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ABSTRACT

Accurately solving the structures of protein complexes is crucial for understand-
ing and further modifying biological activities. Recent success of AlphaFold and
its variants shows that deep learning models are capable of accurately predicting
protein complex structures, yet with the painstaking effort of homology search
and pairing. To bypass this need, we present Uni-Fold MuSSe (Multimer with
Single Sequence inputs), which predicts protein complex structures from their pri-
mary sequences with the aid of pre-trained protein language models. Specifically,
we built protein complex prediction models based on the protein sequence repre-
sentations of ESM-2, a large protein language model with 3 billion parameters.
In order to adapt the language model to inter-protein evolutionary patterns, we
slightly modified and further pre-trained the language model on groups of protein
sequences with known interactions. Our results highlight the potential of protein
language models for complex prediction and suggest room for improvements.

1 INTRODUCTION

Proteins as well as their interactions substantiate a majority of biological activities. Therefore, accu-
rately solving the structures of protein complexes provides key insights in understanding and further
modifying these activities. A preliminary to protein complex prediction is to solve the structures
of monomeric proteins. Thanks to the success of AlphaFold (Jumper et al., 2021) as well as its
subsequent works (Mirdita et al., 2022; Li et al., 2022), de novo prediction of monomeric protein
structures with atomic-level accuracy is now a regular tool in protein analysis. Based on AlphaFold,
AlphaFold-Multimer (Evans et al., 2022) further showed that with inter-chain evolutionary informa-
tion, retrained AlphaFold models are capable of accurately predicting protein complex structures.

Overall, these AlphaFold-based models rely on the evolutionary patterns embodied by the multiple
sequence alignments (MSAs) to make accurate predictions. Specifically in AlphaFold-Multimer,
a heuristic pairing strategy is introduced, which greedily matches the homologous sequences of
target protein monomers by species similarity. However, obtaining these MSAs requires painstaking
work of sequence searching in very large databases, which becomes the temporal bottleneck of the
prediction pipeline. Also, the models cannot be well generalized to targets with few homologous
sequences. To address these issues, an alternative approach was proposed, which replaced the MSAs
with sequence representations from protein language models (PLM) (Rao et al., 2019; Elnaggar
et al., 2020; Rives et al., 2021), in the hope of learning the evolutionary patterns directly from
primary sequences (Lin et al., 2022; Wu et al., 2022). These PLMs were pre-trained to predict
randomly masked tokens similarly to natural language models (Devlin et al., 2018), but on extensive
protein sequence corpora with the vocabulary of amino acid types. In general, these models obtain
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approaching or equivalent accuracies on monomer prediction tasks compared with AlphaFold, while
bypassing the effort of homology searching.

Nevertheless, the use of PLMs in protein folding is so far limited to monomers. Although some tricks
were proposed to predict complex structures with ESMFold (Lin et al., 2022), such as concatenating
protein chains with gaps or soft linkers, the accuracies were much limited. A specific challenge
of using PLMs for protein complex prediction is that all current PLMs were trained with individ-
ual protein chains, leaving it in doubt whether the sequence representations can capture inter-chain
evolutionary patterns and further guide the complex prediction task. To answer this question, we
i) trained a protein complex prediction model using the representations of input primary sequences
from an existing PLM, ESM-2 (Rives et al., 2021) with 3 billion parameters; ii) enhanced the PLM
with chain relative positional encoding, and further pre-trained it with the corpora of protein inter-
actions; and iii) check if the further pre-training improves the folding accuracy.

To this end, we present Uni-Fold MuSSe (Multimer with Single Sequence inputs), an end-to-end
model which de novo predicts protein complex structures from primary sequences only. We found
that by retraining a multimeric folding model, the representations from ESM-2 were applicable to
complex prediction with satisfying accuracy, largely outperforming existing PLM-based baselines,
despite a gap to MSA-based models represented by AlphaFold-Multimer. By further pre-training the
PLMs on protein interaction corpora, the retrained complex prediction model, Uni-Fold MuSSe+,
displayed a better performance. Also, on several test cases that AlphaFold-Multimer failed to work,
Uni-Fold MuSSe+ obtained correct predictions.

2 RELATED WORK

Protein Structure Prediction. In silico protein structure prediction aims to predict protein struc-
tures from the amino acid sequences purely with computational methods. AlphaFold (Jumper et al.,
2021) is the first deep learning model that claimed to achieve “atomic-level” accuracy, based on
which AlphaFold-Multimer (Evans et al., 2022) achieved high accuracy on protein complex predic-
tion. To facilitate the open-source community of deep protein folding models, Uni-Fold (Li et al.,
2022) re-implemented both AlphaFold and AlphaFold-Multimer in PyTorch with equivalent accu-
racy, and released the training code in the repository. In this paper, we built the multimeric folding
model following the implementation of Uni-Fold Multimer.

