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Abstract
Recently demonstrated physical-world adversar-
ial attacks have exposed vulnerabilities in per-
ception systems that pose severe risks for safety-
critical applications such as autonomous driving.
These attacks place adversarial artifacts in the
physical world that indirectly cause the addition
of a universal patch to inputs of a model that
can fool it in a variety of contexts. Adversar-
ial training is the most effective defense against
image-dependent adversarial attacks. However,
tailoring adversarial training to universal patches
is computationally expensive since the optimal
universal patch depends on the model weights
which change during training. We propose meta
adversarial training (MAT), a novel combination
of adversarial training with meta-learning, which
overcomes this challenge by meta-learning uni-
versal patches along with model training. MAT
requires little extra computation while continu-
ously adapting a large set of patches to the current
model. MAT considerably increases robustness
against universal patch attacks on image classifi-
cation and traffic-light detection.

1. Introduction
Deep learning is currently the most promising method for
open-world perception tasks such as in automated driv-
ing and robotics. However, the use in safety-critical do-
mains is questionable, since a lack of robustness of deep
learning-based perception has been demonstrated (Szegedy
et al., 2014; Goodfellow et al., 2015; Metzen et al., 2017;
Hendrycks & Dietterich, 2019). Physical-world adversarial
attacks (Kurakin et al., 2017; Athalye et al., 2018; Braunegg
et al., 2020) are one of most problematic failures in robust-
ness of deep learning. In this work, we focus on one subset
of these physical-world attacks, where an attacker places a
printed pattern in a scene that does not overlap with the tar-
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Undefended Meta Adversarial Training (MAT)

Figure 1. Illustration of a digital universal patch attack against an
undefended model (left) and a model defended with meta adversar-
ial training (MAT, right) on Bosch Small Traffic Lights (Behrendt
& Novak, 2017). A patch can lead the undefended model to detect
non-existent traffic lights and miss real ones that would be detected
without the patch (bottom left). In contrast, the same patch is inef-
fective against MAT (bottom right). Moreover, a patch optimized
for MAT (top right), which bears a resemblance to traffic lights,
does not cause the model to remove correct detections.

get object (Lee & Kolter, 2019; Huang et al., 2019).We study
approaches for increasing robustness against such attacks
in the strictly stronger threat model of universal adversarial
digital-domain patch attacks (Brown et al., 2017).

The most promising method for increasing robustness
against general adversarial attacks is adversarial training
(Goodfellow et al., 2015; Madry et al., 2018), which simu-
lates an adversarial attack for every mini-batch and trains
the model to become robust against such an attack. Ad-
versarial training against universal patches (and universal
perturbations in general) is complicated by the fact that
generating such universal patches is computationally much
more expensive than generating image-dependent perturba-
tions. Existing approaches for tailoring adversarial training
to universal perturbations either refrain from simulating at-
tacks in every mini-batch (Moosavi-Dezfooli et al., 2017;
Hayes & Danezis, 2018; Perolat et al., 2018), which bears
the risk that the model easily overfits these fixed or rarely
updated universal perturbations, or alternatively use proxy
attacks that are computationally cheaper such as “univer-
sal adversarial training” (UAT) (Shafahi et al., 2018) and
“shared adversarial training” (SAT) (Mummadi et al., 2019).
The latter face the challenge of balancing the implicit trade-
off between simulating universal perturbations accurately
and keeping computation cost of proxy attacks small.
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We propose meta adversarial training (MAT) 1 , which falls
into the category of proxy attacks. MAT combines adver-
sarial training with meta-learning. We summarize the key
novel contributions of MAT and refer to Sec. 3 for details:

• MAT shares information about optimal patches over
consecutive steps of model training in the form of meta-
patches. These meta-patches allow generating strong
approximations of universal patches with few iterations.
In contrast to UAT (Shafahi et al., 2018), MAT uses
meta-learning for sharing of information rather than
joint training, which empirically generates stronger
patches and a more robust model.

• MAT meta-learns a large set of meta-patches concur-
rently. While a model easily overfits a single meta-
patch, even if it changes as in UAT, overfitting is much
less likely for larger sets of meta-patches as in MAT.

• MAT encourages diversity of meta-patches by assign-
ing a random but fixed target class and step-size to
each meta-patch. This avoids that many meta-patches
exploit the same model vulnerability.

We refer to Figure 1 for an illustration of MAT for universal
patch attacks against traffic light detection. We note that
while we focus on universal patches, MAT can be easily
applied to universal `p-norm pertubations (Sec. D.1.2).

2. Background and Related Work
Let D be a distribution over d-dimensional datapoints x ∈
[0, 1]d and corresponding labels y, θ model parameters to
be optimized, and L a loss function. Moreover, let S be
the set of allowed perturbations and F be a function that
applies a perturbation ξ ∈ S to a datapoint, potentially
dependent on the label and some randomness r ∼ R. In the
case of adversarial patches, F corresponds to overwriting
a randomly chosen input region by a universal patch ξ of a
given size.

Following the notation introduced by Mummadi et al.
(2019), we define the universal adversarial risk as follows:
ρuni(θ) = max

ξ∈S
E

(x,y)∼D,r∼R
L(θ,F(x, ξ, r), y), where we

drop the explicit dependence of ρuni on S, D, and R.
Generally, we are interested in finding model parameters
that minimize the universal adversarial risk, denoted as
θ∗ = arg minθ ρuni(θ). This corresponds to the standard
min-max saddle point formulation of adversarial training
introduced by Madry et al. (2018), where we incremen-
tally update the model parameters θ by computing θt+1

based on∇θtρuni(θt) (or more precisely an approximation
of ρuni(θt)). However, in contrast to standard adversarial
training, the inner maximization problem is optimized over
an expected value with respect to the data distribution D

1
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and potential randomnessR, making it more expensive to
solve (even approximately). As the optimal ξt of the inner
maximization at step t of the outer minimization depends on
the model parameters θt, this maximization of ξt needs to
be repeated in every step of the outer minimization, making
the direct minimization of ρuni(θ) intractable.

Existing work has addressed this in different ways (see Sec.
H for a more detailed review of related works). One ap-
proach (Moosavi-Dezfooli et al., 2017; Hayes & Danezis,
2018; Perolat et al., 2018) relaxes the explicit dependence
of ξt on θt and computes a set or distribution over ξ for
some parameter checkpoints of θ, and then applies these
perturbations to the model while updating its parameters θ.
This can easily result in overfitting the fixed set or distri-
bution over ξ. Another approach proposed by Mummadi
et al. (2019) replaces the distribution D in the inner maxi-
mization with the current batch of the outer minimization.
The effectiveness of this procedure hinges on the ability to
efficiently approximate this inner maximization with few
gradient steps.

3. Meta Adversarial Training
We propose a combination of adversarial training with meta-
learning for increasing robustness against universal patches.

