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ABSTRACT

The success of visual instruction tuning has accelerated the development of large
language and vision models (LLVMs). Following the scaling laws of instruction-
tuned large language models (LLMs), LLVMs either have further increased their
sizes such as 26B, 34B, and even 80B. While this increase in model size has
yielded significant performance gains, it demands substantially more hardware
resources for both training and inference. Consequently, there naturally exists a
strong need for efficient LLVMs that achieve the performance of larger models
while being smaller in size. To achieve this need, we present a new efficient
LLVM family with model sizes of 0.5B, 1.8B, 3.8B, and 7B parameters,
Phantom, which significantly enhances learning capabilities within limited struc-
tures. By temporarily increasing the latent hidden dimension during multi-head
self-attention (MHSA), we make LLVMs understand much more vision-language
knowledge on the latent, without substantially increasing physical model sizes.
To maximize its advantage, we introduce Phantom Optimization (PO) using both
autoregressive supervised fine-tuning (SFT) and direct preference optimization
(DPO)-like concept, which effectively follows correct answers while eliminating
incorrect and ambiguous ones. Phantom outperforms numerous larger open-
and closed-source LLVMs, positioning itself as a leading solution in the landscape
of efficient LLVMs.

1 INTRODUCTION

In recent years, artificial general intelligence (AGI) has increasingly become a part of daily life,
significantly enhancing our convenience. This trend is largely attributed to technical advancements
of large language models (LLMs) and their impressive generalization performance, facilitated by
instruction tuning (Wei et al., 2022; Chung et al., 2022). Building on this momentum, instruction
tuning has expanded its realm into visual instruction tuning (Liu et al., 2023c), integrating both
language and vision as a format of text and image, under the use of pretrained LLMs. Based on them,
numerous large language and vision models (LLVMs) have continuously emerged as multimodal
LLMs and they have shown outstanding vision-language performances.

In terms of open-to-public regarding model architectures and their trained parameters, LLVMs can
be categorized into open-source and closed-source models. For example, there are representative
closed ones: GPT-4V (OpenAI, 2023), Gemini-Pro (Team et al., 2023), and Qwen-VL-Plus (Bai
et al., 2023a;b), all of which are renowned for their remarkable vision-language performances, large
model sizes, and extensive number of dataset samples. In response, open-source LLVMs have tried
to narrow the performance gap with their closed-source performances, by following the similar
strategies the closed ones used, such as scaling up model sizes (Liu et al., 2024a; McKinzie et al.,
2024; Li et al., 2024d) (e.g., 26B, 34B, and 80B) and curating larger number of visual instruction
tuning samples (Hu et al., 2024a; Fang et al., 2024; Tong et al., 2024) (e.g., 4M, 6M, and 10M).

Along with them, several modules have focused on image-level understanding by leveraging numer-
ous types of vision encoders (Kar et al., 2024; Lu et al., 2024; Goncharova et al., 2024; Ranzinger
et al., 2023; Zhao et al., 2024; Li et al., 2024d) and multiple computer vision models (Chen et al.,
2024a; Wang et al., 2024c; Jiao et al., 2024; Lee et al., 2024c;d). Additionally, a series of projectors
have been employed alongside various vision encoders to improve fine-grained understanding (Li
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Figure 1: Overview of performances compared with Phantom and closed-source LLVMs

et al., 2024d; Tong et al., 2024; Ge et al., 2024a; Chen et al., 2024c; Yao et al., 2024) through par-
titioning the image. Besides, a multifaceted rationale-embedded projector (Lee et al., 2024b) has
been used to enhance real-world knowledge such as document, chart, and math.

However, these efforts — summarized as (a) scaling up model size, (b) curating larger datasets, and
(c) incorporating additional modules and projectors — may not be regarded as a primary key to ba-
sically improve their own learning capabilities of LLVMs. In other words, there remains unexplored
potential in fully utilizing LLVMs to align vision knowledge with language one and embed much
more vision-language knowledge within limited structures, without relying on external modules
and projectors. Beyond their limited learning capabilities, specifically, (a) and (b) bring in strik-
ing computational burdens during training, necessitating high-end GPUs with substantial VRAM.
This (a) more becomes a critical drawback in devices with limited GPU resources, such as mobile
phones and embedded boards. Furthermore, the high computational inference costs, associated with
larger model sizes, exacerbate these issues, particularly for real-time applications such as augmented
reality (AR) systems. As a result, deploying and operating LLVMs in such resource-constrained on-
device environments becomes a major challenge.

To meet the two needs of maintaining model sizes while achieving superior performance, we present
an efficient LLVM family, Phantom, which stimulates enlarging vision-language learning capa-
bilities within limited structures. When conducting multi-head self-attention (MHSA), Phan-
tom temporarily increases the latent hidden dimension and understand much more vision-language
knowledge. Without significantly increasing the physical model size, we get an effect of increas-
ing the dimension in query, key, and value, which we now call as Phantom Dimension. In order
to maximally boost this advantage, we introduce Phantom Optimization (PO), inspired by RLHF
and DPO (Christiano et al., 2017; Stiennon et al., 2020; Ouyang et al., 2022; Rafailov et al., 2024;
Hong et al., 2024a; Meng et al., 2024). Unlike traditional preference-based methods, PO is designed
to minimize the generation of incorrect and ambiguous answers. Since autoregressive supervised
fine-tuning (SFT) primarily focuses on producing correct answers, PO provides Phantom with
additional guidance to avoid confusing answers by borrowing the recent DPO formulation (Meng
et al., 2024).

To do so, we first need a collection of incorrect and ambiguous answers. These are generated and
filtered through GPT-4o(-mini) and human review from 2.8M visual instruction tuning samples cov-
ering diverse capabilities (details in Section 3). This process resulted in the curation of 2M Phantom
triples including question, its correct answer, and the corresponding incorrect and ambiguous an-
swers (see Appendix A). By using the triple, Phantom is trained with the two training steps,
where we train vision projector and Phantom Dimension in the first step with the pretrained LLM
frozen. In the second step, all components are trained together. Notably, PO utilizes SFT together
with DPO-like concept throughout first training step, making Phantom have an ability that fol-
lows correct answers while eliminating incorrect and ambiguous ones. In the experiment section,
we demonstrate that handling the latent hidden dimension and using PO enhances vision-language
performances by a large margin. As a result, we release an efficient LLVM family Phantom
with 0.5B, 1.8B, 3.8B, and 7B model sizes, which outperform open- and closed-source LLVMs,
establishing a leading solution in the realm of efficient LLVMs.

Our contribution can be summarized into two main aspects:
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Figure 2: Evaluating MM-Vet (Yu et al., 2023) for efficient LLVM family, Phantom, across four
model sizes (0.5B, 1.8B, 3.8B, and 7B), compared with various model size LLVMs: (a) 7B∼80B
and unknown model size for closed-source LLVMs (b) 0.5B∼10B model sizes.

• We present a new efficient large language and vision model (LLVM) Family, Phantom,
which temporarily increases the latent hidden dimension during multi-head self-attention
(MHSA) to enhance vision-language learning capabilities within limited structures.

• Curating efficient size 2M number of Phantom triples, we introduce a training strategy of
Phantom Optimization (PO) which avoids incorrect and ambiguous answers, showcasing
more advancements across numerous evaluation benchmarks.

2 RELATED WORKS

Large Language and Vision Models. To bridge the performance gap with closed-source LLVMs,
open-source LLVMs have adopted three primary strategies: scaling up model size, curating larger
datasets, and incorporating additional modules or projectors. For instance, LLaVA-NeXT (Liu et al.,
2024a), MM1 (McKinzie et al., 2024), Yi-VL (Young et al., 2024) and MiniGemini (Li et al., 2024d)
build model variants with parameters up to 34B. Concurrent to these efforts, mPLUG-Owl (Hu
et al., 2024a), VILA2 (Fang et al., 2024), and Cambrian-1 (Tong et al., 2024) curate high-quality
visual instruction tuning datasets specialized for diverse visual capabilities. Lastly, recent works
have leveraged various vision encoders (Kar et al., 2024; Lu et al., 2024; Goncharova et al., 2024;
Ranzinger et al., 2023; Zhao et al., 2024; Li et al., 2024d) and integrated external computer vision
modules (Chen et al., 2024a; Wang et al., 2024c; Jiao et al., 2024; Lee et al., 2024c;d) to expand
LLVMs’ perception capabilities. Alongside using extra vision encoders, several works utilize pro-
jectors to extract hierarchical features of images (Li et al., 2024d; Tong et al., 2024; Ge et al., 2024a;
Chen et al., 2024c; Yao et al., 2024) or to improve real-world knowledge comprehension such as
document analysis, chart interpretation, and mathematical reasoning (Lee et al., 2024b).

