provides an illustration of this shift, showing example images from the train and test sets.

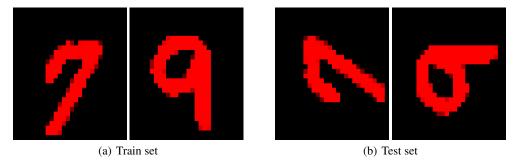


Figure 5: Example of conditional distribution shift in the CMNIST dataset, where the minority group (label 1, red) images are rotated by 90 degrees in the test set, while they are unrotated in the training set.

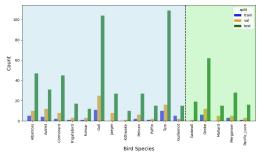
Modified Waterbirds. For the Waterbirds dataset, we constructed a modified version where the minority group (waterbird, land background) was designed to have a shift in species composition between the train and test sets. Specifically, the training set included only waterfowl species, such as Gadwall, Grebe, Mallard, Merganser, and Pacific Loon, while the test set contained exclusively seabird species, including Albatross, Auklet, Cormorant, Frigatebird, Fulmar, Gull, Jaeger, Kittiwake, Pelican, Puffin, Tern, and Guillemot. During the dataset construction process, we identified and corrected a mislabeling issue involving three species—Western Wood-Pewee, Eastern Towhee, and Western Meadowlark—which had been incorrectly labeled as waterbirds instead of landbirds [3]. Figure 6 illustrates this shift, highlighting the separation of species between the train and test sets.

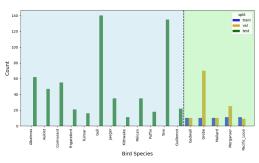
Figure 6: Example of conditional distribution shift in the Waterbirds dataset, where the minority group (waterbird on land background) consists of waterfowl in the training set and seabirds in the test set.

To further highlight the impact of this modification, Figure 7 compares the original distribution and the modified distribution shift scenarios. In the original dataset (Figure 7(a)), bird species in the minority group are relatively evenly distributed across train, validation, and test sets. However, in the modified version (Figure 7(b)), the training set contains only waterfowl, while the test set is composed entirely of seabirds, creating a distinct distribution shift.

Modified CelebA. In the CelebA dataset, we modified the minority group (blond hair, male) to have different attributes between the train and test sets. Specifically, the training set contained only images without glasses, while the test set contained only images with glasses. This modification reflects real-world distribution shifts where rare attributes in small minority groups may change across different distributions, impacting model performance. Figure 8 shows example images demonstrating this shift.

Figure 9 provides a detailed comparison of the original and modified distributions for the CelebA dataset. In the original distribution (Figure 9(a)), the minority group is predominantly represented by the "Without Eyeglasses" category across train, validation, and test sets, with relatively few examples in the "With Eyeglasses" category. In the modified version (Figure 9(b)), the training set consists





- (a) Original distribution of the minority group.
- (b) Distribution shift of the minority group (only waterfowl in training, only seabirds in testing).

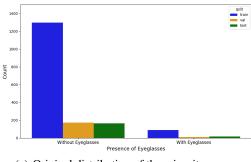
Figure 7: Comparing the original and shifted distributions of the minority group (waterbird, land background) in the Waterbirds dataset (left: seabirds, right: waterfowl, split by dashed line).

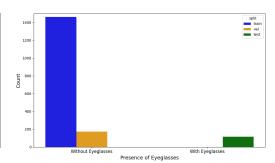
(a) Train set

(b) Test set

Figure 8: Example of conditional distribution shift in the CelebA dataset, where the minority group (blond hair, male) included only images without glasses in the training set and images with glasses in the test set.

exclusively of "Without Eyeglasses" images, while the test set contains only "With Eyeglasses", creating a clear disjoint in key attributes between training and testing phases.





(a) Original distribution of the minority group.

644

645

646

647

648

(b) Distribution shift of the minority group (only "Without Eyeglasses" in training, only "With Eyeglasses" in testing).

Figure 9: Comparing the original and shifted distributions of the minority group (blond hair, male) in the CelebA dataset (left: "Without Eyeglasses", right: "With Eyeglasses").