Meta-learning Universal Patches. As discussed in Sec. 2,
the main challenge of using adversarial training to increase
model robustness against universal patches is efficiently ap-
proximating ξt for the current θt in every step t of the outer
minimization. Similar to UAT (Shafahi et al., 2018), we
exploit the property that one step of the outer minimization
only applies a small change to θ; thus, for consecutive steps
t and t + 1 of the outer minimization, the resulting inner
maximization problems for finding ξt and ξt+1 are closely
related (Zheng et al., 2020). UAT exploits this property by
initializing the inner maximization at t + 1 with the (ap-
proximate) solution for ξt and performs a single gradient
step on a single batch in the inner maximization at t + 1.
A potential shortcoming of this method is that it uses only
a single gradient-step and thus implements joint training
of parameters and patch, which does not allow capturing
higher-order derivatives of the loss function (Nichol et al.,
2018) and may therefore learn suboptimal initial patches.

We address this shortcoming by meta-learning initial val-
ues for universal patches – by approaching the optimiza-
tion problems {ξti}Ni=1 with gradient-based meta-learning:
in parallel to updating θt in the outer minimization, we
meta-learn an initialization Ξt, which we refer to as the
“meta-patch” at time step t of the outer minimization. That
allows for approximating the inner-optimization problem
of ξt+1 with few gradient steps. More precisely, we
use the REPTILE (Nichol et al., 2018) meta-learning al-

https://github.com/boschresearch/meta-adversarial-training


Meta Adversarial Training against Universal Patches

gorithm with the iterative fast gradient sign method (I-
FGSM) (Kurakin et al., 2017) task learner. In the inner
maximization, we employ K iterations of I-FGSM with
ξ
(0)
t = Ξt and for k ∈ {1, . . .K} the update rule ξ(k+1)

t =

ΠS

[
ξ
(k)
t + α sgn(∇ξL(θt,F(x, ξ

(k)
t , r), y))

]
, where ΠS

denotes projection on the set S and α the step size of I-
FGSM. The key difference compared to standard I-FGSM
and PGD (Madry et al., 2018) is that the initialization ξ(0)t

is neither constant nor randomly sampled but meta-learned.
The resulting patch ξ(K)

t is used two-fold: first, it is used
with the REPTILE meta-learner for updating Ξ with the
following update: Ξt+1 = (1 − σ)Ξt + σξ

(K)
t , where σ

is the learning rate of REPTILE. Second, ξ(K)
t is used in

the next step of the outer minimization as an approximation
of the optimal ξt for the sample (x, y) with randomness r.
Learning the universal perturbation in UAT can be seen as a
special case of our procedure for K = 1 and σ = 1.

Meta-learning Diverse Collections of Patches. The pro-
cedure proposed above allows meta-learning of a single
meta-patch Ξ. However, one such meta-patch can easily
get trapped in a local optimum, from which gradient-based
meta-learning cannot easily escape. To prevent this, we
propose a meta-learning approach that learns an entire set
P of P meta-patches Ξi. For each sample, we select one of
these meta-patches that will be used for initializing I-FGSM
and later get updated by REPTILE. However, meta-learning
a set of meta-patches in this way with the same optimizer
and objective will not automatically result in a diverse set of
meta-patches. We encourage diversity of the generated set
of meta-patches by randomly assigning a target and perform-
ing a targeted I-FGSM attack. This avoids many patches
converging to similar patterns that fool the model into pre-
dicting the same class. Moreover, we also assign a randomly
chosen fixed step size α for I-FGSM to every meta-patch.
Larger step sizes correspond to meta-patches that explore
the space of allowed patches more globally while smaller
step sizes result in more fine-grained attacks. We evaluate
the effectiveness of these heuristics in Sec. 4.

Meta Adversarial Training (MAT). We summarize MAT
in Algorithm 1 (see Section A.3 for additional considera-
tions). The function INITP (Algorithm 2 in the appendix)
initializes P consisting of P meta-patches Ξi and corre-
sponding targets ytargeti and step-sizes αi. We select the
target as one of the classes in a round-robin fashion and the
step size log-uniformly from [0.0001, 0.1]. We initialize the
meta-patches by either sampling uniform randomly from
[0, 1]d or by (sub-sampling) an actual data-point, which cor-
responds to an on-manifold initialization akin to CutMix
(Yun et al., 2019). This data-initialization was concurrently
proposed by Yang et al. (2020b), and Yang et al. (2020a)
found that such texture patches can be adversarial even
without further optimization. The function SELECTF (Al-

Algorithm 1 Meta Adversarial Training
1: Input:dataD, initial parameters θ, application fct. F , loss-fct.
L, REPTILE learn-rate σ

2: # Initialize P tuples of meta-patch, target, and step size
3: P ← INITP (D,”data”)

4: # tmax steps of outer minimization (we drop subscript t)
5: for t in {0, . . . , tmax − 1} do
6: # Sample datapoint
7: (x, y) ∼ D
8: # Select meta-pert. Ξ and corresponding target ytarget,

step-size α, and randomness r from P
9: Ξ, ytarget, α, r ← SELECTF (P, x, y, θt,F ,L,R)

10: # Inner maximization initialized with meta-pert. Ξ
11: ξ ← I-FGSMK(Ξ, x, ytarget, θt,F , α, r)
12: # Outer minimization step with optimizer OPT, e.g., SGD
13: θ ← OPT(L, θ,F(x, ξ, r), y)
14: # Meta-learning update of meta-patch Ξ (REPTILE)
15: Ξ← (1− σ)Ξ + σξ
16: # Replace updated meta-patch in P
17: P ← UPDATE(P,Ξ)
18: end for

gorithm 3 in the appendix) uniform randomly samples F
trials of (Ξ, ytarget, α) ∼ P with randomness r ∼ R and
selects the one with maximizal loss L(θ,F(x,Ξ, r), y).

Line 11-15 present the core of MAT consisting of (i) inner
maximization of a patch ξ that was initialized from a meta-
patch Ξ with I-FGSMK , (ii) a step of outer minimization
of θt with an optimizer like SGD on a pair of perturbed
input F(x, ξ, r) and corresponding label y, and (iii) the
meta-learning update of the respective meta-patch Ξ with
REPTILE. We can easily extend Algorithm 1 to a batch size
larger than one: the only required change is that REPTILE-
based meta-learning deals with the situation where the same
meta-patch is selected and optimized for several elements
in a batch. In this case, the meta-learning update becomes
Ξ← (1− σ)Ξ + σ 1

N

∑N
i=1 ξi for N patches ξi initialized

from the same meta-patch Ξ. We note that MAT has similar
computational cost as adversarial training (Sec. A.2).

4. Experiments
We conduct experiments on patch robustness of models for
image classification and for object detection. We refer to
Sec. B for details on attacks used for robustness evaluation
and to Sec. C for experimental details.

4.1. Image Classification on Tiny ImageNet (Tin)

We evaluate robustness against universal patches of size
24x24 pixel that cover approx. 14% of the 64x64 images.
Patches are randomly translated from the center of the image
by at most 26 pixels. Results are summarized in Table 1
(more details can be found in Sec. D.1). We observe that
a model trained with standard empirical risk minimization
offers no robustness against any of the evaluated attacks.
When comparing the baseline adversarial defenses (Madry
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Table 1. Accuracy (mean over 5 runs) on Tiny ImageNet on clean
data (CL) and against universal patch attacks with random init
(RI), init with a cropped image patch (DI), low-frequency filter
(LF), transfer attacks (Tr), and worst across all four attacks (Min).
Shown are adversarial training (AT) (Madry et al., 2018), shared
adversarial training (SAT) (Mummadi et al., 2019), universal ad-
versarial training (UAT) (Shafahi et al., 2018), and MAT ablations.