While these approaches enhance downstream task performance, they do not address the core chal-
lenge of improving the intrinsic learning capabilities of LLVMs. Scaling up model size or employing
larger instruction tuning datasets leads to substantial computational burdens. In addition, relying on
extra visual encoders or computer vision modules brings in external visual knowledge, but they
mainly focus on visual perception-related capabilities and their additional parameters may also lead
the burden. This underscores the need for developing more efficient LLVMs with enhanced inherent
capabilities that do not depend on such resource-intensive strategies.

Efficient Modeling. In an effort to enhance the fundamental capabilities of LLMs while maintain-
ing model size, several works for natural language processing has increasingly focused on devel-
oping smaller model sizes (Thawakar et al., 2024; Mehta et al., 2024; Liu et al., 2024c), network
pruning (Ma et al., 2023; Men et al., 2024; Ashkboos et al., 2024), and quantization (Li et al.,
2023c; Shao et al., 2024a; Park et al., 2024a). These approaches primarily aim to accelerate training
speed and reduce inference time while retaining performance, rather than boosting performances or
improving LLVMs’ embedding capabilities of vision-language knowledge within the limited struc-
tures. While efficient modeling has been extensively explored for LLMs, the design of efficient
vision-language models (LLVMs) remains underexplored. A recent work, TroL (Lee et al., 2024a),
uniquely introduces a layer traversing technique that reuses layers in a token-wise manner to po-
tentially embed more vision-language knowledge. However, it faces significant challenges, such as
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increased inference time due to doubling layer propagation and critical issues with key-value cache
storage, preventing it from fully realizing its potential for efficient LLVMs.

In response to the need for efficient yet high-performing LLVMs, we introduce a new efficient LLVM
family, Phantom, which enhances the embedding capability of vision-language knowledge by
temporarily increasing the latent hidden dimension during multi-head self-attention (MHSA). This
innovation, combined with 2M Phantom triples to guide LLVMs towards correct answers while
avoiding confusion, is expected to pave the way for more efficient LLVMs in both training and
inference and to represent a crucial first step in advancing the field.

3 PHANTOM

Existing LLVMs and Phantom. Figure 3(a) depicts the commonly used training paradigm for
building LLVMs, where pretrained LLMs are fine-tuned to acquire visual understanding and handle
vision-language tasks using both text and image inputs. This approach directly modifies the orig-
inal latent dimensions derived from the their parameters to accommodate the new vision-language
capabilities. In contrast, Figure 3(b) introduces a new concept of expanding the latent dimension,
which we call as Phantom Dimension, which trains only the added latent space without fine-tuning
the entire pretrained LLMs. It enables for pretrained LLMs to have a room to embed the new knowl-
edge, which effectively integrates vision language knowledge without overwritting the parameters
and altering or compromising the original knowledge. In other words, Phantom Dimension injects
vision language knowledge to the pretrained-LLMs directly with the enlarged hidden dimension,
where it can be considered as another hidden room of internal model architectures. By leverag-
ing this approach, we build a new LLVM family of Phantom and in order to extremely boost
its vision language performances, we curate incorrect and ambiguous answers and present a way
utilizing them, called as Phantom Optimization. Next, we will explain model architecture of
Phantom, and the realization of Phantom Dimension. In addition, the process of creating incorrect
and ambiguous answers, as well as strategies for effectively utilizing them, will be discussed.

Overview of Model Architecture. As shown in Figure 4(a), the architecture of Phantom
model consists of vision encoder, vision projector, and a multimodal language model including
word embedding and language model head, which follows a common configuration used in open-
source LLVMs (Liu et al., 2023c;b; Bai et al., 2023b; Chen et al., 2023a; McKinzie et al., 2024).
Specifically, we utilize InternViT-300M (Chen et al., 2023b) as the vision encoder instead of CLIP-
L-428M (Radford et al., 2021), due to its superior ability to align text-to-image representations
through contrastive learning with large language models (LLMs). The vision projector is constructed
using two fully connected layers, where GELU (Hendrycks & Gimpel, 2016) activation function
is interleaved with each layer. For multimodal LLM component, we initialize it using pretrained
LLMs across various sizes, selected for their state-of-the-art performance within their respective
size: Qwen2-0.5B (Yang et al., 2024), InternLM2-1.8B (Cai et al., 2024), Phi3-mini-3.8B Abdin
et al. (2024), and InternLM2.5-7B (Cai et al., 2024).
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Figure 4: (a) Overview of model architecture and the detail of first training step with Phantom Di-
mension and Phantom Optimization. In second training step, we train all of the parameters described
in this figure. (b) Illuminating how Phantom Dimension temporarily enlarges the latent hidden di-
mension in forward propagation at l-th layer in Phantom, where ‘Linear QKV’, MHSA, and
‘FFN+Add&Norm’ is generally used module from pretrained LLM. Only MHCA module is added.

Algorithm 1 A Transformer Decoder Block with Phantom Dimension

1: Input: X = [xsos, xprompt]
2: Ql,Kl, Vl ← LinearQKV(X)
3: Q∗

l ,K
∗
l , V

∗
l ← Ql[0],Kl[0], Vl[0] {Extracting feature for the place of ‘sos’ token}

4: Q∗
l ,K

∗
l , V

∗
l ← MHCA(Ql, Q

∗
l ),MHCA(Kl,K

∗
l ),MHCA(Vl, V

∗
l )

5: [Ōl, Õl]←MHSA(q = [Ql, Q
∗
l ], k = [Kl,K

∗
l ], v = [Vl, V

∗
l ])

6: w̄, w̃ ← ef(Ōl)/(ef(Ōl) + eg(Õl)), eg(Õl)/(ef(Ōl) + eg(Õl))

7: Ol ← w̄ ⊙ Ōl + w̃ ⊙ Õl

8: X ← FFN+Add&Norm(Ol)
9: Return: X

Realization of Phantom Dimension. For better understanding, Figure 4(b) represents the simple
overview of how Phantom Dimension works. We utilize start of sequence (sos) token that will serve
as a key in enhancing the latent hidden dimension for the query, key, and value components in multi-
head self-attention (MHSA) layers. The latent feature on the location of sos token is propagated into
QKV linear function, and we denote its outputs as Q∗

l ∈ Rdq , K∗
l ∈ Rdkv , and V ∗

l ∈ Rdkv at each
layer l. Note that d denotes the latent hidden dimension. Q∗

l , K∗
l , and V ∗

l ∈ Rdkv are supposed to
inject into the multi-head cross-attention (MHCA) module. A natural question arises: Why inject
these features into the cross-attention module? The reason lies in the dynamic length N of user input
tokens, which varies with the question length. Therefore, these features need to have dimension
Q∗

l ∈ RN×dq , K∗
l ∈ RN×dkv , and V ∗

l ∈ RN×dkv since sos token only represents a single token.
Therefore, it must be expanded to match the N tokens of the input sequence, and the cross-attention
module make these features expanded into input sequence token number N , as follows:

Q∗
l ← MHCA(q = Ql, k/v = Q∗

l ),

K∗
l ← MHCA(q = Kl, k/v = K∗

l ),

V ∗
l ← MHCA(q = Vl, k/v = V ∗

l ),

(1)

where we change their dimension into Ql: R
N×hq×

dq
hq and Kl, Vl: R

hkv×
dkv
hkv for conducting multi-

head cross attention with head number hq and hkv . Next, in order to make LLVMs embed much
more vision-language knowledge, we enlarge the latent hidden dimension by concatenating the
original query, key, and value matrices with the cross-attended outputs dimension-wise, yielding

[Ql Q∗
l ] ∈ RN×hq×

2dq
hq , [Kl K∗

l ] ∈ RN×hkv×
2dkv
hkv , and [Vl V ∗

l ] ∈ RN×hkv×
2dkv
hkv . We then

apply multi-head self-attention (MHSA) used in multimodal LLM to these concatenated ones:

Ol = Softmax

(
λ

(
2dq
hq

)− 1
2

[Ql Q∗
l ] [Kl K∗

l ]
⊤
)
[Vl V ∗

l ] , (2)

where λ denotes a regularization parameter, and Ol ∈ RN×hq×
2dq
hq represents the output features of

MHSA. After its computation, the output features should return to the original hidden dimension, as
they will be propagated through the remaining transformer modules, such as feed-forward network
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Table 1: Comparison with the current existing standard model size open-source LLVMs, evalu-
ating vision-language performances of Phantom on numerous general evaluation benchmarks:
SQAI (Lu et al., 2022), AI2D (Kembhavi et al., 2016), ChartQA (Masry et al., 2022), SEEDI (Li
et al., 2023a), POPE (Li et al., 2023b), HallB (Liu et al., 2023a), MME (Fu et al., 2023), Math-
Vista (Lu et al., 2023), MMB (Liu et al., 2023d), MMBCN (Liu et al., 2023d), MM-Vet (Yu et al.,
2023), and LLaVAW (Liu et al., 2023c). Bold and Underline represent the top and the second, each.

