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Abstract

Conventional supervised learning methods are often vulnerable to spurious cor-1

relations, particularly under distribution shifts in test data. To address this issue,2

several approaches, most notably Group DRO, have been developed. While these3

methods are highly robust to subpopulation or group shifts, they remain vulnerable4

to intra-group distributional shifts, which frequently occur in minority groups with5

limited samples. We propose a hierarchical extension of Group DRO that addresses6

both inter-group and intra-group uncertainties, providing robustness to distribution7

shifts at multiple levels. We also introduce new benchmark settings that simulate8

realistic minority group distribution shifts—an important yet previously underex-9

plored challenge in spurious correlation research. Our method demonstrates strong10

robustness under these conditions—where existing robust learning methods consis-11

tently fail—while also achieving superior performance on standard benchmarks.12

These results highlight the importance of broadening the ambiguity set to better13

capture both inter-group and intra-group distributional uncertainties.14

1 Introduction15

In recent years, machine learning methods have achieved remarkable success across a wide range of16

applications. An important objective of many machine learning methods is to learn model parameters17

that minimize the population risk, which is the population expectation of the loss function. Given18

training data and model parameters, the population risk can be approximated by the empirical risk,19

defined as the sample-averaged loss. Therefore, model parameters can be learned by minimizing the20

empirical risk, which is known as the empirical risk minimization (ERM) principle.21

The underlying assumption of ERM-based methods is that the unseen future data, often referred to as22

test data, share the same distribution as the training data. However, in many real-world problems,23

the test data may follow a different distribution from the training data for various reasons. A24

notable example is subpopulation shift, where the training population consists of several groups25

(subpopulations), and the proportion of each group in the test data differs from that in the training26

data [42, 10, 52].27

In many instances of subpopulation shifts, the group indicator is spuriously correlated with the target28

label or response variable. For example, in the widely studied Waterbirds dataset [42], the target label29

(e.g., “Waterbird” or “Landbird”) is spuriously correlated with the background environment (e.g.,30

water or land). As a result, ERM-based models tend to associate “Waterbird” primarily with water31

backgrounds, leading to significant performance degradation on minority groups, such as waterbirds32

appearing against land backgrounds. These vulnerabilities extend beyond controlled benchmarks,33

posing substantial risks in domains such as healthcare [54, 4], fairness [20, 9, 38], and autonomous34

driving [57].35
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(a) Group DRO Ambigu-
ity Set

(b) Proposed Ambiguity
Set

Figure 1: Comparison of the Group DRO ambiguity
set (a) and our hierarchical extension (b). While
Group DRO restricts uncertainty to mixtures of
group distributions, our approach introduces addi-
tional within-group uncertainty (indicated by red
dashed arrows), offering robustness to both inter-
group and intra-group distributional shifts. (For vi-
sualization, we assume the 3-dimensional space in
the figure represents a probability space, where each
point corresponds to a probability distribution.)

Over the past few years, a growing body of36

research has focused on mitigating these spu-37

rious correlations to ensure more reliable and38

stable model performance. Among the pro-39

posed methodologies, group distributionally40

robust optimization (Group DRO) [42] has41

emerged as a foundational approach. By parti-42

tioning the data into predefined groups and op-43

timizing for the worst group loss, Group DRO44

effectively minimizes the model’s reliance on45

spurious correlations tied to specific subsets46

of data. This framework has inspired a wide47

range of subsequent methods, such as JTT48

[30], SAA [35], PG-DRO [17], DISC [51] and49

GIC [19], which commonly employ a two-step50

strategy: first identifying latent groups and51

then utilizing established robust training ap-52

proaches—frequently Group DRO itself—to53

enhance model robustness.54

While these methods have significantly ad-55

vanced the field, they primarily focus on min-56

imizing the worst-group loss under the assumption that each group’s training distribution reliably57

represents its true underlying distribution. However, this assumption often fails in practice—especially58

for minority groups with limited samples—where within-group distributional shifts naturally arise as59

a consequence of underrepresentation in the training data [7, 13, 15]. This limitation highlights the60

need for a more flexible and robust approach that accounts for uncertainty not only across groups, but61

also within them.62

In this work, we address these limitations by introducing a hierarchical ambiguity set within the63

Group DRO framework, capturing both inter-group and intra-group uncertainties. As illustrated in64

Figure 1, while conventional Group DRO focuses on robustness only to shifts in group proportions65

by minimizing the worst-group risk, our approach extends this perspective by additionally modeling66

uncertainty within individual groups.67

Technically, we employ a Wasserstein-distance-based formulation, which has recently garnered68

significant theoretical and empirical support for its efficacy in designing distributionally robust69

learning methods [49, 28, 8, 5]. By defining a semantically meaningful cost function in a latent space,70

this formulation flexibly accommodates variations in the underlying data-generating mechanisms71

within each group. Consequently, our hierarchical ambiguity set enables the model to maintain72

robustness across a broader spectrum of distributional deviations, particularly for minority groups73

that are underrepresented in the training data.74

Our main contributions are threefold:75

• We re-examine Group DRO from a distributionally robust perspective and introduce a novel76

hierarchical ambiguity set that captures both inter-group and intra-group uncertainties, constituting77

a fundamental advancement over previous methods that build on Group DRO.78

• We establish more realistic and challenging evaluation scenarios by modifying standard bench-79

marks—Waterbirds, CelebA, and CMNIST—to introduce minority group distribution shifts that80

prior work has overlooked. This enables more faithful assessment of robustness under real-world81

minority underrepresentation.82

• Through extensive experiments, we show that our hierarchical approach consistently outperforms83

conventional Group DRO and related robust learning methods, underscoring the practical impor-84

tance of a more flexible and theoretically grounded extension of the Group DRO framework. To85

the best of our knowledge, this is the first work to explicitly address intra-group distribution shifts86

alongside group-level spurious correlations in standard benchmark settings, highlighting a novel87

contribution to robust learning.88
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2 Related work89

Using explicit group labels is a well-established approach to achieving robust performance on90

underrepresented subpopulations. [42] pioneered partitioning data by known group annotations and91

minimizing worst-group loss. Subsequent works extend this paradigm in multiple directions: Along92

similar lines, [27] expands Group DRO’s ambiguity set from convex to affine combinations of group93

distributions, although it still assumes fixed conditional distributions within each group. Meanwhile,94

[24] rebalances distributions via subsampling, [12] employs a staged expansion of a group-balanced95

set, and [53] uses Mixup-based augmentations (e.g., CutMix, Manifold Mix) to learn more invariant96

features. [21] shows that even standard ERM can yield robust feature representations when combined97

with selective reweighting, and [40] further leverages inter-group interactions to identify shared98

features that enhance distributional robustness.99

In parallel, a growing body of work addresses scenarios where group annotations are unavailable100

or prohibitively expensive, motivating the need to infer or approximate group structure. Building101

on [24], [29] extends last-layer retraining to settings with minimal or no group annotations. Some102

methods employ limited validation sets to discover latent groups and then apply Group DRO [42]103

for robust optimization [35, 17]. Indeed, the model’s loss (or its alternatives) often helps identify104

underrepresented subpopulations; for example, [34, 30, 41] use high-loss samples to recognize105

minority groups. Other approaches draw on diverse cues: [1, 11] infer groups by maximizing106

violations of the invariant risk minimization principle [2], while [3] employs masking to reduce107

reliance on spurious features. [45, 44] instead cluster feature embeddings to discover latent groups108

and identify pseudo-attributes for debiasing. Likewise, [56] proposes a two-stage contrastive learning109

framework by aligning samples with the same class but different spurious attributes, and [51]110

constructs a “concept bank” of candidate spurious attributes for robust partitioning. Another line of111

work identifies spurious features by comparing the training set with a carefully selected reference112

dataset [19] or removes examples that disproportionately degrade worst-group accuracy [22].113

Beyond these established techniques, emerging efforts explore scenarios with imperfect group par-114

titions [59] or multiple spurious attributes [39, 23]. These studies challenge the assumption that115

spurious attributes remain fixed or neatly separated, prompting methods that better accommodate116

complex, real-world data. Notably, group-inference approaches, such as those proposed by [30] and117

[41], primarily focus on identifying underrepresented samples. However, these methods pay less118

attention to how faithfully those samples reflect the underlying distribution. Our work explicitly chal-119

lenges the assumption that minority-group data reliably mirror their underlying distribution, modeling120

potential discrepancies within these subpopulations and underscoring the need for frameworks that121

capture not only which groups matter but also how accurately they represent real-world conditions.122

3 Preliminaries123

Problem Setup. We consider a supervised learning problem where each observation consists of124

input features X ∈ X and a label Y ∈ Y . Let {(xi, yi)}ni=1 be the training data and Θ be the125

parameter space. Assuming that the test data follows the same distribution as the training data, an126

important goal of various machine learning methods is to minimize the risk (also referred to as the127

test or generalization error)128

EP

[
L(fθ(X), Y )