By introducing these conditional distribution shifts, our modified datasets simulate real-world challenges, particularly in scenarios where small minority groups are highly susceptible to such changes. These constructions not only reflect practical settings but also provide realistic benchmarks for evaluating the robustness and generalization capabilities of machine learning models under diverse and challenging conditions.

E Baseline Details

We compare our method against a range of representative baselines:

- **ERM**: ERM optimizes average accuracy on the training set without any robust objective or groupspecific considerations.
- **Group DRO** [42]: A canonical approach for mitigating spurious correlations using known group labels. By partitioning data into predefined groups and minimizing the worst-case group loss, Group DRO aims to improve the worst-group accuracy relative to standard ERM.
- **JTT** [30]: A two-step method that first trains an ERM model to identify misclassified samples (viewed as proxies for minority groups), then upsamples these samples and retrains a classifier.
- CnC [56]: Identifies samples that share the same true class but differ in spurious attributes by analyzing ERM outputs, then trains a robust model with a contrastive learning objective. This does not require explicit group labels.
- SAA [35]: Infers latent groups via a loss-based criterion, then applies Group DRO to improve robustness. This method partially automates the discovery of group boundaries without needing full group labels.
- LISA [53]: Mitigates spurious correlations by using Mixup strategies. Depending on the dataset, LISA employs different Mixup variants (e.g., classic Mixup, CutMix, Manifold Mix) to interpolate images within the same label or same spurious attribute, thereby reducing reliance on superficial cues.
- **DFR** [24]: Balances the dataset by subsampling to match the minority group size (the "Subsample" strategy), then retrains an ERM model on this balanced data. This simple yet effective approach can substantially improve worst-group performance. For a fair comparison, following [12], we evaluate DFR using only the training dataset for both training and fine-tuning, ensuring consistency across methods, which is denoted as DFR^{tr}.
- **PDE** [12]: Progressively expands the training dataset during the training process, starting with a balanced subset to prevent the model from learning spurious correlations. This approach aims to enhance robustness across all groups, including underrepresented ones.
- **GIC** [19]: Uses a two-step pipeline where group membership is partially inferred, then a robust optimization (e.g., Group DRO) is applied. Similar to LISA, it can incorporate tailored Mixup strategies depending on the dataset's characteristics.

679 F Implementation Details

For experiments involving our newly constructed datasets, we reimplemented both our proposed method and the relevant baselines. When certain baselines lacked reported results for a given dataset, we used the performance from [56] and [19] if available; otherwise, we performed our own reimplementations under consistent settings. In particular, for the original CMNIST dataset, we reimplemented experiments for DFR and PDE, since their original papers did not include CMNIST results. In all other cases, we referenced performance metrics from each baseline's primary source. All experiments were conducted on an NVIDIA GeForce RTX 3090 GPU.

Across all datasets, we employed the torchvision implementation of ResNet-50 pretrained 687 on ImageNet, training with SGD at a momentum of 0.9 and a batch size of 128, fol-688 lowing [42]. Our approach also introduces a perturbation parameter ϵ to control within-689 group uncertainty. Specifically, we define $\epsilon_g = \epsilon/\sqrt{n_g}$, where n_g represents the size of 690 group g in the training data. To determine ϵ , we performed a grid search over the set 691 $\{12/255, 24/255, 36/255, 48/255, 60/255, 72/255, 84/255, 96/255\}$, scaling each value by 692 $\sqrt{n_{\min}}$. Here, $n_{\min} = \min_{q} n_{q}$ denotes the smallest group size in the training set. Additionally, we tuned the generalization adjustment parameter C over $\{0, 1, 2, 3\}$, as described in Section 3.3 of 694 [42]. This setup was applied consistently across every dataset. 695

For CMNIST, we conducted a grid search over learning rates $\{10^{-4}, 10^{-3}, 10^{-2}\}$ and ℓ_2 penalties $\{10^{-1}, 10^{-2}, 10^{-4}\}$ for 50 epochs. Due to instability in training with the selected parameter combinations in the original Group DRO implementation, we applied a ReduceLROnPlateau scheduler starting at a learning rate of 0.01, using it consistently for both our method and Group DRO to ensure fairness. For Waterbirds, the learning rate was tuned over $\{10^{-3}, 10^{-4}, 10^{-5}\}$ and the ℓ_2 penalty

over $\{10^{-4}, 10^{-1}, 1\}$, with training conducted for 300 epochs. For CelebA, the learning rate was tuned over $\{10^{-4}, 10^{-5}\}$ and the ℓ_2 penalty over $\{10^{-4}, 10^{-2}, 1\}$ for 30 epochs. We referred to prior works including [53] and [17] to guide these hyperparameter search ranges.