LLVMs SQAI AI2D ChartQA SEEDI POPE HallB MME MathVista MMB MMBCN MM-Vet LLaVAW

ShareGPT4V-7B (Chen et al., 2023a) 68.4 - - 69.7 - 49.8 1944 25.8 68.8 62.2 37.6 -
InternLM-XC-7B (Zhang et al., 2023) - - - 66.1 - 57.0 1919 29.5 74.4 72.4 35.2 -
Monkey-10B (Li et al., 2023d) 69.4 - - 68.9 - 58.4 1924 34.8 72.4 67.5 33.0 -
VILA-7B (Lin et al., 2023a) 68.2 - - 61.1 85.5 - - - 68.9 61.7 34.9 -
VILA-13B (Lin et al., 2023a) 73.7 - - 62.8 84.2 - - - 70.3 64.3 38.8 -
SPHINX-7B (Lin et al., 2023b) 70.6 - - 71.6 86.9 - 1797 27.8 65.9 57.9 40.2 -
SPHINX-MoE-7B×8 (Gao et al., 2024) 70.6 - - 73.0 89.6 - 1852 42.7 71.3 - 40.9 -
SPHINX-Plus-13B (Gao et al., 2024) 70.6 - - 74.8 89.1 52.1 1741 36.8 71.0 - 47.9 -
LLaVA-NeXT-7B (Liu et al., 2024a) 70.1 - - 70.2 86.5 - 1851 34.6 69.6 63.3 43.9 72.3
LLaVA-NeXT-8B (Liu et al., 2024a) - 71.6 69.5 - - - 1972 37.5 72.1 - - 80.1
LLaVA-NeXT-13B (Liu et al., 2024a) 73.6 70.0 62.2 72.2 86.7 - 1892 35.1 70.0 68.5 47.3 72.3
MM1-7B (McKinzie et al., 2024) 72.6 - - 69.9 86.6 - 1858 35.9 72.3 - 42.1 -
MM1-MoE-7B×32 (McKinzie et al., 2024) 74.4 - - 70.9 87.8 - 1992 40.9 72.7 - 45.2 -
MiniGemini-HD-7B (Li et al., 2024d) - - - - - - 1865 32.2 65.8 - 41.3 -
MiniGemini-HD-13B (Li et al., 2024d) - - - - - - 1917 37.0 68.6 - 50.5 -
Cambrian-1-8B (Tong et al., 2024) 80.4 73.0 73.3 74.7 - - - 49.0 75.9 - - -
Cambrian-1-13B (Tong et al., 2024) 79.3 73.6 73.8 74.4 - - - 48.0 75.7 - - -
Eagle-8B (Shi et al., 2024) 84.3 76.1 80.1 76.3 - - - 52.7 75.9 - - -
Eagle-13B (Shi et al., 2024) 82.0 74.0 77.6 74.8 - - - 54.4 75.7 - - -
VILA1.5-8B (Lin et al., 2023a) 82.0 - - 73.8 85.6 - - - 75.3 69.9 43.2 71.9
VILA1.5-13B (Lin et al., 2023a) 80.1 - - 72.6 86.3 - - - 74.9 66.3 44.3 80.8
VILA2-8B (Fang et al., 2024) 87.6 - - 66.1 86.7 - - - 76.6 71.7 50.0 86.6
MiniCPM-V-2.5-8B (Yao et al., 2024) - - - - - - 2025 54.3 77.2 74.2 - 86.7
CogVLM2-8B (Hong et al., 2024b) - 73.4 81.0 - - - 1870 - 80.5 - 60.4 -
TroL-7B (Lee et al., 2024a) 92.8 78.5 71.2 75.3 87.8 65.3 2308 51.8 83.5 81.2 54.7 92.8
Molmo-7B (Deitke et al., 2024) 92.2 79.6 84.1 74.1 87.4 - 1784 47.3 - - 53.3 74.0
LLaVA-OneVision-8B (Li et al., 2024a) 96.0 81.4 80.0 75.4 - - 1998 63.2 80.8 - 57.5 90.7

Phantom-7B 95.6 79.5 87.8 75.3 87.7 65.4 2126 70.9 84.8 84.7 70.8 84.9

(FFN). At this stage, we aim to compress the output features while minimizing information loss as
much as possible. To achieve this, we split the output Ol into two halves: Ol[:, :, : dq

hq
] and Ol[:,

:, dq

hq
:] (Python slicing format), denoted as Ōl ∈ RN×hq×

dq
hq and Õl ∈ RN×hq×

dq
hq , respectively.

To flexibly mix them, weighted-average operation is employed, and then finally we can get the
compressed outputs Ol ← w̄ ⊙ Ōl + w̃ ⊙ Õl where ⊙ is element-wise multiplication, and

w̄ =
ef(Ōl)

ef(Ōl) + eg(Õl)
, w̃ =

eg(Õl)

ef(Ōl) + eg(Õl)
, (3)

where f and g comprise each one fully-connected layer: RN×hq×
dq
hq → RN×hq , and the com-

pressed outputs are then propagated into remaining modules with root mean square (RMS) layer
normalization (Ba et al., 2016; Zhang & Sennrich, 2019) and Add&Norm operation. Algorithm 1
shows a brief summary for forward propagation procedure of a transformer decoder block equipped
with Phantom Dimension, where Bold means the original modules normally used in transformer de-
coder block and Orange represents the added modules from Phantom Dimension. All of the modules
independently exist across every layers.

Curation of Phantom Triples. From 2.8M visual instruction tuning samples (see Appendix B),
we generate incorrect and ambiguous answers based on the existing question-answer pairs. To re-
duce data generation costs, we utilize GPT-4o-mini with the following prompt: “Question: {}.
Answer: {}. Based on the question and the answer, make an incorrect and ambiguous answer com-
pared to the original one. The length of the original answer should be maintained. Do not include
any additional text.”. Here, {} serves as a placeholder. Next, we employ GPT-4o to validate the
generated responses using the prompt: “Original Answer : {}. Incorrect and Ambiguous Answer:
{}. Provide ‘Yes’ or ‘No’, where ‘Yes’ means it is incorrect and ambiguous answer compared to
the original one, ‘No’ means it is correct answer compared to the original one. Do not include
any additional text.”. All samples labeled ‘No’ are discarded, while the ‘Yes’-labeled samples un-
dergo human review to verify if they are genuinely confusing. Through this process, we curate 2M
Phantom Triples, consisting of a question, its correct answer, and a corresponding confusing answer.

Implementation of Phantom Optimization. To fully leverage the enhanced learning capability
provided by Phantom Dimension, we introduce Phantom Optimization (PO), which is heavily in-
spired by Direct Preference Optimization (DPO) (Rafailov et al., 2024). While methods such as

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Comparison with the current existing smaller open-source LLVMs across 0.5B∼4B model
sizes, evaluating vision-language performances of Phantom on numerous evaluation benchmarks
equally used in Table 1.

LLVMs SQAI AI2D ChartQA SEEDI POPE HallB MME MathVista MMB MMBCN MM-Vet LLaVAW

MobileVLM-3B (Chu et al., 2023) 61.2 - - - 84.9 - - - 59.6 - - -
MobileVLM-V2-3B (Chu et al., 2024) 70.0 - - - 84.7 - - - 63.2 - - -
MoE-LLaVA-2.7B×4 (Lin et al., 2024) 70.3 - - - 85.7 - - - 68.0 - 35.9 -
LLaVA-Phi-2.7B (Zhu et al., 2024) 68.4 - - - 85.0 - - - 59.8 - 28.9 -
Imp-v1-3B (Shao et al., 2024b) 70.0 - - - 88.0 - - - 66.5 - 33.1 -
TinyLLaVA-3.1B (Zhou et al., 2024) 69.1 - - - 86.4 - - - 66.9 - 32.0 -
TinyLLaVA-Sig-Phi-3.1B (Zhou et al., 2024) 69.1 - - - 86.4 - - - 66.9 - 32.0 -
Bunny-3B (He et al., 2024) 70.9 38.2 - 62.5 86.8 - 1778 - 68.6 - - -
MiniCPM-2.4B (Hu et al., 2024b) - 56.3 - - - - 1650 28.9 64.1 62.6 31.1 -
MiniCPM-V2-2.8B (Hu et al., 2024b) - 62.9 - - - - 1809 38.7 69.1 66.5 41.0 -
MM1-3B (McKinzie et al., 2024) 69.4 - - 68.8 87.4 - 1762 32.0 67.8 - 43.7 -
MM1-MoE-3B×64 (McKinzie et al., 2024) 76.1 - - 69.4 87.6 - 1773 32.6 70.8 - 42.2 -
ALLaVA-3B (Chen et al., 2024b) - - - 65.2 - - 1623 - 64.0 - 32.2 -
ALLaVA-3B-Longer (Chen et al., 2024b) - - - 65.6 - - 1564 - 64.6 - 35.5 -
VILA1.5-3B (Chen et al., 2024b) 69.6 - - 66.4 85.3 - - - 62.8 52.2 38.6 76.7
TroL-3.8B (Lee et al., 2024a) 90.8 73.6 73.8 70.5 86.5 62.2 1980 55.1 79.2 77.1 51.1 76.6