]
(1)

over Θ, where fθ is a function parametrized by θ, L is a standard loss function, such as the cross-129

entropy, and EP denotes the expectation under the population distribution P . To achieve this, one130

may solve the following optimization problem:131

inf
θ∈Θ

{
EP̂ [ℓ(θ; (X,Y ))] =

1

n

n∑
i=1

ℓ
(
θ; (xi, yi)

)}
,

often referred to as the ERM problem, where P̂ is the empirical measure and ℓ(θ; (X,Y )) is shorthand132

for L(fθ(X), Y ).133

In addition to the above basic setting, we assume that the data are partitioned into multiple groups,134

with an indicator variable G ∈ G; thus, the training data can be expressed as {(xi, yi, gi)}ni=1. In135

particular, we assume that this indicator variable is spuriously correlated with the label Y . More136
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specifically, in all our examples, we assume the existence of a spurious attribute A ∈ A, and that the137

group variable G = (Y,A) is a pair involving the response variable Y . Hence, G = Y × A. With138

adjusted notation, we write G = {1, . . . ,m}.139

In the Waterbirds dataset, for example, the task is to classify birds as Waterbird or Landbird, with140

a spurious attribute being the background type (Water Background or Land Background), which141

results in four distinct groups. This dataset provides a classic example of spurious correlation: most142

waterbirds (Y = Waterbird) are found against water backgrounds (A = Water Background), leading143

models to rely excessively on background features. This overreliance substantially diminishes the144

performance of ERM on underrepresented groups, such as waterbirds on land backgrounds.145

Group DRO. Group DRO [42] was devised to address the aforementioned issue caused by the146

spurious attribute. In the Group DRO, the training data are modeled as instances from a mixture147

distribution P =
∑m

g=1 αgPg , where Pg denotes the conditional distribution of (X,Y ) given G = g,148

and α = (α1, . . . , αm) represents the mixing proportion. Thus, each group forms a subpopulation149

within the training data. Instead of minimizing the population risk (1), Group DRO aims to minimize150

inf
θ∈Θ

max
g∈G

EPg

[
ℓ(θ; (X,Y ))

]
, (2)

which corresponds to the risk of the worst-performing group. Consequently, this procedure is highly151

robust to the subpopulation shift described in the introduction.152

The Group DRO formulation (2) involves optimization over the discrete group variable g, posing a153

computational challenge for practical use. [42] showed that the problem can be reformulated into an154

equivalent form155

inf
θ∈Θ

sup
β∈∆m−1

m∑
g=1

βgEPg

[
ℓ(θ; (X,Y ))

]
,

that involves continuous variables only, where ∆m−1 = {β : βg ≥ 0,
∑m

g=1 βg = 1} is the156

(m− 1)-simplex.157

Group DRO can be understood as an instance of standard DRO [6, 14] with a specific ambiguity set.158

Note that the standard DRO formulation is given as159

inf
θ∈Θ

sup
Q∈Q

EQ

[
ℓ(θ; (X,Y ))

]
, (3)

where Q is a class of distributions, commonly referred to as the ambiguity (or uncertainty) set. The160

Group DRO formulation (2) is a specific case of DRO (3), with161

Q :=

{
m∑

g=1

βgPg : β ∈ ∆m−1

}
. (4)

Note that in frequently used DRO frameworks, the ambiguity set Q is often defined as a small162

neighborhood with respect to a standard (pseudo-)metric, such as the Wasserstein distance [33, 16]163

and f -divergence [36, 32].164

4 Proposed Method165

4.1 Hierarchical Ambiguity Sets166

In this section, we propose a hierarchical extension of Group DRO to be robust to distribution shifts167

at multiple levels. The proposed method is devised to capture both inter-group and intra-group168

uncertainties in modeling the distributional shifts.169

High-level Formulation. As in Group DRO, we model the training distribution as a mixture of the170

form P =
∑m

g=1 αgPg. To model the distributional uncertainty, we consider the DRO formulation171

(3) with a hierarchical ambiguity set Q, defined as172

Q =

{
m∑

g=1

βgQg :
β ∈ ∆m−1, d1(β, α) ≤ ρ,

d2(Qg, Pg) ≤ ϵg ∀g

}
, (5)

4



where d1 and d2 are suitable metrics on ∆m−1 and the class of distributions for (X,Y ), respectively,173

and ρ, ϵg > 0 are radii that determine the size of the ambiguity set.174

The ambiguity set Q has a two-level hierarchy. The first level is controlled by the mixing proportion175

β. It accounts for uncertainty in the proportion of each subpopulation or group. Such uncertainty can176

arise, for example, if certain minority groups appear more frequently in evaluation settings than in the177

training set, thereby increasing their probability of occurrence and potentially amplifying spurious178

correlations if not properly addressed [47]. At the second level, the distributional shift in each group179

is considered to capture within-group variability.180

By jointly accounting for changes in the group proportion α and the conditional distributions {Pg}mg=1,181

the proposed framework provides two levels of robustness: inter-group generalization and resilience182

to intra-group variability. This dual modeling of real-world uncertainties enables the proposed method183

to address a broader range of distributional shifts compared to Group DRO (2) alone or standard184

DRO (3), which uses a standard (pseudo-)metric neighborhood as its ambiguity set.185

Relationship to Group DRO and Standard DRO. The ambiguity set (4) used in Group DRO is a186

special case of the proposed ambiguity set (5). In particular, (4) can be obtained by setting ρ = ∞187

and ϵg = 0.188

While standard DRO, which uses a standard metric neighborhood as an ambiguity set, can also be189

understood as a special case of the proposed method, the philosophy of the proposed ambiguity190

set differs from that of the standard ones. In standard DRO, the ambiguity set is taken as a small191

neighborhood with respect to a standard (pseudo-)metric. In contrast, we allow a large value for ρ,192

the radius that determines robustness to group proportions. Hence, distributions that are far from P193

with respect to standard metrics can also belong to the ambiguity set (5).194

Detailed Formulation. The choice of d1 is not critical because most reasonable metrics are195

equivalent. In the remainder of this paper, we set ρ = ∞.196

For d2, we consider the infinite-order Wasserstein distance for computational convenience. Recall the197

definition of the Wasserstein distance of order p ∈ [1,∞):198

Wp(Q,P ) = inf
γ

{(∫
c
(
(x, y), (x′, y′)

)p
dγ

) 1
p

}
,

where the infimum is taken over every coupling γ of Q and P , and c(·, ·) is a cost function. The199

infinite-order Wasserstein distance is defined as W∞(Q,P ) = supp≥1 Wp(Q,P ), with a variational200

representation201

W∞(Q,P ) = inf

{
ϵ > 0 :

Q(A) ≤ P (Aϵ)

for every Borel set A

}
, (6)

where Aϵ denotes the ϵ-enlargement of A; see [18].202

The cost function is defined in a latent semantic space, which is more effective than defining it in the203

space of raw data [55, 26]. Specifically, we employ a deep neural network fθ of depth L, defined as204

fθ(x) = fθ
L

(
fθ
L−1

(
. . . fθ

1 (x)
))

,

and take the output of the (L− 1)-th layer (before the final fully connected layer) as the semantic205

representation:206

z(x) := fθ
L−1

(
fθ
L−2

(
. . . fθ

1 (x)
))

. (7)

We then define the cost function c(·, ·) as207

c
(
(x, y), (x′, y′)

)
=

{
∥z(x)− z(x′)∥, if y = y′,

∞, otherwise.

Note that under our definition, Wp(P,Q) = ∞ if the marginals P and Q of Y differ. In all our208

applications, the group indicator G is defined as a pair (Y,A); hence, this definition does not cause209

any issues.210
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Proposed Hierarchical DRO Formulation. To sum up, the proposed hierarchical DRO can be211

written in the standard form (3) with the ambiguity set212

Q =

{
m∑

g=1

βgQg :
β ∈ ∆m−1,

W∞(Qg, Pg) ≤ ϵg ∀g

}
. (8)

The flexibility in β ∈ ∆m−1 allows the group proportion to differ from α, which enables adaptation213

to new or changing subpopulation frequencies without introducing entirely new groups. With the214

constraint W∞(Qg, Pg) ≤ ϵg, we accommodate plausible instance-level shifts within each group.215

Leveraging the semantic cost c(·, ·) allows the model to capture meaningful perturbations in high-216

dimensional feature spaces without conflating different class labels.217

4.2 Algorithm218

In this subsection, we provide an algorithm to solve the proposed DRO with the ambiguity set (8). We219

set ϵg = ϵ/
√
ng , where ng is the size of group g in the training data, and ϵ is a tunable hyperparameter220

that controls the degree of robustness to within-group distributional shifts. Intuitively, the fewer221

samples a group has, the more cautiously its potential distributional variations must be accounted for.222