SETTING CL RI DI LF TR MIN

STANDARD 0.55 0.03 0.03 0.07 0.03 0.02

AT 0.57 0.06 0.07 0.12 0.17 0.06
SAT 0.58 0.07 0.07 0.12 0.33 0.06
UAT 0.49 0.41 0.09 0.15 0.12 0.09

MAT (FULL) 0.59 0.56 0.55 0.53 0.55 0.53
(RAND. INIT) 0.58 0.56 0.32 0.26 0.52 0.23
(UNTARGET) 0.58 0.56 0.56 0.56 0.50 0.50

(F = 1) 0.58 0.53 0.53 0.50 0.52 0.48
(K = 1) 0.58 0.55 0.53 0.53 0.46 0.45

(σ = 1.0) 0.58 0.57 0.55 0.55 0.50 0.50

et al., 2018; Mummadi et al., 2019; Shafahi et al., 2018),
none of them exhibit more than trivial robustness. We note
that while UAT provides relatively high robustness against
attacks with random initialization, this robustness does not
carry over to other attack variants.

In contrast, MAT (full) with standard parameters (INIT with
data initialization and P = 1000 meta-patches, targeted
attacks, F = 5 in SELECT, K = 5 iterations in I-FGSM,
REPTILE learning rate σ = 0.25) shows high robustness
against all attack variants. When ablating MAT, choosing
a random initialization in INIT is most problematic – it
results in similar but less severe overfitting to randomly ini-
tialized attacks as UAT. Also, ablating towards joint training
(σ = 1.0 and K = 1) deteriorates performance relative
to meta-learning in MAT (full). In addition, enforcing di-
versity in meta-patches via targeted attacks in MAT (full)
is responsible for a small increase in robustness compared
to untargeted learning of meta-patches. Finally, taking the
worst over F = 5 samples in SELECT outperforms random
sampling (F = 1).

Importantly, MAT offers increased robustness without af-
fecting clean performance. In contrast, MAT acts as an
effective regularizer and reduces overfitting compared to
standard training and achieves the strongest clean perfor-
mance among all methods, surpassing standard training by 4
percentage points. Even against the strongest patches, MAT
only loses 2 percentage points accuracy relative to standard
training on clean data, despite the relatively large patch size.
We provide illustrations of patches in Sec. E.

4.2. Object Detection on Bosch Small Traffic Lights

We evaluate robustness of a traffic light detector based on
YoloV3 (Redmon & Farhadi, 2018) trained on the Bosch

Table 2. Mean recall (mR) and mean average precision (mAP) of
different methods on clean data and against universal patch attacks
(Adv) on Bosch Small Traffic Lights (Behrendt & Novak, 2017).

MR ADV MR MAP ADV MAP

STANDARD 0.47 0.37 0.41 0.09
UAT 0.47 0.45 0.41 0.26

MAT (DEFAULT) 0.45 0.43 0.41 0.35
(+DATA INIT) 0.45 0.42 0.41 0.38

(K = 1) 0.40 0.43 0.41 0.27
(K = 1, P = 1) 0.46 0.43 0.41 0.17

Small Traffic Lights Dataset (Behrendt & Novak, 2017).
We add 64x64 patches, covering 0.45% of the 1280x704
images, and add random translations from the center by
up to (512, 282) pixels. We evaluate performance using
mean Average Precision (mAP) and mean Recall (mR) over
classes for a fixed confidence threshold. While mAP cap-
tures both non-existent detections caused by the patch (false
positives) and correct detections missed by the model (false
negatives), mean recall focuses only on the latter, so called
“blindness“ attacks (Saha et al., 2019). For MAT (default),
we use random initialization in INIT and P = 10, F = 1,
K = 3, and REPTILE learning rate σ = 0.25. We refer to
Sec. C.4 for more details on the experimental setting.

Table 2 summarizes the results (more details can be found
in Sec. D.2). Standard training faces a drop in mR when
a universal patch is added and is thus likely susceptible to
physical-world blindness attacks. In contrast, UAT and all
variants of MAT are very robust against the tested blindness
attacks even in the digital domain. In terms of the mAP, UAT
faces a considerable drop for patch attacks. A similar but
weaker effect can also be observed for MAT with the default
configuration. Both methods therefore detect non-existent
traffic lights on the patch or in its vicinity. Interestingly,
false positive detections often resemble traffic lights (see
Figure 1 and Sec. F). MAT with data initialization in INIT,
however, is very robust in terms of prevention of additional
false positives as indicated by the high mAP. When ablating
MAT, its mAP deteriorates as the configuration approaches
UAT (K = 1 and P = 1). We conclude that all aspects of
MAT are essential for achieving maximal robustness.

5. Conclusion
We propose meta adversarial training (MAT), a novel combi-
nation of adversarial training with meta-learning that allows
the increase of model robustness against universal patches
with little computational overhead. Moreover, we show
that prior work, which was assumed to be robust, can be
fooled by stronger attacks. In contrast, MAT remains ro-
bust against all evaluated attacks. Our results indicate that
physical-world attacks will become considerably more diffi-
cult against models trained with MAT.
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META ADVERSARIAL TRAINING AGAINST UNIVERSAL PATCHES
SUPPLEMENTARY MATERIAL

A. Details on Meta Adversarial Training
A.1. Summary of Advantages over Related Work

We briefly summarize the main advantages of MAT compared to prior work: as opposed to UAT (Shafahi et al., 2018), MAT
meta-learns a diverse set of meta-patches with I-FGSMK concurrently to model training rather than jointly training model
parameters and a single perturbation with FGSM. Compared to SAT (Mummadi et al., 2019), MAT does not treat every inner
maximization problem independently but meta-learns strong initializers, allowing MAT to find stronger patches with no
more computational cost than standard adversarial training (see Section A.2). In contrast to the work of Moosavi-Dezfooli
et al. (2017); Hayes & Danezis (2018); Perolat et al. (2018), MAT computes novel patches in every iteration of model
training (outer minimization). We would also like to note that MAT meta-learns patches but not model weights and thus
results in a standard trained model that does not require test-time adaptation.