Phantom-3.8B 94.2 71.7 87.3 72.8 87.1 60.8 2046 60.6 80.4 77.1 54.4 76.2

DeepSeek-VL-1.3B (Lu et al., 2024) - - - 66.7 87.6 - - 31.1 64.6 62.9 34.8 -
MobileVLM-1.7B (Chu et al., 2023) 57.3 - - - 84.5 - - - 53.2 - - -
MobileVLM-V2-1.7B (Chu et al., 2024) 66.7 - - - 84.3 - - - 57.7 - - -
MoE-LLaVA-1.8B×4 (Lin et al., 2024) 63.1 - - - 87.0 - - - 59.7 - 25.3 -
Mini-Gemini-2B (Li et al., 2024d) - - - - - - 1653 29.4 59.8 - - -
TroL-1.8B (Lee et al., 2024a) 87.5 68.9 64.0 69.0 88.6 60.1 2038 45.4 76.1 74.1 45.1 69.7

Phantom-1.8B 91.9 62.3 87.0 68.6 89.6 62.2 1885 60.9 76.6 75.1 54.1 68.6

LLaVA-OneVision-0.5B (Li et al., 2024a) 67.2 57.1 61.4 65.5 - - 1478 34.8 52.1 - 29.1 74.2
Phantom-0.5B 83.2 54.1 78.0 60.6 86.0 54.6 1743 51.7 72.7 70.1 45.7 69.6

RLHF (Christiano et al., 2017) and DPO are designed to optimize towards human or AI-driven pref-
erences, PO is tailored to follow correct answer and reduce incorrect and ambiguous answers during
training. To reduce the computational complexity of incorporating an additional reference model,
we adopt the loss formulation from SimPO (Meng et al., 2024). Similar to ORPO (Hong et al.,
2024a), we simultaneously use autoregressive supervised fine-tuning (SFT). This enables Phan-
tom to effectively reinforce correct answers y+ while eliminating incorrect and ambiguous ones y−
in response to a given prompt x. This formulation can be expressed as follows:

min
θ
LPO = LSFT − ED

[
log σ

(
β

|y+|
log πθ(y

+|x)− β

|y−|
log πθ(y

−|x)− γ

)]
, (4)

where θ represents the trainable parameters and LSFT denotes the supervised fine-tuning loss for
question-answer pairs. Note that, D is a dataset for Phantom triples (x, y+, y−) ∼ D, σ denotes
sigmoid function, β and γ means the hyper-parameter used in SimPO (Meng et al., 2024), where if
β increases, then the gap of the probability between positive answer and negative answer will be at
large margin. In addition, γ is a empirical reward margin to make the training stable. We implement
a two-step training strategy. In the first step, which focuses on vision and language alignment, the
parameters of the pretrained LLM are frozen. We then train the parameters of vision projector and
the components related to Phantom Dimension (MHCA and the functions f and g). In the second
step, we unfreeze all parameters and train them all at once. We apply PO throughout the first training
step only, not to interrupt multimodal LLM’s own text generation ability because the positive and
negative answers y+/y− are mostly generated by closed-source LLVMs instead of instruction fine-
tuned self model, which is totally different strategy from RLHF and DPO. For verification, we show
the performance degradation in experiment section when using PO in the second training step.

4 EXPERIMENTS

Implementation Details. To ensure successful reproducibility, we outline four key technical as-
pects of Phantom: (a) the detailed architecture of the backbone multimodal LLMs, vision en-
coder, and vision projector, (b) the structure of the multi-head cross-attention (MHCA) module in
Phantom Dimension, (c) the computing environments and bit quantization configurations, and (d)
the procedures for training and inference.

(a) We utilize Qwen2 (Yang et al., 2024), Phi-3-mini (Abdin et al., 2024), and InternLM2/2.5 (Cai
et al., 2024) as the backbone multimodal LLMs. Specifically, Qwen2-0.5B is configured with
hq = 14, hkv = 2, a hidden dimension of dq = 896, and 24 layers; InternLM2-1.8B with
hq = 16, hkv = 8, a hidden dimension of dq = 2048, and 24 layers; Phi-3-mini-3.8B with hq = 32,
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Table 3: Detailed comparison for challenging evaluation benchmarks. Sub-benchmark category
names in (c), (d), and (g) are represented in Appendix B. For (f), LLaVA-Wilder (Zhang et al.,
2024a) is a more advanced challenging evaluation benchmark over LLaVAW (Liu et al., 2023c).
(a) Comparison with LLVMs using additional modules and projector: OmniFusion Goncharova
et al. (2024), DeepSeek-VL (Lu et al., 2024), MoVA (Kar et al., 2024), Eagle (Shi et al., 2024),
CoLLaVO (Lee et al., 2024c), MoAI (Lee et al., 2024d), and Meteor (Lee et al., 2024b)

Benchmarks OmniFusion-7B DeepSeek-VL-7B MoVA-7B Eagle-8B CoLLaVO-7B MoAI-7B Meteor-7B Phantom-7B

SQAI (Lu et al., 2022) 69.7 57.7 74.4 84.3 80.7 83.5 87.5 95.6
MMB (Liu et al., 2023d) 69.0 73.2 81.3 75.9 83.0 79.3 82.9 84.8
MM-Vet (Yu et al., 2023) 39.4 41.5 - - 40.3 43.7 57.3 70.8
MathVista (Lu et al., 2023) - - 44.3 52.7 57.6 56.2 53.4 70.9
MMStar (Chen et al., 2024d) - - - - 42.1 48.7 45.5 57.7

(b) Comparison on challenging evaluation benchmarks with more recently released open-source
LLVMs: Cambrian-1 (Tong et al., 2024), LLaVA-OneVision(OV) (Li et al., 2024a), MiniCPM-V-
2.6 (Yao et al., 2024), InternVL2 (Chen et al., 2024e), and Qwen2-VL (Wang et al., 2024b), which
are trained on larger datasets and with greater computational resources, alongside GPT-4V.

Benchmarks Cambrian-1-8B LLaVA-OV-8B MiniCPM-V2.6-8B InternVL2-8B Qwen2-VL-7B GPT-4V Phantom-7B
CV-Bench (Tong et al., 2024) 72.2 - - - - 69.1 74.9
BLINK (Fu et al., 2024) 44.9 48.2 - 50.9 - 58.3 58.9
MM-Vet (Yu et al., 2023) 51.7 57.5 60.0 60.0 62.0 63.6 70.8
ChartQA (Masry et al., 2022) 73.3 80.0 - 83.3 83.0 78.5 87.8
MathVista (Lu et al., 2023) 49.0 - 60.6 58.3 58.2 69.1 70.9

(c) MMStar (Chen et al., 2024d)
LLVMs CP FP IR LR ST MA Avg

Yi-VL-34B (Young et al., 2024) 53.2 31.2 52.0 32.4 12.4 35.2 36.1
CogVLM-Chat-17B (Wang et al., 2023) 66.8 36.8 49.2 31.2 23.6 11.6 36.5
SPHINX-MoE-7B×8 (Gao et al., 2024) 58.4 40.8 47.6 35.2 19.2 32.0 38.9
InternVL1.2-40B (Chen et al., 2023b) 67.6 43.2 61.2 47.2 24.0 19.2 43.7
LLaVA-NeXT-34B (Liu et al., 2024a) 66.4 52.0 62.4 46.0 32.4 53.6 52.1
InternXC2-7B (Dong et al., 2024) 70.8 48.8 65.2 56.4 42.0 49.2 55.4
GPT-4V (OpenAI, 2023) 76.6 51.4 66.6 55.8 42.6 49.8 57.1