See Section 4.3 for details on the selection of the tuning parameter ϵ.223

Due to the hierarchical structure of the ambiguity set in (8), solving the resulting DRO problem224

is not straightforward. We therefore begin by reformulating the hierarchical DRO into a tractable225

optimization problem. We formally state the resulting formulation in the following theorem. The226

proof is provided in Appendix A.227

Theorem 4.1. Let Q be the ambiguity set defined in (8). Then, the corresponding distributionally228

robust optimization problem229

inf
θ∈Θ

sup
Q∈Q

EQ[ℓ(θ; (X,Y ))]

is upper-bounded by the following surrogate objective:230

inf
θ∈Θ

sup
β∈∆m−1

m∑
g=1

βgEPg

[
sup

z′:∥z′−z(X)∥≤ϵg

L
(
fθ
L(z

′), Y
)]

. (9)

Intuitively, Theorem 4.1 shows that the worst-case risk over our hierarchical ambiguity set can be231

conservatively over-approximated by an adversarial perturbation problem in the latent space, where232

the inner maximization is weighted by the worst-case group proportions β. We therefore minimize233

the surrogate objective (9) via a coordinate-wise procedure, as detailed next.234

Proposed Iterative Training Procedure. For a given θ, let z′i denote the maximizer of the map235

z′ 7→ L
(
fθ
L(z

′), yi
)

over the set {z′ : ∥z′ − z(xi)∥ ≤ ϵgi}. To solve the optimization problem (9), we iteratively update236

β, θ and semantic variables z′i coordinate-wise as below. A pseudo-code for a minibatch size of 1 is237

provided in Algorithm 1.238

1. Update of z′. For given θ, z′i can be approximated by one-step projected gradient ascent, ensuring239

that ∥z′ − z(xi)∥ ≤ ϵgi . (Lines 6–8)240

2. Update of β. For given θ and z′i, β can be computed using exponentiated gradient ascent, a variant241

of mirror descent with negative Shannon entropy [42]. (Lines 10–12)242

3. Update of θ. For a given β and z′i, we update θ using stochastic gradient descent. (Line 13)243

A convergence guarantee under convexity assumptions is established in Appendix B, showing that244

the algorithm achieves an O(1/
√
T ) convergence rate.245

4.3 Selection of ϵ246

As is common in DRO problems, the selection of the size of an ambiguity set, ϵ in our problem, is247

a challenging task. To address this challenge, we propose a heuristic data-driven procedure that is248
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Algorithm 1 DRO with a Hierarchical Ambiguity Set
1: Input: Step sizes ηβ , ηθ , ηz; initial parameters θ(0), β(0); number of iterations T
2: for t = 1 to T do
3: Sample g ∼ Uniform(1, . . . ,m)
4: Sample (x, y) ∼ Pg

5: Initialize z′ ← z(x)

6: z′ ← z′ + ηz∇z′L
(
fθ(t−1)

L (z′), y
)

7: if ∥z′ − z(x)∥ > ϵg then
8: z′ ← Proj∥z′−z(x)∥≤ϵg

(z′)

9: end if
10: Update β′ ← β(t−1)

11: Update β′
g ← β

′
g exp

(
ηβL

(
fθ(t−1)

L (z′), y
))

12: Normalize β(t) ← β′/
∑

β′
g′

13: Update θ(t) ← θ(t−1) − ηθβ
(t)
g ∇θL

(
fθ(t−1)

L (z′), y
)

14: end for

similar to cross-validation, but partitions the training data based on the order of a one-dimensional249

t-SNE [48] feature. Similar procedures have been considered in the literature [15].250

Specifically, we project each z(xi) onto a one-dimensional space using t-SNE. This allows us to rank251

samples within each group and split them into five quantiles. We focus on two extreme quantiles (the252

top 20% and bottom 20%), each held out as a validation set in turn, with the remaining 80% used for253

training. By training and evaluating on these opposite extremes, we simulate realistic distribution254

shifts that disproportionately affect minority groups.255

We then measure the model’s performance under both setups and select the value of ϵ that maximizes256

minority-group accuracy on average. This ensures that the chosen perturbation radius is robust257

to distributional shifts and provides meaningful protection for underrepresented subpopulations in258

practice.259

5 Experiments260

5.1 Dataset261

We conduct experiments on three widely used benchmark datasets, CMNIST, Waterbirds, and CelebA,262

each exhibiting known spurious correlations between the label and an irrelevant attribute. All datasets263

include a minority group that is underrepresented, rendering them susceptible to distributional shifts.264

Original Datasets.265

• CMNIST [2]: A colored variant of MNIST, split into four groups based on digit label (digits 0–4266

as label 0, and digits 5–9 as label 1) and color (red vs. green). The color is spuriously correlated267

with the digit label in the training set.268

• Waterbirds [42]: Created by combining bird images from CUB [50] with backgrounds from269

Places [58], yielding four groups based on (bird type, background). The minority group (waterbird,270

land background) typically has few samples.271

• CelebA [31]: A facial attribute dataset used here for classifying blond vs. non-blond hair, where272

gender acts as a spurious attribute. The minority group (blond hair, male) is significantly underrep-273

resented.274

Modified Datasets with Minority Group Shifts. To rigorously test our approach under more275

realistic distribution shifts, we construct modified versions of the above datasets by inducing intra-276

group shifts specifically in each minority group:277

• Shifted CMNIST: Rotate all images in the minority group (label 1, red) by 90◦ at test time, while278

keeping them unrotated at training time.279

• Shifted Waterbirds: Restrict the training set’s minority group (waterbird, land background) to280

only waterfowls, and the test set’s minority group to only seabirds.281
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Table 1: Worst-group and average accuracy on CMNIST, Waterbirds, and CelebA under shifted distributions.
All results are averaged over three runs with different random seeds. Boldface indicates the best performance,
while underlined numbers denote the second-best.

Method Group label Shifted CMNIST Shifted Waterbirds Shifted CelebA

Worst Acc Average Acc Worst Acc Average Acc Worst Acc Average Acc

GroupDRO ✓ 65.9±8.2 74.0±0.7 91.7±0.3 94.9±0.1 59.8±3.2 92.4±0.3
LISA ✓ 42.9±10.0 59.8±4.5 79.1±1.8 94.2±0.3 60.6±1.1 92.1±0.2
DFRtr ✓ 28.0±4.9 47.8±1.9 89.2±1.5 96.3±0.4 50.3±3.5 90.5±0.4
PDE ✓ 65.3±11.1 71.3±6.2 84.4±4.6 92.0±0.6 56.3±11.2 91.6±0.4

Ours ✓ 71.8±2.8 75.0±0.4 93.7±0.2 94.6±0.1 72.1±2.0 91.3±0.1

Table 2: Worst-group and average accuracy on CMNIST, Waterbirds, and CelebA under their original (unshifted)
distributions.

Method Group label CMNIST Waterbirds CelebA

Worst Acc Average Acc Worst Acc Average Acc Worst Acc Average Acc

ERM × 3.4±0.9 12.9±0.8 62.6±0.3 97.3±1.0 47.7±2.1 94.9±0.3
JTT × 67.3±5.1 76.4±3.3 83.8±1.2 89.3±0.7 81.5±1.7 88.1±0.3
CnC × – – 88.5±0.3 90.9±0.1 88.8±0.9 89.9±0.5
GIC × 72.2±0.5 73.2±0.2 86.3±0.1 89.6±1.3 89.4±0.2 91.9±0.1
SSA × 71.1±0.4 75.0±0.3 89.0±0.6 92.2±0.9 89.8±1.3 92.8±0.1
GroupDRO ✓ 73.1±0.3 74.8±0.2 90.6±0.2 92.7±0.1 89.3±1.3 92.6±0.3
LISA ✓ 73.3±0.2 74.0±0.1 89.2±0.6 91.8±0.3 89.3±1.1 92.4±0.4
DFRtr ✓ 59.8±0.4 62.1±0.2 90.2±0.8 97.0±0.3 80.7±2.4 90.6±0.7
PDE ✓ 72.6±0.7 73.0±0.4 90.3±0.3 92.4±0.8 91.0±0.4 92.0±0.6

Ours ✓ 73.6±0.3 75.1±0.5 90.8±0.2 92.6±0.2 90.4±0.3 92.7±0.0

• Shifted CelebA: For minority group (blond hair, male), include only no-glasses images in training282

and only with-glasses images at test time.283

These modifications reflect real-world scenarios where underrepresented groups not only appear more284

frequently but also exhibit subtle changes. Further details and illustrative examples are provided in285

Appendix D.286

5.2 Baselines287

We compare our method to several representative baselines: ERM, Group DRO [42], JTT [30], CnC288

[56], SAA [35], LISA [53], DFR [24], PDE [12], and GIC [19]. These methods range from direct289

robust learning (e.g., Group DRO) to two-step pipelines that first infer group membership and then290

apply robust training (e.g., SAA, GIC). Detailed descriptions are provided in Appendix E.291

For our newly constructed datasets incorporating minority-group distribution shifts, we conducted292

experiments focusing on Group DRO, LISA, DFR, and PDE. Unlike methods that infer group293

labels and then rely on a separate robust training step, these four baselines—like our proposed294

approach—directly utilize known group information. This distinction provides a more consistent and295

fair comparison in scenarios where explicit group labels are available.296

5.3 Evaluation297

Metrics. We consider two metrics: worst-group accuracy and average accuracy. The worst-group298

accuracy is obtained by evaluating accuracy on each group and taking the minimum across all groups,299

providing insight into how a method performs if the test distribution is heavily skewed toward the300

most challenging subgroup. Meanwhile, the average accuracy is computed as the weighted average of301

group accuracy, where the weights are proportional to the group sizes in the training data, reflecting302

overall performance but offering less visibility into group-specific disparities.303

Model Selection. Following [42] and related methods, we select hyperparameters and stopping304

criteria based on the highest worst-group validation accuracy. In particular, for scenarios involving305

minority group shifts, we adopt the data-driven tuning procedure from Section 4.3 to determine the306

perturbation parameter ϵ.307
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5.4 Results308

Table 3: Worst-group and average accuracy on Waterbirds
under minority group shifted distributions and Corrected Wa-
terbirds on the original dataset with corrected labels.