A.2. Computational Cost of Meta Adversarial Training

Computational cost of MAT is dominated by the number of forward passes nfp and backward passes nbp through the
network for a single iteration of model training (the outer loop). Adversarial training (AT) with K-step PGD incurs
(K + 1) ∗ (nfp + nbp) cost for one iteration: K ∗ (nfp + nbp) for generating the patch and 1 ∗ (nfp + nbp) for one step of
model training. Similarly, the cost of MAT (with REPTILE as in our experiments) for inner maximization and one step of
outer minimization is (K + 1) ∗ (nfp + nbp). Additionally, selecting a meta-patch from F samples in Algorithm 3 incurs a
cost of F ∗ nfp for F > 1. The additional cost is 0 for F = 1 because the meta-patch is sampled randomly in this case
and its loss need not be computed. The cost of REPTILE itself is negligible, because it is a simple convex combination.
Therefore, the cost of MAT (F = 1) and that of AT are comparable and MAT (F = 1) clearly outperforms AT in Table 1.
Also for a small F such as F = 5 for MAT (full) in Table 1, MAT+REPTILE does not incur considerably higher cost than
AT for the same K. The key point is that due to better initialization from the set of meta-patches, a small K can be chosen
for MAT, whereas K would need to be very large for PGD in order to create equally strong attacks. Training MAT for Tiny
ImageNet takes approximately 2 days on a single Tesla V100 SXM2 GPU, with the overhead compared to AT being one
hour. For comparison, standard non-adversarial training takes approximately 11 hours on the same GPU.

A.3. Estimating the Expected Loss and Variance Reduction

As outlined in Section 3, MAT is based on estimating the expected loss E(x,y)∼D,r∼RL(·). This estimate is required in
every of the K steps of I-FGSM as well as in the outer minimization step of updating θt. We base this estimate per ξ on a
single sample (x, y) ∼ D, r ∼ R for reasons of computational efficiency. Since this corresponds to a high variance estimate,
we use the same sample in all K steps of I-FGSM at time t as well as in the outer minimization step of updating θt. This
provides us benefits of reduced variance and more efficient computation, however, at the cost of a biased estimate of ρuni(θt)
– I-FGSM will converge to an ξ(K)

t that is overfit to (x, y) and r. Compared to a patch optimized over the entire distributions
D andR, ξ(K)

t will incur a higher loss on the sample. Nevertheless, since we typically choose the number of I-FGSM steps
K ≤ 10, we expect only weak overfitting and the gains from reduced variance more than compensates for the increased bias
in our experience.

B. Reliable Robustness Evaluation
We outline strong attacks for reliably evaluating the robustness of trained models against universal perturbations and
patches. Importantly, we do not use the meta-patches Ξi as this might result in a biased robustness evaluation. Instead,
we extend PGD (Madry et al., 2018) in a similar way as Mummadi et al. (2019) by rewriting ρuni from Equation (2) to
ρuni(θ) = max

ξ∈S
ρ(θ, ξ) with

ρ(θ, ξ) = E
(x,y)∼D,r∼R

L(θ,F(x, ξ, r), y),
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and then use the estimate

ρ̂(θ, ξ) =
1

N

N∑
i=1

L(θ,F(xi, ξ, ri), yi)

based on samples (xi, yi) ∼ D and ri ∼ R. We define stochastic projected gradient descent (S-PGD) as ξ(0) ∼ S and
ξ(k) = ΠS

[
ξ(k−1) + α sgn(∇ξρ̂(θ, ξ(k−1)))

]
. Note that S-PGD uses different xi, yi, ri in every step when estimating ρ̂.

In general, S-PGD will converge to local optima; namely, ξ(K) obtained after K steps of S-PGD will not necessarily be the
global maximizer of ρ̂(θ, ξ). To account for this, we propose three extensions of S-PGD: Firstly, since the initialization of ξ0
will generally affect the quality of ξ(K), we propose an alternative initialization akin to CutMix (Yun et al., 2019) where we
initialize ξ(0) based on a datapoint x ∼ D. For universal patch attacks, we downsample or crop x to the patch size, whereas
for universal perturbation/patch attacks, we scale its intensity range such that x ∈ S . This initialization becomes even more
effective if we sample many x ∼ D and select the one for initializing ξ(0) which would maximize ρ̂(θ, ξ(0)). We denote this
initialization as data initialization.

Secondly, we take inspiration from recently proposed low-frequency attacks (Guo et al., 2019; Sharma et al., 2019): we
modify the process of adding a perturbation/patch ξ to an input to F(xi, LP (ξ, u), ri), where LP (ξ, u) denotes a low-pass
filter with cutoff-frequency u. To achieve this, we follow Jo & Bengio (2017) and create a centered radial mask with radius
u. The patch is transformed into frequency space and multiplied by the radial mask. The result is transformed back to
image space and thus yields the patch to be applied to the image. While this makes the attack weaker in principle since
only low-frequency perturbations/patches are possible, we observe that in practice, it can lead to a more well-behaved
optimization problem and result in S-PGD converging to stronger perturbations/patches.

Thirdly, we perform a transfer attack, in which we run an attack after every epoch of model training. We initialize ξ(0)

with one of the ξ(K) found in previous epochs, namely the one that would maximize ρ̂(θ, ξ(0)). After every 5 epochs, we
run an additional S-PGD attack from randomly initialized ξ(0). This transfer attack helps identify cases where universal
perturbations/patches found in early epochs remain effective against the model but in later epochs are no longer found when
running S-PGD attacks from random or data initialization.

C. Implementation Details

C.1. Subprocedure INITP

We present details on subprocedure INITP in Algorithm 2. Two relevant parameters of INITP are described below.

Initialization of Meta-Patches As described in Section 3, meta adversarial training (MAT) meta-learns a set P of P
meta-patches Ξ(i), where i indexes P . Similar to the attack initialization described in Section B, these meta-patches can be
initialized in INITP in two ways as follows:

• Random initialization: sampling randomly from a uniform distribution over the space of allowed perturbations/patches

Algorithm 2 INITP

1: Input: number of meta-perturb. P , data D, initialization type ”init”
2: P ← {}
3: for i in {1, . . . , P} do
4: ytarget ← i mod C # round-robin target class, C being the number of classes
5: if init = ”random” then
6: Ξ ∼ UNIFORM([0, 1]dpatch)
7: else if init = ”data” then
8: x ∼ UNIFORM(D|y=ytarget) # Select datapoint labeled with target class uniformly
9: Ξ← RESIZE(x, dpatch) # Resize datapoint to appropriate dimensionality

10: end if
11: α ∼ LOGUNIFORM(0.0001, 0.1)
12: P ← P ∪ {(Ξ, ytarget, α)}
13: end for
14: Return P
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Algorithm 3 SELECTF

1: Input: number of trials F , set of meta-perturb. P , input x, label y, parameters θ, application fct. F , loss-fct. L, random
generatorR

2: Ξopt, y
target
opt , αopt ∼ UNIFORM(P) # Sample uniform randomly from P

3: ropt ∼ R
4: if F = 1 then
5: Return (Ξopt, y

target
opt , αopt, ropt)

6: end if
7: lopt ← L(θ, (F(x,Ξopt, ropt), y)) # loss on perturbed data, according label for parameters θ
8: for i in {1, . . . , F} do
9: # Find worst (in terms of loss) out of F trials

10: Ξ, ytarget, α ∼ UNIFORM(P)
11: r ∼ R
12: l← L(θ, (F(x,Ξ, r), y))
13: if l > lopt then
14: (Ξopt, y

target
opt , αopt, ropt)← (Ξ, ytarget, α, r)

15: lopt ← l
16: end if
17: end for
18: Return (Ξopt, y

target
opt , αopt, ropt)

S.