G Experimental Result Details

704

705

G.1 Visualizing t-SNE Ordering for Minority Groups

To highlight the utility of t-SNE ordering in simulating realistic distribution shifts (as discussed in Section 4.3), we present visual examples of waterbirds from the top 20% and bottom 20% quantiles of the t-SNE projections. This approach effectively partitions samples based on semantically meaningful intra-group differences, enabling validation splits that closely mimic real-world distribution shifts.

(a) Example images from the top 20% of t-SNE ordering

(b) Example images from the bottom 20% of t-SNE ordering

Figure 10: t-SNE-based ordering reveals subtle distinctions within the minority group. (a) The top quantile features waterbirds with longer beaks, while (b) the bottom quantile features those with shorter beaks.

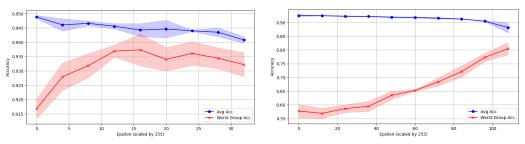
As shown in Figure 10, the t-SNE ordering captures nuanced intra-group differences within this minority group. In the top 20% quantile (Figure 10(a)), waterbirds with longer beaks dominate; in the bottom 20% quantile (Figure 10(b)), shorter-beaked waterbirds are more prevalent. This contrast illustrates how a t-SNE-driven partition can create validation splits that mimic real-world distribution shifts. This method not only emphasizes variations within groups but also systematically evaluates the model's robustness under challenging real-world conditions.

G.2 Impact of ϵ on Robustness

716

The perturbation parameter ϵ plays a critical role in improving robustness under minority group shifts. Figures 11(a) and 11(b) show how increasing ϵ affects worst-group accuracy for the Waterbirds and CelebA datasets, respectively. Notably, both datasets achieve significant gains in worst-group accuracy when ϵ is set above zero, indicating enhanced resilience to distributional shifts.

As illustrated in Figure 11(a), larger ϵ values consistently improve worst-group accuracy on Waterbirds, enabling the model to better manage intra-group variations and subpopulation shifts. A similar trend appears in Figure 11(b) for CelebA, further validating the robustness gained by appropriately increasing ϵ .



(a) Waterbirds dataset under a minority group shift.

(b) CelebA dataset under a minority group shift.

Figure 11: Impact of ϵ on robustness. The x-axis represents ϵ values scaled by 255, and the y-axis indicates accuracy. Each point is the mean of 3 runs (solid lines), and the shaded regions show the standard deviation. For this analysis, the learning rate and ℓ_2 penalty were fixed to isolate the effect of ϵ .

These findings underscore the importance of incorporating conditional distribution uncertainty into the training framework. By effectively capturing within-group variability, our approach significantly enhances worst-group performance, making it well-suited for handling realistic distributional shifts.

G.3 Grad-CAM Results and Analysis

To gain further insight into where each model focuses its attention under minority-group shifts, we visualize Grad-CAM [43] heatmaps on misclassified examples (by Group DRO) that our method classifies correctly. Figure 12 shows examples on the Waterbirds dataset, while Figure 13 presents examples from CelebA.

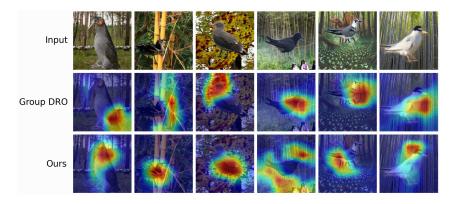


Figure 12: Grad-CAM visualizations for Waterbirds test images from a minority-group shift scenario. Each column shows an input image (top row), Grad-CAM for Group DRO (middle row), and Grad-CAM for our method (bottom row).