Method Shifted Waterbirds Corrected Waterbirds

Worst Acc Avg Acc Worst Acc Avg Acc

Group DRO 91.7±0.3 94.9±0.1 94.1±0.6 94.7±0.0
Ours 93.7±0.2 94.6±0.1 95.1±0.4 96.3±0.0

Performance on Shifted Distributions.309

Under shifted distributions (Table 1), our310

method demonstrates clear superiority in311

worst-group accuracy across all three312

benchmarks (CMNIST, Waterbirds, and313

CelebA). On CMNIST, LISA and DFR de-314

grade substantially, highlighting their vul-315

nerability to intra-group shifts. By contrast,316

our framework maintains high worst-group accuracy.317

For Waterbirds, which involves a moderate shift in species composition within the minority group,318

most baselines experience notable drops in worst-group accuracy. In contrast, our approach maintains319

robust worst-group accuracy, indicating its capacity to adapt to intra-group variability. Interestingly,320

both Group DRO and our method report higher worst-group accuracy in the shifted case than in the321

original Waterbirds dataset (Table 2); however, this discrepancy arises from a known mislabeling322

issue [3], where three bird species labeled as “waterbird” should actually be “landbird.” To verify323

this, we correct the mislabeled samples in the original dataset and report results in Table 3: under the324

corrected labels, both Group DRO and our method exhibit the expected pattern, performing better in325

the unshifted setting than under the minority-group shift. Notably, our approach outperforms Group326

DRO in both scenarios, confirming its robustness even after label corrections.327

On the more challenging CelebA benchmark, our advantage grows more pronounced. While PDE328

shows slightly higher worst-group accuracy on the original dataset (Table 2), its performance drops329

sharply (by about 34.7%) when the minority-group distribution is shifted. These observations330

underscore the importance of modeling both inter-group and intra-group uncertainties—especially331

given that minority groups in Waterbirds and CelebA constitute only about 1% of the data and thus332

are more susceptible to distributional changes. Furthermore, our results highlight that relying on333

pre-defined test splits with uniformly distributed attributes may offer an overly optimistic view of334

real-world robustness.335

Performance on Original Distributions. On the original (unshifted) versions of CMNIST, Wa-336

terbirds, and CelebA (Table 2), our method consistently achieves top-tier worst-group accuracy. It337

secures the highest or near-highest scores across all three benchmarks, confirming that the proposed338

framework not only excels under distributional shifts but also remains effective when intra-group339

distributions are stable. Notably, even in these unshifted settings, methods such as Group DRO rely340

on the strong assumption that each group’s training distribution remains valid at test time. As our341

results show, explicitly modeling distributional uncertainty within minority groups can yield more342

reliable robustness, highlighting the limitations of approaches that treat group distributions as fixed.343

By addressing potential discrepancies at both the inter-group and intra-group levels, our framework344

provides a stronger foundation for real-world applications.345

6 Conclusion346

We introduced a distributionally robust optimization framework with a hierarchical ambiguity set347

that explicitly models both inter-group and intra-group distribution shifts—an often overlooked yet348

practically crucial scenario for underrepresented subpopulations. We find that even small, realistic349

shifts in how minority group samples are split between training and testing—without altering group350

definitions—can result in significant degradation of performance in existing robust methods. In351

contrast, our approach maintains strong performance by modeling latent variability within each group,352

offering a theoretically grounded and robust foundation for real-world deployment.353

Limitations and Future Work. Our experiments focus on image datasets with clear feature labels354

(e.g., species type, presence of glasses) that enable controlled intra-group shifts. Extending the355

method to other modalities such as text, where such labels are less accessible, is a promising direction.356

In addition, the radius parameter ϵ is chosen heuristically; a more principled or automated selection357

method is worth investigating. Finally, since real-world data may involve multiple spurious features,358

extending the framework to multi-spurious settings is a promising future direction.359
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A Proof of Theorem 4.1523

Proof. We begin with a lemma adapted from [46], with minor adjustments to match our framework.524

This lemma provides an equivalent form for the inner supremum problem of DRO with a W∞-525

neighborhood, which is closely related to the representation (6) of W∞.526

Lemma A.1. [46, Proposition 3.1] Let θ be fixed model parameters, and let c(·, ·) be a metric on the527

input space X . For any distribution P on X × Y and for any ϵ ≥ 0,528

EP

[
sup

(x,y)∈Bϵ(X,Y )

ℓ(θ; (x, y))

]
= sup

W∞(Q,P )≤ϵ

EQ[ℓ(θ; (X,Y ))].

where Bϵ(x, y) = {(x′, y′) : c((x, y), (x′, y′)) ≤ ϵ}.529

With the ambiguity set (8), the DRO (3) is equivalent to530

inf
θ∈Θ

 sup
β∈∆m−1

sup
W∞(Qg,Pg)≤ϵg

g=1,...,m

EQ[ℓ(θ; (X,Y ))]

 , (10)

where Q =
∑m

g=1 βgQg .531

For a fixed θ, the double supremum in (10) can equivalently be written as532

sup
β∈∆m−1

sup
W∞(Qg,Pg)≤ϵg

g=1,...,m

m∑
g=1

βg EQg
[ℓ(θ; (X,Y ))]

= sup
β∈∆m−1

m∑
g=1

βg sup
W∞(Qg,Pg)≤ϵg

EQg
[ℓ(θ; (X,Y ))].

By applying Lemma A.1, one can upper-bound the inner supremum in the previous display as533

EPg

[
sup

x:∥z(x)−z(X)∥≤ϵg

ℓ(θ; (x, Y ))

]
= EPg

[
sup

x:∥z(x)−z(X)∥≤ϵg

L
(
fθ
L(z(x)), Y

)]

≤ EPg

[
sup

z′:∥z′−z(X)∥≤ϵg

L
(
fθ
L(z

′), Y
)]

,

where x 7→ z(x) denotes the feature map defined in (7). Thus, the original optimization problem is534

upper-bounded by535

inf
θ∈Θ

sup
β∈∆m−1

m∑
g=1

βgEPg

[
sup

z′:∥z′−z(X)∥≤ϵg

L
(
fθ
L(z

′), Y
)]

,

and completes the proof.536

B Convergence Analysis of Algorithm 1537

We analyze convergence via εT of the average iterate θ
(1:T )

:

εT = max
β∈∆m−1

L
(
θ
(1:T )

, β
)
− min

θ∈Θ
max

β∈∆m−1

L(θ, β),

where L(θ, β) :=
∑m

g=1 βgEPg

[
supz′:∥z′−z(X)∥≤ϵg L

(
fθ
L(z

′), Y
)]

. In the convex setting, our538

method achieves O(1/
√
T ).539
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Proposition B.1 (Convergence of Algorithm 1). Suppose L
(
fθ
L(z), y

)
is non-negative, convex in θ,540

B∇-Lipschitz in θ, and bounded by Bℓ for all (x, y) in X × Y . In addition, let ∥θ∥2 ≤ BΘ for all541

θ in some convex set Θ ⊂ Rd, and assume the feature map z(x) is fixed w.r.t. θ. Then, the average542

iterate of Algorithm 1 achieves an expected error at the rate543

E
[
εT

]
≤ 2m

√
10

(
B2

Θ B2
∇ + B2

ℓ logm
)

T
.

Proof. Each iteration samples G ∼ Unif{1, . . . ,m} and (X,Y ) ∼ PG. The resulting joint sample544

ξ = (X,Y,G) is drawn i.i.d. from the mixture distribution q := 1
m

∑m
g=1 Pg .545

For each group g ∈ {1, . . . ,m}, define the stochastic loss function546

Fg(θ; ξ) := m · 1[G = g] · sup
∥z′−z(X)∥≤ϵg

L
(
fθ
L(z

′), Y
)
,

and let547

fg(θ) := EPg

[
sup

∥z′−z(X)∥≤ϵg

L
(
fθ
L(z

′), Y
)]

.