Phantom-7B 66.0 52.8 60.0 60.8 38.4 68.4 57.7

(d) MathVerse (Zhang et al., 2024b)
LLVMs TD TL TO VI VD VO Avg

G-LLaVA-7B (Gao et al., 2023) 20.9 20.7 21.1 17.2 16.4 9.4 16.6
LLaVA-NeXT-13B (Liu et al., 2024a) 12.8 12.0 9.9 10.7 9.7 6.3 10.3
ShareGPT4V-13B (Chen et al., 2023a) 16.2 16.2 6.6 15.5 13.8 3.7 13.1
SPHINX-MoE-7B×8 (Gao et al., 2024) 26.2 17.4 26.7 16.7 12.5 11.1 16.8
InternXC2-7B (Dong et al., 2024) 22.3 17.0 16.5 15.7 16.4 11.0 16.5
LLaVA-NeXT-34B (Liu et al., 2024a) 33.8 25.5 21.3 23.5 20.3 15.7 23.8
GPT-4V (OpenAI, 2023) 54.7 41.4 48.7 34.9 34.4 31.6 39.4

Phantom-7B 47.3 45.2 45.3 42.7 41.7 43.7 41.0

(e) MM-Vet-v2 (Yu et al., 2024a)
LLVMs Rec Gen OCR Spat Know Seq Math Avg

LLaVA-NeXT-34B (Liu et al., 2024a) 49.3 48.9 53.2 48.3 49.6 18.5 37.3 50.9
InternVL-Chat-V1-5 (Chen et al., 2024e) 52.0 48.9 51.7 49.3 47.9 37.6 17.6 51.5
Claude3 Opus (Anthropic, 2024) 53.5 57.6 60.5 50.0 51.0 46.1 45.6 55.8
Qwen-VL-Max (Bai et al., 2023b) 51.7 51.1 60.2 49.0 52.2 27.3 58.3 55.8
Gemini-Pro (Team et al., 2023) 54.3 50.8 61.9 55.8 50.7 45.4 46.3 57.2

Phantom-7B 56.1 53.9 67.4 57.7 51.9 37.3 68.5 60.6

(f) LLaVA-Wilder
LLVMs Accuracy

LLaVA-NeXT-8B (Liu et al., 2024a) 62.5
LLaVA-NeXT-72B (Liu et al., 2024a) 71.2
LLaVA-NeXT-110B (Liu et al., 2024a) 70.5
LLaVA-OV-7B (Li et al., 2024a) 67.8
LLaVA-OV-72B (Li et al., 2024a) 72.0
GPT-4V (OpenAI, 2023) 71.5

Phantom-7B 83.7

(g) VisualWebBench Liu et al. (2024b).

LLVMs Website Element Action Average
Cap QA OCR OCR Grd Pred Grd

LLaVA-NeXT-7B (Liu et al., 2024a) 27.0 39.8 57.3 54.8 31.7 30.6 10.7 36.0
LLaVA-NeXT-13B (Liu et al., 2024a) 26.5 44.5 52.8 56.1 31.7 48.4 15.5 39.4
LLaVA-NeXT-34B (Liu et al., 2024a) 24.3 48.2 67.1 71.9 43.1 74.0 25.2 50.5
Gemini-Pro (Team et al., 2023) 25.0 55.5 75.1 65.4 44.3 26.7 43.7 48.0
Claude3 Sonnet (Anthropic, 2024) 28.9 81.8 70.3 89.2 68.8 63.4 58.3 65.8
Claude3 Opus (Anthropic, 2024) 26.7 75.4 63.7 87.1 57.7 60.4 38.8 58.5
GPT-4V (OpenAI, 2023) 34.5 75.0 68.8 62.8 67.5 67.6 75.7 64.6

Phantom-7B 29.0 70.2 73.8 72.3 82.8 78.6 66.9 67.7

(h) SEED-Bench-2-Plus (Li et al., 2024b)
LLVMs Charts Maps Webs Acc

LLaVA-NeXT-7B (Liu et al., 2024a) 36.4 34.0 39.9 36.8
SPHINX2-13B (Gao et al., 2024) 41.7 41.9 60.5 48.0
InternXC-7B (Zhang et al., 2023) 39.9 39.0 43.0 40.6
InternXC2-7B (Dong et al., 2024) 49.4 47.1 58.0 51.5
SEED-X-13B (Ge et al., 2024b) 46.9 43.3 52.6 47.1
Gemini-Pro (Team et al., 2023) 52.1 49.4 56.8 52.8
Claude3 Opus (Anthropic, 2024) 43.7 43.9 45.1 44.2
GPT-4V (OpenAI, 2023) 54.8 49.4 57.2 53.8

Phantom-7B 62.5 56.4 80.5 65.5

hkv = 32, a hidden dimension of dq = 3072, and 32 layers; and InternLM2.5-7B with hq = 32,
hkv = 8, a hidden dimension of dq = 4096, and 32 layers. For the vision encoder, we employ
InternViT-300M (Chen et al., 2023b), which has a hidden dimension of 1024 and 24 layers. The
vision projector is designed as MLP that adjusts the hidden dimension from 1024 to match the
corresponding multimodal LLM’s latent hidden dimension.

(b) In each layer, MHCA consists of four linear modules for the query, key, value, and output of
the multi-head self-attention operation, where MHCA has similar head dimension for MHSA. For
the 0.5B model, the number of parameters required for MHCA module is approximately 1.2M, cal-
culated as ( 896 (hidden dimension)

14 (number of heads) )2×4 (linear modules)×24 (layers)×3 (qkv). Similarly, the required
parameters for the 1.8B, 3.8B, and 7B models are 4.8M, 3.7M, and 6.2M, respectively. These ad-
ditional parameters do not significantly impact the overall model size compared with 0.5B, 1.8B,
3.8B, and 7B. Note that, the regularization parameter λ during MHSA is set to

√
2.
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Table 4: Identifying the effectiveness of Phantom by controlling the three factors: Weighted-
Average (WA) operation, Phantom Dimension (PD), and Phantom Optimization (PO). If we do not
use WA, we then use simple element-wise summation or averaging. In this case, we pick the better
performances. Note that, PO-Step1 and -Step2 mean PO is applied in Step1 or Step2.

WA PD PO-Step1 PO-Step2 CV-Bench BLINK MMB SEED-Bench-2-Plus VisualWebBench MM-Vet MM-Vet-v2 LLaVA-Wilder MathVista

Ph
an

to
m

-0
.5

B
✗ ✗ ✗ ✗ 28.2 21.4 60.7 35.7 34.7 26.6 22.0 60.8 33.8
✗ ✓ ✗ ✗ 29.8 21.9 62.4 39.9 37.2 27.4 22.3 64.9 36.7
✓ ✓ ✗ ✗ 38.1 27.4 70.1 43.7 42.3 31.8 29.7 69.7 40.0
✓ ✓ ✓ ✗ 41.5 39.3 72.7 47.9 51.8 45.7 41.5 72.2 51.7
✓ ✓ ✗ ✓ 36.2 36.7 68.8 40.4 47.1 39.9 36.6 67.4 48.2
✓ ✓ ✓ ✓ 38.5 38.0 69.1 45.5 47.2 42.3 36.2 71.0 47.3
✗ ✗ ✓ ✗ 32.0 24.2 64.2 39.0 36.4 31.2 24.1 63.4 36.8

Ph
an

to
m

-1
.8

B

✗ ✗ ✗ ✗ 44.7 28.9 60.2 43.3 45.4 35.1 26.1 63.2 42.3
✗ ✓ ✗ ✗ 47.0 32.6 64.7 44.9 46.5 36.0 27.4 68.7 46.4
✓ ✓ ✗ ✗ 52.6 35.2 69.8 50.0 53.5 41.8 32.5 71.1 49.1
✓ ✓ ✓ ✗ 63.1 44.2 76.6 57.1 55.9 54.1 46.3 78.5 60.9
✓ ✓ ✗ ✓ 59.9 39.9 72.2 49.7 48.4 50.5 37.0 77.1 55.9
✓ ✓ ✓ ✓ 59.6 40.6 73.7 54.5 55.2 53.3 41.7 76.0 58.8
✗ ✗ ✓ ✗ 48.2 30.7 61.2 47.0 49.7 37.1 29.5 68.2 44.4

Ph
an

to
m

-3
.8

B

✗ ✗ ✗ ✗ 63.7 34.4 62.6 42.9 45.6 38.1 32.6 73.5 45.3
✗ ✓ ✗ ✗ 66.6 37.9 65.9 44.5 46.1 40.9 34.1 78.0 49.8
✓ ✓ ✗ ✗ 69.1 44.1 68.9 51.8 51.8 46.9 37.0 83.4 50.5
✓ ✓ ✓ ✗ 73.8 51.5 80.4 61.8 59.8 54.4 48.5 85.7 60.6
✓ ✓ ✗ ✓ 67.9 45.9 76.2 54.4 56.8 50.6 42.0 84.5 53.7
✓ ✓ ✓ ✓ 69.2 47.8 79.2 58.6 54.8 49.9 42.9 85.0 58.1
✗ ✗ ✓ ✗ 68.6 37.6 65.5 47.0 46.8 41.3 36.3 76.1 49.7