Waterbirds. In Figure 12, the minority-group shift involves species changes not observed in the training set. While Group DRO often localizes on a narrow region of the bird—sometimes near the torso or background—our method exhibits a more distributed attention, covering details like the wings, beak, or feet. This broader localization helps the model rely on features invariant to previously unseen waterbird species, enabling robust classification despite changes in the specific types of waterbirds encountered.

CelebA. Figure 13 shows examples from the minority group (blond-hair, male) in which the test images include glasses—an attribute absent from the training set. In these cases, Group DRO erroneously directs attention toward the facial or eyewear regions rather than focusing on hair color. By contrast, our method more reliably highlights the hair region, aligning with the intended classification objective and enabling correct predictions even under previously unseen attributes.

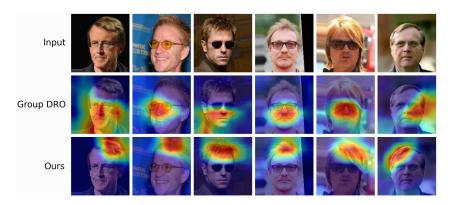


Figure 13: Grad-CAM visualizations for CelebA test images from the minority-group shift scenario. Each column shows the input image (top row), Grad-CAM for Group DRO (middle row), and Grad-CAM for our method (bottom row).

- Overall, these visualizations confirm that, under challenging distribution shifts, our hierarchical DRO
- framework is less prone to confounding features and more successful in focusing on the task-relevant
- 746 regions. This broader and more contextually aligned attention helps maintain strong performance
- even when encountering unseen or spurious attributes.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly describe both the hierarchical extension of Group DRO and the evaluation under realistic distribution shifts, which are supported by theoretical and empirical results in the paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper explicitly discusses limitations in the final section, including challenges in generalizing to other modalities, the heuristic choice of the perturbation radius, and the focus on single-spurious-feature settings.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The paper includes theoretical results (e.g., Theorem 1) with full assumptions and proofs provided in the appendix for completeness.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if
 they appear in the supplemental material, the authors are encouraged to provide a short
 proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper describes all necessary implementation details including dataset modifications, model architectures, optimization settings, and hyperparameter tuning procedures for reproducing the main experiments (Section 4 and Appendix F).

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The supplemental material includes anonymized code and instructions for reproducing the main experiments.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be
 possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
 including code, unless this is central to the contribution (e.g., for a new open-source
 benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new
 proposed method and baselines. If only a subset of experiments are reproducible, they
 should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Section 5 and Appendix F provide detailed descriptions of training/test splits, hyperparameters, optimizers, and other experimental settings.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Tables 1, 2, and 3 report the standard deviation over three independent random seeds to indicate variability in performance.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
 - The assumptions made should be given (e.g., Normally distributed errors).
 - It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
 - It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
 - For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
 - If error bars are reported in tables or plots, The authors should explain in the text how
 they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provide details on the compute resources used in Appendix F.

Guidelines:

910

911

912

913

914

915

918

919

920

921

922

923

924

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

947

948

949

950

951

952

953

954

955

956

957

958

960

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics, with no violations of ethical standards in data usage, experimental design, or reporting.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. **Broader impacts**

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The Conclusion section discusses the positive societal impact of improving robustness for underrepresented groups; we do not foresee any negative societal impacts from this work.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal
 impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper uses publicly available benchmark datasets (e.g., Waterbirds, CelebA, CMNIST) that are widely adopted in the community and do not pose high risks for misuse.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All datasets and code used in this work are properly cited and their licenses and terms of use are clearly stated in the supplemental material.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024 1025

1026

1027

1028

1029

1030

1031

1032

1034

1035

1036 1037

1038

1039

1040

1041

1042

1043

1044

1045 1046

1047 1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We introduce modified benchmark datasets simulating minority group distribution shifts, and provide documentation and implementation details in the supplemental material.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any crowdsourcing or research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve any research with human subjects.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM was used for editing, not for core research content.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.