The total objective is then L(θ, β) =
∑m

g=1 βgfg(θ).548

We now verify the conditions required to apply the standard online mirror descent (OMD) regret549

bound [37]:550

(A) Convexity. For each g, the inner function L(fθ
L(z

′), Y ) is convex and non-negative in θ,551

and the supremum preserves convexity via Danskin’s theorem. Thus, fg(θ) is convex.552

(B) Expectation form. We have553

Eξ∼q

[
Fg(θ; ξ)

]
=

1

m

m∑
g′=1

E(X,Y )∼Pg′

[
m · 1[g′ = g] · sup

∥z′−z(X)∥≤ϵg

L
(
fθ
L(z

′), Y
)]

= fg(θ).

(C) Unbiased subgradients. By Danskin’s theorem, the mapping θ 7→ supz′ L(fθ
L(z

′), Y ) is554

subdifferentiable. Hence, ∇θFg(θ; ξ) is an unbiased subgradient:555

Eξ∼q

[
∇θFg(θ; ξ)

]
= ∇θfg(θ).

With the conditions (A)–(C) established, and using the boundedness assumptions:556

∥θ∥2 ≤ BΘ, ∥∇θL∥ ≤ B∇, L ≤ Bℓ,

the standard OMD regret bound [37, 42] yields557

E[εT ] ≤ 2m

√
10
(
B2

ΘB
2
∇ +B2

ℓ logm
)

T
,

completing the proof.558

C Interpreting Latent Perturbation Regularization559

To clarify the intuition behind our latent perturbation framework, we employ a first-order Taylor560

expansion of the loss function. This approximation shows that the innermost supremum in our opti-561

mization problem can be interpreted as the original loss L(fθ(x), y) plus an additional regularization562

term involving the dual norm of the gradient with respect to the latent representation. Specifically,563
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sup
∥z′−z(x)∥≤ϵ

L(fθ
L(z

′), y) = sup
∥z′−z(x)∥≤ϵ

L
(
fθ
L(z(x) + (z′ − z(x))), y

)
≈ sup

∥z′−z(x)∥≤ϵ

[
L
(
fθ
L(z(x)), y

)
+∇zL

(
fθ
L(z(x)), y

)⊤
(z′ − z(x))

]
= L

(
fθ(x), y

)
+ sup

∥z′−z(x)∥≤ϵ

∇zL
(
fθ
L(z(x)), y

)⊤
(z′ − z(x))

= L
(
fθ(x), y

)
+ ϵ

∥∥∇zL
(
fθ
L(z(x)), y

)∥∥
∗ ,

where ∥ · ∥∗ denotes the dual norm corresponding to ∥ · ∥. This added regularization term penalizes564

large gradients in the latent space, promoting robustness by ensuring that small perturbations in z(x)565

do not lead to significant changes in the loss. By minimizing this term alongside the original loss, the566

model gains stability and improved performance under real-world distributional shifts.567

D Dataset Details568

D.1 Original Dataset569

Colored MNIST (CMNIST) [2]. The CMNIST dataset is designed for a noisy digit recognition570

task, incorporating color as a spurious attribute. The dataset is divided into four distinct groups based571

on class and color: g1 = {0, green}, g2 = {1, green}, g3 = {0, red}, and g4 = {1, red}. It involves572

two classes: class 0 includes the digits (0, 1, 2, 3, 4) and class 1 includes the digits (5, 6, 7, 8, 9). The573

training set consists of 30,000 samples, where for class 0, the ratio of red to green samples is 8 : 2,574

while for class 1, this ratio is 2 : 8. The validation set, which comprises 10,000 samples, maintains575

an equal distribution of color across both classes, with a 1 : 1 ratio of red to green samples for each576

class. The test set includes 20,000 samples and introduces a more pronounced group distribution577

shift: class 0 has a red to green sample ratio of 1 : 9, and class 1 has a ratio of 9 : 1. Following the578

approach proposed by [2], labels in the dataset are flipped with a probability of 0.25.579

(a) 0, green (b) 1, green (c) 0, red (d) 1, red

Figure 2: Example images from the CMNIST dataset. The groups are g1 = {0, green}, g2 =
{1, green}, g3 = {0, red}, and g4 = {1, red}.

Waterbirds [42]. The Waterbirds dataset is designed to classify images of birds into two categories:580

“waterbirds” and “landbirds”, with a deliberate introduction of spurious correlations between the581

bird type and the background. The dataset is divided into four distinct groups based on bird type582

and background: g1 = {landbird, land}, g2 = {landbird, water}, g3 = {waterbird, land}, and583

g4 = {waterbird, water}. This synthetic dataset is created by combining bird images from the584

Caltech-UCSD Birds 200-2011 (CUB) dataset [50] with backgrounds from the Places dataset [58].585

Waterbird species, such as albatross, auklet, cormorant, frigatebird, and others, are grouped together,586

while all other species are classified as landbirds. The dataset comprises 4,795 training samples587

distributed as follows: 3,498 landbirds on land backgrounds, 1,057 waterbirds on water backgrounds,588

184 landbirds on water backgrounds, and 56 waterbirds on land backgrounds. This setup highlights589

the minority groups and the inherent spurious correlations. In contrast to the training set, the validation590

and test sets are constructed to have an equal number of samples for each group within each class.591

The minority group, waterbirds on land, emphasizes the skewed distribution of the dataset, making592
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it suitable for studying the impact of spurious correlations on model performance. The Waterbirds593

dataset is accessible through the Wilds library in PyTorch [25].594

(a) landbird, land (b) landbird, water (c) waterbird, land (d) waterbird, water

Figure 3: Example images from the Waterbirds dataset. The groups are g1 = {landbird, land},
g2 = {landbird, water}, g3 = {waterbird, land}, and g4 = {waterbird, water}.

CelebA [31]. The CelebA dataset is used for a hair-color prediction task with facial images595

of celebrities, where the target labels are “blond” and “non-blond” hair colors. For experimen-596

tal purposes, the dataset is divided into four distinct groups based on hair color and gender:597

g1 = {non-blond hair, female}, g2 = {non-blond hair, male}, g3 = {blond hair, female}, and598

g4 = {blond hair, male}. Gender serves as a spurious feature, introducing correlations between599

the hair color and gender of individuals. The training set consists of 162,770 images distributed as600

follows: 71,629 females with non-blond hair, 66,874 males with non-blond hair, 22,880 females with601

blond hair, and 1,387 males with blond hair. The validation set includes 19,867 images, with 8,535602

females with non-blond hair, 8,276 males with non-blond hair, 2,874 females with blond hair, and603

182 males with blond hair. The test set comprises 19,962 images, with 9,767 females with non-blond604

hair, 7,535 males with non-blond hair, 2,480 females with blond hair, and 180 males with blond hair.605

The minority group in this dataset is males with blond hair, which constitutes a small fraction of the606

data, highlighting the skewed distribution and the presence of spurious correlations.607

(a) non-blond, female (b) non-blond, male (c) blond, female (d) blond, male

Figure 4: Example images from the CelebA dataset. The groups are g1 = {non-blond hair, female},
g2 = {non-blond hair, male}, g3 = {blond hair, female}, and g4 = {blond hair, male}.

D.2 Modified Datasets608

Building on the previously introduced datasets—CMNIST, Waterbirds, and CelebA—we constructed609

modified versions of these datasets by applying conditional distribution shifts to the minority groups,610

simulating real-world scenarios. Below, we detail the modifications for each dataset and illustrate611

these shifts with corresponding figures.612

Modified CMNIST. In the CMNIST dataset, we created a modified version where the minority613

group’s images (label 1, red) were rotated by 90 degrees in the test set, while they remained unrotated614

in the training set. This manipulation simulates conditional distribution shifts often encountered in615

real-world applications. Figure 5 provides an illustration of this shift, showing example images from616

the train and test sets.617
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(a) Train set (b) Test set

Figure 5: Example of conditional distribution shift in the CMNIST dataset, where the minority group
(label 1, red) images are rotated by 90 degrees in the test set, while they are unrotated in the training
set.

Modified Waterbirds. For the Waterbirds dataset, we constructed a modified version where the618

minority group (waterbird, land background) was designed to have a shift in species composition619

between the train and test sets. Specifically, the training set included only waterfowl species, such620

as Gadwall, Grebe, Mallard, Merganser, and Pacific Loon, while the test set contained exclusively621

seabird species, including Albatross, Auklet, Cormorant, Frigatebird, Fulmar, Gull, Jaeger, Kittiwake,622

Pelican, Puffin, Tern, and Guillemot. During the dataset construction process, we identified and623

corrected a mislabeling issue involving three species—Western Wood-Pewee, Eastern Towhee, and624

Western Meadowlark—which had been incorrectly labeled as waterbirds instead of landbirds [3].625

Figure 6 illustrates this shift, highlighting the separation of species between the train and test sets.626

(a) Train set (b) Test set

Figure 6: Example of conditional distribution shift in the Waterbirds dataset, where the minority
group (waterbird on land background) consists of waterfowl in the training set and seabirds in the test
set.