• Data initialization: this initialization sub-samples actual data points from the training dataset and corresponds to an
on-manifold initialization that follows the data distribution. To generate universal patches, we downsample or crop the
data points. To create universal perturbations/patches, we scale the intensity of the data points to the range of S.

Number of Meta-Patches The number of meta-patches P is chosen roughly proportional to the number of classes of
the dataset regardless of classification or object detection tasks. We choose P = 1000 for Tiny ImageNet, which has 200
classes. For Bosch Small Traffic Lights Dataset, we choose P = 10 because the dataset only has 4 classes.

C.2. Subprocedure SELECTF

We present details on the sub-procedure SELECTF in Algorithm 3. We note that the special choice F = 1 corresponds
to a uniform random sampling of a meta-patch (and corresponding target class, step-size, and randomness). For F > 1,
SELECTF requires F additional evaluations of the loss functions (and thus forward passes through the model) since the
sample with the maximal loss is selected.

C.3. Image Classification on Tiny ImageNet

To evaluate the robustness of a model trained with MAT against universal patch attacks, we compare its performance with
other training approaches such as Standard, CutMix (Yun et al., 2019), PatchUniform, adversarial training (AT) (Madry
et al., 2018), shared adversarial training (SAT) (Mummadi et al., 2019), and universal adversarial training (UAT) (Shafahi
et al., 2018). Please note that this evaluation is an ablation study of MAT, namely, we configure MAT in a way that is similar
to each training approach. Detailed configurations are shown for universal patches in Table 3 and for universal perturbations
in Table 8.

We train every model for 75 epochs with SGD, an initial learning rate of 0.033, a cosine decay learning rate scheduler,
momentum 0.9, and a batch size of 128. We use a ResNet (He et al., 2016), train it from scratch, and follow Xie & Yuille
(2020) by replacing batch normalization with group normalization (Wu & He, 2019) and weight standardization (Qiao et al.,
2019). We use K = 5 iterations of I-FGSM in AT (Madry et al., 2018), SAT (Mummadi et al., 2019), and MAT. For UAT
(Shafahi et al., 2018), we use K = 1 following their recommendation. For SAT, we use sharedness 128. We note that all
adversarial training baselines were trained against patch attacks.

For every setting, we perform 5 independent runs. We evaluate the robustness against 2500-step-S-PGD with a batch
size of 64 and random initialization, data initialization (data samples resized to patch size), and low-frequency filter,
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SETTING CUTMIX PATCHUNIFORM AT SAT UAT MAT (FULL)

PATCH INITIALIZATION DATA RANDOM RANDOM RANDOM RANDOM DATA
WORST OVER F SAMPLES − − 1 1 1 5
REPTILE LEARNING RATE σ − − 0 0 1 0.25
NUMBER OF META-PATCHES P − − − − 1 1000
I-FGSM STEP-SIZE α − − [0.0001, 0.1] 0.2 0.01 [0.0001, 0.1]
I-FGSM ITERATIONS K − − 5 5 1 5
SHAREDNESS − − − 128 − −

Table 3. Configuration of training procedures against universal adversarial patch attacks for image classification. We denote irrelevant
entries as ’−’.

Parameter Values
Patch Initialization random, data
Step Size α 0.0001, 0.00033, 0.001, 0.0033, 0.01, 0.033, 0.1
Momentum γ 0, 0.9, 0.99
Cutoff Frequency off, 12
Number of iteration (S-PGD) 2500
Total Step Size Decay 0.01
Batch Size 64

Table 4. Configuration grid of attacks against the classification tasks.

and the transfer attack (see Section B). For the S-PGD settings, we perform a grid search (see Table 4) over step sizes
α ∈ {0.0001, 0.00033, 0.001, 0.0033, 0.01, 0.033, 0.1} and momentum γ ∈ {0, 0.9, 0.99} independently for every trained
model and report the minimal accuracy. Finally, we report the minimal accuracy across all attacks.

Model Architecture For each setting, we train a ResNet V1 model (He et al., 2016) from scratch on the Tiny ImageNet
dataset (Tin). This ResNet model contains 4 residual stacks, where each stack consists of 2 residual blocks. The stacks
have 64, 128, 256, and 512 channels and spatial resolution of 64x64, 32x32, 16x16, 8x8, respectively. We employ ReLU
as its activation function. Each convolutional layer has a stride of 1, kernel size of 3, group normalization with weight
standardization, SAME padding, ”he normal” kernel initialization, and a weight decay of 1 · 10−4 on the kernel weights.

Model Training Each model is trained with 24x24 pixel patches applied to the 64x64 pixel input images, namely, a patch
covers approximately 14% of the image. Patches are randomly translated from the center of the image by up to 26 pixels
during training. We train each model with SGD for 75 epochs, an initial learning rate of 0.033, a cosine decay learning rate
scheduler, momentum of 0.9, and a batch size of 128. For each setting, we perform 5 independent runs with 5 different
seeds. Details regarding adversarial training procedures are shown in the Table 3. The most crucial parameter for AT, SAT,
and UAT is the step size α of I-FGSM. For AT, we follow MAT and sample the step size per datapoint randomly from a
log-uniform distribution over [0.0001, 0.1]. Since UAT and SAT only update a single patch per batch, this random sampling
strategy is not feasible on a per-batch level. Instead, we use a fixed α; more specifically, we use 0.2 for SAT such that
I-FGSM can reach any value in [0, 1]d in K=5 iterations. Since UAT updates the perturbation/patch iteratively over the
batches, a smaller value for α is feasible here and we employ α = 0.01. We did not tune these choices for α extensively but
note that MAT does not require any tuning of the step size α.

Model Evaluation As described in Section B, we propose strong attacks for reliably evaluating the robustness of trained
models against universal patch attacks and universal perturbation attacks by optimizing the perturbations using S-PGD. We
propose two initialization methods for S-PGD. Additionally, we utilize the low-frequency attack described in Section B.
The S-PGD step size α is exponentially decayed with a total decay of 0.01. For evaluation of each model’s robustness, we
perform S-PGD attacks over the parameter grid given in Table 4. The attack results can be found in Subsection D.1.

C.4. Object Detection on Bosch Small Traffic Lights Dataset

We describe the experimental details for training robust traffic light detectors against universal patch attacks.
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SETTING UAT MAT (DEFAULT) MAT(+DATA) MAT (K=1) MAT(K=1,P=1)

PATCH INITIALIZATION RAND RAND DATA RAND RAND
WORST OVER F SAMPLES 1 1 1 1 1
REPTILE LEARNING RATE σ 1.0 0.25 0.25 0.25 0.25
NUMBER OF PATCHES P 1 10 10 10 1
I-FGSM STEP-SIZE α 0.01 [0.0001, 0.1] [0.0001, 0.1] [0.0001, 0.1] [0.0001, 0.1]
I-FGSM ITERATIONS K 1 3 3 1 1

Table 5. Configuration of MAT with different approaches against universal adversarial patch attacks for object detection.

Parameter Values
Patch Initialization random (RI), data crop (DI)
Number of Steps (S-PGD) 4000
Batch Size 4
Step Size α 0.1, 0.01, 0.001, 0.0001
Total Step Size Decay 0.01
Momentum γ 0.9
Cutoff Frequency u 25, 50, 100, 250
Loss standard, no objectness loss, ignoring false positives

Table 6. Configuration grid of attacks against the detection tasks.