Ph
an

to
m

-7
B

✗ ✗ ✗ ✗ 59.1 41.9 71.9 50.2 51.9 50.2 44.2 69.5 56.2
✗ ✓ ✗ ✗ 59.8 45.9 72.5 54.2 53.6 53.7 46.3 74.4 60.9
✓ ✓ ✗ ✗ 69.0 47.7 81.7 59.3 57.1 62.1 53.2 77.2 64.5
✓ ✓ ✓ ✗ 74.9 58.9 84.8 65.5 67.7 70.8 60.6 82.9 70.9
✓ ✓ ✗ ✓ 71.7 52.2 77.9 59.1 64.1 68.2 53.1 78.7 68.1
✓ ✓ ✓ ✓ 70.8 54.4 82.9 60.5 66.6 69.0 54.5 82.6 68.3
✗ ✗ ✓ ✗ 61.1 43.0 75.9 52.4 53.4 54.8 47.1 73.3 59.3

(c) In a computing environment utilizing 8×NVIDIA RTX A6000 48GB GPUs and 8×NVIDIA
RTX 3090 24GB GPUs, Phantom’s training and inference processes take place. To conduct effi-
cient training, each step undergoes a single epoch of training using 8-bit quantization and bfloat16
data format (Kalamkar et al., 2019) for every backbone multimodal LLM. Following bit quantiza-
tion, we apply QLoRA (Hu et al., 2021; Dettmers et al., 2023) to both vision encoders and backbone
multimodal LLMs across all linear layers, using 256 rank and 256 alpha parameters.

(d) For Phantom Optimization, we choose equal hyperparameters used in SimPO (Meng et al.,
2024): β = 2 and γ = 0.5. For training, AdamW optimizer (Loshchilov & Hutter, 2019) is applied,
and cosine annealing adjusts the learning rate from 1e-5 to 1e-6 throughout each training step. For
multimodal LLM, gradient checkpointing (Sohoni et al., 2019) is employed to manage memory
efficiently. A gradient accumulation of 4 leads to batch sizes totaling 128 for each training step, with
each step taking roughly two to five days depending on model size. For inference efficiency,
Phantom is validated using the same quantization level in training, and we make Phantom Dimension
cache: Q∗

l , K∗
l , and V ∗

l in each layer to get speedy inference like kv-cache technique, where we use
deterministic beam search (Freitag & Al-Onaizan, 2017) (n = 3). Memory-efficient scaled dot
product attention (SDPA) and FlashAttention2 (Dao et al., 2022; Dao, 2023) accelerates multi-head
self-attention (MHSA) computation for Phantom Dimension, benefiting from its hardware-aware
ability to mitigate the overhead from the increased latent hidden dimension.

Validation on Phantom. We present an overview of Phantom’s vision-language perfor-
mance in Figure 1-2, and evaluate it on generally used standard evaluation benchmarks as shown in
Table 1-2. In the table, LLaVA-OneVision-8B (Li et al., 2024a) uses significant number of image
tokens up to 7290 with three training steps on 558K+4M+3.2M datasets. To highlight the benefits
of Phantom, Table 3 reports performance on more challenging evaluation benchmarks. These
results demonstrate that Phantom offers a significant advantage on tasks requiring reasoning
abilities and densely learned knowledge. Descriptions of the evaluation benchmarks can be found
in Appendix C, and Phantom’s text generation quality is illuminated in Appendix D. In brief,

Phantom achieves outstanding performance across numerous vision-language tasks, with a large
margin over competing LLVMs, despite for a smaller model and fewer instruction tuning samples.

Ablation Studies. To better understand the source of this effectiveness, Table 4 and Table 5
presents an ablation study focusing on four key factors: (a) Weighted-Average (WA), (b) Phantom
Dimension (PD), (c) Phantom Optimization (PO), and (d) generalization to other LLMs and LLVMs.
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Table 5: Application to various pretrained LLMs and LLVMs with Phantom Dimension and Phan-
tom triples. For (c), we empirically find the proper special token that enlarges the latent dimension.

(a) Pretrained LLMs
LLMs BLINK MM-Vet MathVista

Vicuna1.5-7B 38.5 48.0 54.0
+Phantom Dimension 45.3 60.0 62.5
+Phantom Triples 57.1 69.5 64.0
Gemma-7B 39.8 48.7 54.5
+Phantom Dimension 46.5 60.5 63.0
+Phantom Triples 58.0 70.1 64.7
Mistral-7B 41.2 49.5 55.2
+Phantom Dimension 47.2 61.0 63.5
+Phantom Triples 58.5 70.3 65.3
LLaMA3-8B 42.7 50.0 56.0
+Phantom Dimension 48.9 61.8 64.2
+Phantom Triples 59.3 70.6 66.1
InternLM2.5-7B 41.9 50.2 56.2
+Phantom Dimension 47.7 62.1 64.5
+Phantom Triples 58.9 70.8 70.9

(b) Pretrained VLMs
LLVMs BLINK MM-Vet MathVista

MiniCPM-V2.6-8B 55.2 60.0 60.6
+Phantom Dimension 58.5 62.5 63.2
+Phantom Triples 65.1 67.0 66.5
Cambrian-1-8B 44.9 48.0 47.0
+Phantom Dimension 47.2 49.8 48.5
+Phantom Triples 54.0 54.5 52.0
Molmo-7B 46.1 53.3 47.3
+Phantom Dimension 48.8 55.0 49.0
+Phantom Triples 55.0 59.1 53.0
InternVL2-8B 50.9 54.3 58.3
+Phantom Dimension 53.3 56.7 60.1
+Phantom Triples 59.2 61.5 64.0
LLaVA-OV-7B 53.0 51.9 62.3
+Phantom Dimension 55.6 53.8 64.5
+Phantom Triples 60.3 62.3 68.0

(c) Selecting Special Token
Special Token BLINK MM-Vet MathVista

SOS 58.9 70.8 70.9
Image Start 58.7 70.6 70.7
Image End 57.2 69.5 69.6
Question Start 57.0 69.3 69.4
Question End 56.0 68.0 68.1
Answer Start 55.8 67.8 68.0

(d) Larger Pretrained LLVMs
LLVMs BLINK MM-Vet MathVista

LLaVA-OV-72B 55.4 63.7 67.5
+Phantom Dimension 57.1 65.0 68.6
+Phantom Triples 62.0 71.8 73.8
Qwen2-VL-72B 60.5 73.9 69.7
+Phantom Dimension 62.0 75.0 70.7
+Phantom Triples 66.8 79.5 75.9

The results reveal several insights: (1) without Phantom Dimension, training with only positive sam-
ples except negative samples (PD:✗, PO: ✗) does not get satisfactory performances more than those
with Phantom Dimension (PD:✓, PO: ✗) by using only positive samples, which means Phantom Di-
mension really works; (2) PD significantly enhances vision-language performance (PD:✓, PO: ✓),
as increasing the latent hidden dimension improves the embedding of vision-language knowledge;
(3) WA is more effective (WA:✓, PD: ✓) than simple summation or averaging for compressing out-
put features (WA:✗, PD: ✓); (4) PO yields greater performance gains when combined with PD and
when applied only during the first training step (PD:✓, PO-Step1: ✓) with a frozen pretrained LLM;
(5) other LLMs and LLVMs can be improved by the techniques, (6) even without Phantom Dimen-
sion, training with both positive and negative samples (PD:✗, PO: ✗) is more effective than those
with only positive samples (PD:✗, PO: ✓) under the absence of Phantom Dimension, which means
Phantom Triples really work. Besides, we investigated the effect of replacing the sos token with
alternative tokens. We observed using the token that appears earlier in the user question prompt,
before the question, is more effective, as shown in Table 5(c). Regarding inference speed, we mea-
sured computation time and found only a marginal 10% difference in tokens-per-second between
the settings with and without PD. It is attributed to hardware-level operation (SDPA and FlashAtten-
tion2 (Dao et al., 2022; Dao, 2023)). Lastly, Appendix E investigate direct comparison of making
Phantom Dimension between naively repeating latent dimension and using MHSA and MHCA, and
we explore the mixing operation’s weights by controlling them which sum up to one or not.