Protein Language Models. Inspired by the success of pre-trained language models (Devlin et al.,
2018; Radford et al., 2018), encoding the amino sequences of proteins with large language models
has been widely explored. Generally, protein language models (PLMs) are trained on large protein
sequence corpora to predict randomly masked amino acids in the sequences, whose representations
are leveraged in downstream tasks. Early works (Rives et al., 2021; Elnaggar et al., 2020) showed
the effectiveness of using PLMs in secondary structure prediction and contact prediction. Later,
these PLMs were improved with more curated architectures and larger parameters (Lin et al., 2022;
Wu et al., 2022; Fang et al., 2022) and used on end-to-end monomeric folding tasks, achieving
approaching or equivalent accuracies to AlphaFold-based models. In this paper, we used the ESM-
2 (Rives et al., 2021) model with 3 billion parameters as the base PLM.

Further Pre-training. Based on existing explorations on PLMs, our work uses further pre-training
to improve existing PLMs to capture inter-chain evolutionary patterns. Further pre-training is a
widely used strategy in natural language processing for domain adaptation, where a pre-trained
model is further trained to fit corpora in the target domain biased from the original one. Previous
studies in Natural Language Processing (Lee et al., 2020; Beltagy et al., 2019; Sun et al., 2020)
proved the effectiveness of further pre-training on domain transfer tasks, whereas the target domain
generally has massive unlabeled data. In our case, notably, the known groups of interactive protein
sequences are far sparser than monomeric ones.

3 METHOD

For an overall picture of our model, Figure 1 compares the workflows of protein complex prediction
with i) MSA-based models such as AlphaFold-Multimer; ii) PLM-based (monomeric) models such
as ESMFold and OmegaFold; and iii) our method Uni-Fold MuSSe+.
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Figure 1: The workflows of MSA-based complex prediction methods, previous language model-
based methods such as ESMFold and OmegaFold and our proposed method Uni-Fold MuSSe+.

3.1 FURTHER PRE-TRAINING OF PROTEIN LANGUAGE MODEL

In order to further pre-train ESM-2, we carefully modified the architecture to adapt the model to
inputs of both single sequence and multiple interactive sequences, without damaging the effects of
the pre-trained parameters. To summarize, we introduce chain-level relative positional embedding
to properly distinguish different chains, a cropping strategy for large protein complexes, and a data
augmentation strategy to relieve overfitting.

Chain Relative Positional Encoding. Based on the Rotary Position Embedding (RoPE) (Su et al.,
2021) used in ESM-2 (Lin et al., 2022), we propose two modifications to correctly introduce relative
chain information. The first is to fix the incorrect RoPE among different chains. RoPE multiplies
query and key embeddings in the attention module with sinusoidal embeddings so that the relative
positional information can be captured by the Query-Key dot-product. However, although RoPE
works well for single-sequence, it produces incorrect relative positional signals for residues from
different chains. To address this issue, we proposed a fix for RoPE as follows: 1) First, a pair-wise
matrix M is used to check if a residue pair is from the same chain (Mij = 1) or not (Mij = 0);
2) Besides the Query-Key dot-product with RoPE embedding, denoted as ARoPE, we calculate an
additional Query-Key dot-product without RoPE embedding, denoted as Araw. 3) To remove the
wrong signals of RoPE for different chains, we use the following update for the Query-Key dot-
product, A = ARoPE ·M + (Araw +Mean(ARoPE−Araw)) · (1−M), where Mean(·) is the mean
pooling across the first two dimensions. This new update uses the RoPE-based attention for the
residues on the same chain, and uses the non-RoPE attention, with the background deltas (average
of differences), for the residues on the different chains.

Algorithm 1 Self-attention with chain relative position embedding

Require: M , N , attention weights with RoPE ARoPE, attention weights without RoPE Araw, em-
bedding matrices embsame chain and embsame entity.