Model Training For each training procedure, we train a Yolo V3 model (Redmon & Farhadi, 2018) from scratch on Bosch
Small Traffic Lights Dataset (Behrendt & Novak, 2017). The model has three network outputs on each scale as implemented
in the original paper. For each DarkNet conv layer, we replace batch normalization with group normalization and use weight
standardization. To interpret the network outputs of Yolo V3, we set the confidence threshold to 0.3. This means only the
predictions with an objectness score > 0.3 count as valid predictions. The non-maximum suppression threshold is set to 0.1,
that means we prune the predictions when their bounding boxes overlap with IoU > 0.1.

Each model is trained with 64x64 pixel patches applied to the input images resized to 1280x704 – both width and height of
the resized images are a multiple of 32 because a grid cell’s size is 32x32; thus, a patch covers 0.45% of the image. Patches
are randomly translated from the center of the image by up to (512, 282) pixels during training. We ensure that translated
patches do not overlap with any ground-truth traffic-light annotation. We train the model with ADAM for 15 epochs, an
initial learning rate of 0.0001, a cosine decay learning rate scheduler, and a batch size of 1. We compare the accuracy against
universal patch attacks of UAT and MAT variants. The configuration details are shown in Table 5.

Model Evaluation As described in Section 4.2, in order to evaluate the effectiveness of the universal patches as well
as the robustness of the model, we apply two metrics to the evaluation procedure - mean Average Precision (mAP) and
mean recall over classes with the IoU threshold of 0.1, which determines true positives between predicted bounding boxes
and the ground truth. For generating universal patches, we use S-PGD with 4000 steps with a batch size of 4. To find the
strongest patches, we perform a grid search over step sizes α ∈ {0.1, 0.01, 0.001, 0.0001}, a fixed momentum γ of 0.9, and
a cutoff frequency u ∈ {25, 50, 100, 250} of an optional low-pass filter. In addition, we also conduct a grid search over
three different options for the loss that is maximized by the attacker - 1) the standard loss that is also used during training, 2)
the standard loss subtracting the objectness loss, and 3) the standard loss ignoring all false positives. The last loss variant is
also well suited for “blindness“ attacks since it accentuates false negatives.

Similar to the previous initialization approaches in Section C.3, the perturbations/patches for these attacks are initialized
in two different ways - randomly or from a cropped image of Bosch Small Traffic Lights Dataset. Each configuration is
a unique combination of an initialization, a step size, a cutoff frequency, and a loss found through the grid search. The
parameter grid is summarized in Table 6. More result details can be found in Section D.2.
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D. Result Details
D.1. Image Classification on Tiny ImageNet

D.1.1. ROBUSTNESS AGAINST UNIVERSAL PATCH ATTACKS

In Figure 2, we compare learning curves of MAT models against the transfer attack (see Section B) between different
settings during training. The left plot shows that initializing the meta-patches via data initialization leads to higher universal
adversarial accuracy compared to random initialization. The middle plot shows that the model trained with targeted
meta-patches is more robust than the model trained with untargeted meta-patches, because targeted meta-patches allow for a
greater diversity. The right plot shows results of randomly choosing a patch (F = 1), selecting the worst patch from F = 5
samples, and selecting the worst patch from F = 10 samples. Training the model with more than one sample (F > 1)
improves the model’s robustness but robustness saturates for F = 10 while larger F increases computational cost.
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Figure 2. Comparison of MAT models’ learning curves against the transfer attack for generating universal patches. (Left) meta-patch
initialization in MAT between data initialization and random initialization. (Middle) MAT using targeted attacks and untargeted attacks
for updating meta-patch. (Right) MAT uses the worst meta-patch chosen from different numbers of samples F .

Figure 3 shows learning curves of ablated versions of MAT against the transfer attack. In accordance with Table 1, training
with a larger number of meta-patches P , more iterations in I-FGSM, and with a REPTILE learning rate smaller than 1.0
consistently improves robustness.

While Table 1 shows the worst accuracy of a setting against all attacks of the grid search, Figure 4 summarizes the accuracy
of all attacks of the grid search in a box plot. Each value is averaged over 5 independent runs with 5 different seeds for
each training procedure. Each model is evaluated against three patch attack procedures: data, random, and low frequency.
Configurations with large variance indicate that the model might appear to be robust if hyperparameters of the attack are
chosen badly. This effect is particularly pronounced for AT and SAT against the random initialized S-PGD attack, where
only very few attack configurations are able to strongly degrade performance.

Moreover, the results exhibit that MAT is the only model robust against the data initialization attacks. None of the attacks
reduce MAT’s accuracy below 0.5 regardless of initialization methods. As discussed before, attacks through data initialization
are more effective than through random initialization and attacks employing a low frequency filter are most effective on
MAT with random initialization (MATr). Nevertheless, MATr still shows stronger robustness than all other approaches
except MAT.

Patch-RS Besides the diverse set of gradient-based attacks, we additionally conduct an experiment with the non-gradient
based Sparse-RS attack with the Patch-RS sampler (Croce et al., 2020). The results are summarized in Table 7. MAT
outperfoms other methods under this attack, indicating that superior performance under gradient-based attacks was not
stemming from gradient-masking.

Standard AT SAT UAT MAT

Patch-RS Acc. 0.048 0.229 0.255 0.267 0.569

Table 7. Accuracy on Tiny ImageNet against a Patch-RS attacker.
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Figure 3. Ablation study of MAT in the aspects where it differs from UAT (Shafahi et al., 2018). Shown is accuracy on Tiny ImageNet
against a patch generated with the transfer attack: UAT learns a single perturbation/patch while MAT learns an ensemble (upper plot).
UAT performs one iteration of I-FGSM while MAT performs multiple (middle). UAT uses joint training (σ = 1), while MAT uses full
REPTILE with σ ≤ 1 (bottom plot).
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Figure 4. Robustness against universal patch attacks: results correspond to Table 1 but show distribution of accuracy over elements of the
grid search rather than only the worst accuracy. Each value is averaged across 5 runs (with 5 different seeds) for each configuration per
training approach. MATr is the MAT model trained with randomly initialized meta-patches, whereas MAT represents the model trained
with meta-patches through data initialization. The rows correspond to three different universal patch attacks.

Patch Size Figure 5 shows the adversarial accuracy for different patch sizes. MAT outperforms all other methods for
arbitrary patch sizes smaller than 40x40.

D.1.2. ROBUSTNESS AGAINST UNIVERSAL PERTURBATION ATTACKS

We present an analogous evaluation as in Section 4.1 for a universal perturbation attack. We use the same dataset, neural
architecture, and training pipeline but train the models specifically for universal perturbation attacks. We allow universal
perturbations ξ with ||ξ||∞ ≤ 20/255 ≈ 0.078. In comparison with training models against universal patch attacks, the key
difference is that the models are trained specifically for universal perturbation attacks instead of universal patch attacks.
Following the training configuration shown in Table 8, we train ResNet V1 models with 4 training approaches - Standard, AT,
UAT, and MAT. We do not present results for SAT (Mummadi et al., 2019) since we have not found a stable configuration of
hyperparameters for this setting; however, the results of Mummadi et al. (2019) indicate that SAT should perform slightly
better than AT when configured appropriately. We evaluate the robustness of the models against the same attacks as for
patch attacks.