Discussion and Limitation. The development of high-performing LLVMs increasingly depends
on combining diverse models (Lu et al., 2024; Lee et al., 2024c;d;b; Zong et al., 2024; Shi et al.,
2024) and refining existing architectures (Liu et al., 2024c; Lee et al., 2024a), as many aspects of
these systems remain unexplored. However, such structural modifications often leads to substan-
tial low-level programming when addressing both development and production-level demands. In
response, we will do comprehensive exploration of significantly larger open-source LLVMs, with-
out additional architectural changes. Although there has been a growing trend toward open-source
LLVMs, much of the research continues to focus on closed-source LLVMs such as GPT-4V and
Gemini-Pro. We either had used GPT-4o-mini and GPT-4o. Therefore, we believe there is untapped
potential not only in utilizing the textual outputs of larger open-source LLVMs but also in accessing
deeper insights, such as layer-wise features or full parameter sets across layers. Moving forward,
we plan to investigate layer-wise distillation methods, which go beyond traditional distillation, to
transfer knowledge into models with entirely different architectures using human-understandable
language. This direction promises to open up exciting possibilities in a more easier way to develop
efficient LLVMs, such as transferring knowledge across heterogeneous structures.

5 CONCLUSION

We present an efficient LLVM family Phantom with significantly enhanced learning capabilities
within limited model sizes. By introducing Phantom Optimization (PO) that leverages both autore-
gressive supervised fine-tuning (SFT) and DPO-like concept, it effectively learns and boosts vision-
language performances. Remarkably, despite being smaller than many high-performing LLVMs
with larger model sizes, Phantom demonstrates comparable or even superior performance, mak-
ing it a promising solution for resource-constrained environments. Our results underscore the power
of latent space optimization in boosting both efficiency and performance, offering a pathway toward
more efficient LLVMs for various applications.
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A PHANTOM TRIPLES

Question: ( 2 ^ 2 + 4 ^ 2 + 6 ^ 2 + . . . . . + 14 ^ 2 ) = ?

To find the sum of the squares of the even numbers from 2 to 14, we can calculate each square and then add them 
together.

Here are the squares of the even numbers from 2 to 14:

2^2 = 4
4^2 = 16
6^2 = 36
8^2 = 64
10^2 = 100
12^2 = 144
14^2 = 196

Now, let's add them together:

4 + 16 + 36 + 64 + 100 + 144 + 196 = 560

So, the sum of the squares of the even numbers from 2 to 14 is 560..

Answer:

To find the sum of some numbers, we focus on the pattern of even numbers leading to the total. If we only consider 
the first few:

2^2 = 4
4^2 = 16
6^2 = 36
8^2 = 64

Now, instead of continuing, let’s just quickly check if this looks like it’s adding up correctly:

4 + 16 + 36 + 64 = 120, but that might not include everything we need here. 

Next, if we think about the complete collection:

2, 4, 6, 8, 10, 12, and possibly 14 could lead to many changes in our approximations.

The sum might generally appear larger but bear in mind we are discussing a specific incremental increase. If we 
summarize quickly:

The sum of the cited numbers is crucial as it might yield varied totals based on the grouping selected. Hence, the 
calculation could ultimately reflect values nearest or remote from common assessments. Thus, let’s conclude perhaps 
that it approaches close to 560 without confirming meticulously every addition step comprehensively.

Rejected:
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Question: What is the title of this book?

Eyeshield 21, Vol. 1Answer:

Gridiron Dreams, Issue 1Rejected:

Question: What is unique about this scene, especially in a modern city context?

In the image, a group of people dressed in period costumes are riding horses down the street. This is a unique and 
unusual sight in a modern city context, as horses are not commonly used for transportation or leisure in urban 
environments nowadays. The presence of individuals dressed in period costumes also adds to the distinctiveness of the 
scene, as contemporary attire does not typically include these types of outfits. Furthermore, a car is visible in the 
background, which contrasts with the old-fashioned and historical atmosphere created by the group riding horses 
down the street. This juxtaposition brings attention to the rarity of such an event in a modern city.

Answer:

In the image, a group of people is seen casually strolling through the city while dressed in colorful outfits. This is a 
striking and unusual sight since such vibrant clothing is rarely spotted in contemporary urban settings. The individuals 
appear to be enjoying their leisurely walk, creating a lively atmosphere that contrasts with the more subdued tones of 
the urban environment around them. Additionally, the lack of any vehicles in the immediate vicinity enhances the 
feeling of tranquility and allows pedestrians to experience the city in a unique way, making this scene feel both modern 
and timeless.

Rejected:
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Question: How many calories per 100 grams of Raisins

268Answer:

Raisins contain approximately 300 calories per 100 grams.Rejected:

Question: What can be inferred about the luminosity of the galaxies surveyed in this graph?

The graph shows a clear peak within a specific magnitude range (-22 to -21), indicating that there is a concentration of 
galaxies with luminosities corresponding to that absolute magnitude range.

Answer:

The graph displays various values across different magnitudes, which may suggest that there is a diversification in the 
luminosity of the observed galaxies, but without a clear trend or dominant cluster within any specific range.

Rejected:
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Question: Summarize the visual content of the image.

A bus driving down the street is heading towards City Centre.Answer:

A bicycle parked near a café is surrounded by pedestrians.Rejected:

Question: Please illustrate the image through your words.

The image features two giraffes in a natural habitat that resembles a savannah or open woodland. The giraffes are 
positioned side by side, moving from left to right across the frame. The foremost giraffe is younger and smaller, with a 
lighter and more uniform pattern of spots. The other, presumably an adult, has darker, more irregular spots and is 
slightly ahead of the younger one. They both have long necks stretched upwards, and their bodies are slender and tall, 
typical of their species. The background is blurred but shows a landscape with sparse trees and grass under a clear sky. 
The colors are soft, with earthy tones dominating the scene. There’s a sense of calmness and tranquility.

Answer:

The image depicts a group of animals in a dense forest setting. The creatures appear to be moving together, with one 
noticeably larger than the others. The larger animal has a distinct pattern on its body, while the smaller one seems to 
be following closely behind. The background is filled with thick foliage and shadows, creating a sense of mystery. The 
colors are rich and vibrant, with deep greens and browns dominating the scene. There’s an atmosphere of liveliness 
and energy, suggesting that the animals are engaged in some form of activity.

Rejected:
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B GATHERED CONFIGURATION OF VISUAL INSTRUCTION TUNING SAMPLES

To cover a broad range of capabilities, we compile 2.8M visual instruction tuning samples across
multiple datasets, encompassing various domains such as fundamental image understanding, real-
world common-sense knowledge, non-object visual concepts (e.g., documents, charts, diagrams,
symbols, and signs), and general mathematical problems. Our dataset collection includes basic
image understanding samples from ShareGPT4o-Images (57K) (Erfei Cui, 2024), ShareGPT4V
(755K) (Chen et al., 2023a), ALLaVA-VFLAN/Text (548K) (Chen et al., 2024b), and MiniGemini
(27K) (Li et al., 2024d) targeting tasks for DocVQA (Mathew et al., 2021), ChartQA (Masry et al.,
2022), DVQA (Kafle et al., 2018), and AI2D (Kembhavi et al., 2016). Additionally, we collect
LLaVA-HD (116K) (Zhang et al., 2024c) for Science and Mathematical Reasoning (SMR), support-
ing ArXivQA (Li et al., 2024c) and TextbookQA (Kembhavi et al., 2017), and we further integrate
document understanding samples from mPLUG-DocOwl1.5-Downstream/Reasoning (599K) (Hu
et al., 2024a) and general mathematical problems from GLLaVA (177K) (Gao et al., 2023), MathVi-
sion (3K) (Wang et al., 2024a), MathInstruct (262K) (Yue et al., 2023), and MathPlus (304K) (Yue
et al., 2024).

C DESCRIPTION OF EVALUATION BENCHMARKS

• SQA-IMG (SQAI) (Lu et al., 2022) is part of the broader ScienceQA (SQA) dataset, which
aims to improve reasoning and interpretability in AI systems through science-based ques-
tion answering. This dataset covers a wide range of science disciplines, featuring 26 dif-
ferent topics in natural, social, and language sciences, all accompanied by annotated an-
swers, lectures, and explanations. SQA-IMG includes image-related samples, amounting
to 10,332 question-answer pairs.

• AI2D (Kembhavi et al., 2016) or AI2 Diagrams, addresses diagram interpretation and rea-
soning challenges, focusing on syntactic parsing and semantic understanding. It supports
research into diagram structure and element relationships, critical for tasks like diagram-
based question answering. This collection includes over 5,000 diagrams from elementary
science topics, along with over 15,000 multiple-choice questions.