1: Fix the RoPE attention weights A = ARoPE ·M + (Araw +Mean(ARoPE −Araw)) · (1−M)

2: chain rel embij = embsame entity(Mij) + embsame chain(Nij)
3: Update attention weights {Aij} ← {Aij}+ {chain rel embij}
4: return {Aij}

The second is to introduce the chain-level information. Besides corrected RoPE, we introduce two
chain-level relative positional encodings. 1) M , in which Mij encodes whether a residue pair is
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from the same chain or not. 2) N , in which Nij encodes whether a residue pair is from chains
of identical sequences or not, i.e., the possible different chains, but with the same sequence con-
tent. The two positional encodings are used as the index for embedding lookup tables and then are
added to the attention weights before softmax in the attention module. Note that the parameters of
embedding lookup tables are shared across layers. The details can be found in Algorithm 1.

Multi-chain Proportionally Contiguous Cropping. The total number of residues can be very
large in multimeric sequences, which is infeasible to be fitted into GPU memory and inefficient in
training. We use a cropping method similar to ContiguousCropping in AlphaFold-Multimer, with
moderate changes, i.e., we crop chains proportionally according to their length. The details can be
found in Algorithm 2.

Algorithm 2 Contiguous and Proportional Cropping

Require: Chain indices {f chain id
i }, expected cropped length Nres

1: {f chain id
i cropped} ← random.choice({f chain id

i }, Nres, replace=False)
2: {crop sizei} ← Counter({f chain id

icropped
)}

3: for i = 0 to Nchains − 1 do
4: ni = len(f chain id

i )
5: crop start← uniform(0, ni − 1− crop sizei)
6: mi ← 0 # mi ∈ {0, 1}ni

7: keep← [crop start, · · · , crop start + crop sizei]
8: mikeep = 1
9: end for

10: return {mi}

Data Augmentation. Directly using multimeric sequences of solved complex crystal structures
for further pre-training PLMs can easily cause over-fitting, due to limited available data. Hence,
we leverage more protein sequences from other sources, i.e., the sequence pair from protein-protein
interaction data and the monomeric sequence. As the sizes of these datasets vary different, we
assign different sample probabilities for them during training. The details of these datasets and the
sampling probabilities for them are presented in Sec. 4.1.

3.2 COMPLEX PREDICTION MODEL

We followed the major implementation of Uni-Fold Multimer (Li et al., 2022) to build the complex
prediction model. The model consists of an encoder block which encodes the PLM representations,
and a structure module which predicts the complex structure. The encoder block is adapted from the
Evoformer (Jumper et al., 2021), simply by removing Extra-MSA blocks, template-related blocks,
and the MSAColumnAttention block. The structure module is implemented as-is. We enlarged
the embedding sizes of both the encoder and structure module to match the input dimensionality of
ESM-2.

Similar to ESMFold (Lin et al., 2022), we use the token representations in the ESM-2 as the initial
hidden states for structure prediction, with no gradient propagated back to the PLM. Notably, instead
of using the linear combination of representations from all 48 layers, we simply combine those from
the first and the last layers as inputs with learnable parameters α, β:

s = MLP(α̃sPLM
first + β̃sPLM

last ), (α̃, β̃) = softmax(α, β) (1)

This is based on the observation that the first and the last layers contribute up to 97.3% to the
folding model in the learned parameters of ESMFold (see the results in Figure 2). By doing so, the
computational and storage costs are dramatically reduced. We used the relative chain and position
encoding as the initial pairwise states.
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Figure 2: The probability distribution of learned
weights for each layer output in ESMFold.
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Figure 3: Mask token prediction accuracy on
validation set during further pre-training.

4 EXPERIMENTS

4.1 FURTHER PRE-TRAINING OF ESM-2

Model, Data and Training. We conducted further pre-training on ESM-2 (Lin et al., 2022), one of
the largest pre-trained protein language model pre-trained on vast protein sequence data via masked
language modeling. The model with 3 billion parameters is chosen as the base model.

A combination of three datasets is used in the further pre-training: i) UniRef50: approximately 50
million monomeric sequences in UniRef50 (Mirdita et al., 2017); ii) PDB: a total of 133 thousand
groups of sequences of solved protein multimers in the Protein Data Bank; and iii) PPI: 2.6 million
pairs of protein sequences known to have potential interactions from existing databases. Specifi-
cally for PPI, raw and partially overlapping interaction protein pairs were combined from seven
sources: HINT (Das & Yu, 2012), intACT (Orchard et al., 2014), HIPPIE (Alanis-Lobato et al.,
2016), prePPI (Zhang et al., 2012), BioGRID (Oughtred et al., 2019), comPPI (Veres et al., 2015)
and huMAP (Drew et al., 2017). For higher data quality, we filtered out duplicated interactions,
protein sequences outside of the Swiss-Prot database, and interactions with confidence scores lower
than 0.8 in intACT, comPPI and huMAP. A total of 2,619,684 interaction pairs between 61,643
proteins were finally acquired.