SETTING AT UAT MAT

PATCH INITIALIZATION RANDOM RANDOM RANDOM
WORST OVER F SAMPLES 1 1 5
REPTILE LEARNING RATE σ 0 1 0.25
NUMBER OF META-PERTURBATIONS P − 1 1000
I-FGSM STEP-SIZE α [0.0001, 0.02] 0.01 [0.0001, 0.02]
I-FGSM ITERATIONS K 5 1 5

Table 8. Configuration of MAT with different approaches against universal perturbation attacks for image classification.

The evaluation results are summarized in Table 9. In comparison with the results of universal patch attacks in Table 1, we
notice a few interesting differences: firstly, clean accuracy is degraded for all variants of adversarial training compared to
standard training. This indicates a trade-off between clean performance and robustness in this threat-model. Secondly, in
contrast to standard training, AT and UAT made non-trivial gains in robustness, whereas their robustness did not improve
against universal patches addressed in Section 4.1. Thirdly, the accuracy of UAT in Table 9 shows that UAT overfits
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Figure 5. Effect of patch size on adversarial accuracy on Tiny ImageNet.

SETTING CL RI DI LF TR MIN

STANDARD 0.55 0.03 0.04 0.03 0.03 0.03
AT (MADRY ET AL., 2018) 0.48 0.33 0.26 0.33 0.27 0.21
UAT (SHAFAHI ET AL., 2018) 0.46 0.23 0.23 0.23 0.17 0.17
MAT (FULL) 0.48 0.42 0.42 0.42 0.39 0.39

Table 9. Accuracy (mean over 5 runs) of different methods against universal perturbation attacks on Tiny ImageNet.
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Figure 6. Comparison of learning curves of Standard training, AT, UAT, and MAT against the transfer attack for generating universal
perturbations.

less strongly to the randomly initialized S-PGD attack compared to the universal patch attacks in Table 1. Despite these
differences, MAT considerably outperforms all other methods in terms of robustness also in this setting.

Figure 6 shows the learning curves of those training approaches against the transfer attack for generating universal
perturbations. Notably, while MAT is less robust in the early phase of training, it reaches a significantly higher level of
robustness in the end.

Figure 7 shows the box plot corresponding to Table 9. The accuracy of MAT models is above 0.4 for all three attacks and
shows little variance. In contrast, UAT and AT are robust against certain attack configurations but against an optimally
configured attack, accuracy degrades to 0.25 or less. This shows that evaluating robustness reliably requires a strong set of
attacks and their well-tuned hyperparameters.
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Figure 7. Robustness against universal perturbation attacks: results correspond to Table 9 but show distribution of accuracy over elements
of the grid search rather than only the worst accuracy. Each value is an average across 5 runs (with 5 different seeds) for each configuration
per training approach. The rows correspond to three different universal patch attacks.

D.2. Object Detection on Bosch Small Traffic Lights Dataset

We present more detailed results for the experiment reported in Table 2: Table 10 shows results for the different attacks
conducted on the respective models. Figure 8 shows corresponding boxplots for recall and mAP, respectively. Notably, only
the recall of the standard model can be reduced considerably (meaning true positives can be hidden) and this requires an
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Table 10. More detailed results corresponding to Table 2: Mean recall (left) and mean average precision (right) of different methods on
clean data (CL) and against universal patch attacks with random init (RI), init with a cropped image patch (DI) and low-frequency filter
(LF) on Bosch Small Traffic Lights (Behrendt & Novak, 2017).

Recall CL RI DI LF MIN

STANDARD 0.47 0.37 0.38 0.43 0.37
UAT 0.47 0.45 0.45 0.45 0.45

MAT (DEFAULT) 0.45 0.43 0.43 0.43 0.43
(+DATA INIT) 0.45 0.43 0.43 0.42 0.42

(K = 1) 0.46 0.44 0.43 0.44 0.43
(K = 1, P = 1) 0.46 0.44 0.43 0.43 0.43

mAP CL RI DI LF MIN

0.41 0.09 0.10 0.16 0.09
0.41 0.40 0.29 0.26 0.26

0.41 0.39 0.35 0.35 0.35
0.41 0.38 0.39 0.39 0.38
0.41 0.40 0.31 0.27 0.27
0.41 0.40 0.21 0.17 0.17

appropriately configured attack. Interestingly, a low-frequency attack is not effective for reducing the recall of any model. In
contrast, low-frequency attacks are the most effective ones for reducing mAP, that is: for causing false positive detections.
While randomly initialized S-PGD is not successful at reducing the mAP of any model besides the standard model, many
low-frequency attacks of varied attack configurations reduce mAP of most models (except MAT + data) considerably. In
contrast, S-PGD from data initialization can be effective but fails in most cases to reduce mAP for all but the standard model.
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Figure 8. Recall (left) and mean Average Precision (right) by model against universal patch attacks on Bosch Small Traffic Lights Dataset.
MAT (default): meta-patch is initialized uniform-randomly. MAT (+data): meta-patch is initialized from a cropped image. Both MAT
(default) and MAT (+data) have I-FGSM iteration K=3 and number of patches P = 10. MAT(K=1): I-FGSM iteration K=1 and number
of patches P = 10. MAT(K = 1, P = 1): I-FGSM iteration K=1 and number of patches P = 1.

E. Illustration of Patch Attacks on Tiny ImageNet
We illustrate universal patch attacks on models trained on Tiny ImageNet in Figure 9. Note that these are the strongest
patches found against these models during the grid search. Oftentimes, the generated patch resembles the target class:
examples for this are the low-frequency attack on a standard model (fooling it to mistake a chimpanzee for a police van),
the random initialization attack against the SAT model (fooling it to mistake the chimpanzee for a ladybug), the data
initialization attack against the SAT model (fooling it to mistake the chimpanzee for an orange), or the low-frequency attack
against the UAT model (fooling it into classifying the input as a fire salamander based on the characteristic texture of the
patch). While these misclassifications can be explained, a human would very likely still classify the inputs as chimpanzees.
Attacks on MAT (full) fail to generate interpretable patches; however, transferring patches generated for other models (such
as the shown ones) to MAT does not cause misclassifications either.

F. Illustration of Patch Attacks on Bosch Small Traffic Lights Dataset
We illustrate universal patch attacks on models trained on Bosch Small Traffic Lights Dataset in Figure 10. Note that these
are the strongest patches found against these models during the grid search in terms of the mAP. These patches often invoke
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Figure 9. Best random initialization, data initialization, and low-frequency attacks against the respective models from Table 1. The model
prediction is given above each plot. The correct label is chimpanzee.
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high confidence false detections. However, MAT with data initialization does not show any false positives.