To further highlight the impact of this modification, Figure 7 compares the original distribution and627

the modified distribution shift scenarios. In the original dataset (Figure 7(a)), bird species in the628

minority group are relatively evenly distributed across train, validation, and test sets. However, in629

the modified version (Figure 7(b)), the training set contains only waterfowl, while the test set is630

composed entirely of seabirds, creating a distinct distribution shift.631

Modified CelebA. In the CelebA dataset, we modified the minority group (blond hair, male) to632

have different attributes between the train and test sets. Specifically, the training set contained only633

images without glasses, while the test set contained only images with glasses. This modification634

reflects real-world distribution shifts where rare attributes in small minority groups may change across635

different distributions, impacting model performance. Figure 8 shows example images demonstrating636

this shift.637

Figure 9 provides a detailed comparison of the original and modified distributions for the CelebA638

dataset. In the original distribution (Figure 9(a)), the minority group is predominantly represented by639

the “Without Eyeglasses” category across train, validation, and test sets, with relatively few examples640

in the “With Eyeglasses” category. In the modified version (Figure 9(b)), the training set consists641
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(a) Original distribution of the minority group. (b) Distribution shift of the minority group (only water-
fowl in training, only seabirds in testing).

Figure 7: Comparing the original and shifted distributions of the minority group (waterbird, land
background) in the Waterbirds dataset (left: seabirds, right: waterfowl, split by dashed line).

(a) Train set (b) Test set

Figure 8: Example of conditional distribution shift in the CelebA dataset, where the minority group
(blond hair, male) included only images without glasses in the training set and images with glasses in
the test set.

exclusively of “Without Eyeglasses” images, while the test set contains only “With Eyeglasses”,642

creating a clear disjoint in key attributes between training and testing phases.643

(a) Original distribution of the minority group. (b) Distribution shift of the minority group (only “With-
out Eyeglasses” in training, only “With Eyeglasses” in
testing).

Figure 9: Comparing the original and shifted distributions of the minority group (blond hair, male) in
the CelebA dataset (left: “Without Eyeglasses”, right: “With Eyeglasses”).

By introducing these conditional distribution shifts, our modified datasets simulate real-world chal-644

lenges, particularly in scenarios where small minority groups are highly susceptible to such changes.645

These constructions not only reflect practical settings but also provide realistic benchmarks for646

evaluating the robustness and generalization capabilities of machine learning models under diverse647

and challenging conditions.648
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E Baseline Details649

We compare our method against a range of representative baselines:650

• ERM: ERM optimizes average accuracy on the training set without any robust objective or group-651

specific considerations.652

• Group DRO [42]: A canonical approach for mitigating spurious correlations using known group653

labels. By partitioning data into predefined groups and minimizing the worst-case group loss,654

Group DRO aims to improve the worst-group accuracy relative to standard ERM.655

• JTT [30]: A two-step method that first trains an ERM model to identify misclassified samples656

(viewed as proxies for minority groups), then upsamples these samples and retrains a classifier.657

• CnC [56]: Identifies samples that share the same true class but differ in spurious attributes by658

analyzing ERM outputs, then trains a robust model with a contrastive learning objective. This does659

not require explicit group labels.660

• SAA [35]: Infers latent groups via a loss-based criterion, then applies Group DRO to improve661

robustness. This method partially automates the discovery of group boundaries without needing662

full group labels.663

• LISA [53]: Mitigates spurious correlations by using Mixup strategies. Depending on the dataset,664

LISA employs different Mixup variants (e.g., classic Mixup, CutMix, Manifold Mix) to interpolate665

images within the same label or same spurious attribute, thereby reducing reliance on superficial666

cues.667

• DFR [24]: Balances the dataset by subsampling to match the minority group size (the “Subsample”668

strategy), then retrains an ERM model on this balanced data. This simple yet effective approach669

can substantially improve worst-group performance. For a fair comparison, following [12], we670

evaluate DFR using only the training dataset for both training and fine-tuning, ensuring consistency671

across methods, which is denoted as DFRtr.672

• PDE [12]: Progressively expands the training dataset during the training process, starting with a673

balanced subset to prevent the model from learning spurious correlations. This approach aims to674

enhance robustness across all groups, including underrepresented ones.675

• GIC [19]: Uses a two-step pipeline where group membership is partially inferred, then a robust676

optimization (e.g., Group DRO) is applied. Similar to LISA, it can incorporate tailored Mixup677

strategies depending on the dataset’s characteristics.678

F Implementation Details679

For experiments involving our newly constructed datasets, we reimplemented both our proposed680

method and the relevant baselines. When certain baselines lacked reported results for a given681

dataset, we used the performance from [56] and [19] if available; otherwise, we performed our own682

reimplementations under consistent settings. In particular, for the original CMNIST dataset, we683

reimplemented experiments for DFR and PDE, since their original papers did not include CMNIST684

results. In all other cases, we referenced performance metrics from each baseline’s primary source.685

All experiments were conducted on an NVIDIA GeForce RTX 3090 GPU.686

Across all datasets, we employed the torchvision implementation of ResNet-50 pretrained687

on ImageNet, training with SGD at a momentum of 0.9 and a batch size of 128, fol-688

lowing [42]. Our approach also introduces a perturbation parameter ϵ to control within-689

group uncertainty. Specifically, we define ϵg = ϵ/
√
ng, where ng represents the size of690

group g in the training data. To determine ϵ, we performed a grid search over the set691

{12/255, 24/255, 36/255, 48/255, 60/255, 72/255, 84/255, 96/255}, scaling each value by692 √
nmin. Here, nmin = ming ng denotes the smallest group size in the training set. Additionally,693

we tuned the generalization adjustment parameter C over {0, 1, 2, 3}, as described in Section 3.3 of694

[42]. This setup was applied consistently across every dataset.695

For CMNIST, we conducted a grid search over learning rates {10−4, 10−3, 10−2} and ℓ2 penalties696

{10−1, 10−2, 10−4} for 50 epochs. Due to instability in training with the selected parameter com-697

binations in the original Group DRO implementation, we applied a ReduceLROnPlateau scheduler698

starting at a learning rate of 0.01, using it consistently for both our method and Group DRO to ensure699

fairness. For Waterbirds, the learning rate was tuned over {10−3, 10−4, 10−5} and the ℓ2 penalty700
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over {10−4, 10−1, 1}, with training conducted for 300 epochs. For CelebA, the learning rate was701

tuned over {10−4, 10−5} and the ℓ2 penalty over {10−4, 10−2, 1} for 30 epochs. We referred to702

prior works including [53] and [17] to guide these hyperparameter search ranges.703

G Experimental Result Details704

G.1 Visualizing t-SNE Ordering for Minority Groups705

To highlight the utility of t-SNE ordering in simulating realistic distribution shifts (as discussed in706

Section 4.3), we present visual examples of waterbirds from the top 20% and bottom 20% quantiles of707

the t-SNE projections. This approach effectively partitions samples based on semantically meaningful708

intra-group differences, enabling validation splits that closely mimic real-world distribution shifts.709

(a) Example images from the top 20% of t-SNE ordering

(b) Example images from the bottom 20% of t-SNE ordering

Figure 10: t-SNE-based ordering reveals subtle distinctions within the minority group. (a) The top
quantile features waterbirds with longer beaks, while (b) the bottom quantile features those with
shorter beaks.

As shown in Figure 10, the t-SNE ordering captures nuanced intra-group differences within this710

minority group. In the top 20% quantile (Figure 10(a)), waterbirds with longer beaks dominate; in711

the bottom 20% quantile (Figure 10(b)), shorter-beaked waterbirds are more prevalent. This contrast712

illustrates how a t-SNE-driven partition can create validation splits that mimic real-world distribution713

shifts. This method not only emphasizes variations within groups but also systematically evaluates714

the model’s robustness under challenging real-world conditions.715

G.2 Impact of ϵ on Robustness716

The perturbation parameter ϵ plays a critical role in improving robustness under minority group shifts.717

Figures 11(a) and 11(b) show how increasing ϵ affects worst-group accuracy for the Waterbirds718

and CelebA datasets, respectively. Notably, both datasets achieve significant gains in worst-group719

accuracy when ϵ is set above zero, indicating enhanced resilience to distributional shifts.720

As illustrated in Figure 11(a), larger ϵ values consistently improve worst-group accuracy on Water-721

birds, enabling the model to better manage intra-group variations and subpopulation shifts. A similar722

trend appears in Figure 11(b) for CelebA, further validating the robustness gained by appropriately723

increasing ϵ.724
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(a) Waterbirds dataset under a minority group shift. (b) CelebA dataset under a minority group shift.

Figure 11: Impact of ϵ on robustness. The x-axis represents ϵ values scaled by 255, and the y-axis
indicates accuracy. Each point is the mean of 3 runs (solid lines), and the shaded regions show the
standard deviation. For this analysis, the learning rate and ℓ2 penalty were fixed to isolate the effect
of ϵ.