The further pre-training included a total of 100, 000 steps, each with a batch of 128 samples. Each
sample contained one sequence in UniRef50, a group of multimeric sequences in PDB, or an
interaction pair in PPI, with probability 2 : 4 : 4. We used AdamW (Loshchilov & Hutter, 2017)
as the optimizer with β1 = 0.9, β2 = 0.98, and L2 weight decay of 0.01. The learning rate was
linearly warmed up to 1e-5 in the first 2,000 steps, and linearly decayed to 5e-6 at the final step.
This process was run on 32 NVIDIA A100 GPUs (80G) for approximately 30 hours.

Effectiveness of Further Pre-Training Strategies. We verified the effectiveness of the proposed
method by the masked token prediction accuracy during further pre-training. In particular, we set
up a baseline where the original ESM-2 model architecture was only with PDB. As is shown in
Figure 3, the baseline was vulnerable to overfitting in further pre-training, whereas our method
displayed better generalizabilty.

4.2 SINGLE SEQUENCE PROTEIN COMPLEX PREDICTION

Dataset. For the training dataset, we follow the processing steps described in (Jumper et al., 2021)
and (Evans et al., 2022). First, we use all the PDB complexes released before 2022-05-01, and
then filter out all chains of which the resolution is greater than 9Å or there exists a residue whose
occupancy frequency is greater than 0.8. For sequence clustering, we use MMseqs easy-cluster1

with default parameters at 40% sequence identity and result in 37812 sequence clusters, 133954
unique sequences, 645947 chains, and 179854 PDB assemblies. When training complex predictor,
each PDB assembly i is sampled with unnormalized probability pi =

∑
cj

1
cluster size(cj)

, where cj

1https://github.com/soedinglab/MMseqs2
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Table 1: Performance on multimeric protein structure prediction. The second and third columns are
the mean and median TM-score among all test samples, and the right two columns are the percentage
of predictions with a TM score above a predetermined threshold.

TM-Score
Mean Median % > 0.85 % > 0.95

AlphaFold-Multimer 0.7106 0.9057 58.78 37.16
AlphaFold-Multimer w/o MSA 0.3012 0.2001 8.11 1.35
OmegaFold (Wu et al., 2022) 0.3986 0.2439 16.89 6.08
ESMFold (Lin et al., 2022) 0.4357 0.2715 22.97 7.43
Uni-Fold MuSSe 0.5871 0.6038 39.86 20.27
Uni-Fold MuSSe+ 0.5841 0.6675 41.22 28.38

is the jth chain of assembly i, cluster size(cj) is the size of the corresponding cluster of cj , and last
the probability pi is normalized over all PDB assemblies. We also construct a distillation dataset
with 914800 structure predicted by AlphaFold2, of which the mean pLDDT> 70. During training,
we randomly sample distilled or PDB structures with probability 0.75 or 0.25, respectively. For
inference data, we use all PDB complexes released after 2022-05-01, then filter out all multimeric
data whose length-weighted sequence similarity is greater than 0.4 with any training sample, and
randomly select one sample from each sequence cluster to constitute the last inference dataset.

Model and Training. We mainly followed the implementation of Uni-Fold Multimer (Li et al.,
2022) to build the folding model. The hidden dimensions of Evoformer and the structure module
were both extended to 1, 024 with 32 attention heads. We used Adam (Kingma & Ba, 2014) β1 =
0.9, β2 = 0.999 as the optimizer. The learning rate was warmed up in the first 1, 000 steps to a
peak value of 0.001, and then decayed by 0.95 every 50, 000 steps in stair-case style. The model
was trained on 64 NVIDIA A100 GPUs (80G) with 150, 000 steps and batch size 128 (by gradient
accumulation) in about 15 days.

Baselines and Metric. We compared Uni-Fold MuSSe and MuSSe+ with i) AlphaFold-Multimer;
ii) AlphaFold-Multimer with single sequence inputs, i.e. with MSAs and templates removed; iii)
OmegaFold (Wu et al., 2022) and iv) ESMFold (Lin et al., 2022), in which we concatenated the
sequences with 20-residue gaps embodied by the unknown symbol X ([UNK]). The only difference
between MuSSe and MuSSe+ was that the latter used the further pre-trained PLM. Notably, both
folding models in Uni-Fold MuSSe and MuSSe+ were trained from-scratch. Following Li et al.
(2022), we used TM-score to evaluate the predicted complexes. Specifically, the optimal alignment
between a prediction and the ground truth was calculated on the entire assembly structure. The
scores were then calculated by averaging over all Cα atoms in all chains. Best scores across all
possible permutation alignments was reported.