For the patches found for MAT (Data Init), we show the progress of the patches during the attack in Figure 11. Similarly,
Figure 12 shows the patches’ evolution during an attack on the standard model. Note that patches converge fairly quickly,
namely, running attacks longer would not make them stronger. Moreover, all three patches for MAT converge to a red-cyan
pattern and the patches for data and random initialization exhibit very similar patterns. This indicates that this pattern is
actually a minimizer of the loss with a large basin of attraction. However, as Figure 10 shows, it does not really fool the
model. Finally, Figure 13 shows the training of the patch shown in Figure 1.

G. Illustration of Perturbation Attacks on Tiny ImageNet
We illustrate universal perturbation attacks on models trained on Tiny ImageNet in Figure 14. Note that these are the
strongest perturbations found against these models during the grid search.

H. Related Work
We review work on generating universal perturbations/patches, defending against them, and meta-learning.

Generating Universal Perturbations Adversarial perturbations are changes to the input that are crafted with the intention
of fooling a model’s prediction on the input. Universal perturbations are a special case in which one perturbation needs
to be effective on the majority of samples from the input distribution. Most work focuses on small additive perturbations
that are bounded by some `p-norm constraint. For example, Moosavi-Dezfooli et al. (2017) proposed the first approach by
extending the DeepFool algorithm (Moosavi-Dezfooli et al., 2016). Similarly, Metzen et al. (2017) extended the iterative
fast gradient sign method (Kurakin et al., 2017) for generating universal perturbations on semantic image segmentation.
Mopuri et al. (2017; 2018) presented data-independent attacks and Hayes & Danezis (2018) proposed using a generative
model for learning a diverse distribution of universal perturbations. Li et al. (2019) presented a physical-world attack in
which a translucent sticker is placed on the lens of a camera, which adds a universal perturbation to the image taken by the
camera, and showed that this can fool an image classification system.

Other types of universal perturbations are so-called adversarial patches (Brown et al., 2017). In these universal patch attacks,
the adversary can arbitrarily modify a small part of the image, typically a connected rectangular area, while leaving the
remaining part of the image unchanged. Following Athalye et al. (2018), randomizing conditions such as location, rotation,
scale, and lighting during the attack can make the universal patch sufficiently effective to fool the model when it is printed
out and placed in the physical world. Later work has generalized these physical-world attacks to object detection (Lee &
Kolter, 2019; Huang et al., 2019) and optical flow estimation (Ranjan et al., 2019).

Defending Universal Perturbations First works for defending against universal perturbations are based on training
a model against a fixed or slowly updated set/distribution of universal perturbations: Moosavi-Dezfooli et al. (2017)
precompute a set of universal perturbations that are used during training, Hayes & Danezis (2018) learn a generative model
of universal perturbations, and Perolat et al. (2018) build a slowly increasing set of universal perturbations concurrent to
model training. A shortcoming of these approaches is that the model might overfit the fixed or slowly changing distribution
of universal perturbations. However, re-computing universal perturbations in every mini-batch from scratch is prohibitively
expensive. To address this issue, SAT Mummadi et al. (2019) trains a model against so-called shared perturbations. These
shared perturbations do not have to be universal but only need to fool the model on a fixed subset of the batch. However,
since the shared perturbations are recomputed in every mini-batch, it assumes a few gradient steps are sufficient to find strong
perturbations from random initialization. In contrast, our method meta-learns strong initial perturbations. In UAT (Shafahi
et al., 2018), training the neural network’s weights and updating a single universal perturbation happen concurrently, which
scales to a large dataset. However, our experiments in Section 4 indicate that a single incrementally and slowly updated
perturbation is not sufficiently strong and diverse for making a model robust against all possible universal perturbations.
Instead, our method meta-learns a large and diverse collection of perturbations during training.

For defending against adversarial patches, Chiang et al. (2020) proposed an approach of extending interval-bound propagation
(Gowal et al., 2019) to the patch threat model. While this allows certification of robustness, it only scales to tiny patches
and reduces clean accuracy considerably. Wu et al. (2020) proposed the “defense against occlusion attack”, which applies
adversarial training to inputs perturbed with input-dependent adversarial patches placed at specific positions determined, for



Meta Adversarial Training against Universal Patches

Random Data Low Frequency

Figure 10. Best (in terms of mAP) random initialization, data-crop initialization and low-frequency attacks against the models from Table
2. The patch location is fixed for a better comparison.
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Data, Learning Rate: 0.01

Random, Learning Rate: 0.1

Low-Frequency Cutoff: 100, Learning Rate: 0.01

Figure 11. Training of patches against a MAT (Data Init) model. Attack from data-crop initialization with step size of 0.01 (top). Attack
from random initialization with step size of 0.1 (center). Low-frequency attack with cutoff frequency 100 from data-crop initialization
with step size of 0.001.

Data, Learning Rate: 0.01

Random, Learning Rate: 0.01

Low-Frequency Cutoff: 100, Learning Rate: 0.001

Figure 12. Training of patches against standard model: Attack from data-crop initialization with step size of 0.01 (top). Attack from
random initialization with step size of 0.01 (center). Low-frequency attack with cutoff frequency 100 from data-crop initialization with
step size of 0.001

Low-Frequency Cutoff: 100, Learning Rate: 0.001

Figure 13. Training of patch from Figure 1. This patch is generated with a low-frequency attack with cut-off frequency 100, learning rate
of 0.001 and starting from data-crop initialization.
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Figure 14. Best random initialization, data initialization, and low-frequency perturbation attacks against the respective models from Table
9. The model prediction is given above each plot. The correct label is chimpanzee.
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example, by the input gradient magnitude. Since they generate patches from scratch, they require an expensive optimization
of the patch for every training batch. Moreover, robustness against stronger attacks such as those proposed in Section B
remains unclear. Saha et al. (2019) hypothesize that vulnerability of object detectors against adversarial patches stems from
contextual reasoning. Accordingly, they propose Grad-defense which penalizes strong dependence of object detections
on their context in a data-driven manner, where dependence is determined by Grad-CAM (Selvaraju et al., 2019). Lastly,
some non-adversarial data augmentation techniques resemble the universal adversarial patch scenario: they add a Gaussian
noise patch (Lopes et al., 2019) or a patch from a different image (CutMix) (Yun et al., 2019) to each input. CutMix is
conceptually very similar to the out-of-context defense (Saha et al., 2019). However, as demonstrated in our experiments in
Section 4, even though these approaches increase robustness against occlusions, they are unlikely to increase robustness
against universal patch attacks.

Meta-Learning Gradient-based meta-learning methods such as MAML (Finn et al., 2017) or REPTILE (Nichol et al.,
2018) allow learning initial parameters for a class of optimization tasks, so that one can find close-to-optimal parameters on
a novel task from the distribution with a small number of gradient steps. Moreover, meta-learning can also be used to learn
the task optimizer itself such as by Xiong & Hsieh (2020) in the context of adversarial training. While it is common to
meta-learn initial weights for neural networks, we propose that these algorithms can also be used to meta-learn initial values
for universal perturbations. In this work, we combine REPTILE with adversarial training because of the low computational
overhead of REPTILE; however, in principle other gradient-based meta-learning methods could also be used as part of our
method.