These findings underscore the importance of incorporating conditional distribution uncertainty into725

the training framework. By effectively capturing within-group variability, our approach significantly726

enhances worst-group performance, making it well-suited for handling realistic distributional shifts.727

G.3 Grad-CAM Results and Analysis728

To gain further insight into where each model focuses its attention under minority-group shifts, we729

visualize Grad-CAM [43] heatmaps on misclassified examples (by Group DRO) that our method730

classifies correctly. Figure 12 shows examples on the Waterbirds dataset, while Figure 13 presents731

examples from CelebA.

Figure 12: Grad-CAM visualizations for Waterbirds test images from a minority-group shift scenario.
Each column shows an input image (top row), Grad-CAM for Group DRO (middle row), and Grad-
CAM for our method (bottom row).

732

Waterbirds. In Figure 12, the minority-group shift involves species changes not observed in the733

training set. While Group DRO often localizes on a narrow region of the bird—sometimes near734

the torso or background—our method exhibits a more distributed attention, covering details like735

the wings, beak, or feet. This broader localization helps the model rely on features invariant to736

previously unseen waterbird species, enabling robust classification despite changes in the specific737

types of waterbirds encountered.738

CelebA. Figure 13 shows examples from the minority group (blond-hair, male) in which the739

test images include glasses—an attribute absent from the training set. In these cases, Group DRO740

erroneously directs attention toward the facial or eyewear regions rather than focusing on hair741

color. By contrast, our method more reliably highlights the hair region, aligning with the intended742

classification objective and enabling correct predictions even under previously unseen attributes.743
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Figure 13: Grad-CAM visualizations for CelebA test images from the minority-group shift scenario.
Each column shows the input image (top row), Grad-CAM for Group DRO (middle row), and
Grad-CAM for our method (bottom row).

Overall, these visualizations confirm that, under challenging distribution shifts, our hierarchical DRO744

framework is less prone to confounding features and more successful in focusing on the task-relevant745

regions. This broader and more contextually aligned attention helps maintain strong performance746

even when encountering unseen or spurious attributes.747
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NeurIPS Paper Checklist748

1. Claims749

Question: Do the main claims made in the abstract and introduction accurately reflect the750

paper’s contributions and scope?751

Answer: [Yes]752

Justification: The abstract and introduction clearly describe both the hierarchical extension753

of Group DRO and the evaluation under realistic distribution shifts, which are supported by754

theoretical and empirical results in the paper.755

Guidelines:756

• The answer NA means that the abstract and introduction do not include the claims757

made in the paper.758

• The abstract and/or introduction should clearly state the claims made, including the759

contributions made in the paper and important assumptions and limitations. A No or760

NA answer to this question will not be perceived well by the reviewers.761

• The claims made should match theoretical and experimental results, and reflect how762

much the results can be expected to generalize to other settings.763

• It is fine to include aspirational goals as motivation as long as it is clear that these goals764

are not attained by the paper.765

2. Limitations766

Question: Does the paper discuss the limitations of the work performed by the authors?767

Answer: [Yes]768

Justification: The paper explicitly discusses limitations in the final section, including769

challenges in generalizing to other modalities, the heuristic choice of the perturbation radius,770

and the focus on single-spurious-feature settings.771

Guidelines:772

• The answer NA means that the paper has no limitation while the answer No means that773

the paper has limitations, but those are not discussed in the paper.774

• The authors are encouraged to create a separate "Limitations" section in their paper.775

• The paper should point out any strong assumptions and how robust the results are to776

violations of these assumptions (e.g., independence assumptions, noiseless settings,777

model well-specification, asymptotic approximations only holding locally). The authors778

should reflect on how these assumptions might be violated in practice and what the779

implications would be.780

• The authors should reflect on the scope of the claims made, e.g., if the approach was781

only tested on a few datasets or with a few runs. In general, empirical results often782

depend on implicit assumptions, which should be articulated.783

• The authors should reflect on the factors that influence the performance of the approach.784

For example, a facial recognition algorithm may perform poorly when image resolution785

is low or images are taken in low lighting. Or a speech-to-text system might not be786

used reliably to provide closed captions for online lectures because it fails to handle787

technical jargon.788

• The authors should discuss the computational efficiency of the proposed algorithms789

and how they scale with dataset size.790

• If applicable, the authors should discuss possible limitations of their approach to791

address problems of privacy and fairness.792

• While the authors might fear that complete honesty about limitations might be used by793

reviewers as grounds for rejection, a worse outcome might be that reviewers discover794

limitations that aren’t acknowledged in the paper. The authors should use their best795

judgment and recognize that individual actions in favor of transparency play an impor-796

tant role in developing norms that preserve the integrity of the community. Reviewers797

will be specifically instructed to not penalize honesty concerning limitations.798

3. Theory assumptions and proofs799

Question: For each theoretical result, does the paper provide the full set of assumptions and800

a complete (and correct) proof?801
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Answer: [Yes]802

Justification: The paper includes theoretical results (e.g., Theorem 1) with full assumptions803

and proofs provided in the appendix for completeness.804

Guidelines:805

• The answer NA means that the paper does not include theoretical results.806

• All the theorems, formulas, and proofs in the paper should be numbered and cross-807

referenced.808

• All assumptions should be clearly stated or referenced in the statement of any theorems.809

• The proofs can either appear in the main paper or the supplemental material, but if810

they appear in the supplemental material, the authors are encouraged to provide a short811

proof sketch to provide intuition.812

• Inversely, any informal proof provided in the core of the paper should be complemented813

by formal proofs provided in appendix or supplemental material.814

• Theorems and Lemmas that the proof relies upon should be properly referenced.815

4. Experimental result reproducibility816

Question: Does the paper fully disclose all the information needed to reproduce the main ex-817

perimental results of the paper to the extent that it affects the main claims and/or conclusions818

of the paper (regardless of whether the code and data are provided or not)?819

Answer: [Yes]820

Justification: The paper describes all necessary implementation details including dataset821

modifications, model architectures, optimization settings, and hyperparameter tuning proce-822

dures for reproducing the main experiments (Section 4 and Appendix F).823

Guidelines:824

• The answer NA means that the paper does not include experiments.825

• If the paper includes experiments, a No answer to this question will not be perceived826

well by the reviewers: Making the paper reproducible is important, regardless of827

whether the code and data are provided or not.828

• If the contribution is a dataset and/or model, the authors should describe the steps taken829

to make their results reproducible or verifiable.830

• Depending on the contribution, reproducibility can be accomplished in various ways.831

For example, if the contribution is a novel architecture, describing the architecture fully832

might suffice, or if the contribution is a specific model and empirical evaluation, it may833

be necessary to either make it possible for others to replicate the model with the same834

dataset, or provide access to the model. In general. releasing code and data is often835

one good way to accomplish this, but reproducibility can also be provided via detailed836

instructions for how to replicate the results, access to a hosted model (e.g., in the case837

of a large language model), releasing of a model checkpoint, or other means that are838

appropriate to the research performed.839

• While NeurIPS does not require releasing code, the conference does require all submis-840

sions to provide some reasonable avenue for reproducibility, which may depend on the841

nature of the contribution. For example842

(a) If the contribution is primarily a new algorithm, the paper should make it clear how843

to reproduce that algorithm.844

(b) If the contribution is primarily a new model architecture, the paper should describe845

the architecture clearly and fully.846

(c) If the contribution is a new model (e.g., a large language model), then there should847

either be a way to access this model for reproducing the results or a way to reproduce848

the model (e.g., with an open-source dataset or instructions for how to construct849

the dataset).850

(d) We recognize that reproducibility may be tricky in some cases, in which case851

authors are welcome to describe the particular way they provide for reproducibility.852

In the case of closed-source models, it may be that access to the model is limited in853

some way (e.g., to registered users), but it should be possible for other researchers854

to have some path to reproducing or verifying the results.855

5. Open access to data and code856
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Question: Does the paper provide open access to the data and code, with sufficient instruc-857

tions to faithfully reproduce the main experimental results, as described in supplemental858

material?859

Answer: [Yes]860

Justification: The supplemental material includes anonymized code and instructions for861

reproducing the main experiments.862

Guidelines:863

• The answer NA means that paper does not include experiments requiring code.864

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/865

public/guides/CodeSubmissionPolicy) for more details.866

• While we encourage the release of code and data, we understand that this might not be867

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not868

including code, unless this is central to the contribution (e.g., for a new open-source869

benchmark).870

• The instructions should contain the exact command and environment needed to run to871

reproduce the results. See the NeurIPS code and data submission guidelines (https:872

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.873

• The authors should provide instructions on data access and preparation, including how874

to access the raw data, preprocessed data, intermediate data, and generated data, etc.875