4.3 RESULTS

The results of the experiment are presented in Table 1. As can be seen, (1) AlphaFold-Multimer
without multiple sequence alignment (MSA) lags behind OmegaFold, ESMFold, Uni-Fold MuSSe
and Uni-Fold MuSSe+ by a considerable margin, highlighting the crucial role of language model
representation in the absence of MSA information. (2) Uni-Fold MuSSe and Uni-Fold MuSSe+ out-
perform OmegaFold and ESMFold, demonstrating that the incorporation of language model repre-
sentations into the training process of protein complex prediction can further enhance performance.
(3) Although Uni-Fold MuSSe and Uni-Fold MuSSe+ outperform OmegaFold and ESMFoLd, it still
lags behind AlphaFold-Multimer with MSA input, indicating room for improvement in language
model-based complex prediction methods. (4) Between the two variants of our method, although
the average TM-Scores are similar, Uni-Fold MuSSe+ shows better performance in predicting high-
quality complex structures, since it predicts more structures with TM-Score > 0.95 (and > 0.85).
This is evident that Uni-Fold MuSSe+ is superior to the variant without further pre-training.

We also assessed the performance of our method and baseline methods using the TM-Score and
RMSD metrics at the sample level and present the results in Figure 4. In agreement with our previous
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Figure 4: Scatter matrix of TM-score (bottom left, with red frames) and RMSD (top right, with blue
frames) among our methods and baselines. Dots in different colors highlight that the corresponding
method is better. The diagonal plots are histograms of TM-scores for each method.

Ground-truth

(a) PDBid: 7U5O 

Uni-Fold MuSSe+  TM-score: 0.7409

AlphaFold-Multimer TM-score: 0.4458

Ground-truth

Uni-Fold MuSSe+  TM-score: 0.9525

AlphaFold-Multimer TM-score: 0.2131

(b) PDBid: 7YWG 

Figure 5: Predicted structures of two cases. Experimentally solved structures are colored in green,
AlphaFold-Multimer predictions in red, and Uni-Fold MuSSe+ predictions in blue.
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conclusions, we also observed that Uni-Fold MuSSe+ produced a higher number of samples with
TM scores close to 1.0 or 0.0, compared to Uni-Fold MuSSe without further pre-training. This
observation offers valuable insights into how language models can be effectively utilized for protein
structure prediction and serves as a basis for further improvement.

Our analysis also discovered some instances on which Uni-Fold MuSSe+ outperformed AlphaFold-
Multimer, which relies on homology search and pairing. Two cases can be seen in the comparisons
presented in Figure 5, where the predictions of Uni-Fold MuSSe+ were found to be better to those
of AlphaFold-Multimer. The limited number of cross-chain multiple sequence alignments (MSA)
pairings for these complexes may explain this outcome, as seen in the cases of 7U5O with 348 pair-
ings. These results highlight the potential of language-model based complex predictors in scenarios
where the number of cross-chain MSA pairings is limited.

5 CONCLUSIONS

In this work, we proposed Uni-Fold MuSSe+, a complex structure predictor with no need for ho-
mology search and pairing. The core idea of Uni-Fold MuSSe+ is to resort to pretrained protein
language model representation for evolutionary patterns rather than from multiple sequence align-
ment. We verify the effectiveness of our method on protein complex prediction, and can improve
the baseline methods significantly. For future works, first, we will dig deeper into why the average
performance of further pretrained language model is similar to the one without further pretraining.
Second, further improving protein language model based structure predictor to the performance of
MSA based works is a valuable direction. Finally, how to pre-train a multimeric language model
efficiently and effectively is also an interesting topic.
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Augustin Žı́dek, Russ Bates, Sam Blackwell, Jason Yim, et al. Protein complex prediction with
alphafold-multimer. BioRxiv, pp. 2021–10, 2022.

8



Under review at the MLDD workshop, ICLR 2023

Xiaomin Fang, Fan Wang, Lihang Liu, Jingzhou He, Dayong Lin, Yingfei Xiang, Xiaonan Zhang,
Hua Wu, Hui Li, and Le Song. Helixfold-single: Msa-free protein structure prediction by using
protein language model as an alternative. arXiv preprint arXiv:2207.13921, 2022.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
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