• The authors should provide scripts to reproduce all experimental results for the new876

proposed method and baselines. If only a subset of experiments are reproducible, they877

should state which ones are omitted from the script and why.878

• At submission time, to preserve anonymity, the authors should release anonymized879

versions (if applicable).880

• Providing as much information as possible in supplemental material (appended to the881

paper) is recommended, but including URLs to data and code is permitted.882

6. Experimental setting/details883

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-884

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the885

results?886

Answer: [Yes]887

Justification: Section 5 and Appendix F provide detailed descriptions of training/test splits,888

hyperparameters, optimizers, and other experimental settings.889

Guidelines:890

• The answer NA means that the paper does not include experiments.891

• The experimental setting should be presented in the core of the paper to a level of detail892

that is necessary to appreciate the results and make sense of them.893

• The full details can be provided either with the code, in appendix, or as supplemental894

material.895

7. Experiment statistical significance896

Question: Does the paper report error bars suitably and correctly defined or other appropriate897

information about the statistical significance of the experiments?898

Answer: [Yes]899

Justification: Tables 1, 2, and 3 report the standard deviation over three independent random900

seeds to indicate variability in performance.901

Guidelines:902

• The answer NA means that the paper does not include experiments.903

• The authors should answer "Yes" if the results are accompanied by error bars, confi-904

dence intervals, or statistical significance tests, at least for the experiments that support905

the main claims of the paper.906

• The factors of variability that the error bars are capturing should be clearly stated (for907

example, train/test split, initialization, random drawing of some parameter, or overall908

run with given experimental conditions).909
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• The method for calculating the error bars should be explained (closed form formula,910

call to a library function, bootstrap, etc.)911

• The assumptions made should be given (e.g., Normally distributed errors).912

• It should be clear whether the error bar is the standard deviation or the standard error913

of the mean.914

• It is OK to report 1-sigma error bars, but one should state it. The authors should915

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis916

of Normality of errors is not verified.917

• For asymmetric distributions, the authors should be careful not to show in tables or918

figures symmetric error bars that would yield results that are out of range (e.g. negative919

error rates).920

• If error bars are reported in tables or plots, The authors should explain in the text how921

they were calculated and reference the corresponding figures or tables in the text.922

8. Experiments compute resources923

Question: For each experiment, does the paper provide sufficient information on the com-924

puter resources (type of compute workers, memory, time of execution) needed to reproduce925

the experiments?926

Answer: [Yes]927

Justification: We provide details on the compute resources used in Appendix F.928

Guidelines:929

• The answer NA means that the paper does not include experiments.930

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,931

or cloud provider, including relevant memory and storage.932

• The paper should provide the amount of compute required for each of the individual933

experimental runs as well as estimate the total compute.934

• The paper should disclose whether the full research project required more compute935

than the experiments reported in the paper (e.g., preliminary or failed experiments that936

didn’t make it into the paper).937

9. Code of ethics938

Question: Does the research conducted in the paper conform, in every respect, with the939

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?940

Answer: [Yes]941

Justification: The research adheres to the NeurIPS Code of Ethics, with no violations of942

ethical standards in data usage, experimental design, or reporting.943

Guidelines:944

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.945

• If the authors answer No, they should explain the special circumstances that require a946

deviation from the Code of Ethics.947

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-948

eration due to laws or regulations in their jurisdiction).949

10. Broader impacts950

Question: Does the paper discuss both potential positive societal impacts and negative951

societal impacts of the work performed?952

Answer: [Yes]953

Justification: The Conclusion section discusses the positive societal impact of improving954

robustness for underrepresented groups; we do not foresee any negative societal impacts955

from this work.956

Guidelines:957

• The answer NA means that there is no societal impact of the work performed.958

• If the authors answer NA or No, they should explain why their work has no societal959

impact or why the paper does not address societal impact.960
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• Examples of negative societal impacts include potential malicious or unintended uses961

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations962

(e.g., deployment of technologies that could make decisions that unfairly impact specific963

groups), privacy considerations, and security considerations.964

• The conference expects that many papers will be foundational research and not tied965

to particular applications, let alone deployments. However, if there is a direct path to966

any negative applications, the authors should point it out. For example, it is legitimate967

to point out that an improvement in the quality of generative models could be used to968

generate deepfakes for disinformation. On the other hand, it is not needed to point out969

that a generic algorithm for optimizing neural networks could enable people to train970

models that generate Deepfakes faster.971

• The authors should consider possible harms that could arise when the technology is972

being used as intended and functioning correctly, harms that could arise when the973

technology is being used as intended but gives incorrect results, and harms following974

from (intentional or unintentional) misuse of the technology.975

• If there are negative societal impacts, the authors could also discuss possible mitigation976

strategies (e.g., gated release of models, providing defenses in addition to attacks,977

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from978

feedback over time, improving the efficiency and accessibility of ML).979

11. Safeguards980

Question: Does the paper describe safeguards that have been put in place for responsible981

release of data or models that have a high risk for misuse (e.g., pretrained language models,982

image generators, or scraped datasets)?983

Answer: [NA]984

Justification: The paper uses publicly available benchmark datasets (e.g., Waterbirds,985

CelebA, CMNIST) that are widely adopted in the community and do not pose high risks for986

misuse.987

Guidelines:988

• The answer NA means that the paper poses no such risks.989

• Released models that have a high risk for misuse or dual-use should be released with990

necessary safeguards to allow for controlled use of the model, for example by requiring991

that users adhere to usage guidelines or restrictions to access the model or implementing992

safety filters.993

• Datasets that have been scraped from the Internet could pose safety risks. The authors994

should describe how they avoided releasing unsafe images.995

• We recognize that providing effective safeguards is challenging, and many papers do996

not require this, but we encourage authors to take this into account and make a best997

faith effort.998

12. Licenses for existing assets999

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1000

the paper, properly credited and are the license and terms of use explicitly mentioned and1001

properly respected?1002

Answer: [Yes]1003

Justification: All datasets and code used in this work are properly cited and their licenses1004

and terms of use are clearly stated in the supplemental material.1005

Guidelines:1006

• The answer NA means that the paper does not use existing assets.1007

• The authors should cite the original paper that produced the code package or dataset.1008

• The authors should state which version of the asset is used and, if possible, include a1009

URL.1010

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1011

• For scraped data from a particular source (e.g., website), the copyright and terms of1012

service of that source should be provided.1013
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• If assets are released, the license, copyright information, and terms of use in the1014

package should be provided. For popular datasets, paperswithcode.com/datasets1015

has curated licenses for some datasets. Their licensing guide can help determine the1016

license of a dataset.1017

• For existing datasets that are re-packaged, both the original license and the license of1018

the derived asset (if it has changed) should be provided.1019

• If this information is not available online, the authors are encouraged to reach out to1020

the asset’s creators.1021

13. New assets1022

Question: Are new assets introduced in the paper well documented and is the documentation1023

provided alongside the assets?1024

Answer: [Yes]1025

Justification: We introduce modified benchmark datasets simulating minority group distri-1026

bution shifts, and provide documentation and implementation details in the supplemental1027

material.1028

Guidelines:1029

• The answer NA means that the paper does not release new assets.1030

• Researchers should communicate the details of the dataset/code/model as part of their1031

submissions via structured templates. This includes details about training, license,1032

limitations, etc.1033

• The paper should discuss whether and how consent was obtained from people whose1034

asset is used.1035

• At submission time, remember to anonymize your assets (if applicable). You can either1036

create an anonymized URL or include an anonymized zip file.1037

14. Crowdsourcing and research with human subjects1038

Question: For crowdsourcing experiments and research with human subjects, does the paper1039

include the full text of instructions given to participants and screenshots, if applicable, as1040

well as details about compensation (if any)?1041

Answer: [NA]1042

Justification: The paper does not involve any crowdsourcing or research with human subjects.1043

Guidelines:1044

• The answer NA means that the paper does not involve crowdsourcing nor research with1045

human subjects.1046

• Including this information in the supplemental material is fine, but if the main contribu-1047

tion of the paper involves human subjects, then as much detail as possible should be1048

included in the main paper.1049

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1050

or other labor should be paid at least the minimum wage in the country of the data1051

collector.1052

15. Institutional review board (IRB) approvals or equivalent for research with human1053

subjects1054

Question: Does the paper describe potential risks incurred by study participants, whether1055

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1056

approvals (or an equivalent approval/review based on the requirements of your country or1057

institution) were obtained?1058

Answer: [NA]1059

Justification: The paper does not involve any research with human subjects.1060

Guidelines:1061

• The answer NA means that the paper does not involve crowdsourcing nor research with1062

human subjects.1063

• Depending on the country in which research is conducted, IRB approval (or equivalent)1064

may be required for any human subjects research. If you obtained IRB approval, you1065

should clearly state this in the paper.1066

29

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions1067

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1068

guidelines for their institution.1069

• For initial submissions, do not include any information that would break anonymity (if1070

applicable), such as the institution conducting the review.1071

16. Declaration of LLM usage1072

Question: Does the paper describe the usage of LLMs if it is an important, original, or1073

non-standard component of the core methods in this research? Note that if the LLM is used1074

only for writing, editing, or formatting purposes and does not impact the core methodology,1075

scientific rigorousness, or originality of the research, declaration is not required.1076

Answer: [NA]1077

Justification: LLM was used for editing, not for core research content.1078

Guidelines:1079

• The answer NA means that the core method development in this research does not1080

involve LLMs as any important, original, or non-standard components.1081

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1082

for what should or should not be described.1083
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