• ChartQA (Masry et al., 2022) develops to challenge and improve question answering sys-
tems that deal with data visualizations like bar charts, line charts, and pie charts. This
dataset tests systems on questions requiring arithmetic and logical reasoning and includes
both human-generated and machine-created question-answer pairs. It comprises 32,719
samples in total.

• SEED-IMG (SEEDI) (Li et al., 2023a), a subset of SEED-Bench, evaluates the genera-
tive comprehension skills of multimodal large language models (MLLMs) with a focus on
spatial and temporal understanding. It offers several subsets mapped to 12 evaluation di-
mensions across image and video modalities, with SEED-IMG specifically concentrating
on images.

• SEED-Bench-2-Plus (Li et al., 2024b) evaluates multimodal large language models in
their ability to understand text-rich visual content, common in real-world settings like
charts, maps, and website interfaces. This benchmark specifically measures how effec-
tively MLLMs can interpret these complex, text-rich scenarios that require simultaneous
comprehension of visual and textual information. The benchmark is divided into three
main categories—Charts, Maps, and Webs, and further subdivided into 63 unique data
types with 2.3k multiple-choice questions.

• POPE (Li et al., 2023b) introduces a method to systematically assess the tendency of
LLVMs to falsely generate nonexistent objects in images. This method turns the evalua-
tion into a binary classification task using polling questions, providing a fair and adaptable
approach.

• HallusionBench (HallB) (Liu et al., 2023a) is crafted to evaluate and explore visual illu-
sions and knowledge hallucinations in large language and vision models (LLVMs). This
benchmark uses carefully crafted example pairs to identify model failures, featuring diverse
visual-question pairs including subsets focused on illusions, math, charts, tables, maps, and
OCR. It includes 346 images and 1,129 questions.
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• MME (Fu et al., 2023) serves as a comprehensive evaluation framework for Multimodal
Large Language Models (MLLMs), focusing on various perception and cognition tasks
through 14 sub-tasks like coarse and fine-grained recognition, OCR, and commonsense
reasoning. This benchmark aims to address existing evaluation gaps and ensures a thorough
testing environment for MLLMs.

• MathVista (Lu et al., 2023) is an extensive benchmark designed to test visual-based math-
ematical reasoning in AI models. It integrates visual understanding in evaluating models’
abilities to solve math problems that involve visuals. The dataset consists of three subsets:
IQTest, FunctionQA, and PaperQA, totaling 6,141 examples.

• MMB, MMB-Chinese (MMBCN) (Liu et al., 2023d) aims to establish a robust evaluation
standard for vision language models by covering a broad spectrum of necessary multimodal
comprehension skills (20 fine-grained abilities) in both English and Chinese. This bench-
mark consists of 3,217 questions gathered from various sources to challenge different facets
of LLVMs.

• MM-Vet (Yu et al., 2023) is designed to systematically evaluate LMMs on complex tasks
requiring multiple vision language (VL) capabilities. It tests recognition, knowledge, OCR,
spatial awareness, language generation, and math, integrating these abilities into 16 differ-
ent task combinations. The dataset includes 200 images and 218 questions, each requiring
the integration of multiple capabilities.

• MM-Vet-v2 (Yu et al., 2024a) evaluates a wide range of integrated abilities in large mul-
timodal models, such as Recognition, Knowledge, Optical Character Recognition (OCR),
Spatial Awareness, Language Generation, Math, and Image-Text Sequence Understand-
ing. This version builds upon the original MM-Vet benchmark by adding tasks that involve
comprehending sequential information from both images and text, which is essential for
real-world scenarios. MM-Vet-v2 places a strong focus on assessing the model’s capacity
to interpret and reason through intricate image-text sequences. The benchmark includes
517 evaluation samples, a notable increase from the 217 samples in the original MM-Vet.

• LLaVA Bench in the Wild(er) (LLaVAW and LLaVA-Wilder ) (Liu et al., 2023c; Zhang
et al., 2024a) assesses large multimodal models (LMM) on complex tasks and new domains
through a collection of 24 images with 60 questions for ‘wild’ and its more advanced ver-
sion of ‘wilder’. This dataset features diverse settings, including indoor, outdoor, artworks,
and memes, with each image accompanied by detailed descriptions and curated questions.

• MMStar (Chen et al., 2024d) is crafted to precisely evaluate the true multimodal capabili-
ties of LLVMs by ensuring that each sample critically relies on visual content for accurate
answers while minimizing data leakage. It comprises 1,500 meticulously selected samples
and is organized into six primary sub-benchmarks as follows:

– Coarse perception (CP), which pertains to the ability to grasp and interpret the over-
arching features and themes of an image without focusing on minute details,

– Fine-grained perception (FP), which denotes a detailed level of image comprehen-
sion that emphasizes the intricate and nuanced aspects of visual content,

– Instance reasoning (IR), which encompasses advanced cognitive abilities aimed at
understanding and interpreting individual and collective object attributes and their in-
terrelations within an image,

– Logical reasoning (LR), which involves a sophisticated framework of cognitive pro-
cesses designed to interpret, deduce, and infer conclusions from visual content through
a structured approach to logic and reasoning,

– Science & technology (ST), which includes a comprehensive framework for the ap-
plication and integration of knowledge across a wide range of scientific and techno-
logical domains,

– Math (MA), which is a fundamental pillar of logical and analytical reasoning and
includes a broad spectrum of skills essential for understanding, applying, and inter-
preting quantitative and spatial information.

• MathVerse (Zhang et al., 2024b) assesses the capabilities of Multi-modal Large Language
Models (MLLMs) in visual mathematical reasoning, particularly their ability to understand
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visual diagrams and mathematical expressions. This dataset is categorized into three pri-
mary areas: plane geometry, solid geometry, and functions, and further detailed into twelve
types like length and area, encompassing 2,612 visual mathematical challenges.
To investigate how MLLMs process visual diagrams in mathematical reasoning, the cre-
ators of MathVerse developed six distinct versions of each problem, each version present-
ing different levels of multi-modal information. They initially established three specific
classifications for the text content within the problems:

– Descriptive Information, which includes content that is directly visible and explicitly
depicted in the diagrams,

– Implicit Property, which encompasses details that demand a more advanced visual
perception yet less mathematical knowledge to interpret from the diagram,

– Essential Condition, which pertains to crucial numerical or algebraic data necessary
for solving the problem that cannot be inferred solely from the visual diagram.

Based on these categories, to thoroughly assess the true visual understanding capabilities
of MLLMs and their utility in multi-modal mathematical contexts, the researchers created
six versions or sub-benchmarks of each problem in MathVerse, described as follows:

– Text dominant (TD) version, which preserves all textual elements, including the three
textual categories and the main question, prompting MLLMs to primarily depend on
textual information.

– Text lite (TL) version reduces the Descriptive Information from the Text dominant
version, promoting reliance on the diagram for elementary data.

– Text only (TO) version removes the visual elements entirely, focusing on textual con-
tent to discern where MLLMs predominantly derive contextual information for prob-
lem solving.

– Vision intensive (VI) further excludes Implicit Property from the Text lite version,
urging MLLMs to intensify their visual analysis to gather essential cues for mathe-
matical reasoning.

– Vision dominant (VD), evolving from the Text lite version, omits Essential Condition
from the textual information and instead visually annotates these details in diagrams,
compelling MLLMs to identify and accurately link these essential conditions solely
through visual examination.

– Vision only (VO) eliminates all textual descriptions, presenting the problem exclu-
sively through visual means and challenging MLLMs to decode and identify mathe-
matical queries purely based on visual data, serving as the ultimate test of their visual
reasoning skills in mathematics.

• VisualWebBench (Liu et al., 2024b) assesses the capabilities of multimodal large language
models (MLLMs) specifically in the web domain. It is designed to address the lack of a
comprehensive benchmark that evaluates the unique characteristics of web pages and mea-
sures fine-grained abilities such as OCR, understanding, and grounding (Grd) in text-rich
and interactive web environments. It covers a wide range of domains, including science,
travel, sports, engineering, and government, and tasks such as captioning (Cap), WebQA
(QA), heading OCR, element grounding (Grd), and action prediction (Pred), containing a
total of 1,534 instances.

• CV-Bench (Tong et al., 2024) is designed for vision-focused evaluation in multimodal
large language models. This benchmark aims to fill the gaps in traditional benchmarks,
which often fall short in thoroughly assessing visual grounding in real-world contexts. CV-
Bench assesses the model’s abilities in both 2D and 3D visual tasks using natural language
questions. The evaluation is split into 2D tasks (such as spatial relationships and object
counting) and 3D tasks (like depth order and relative distance), providing a well-rounded
test of the model’s visual comprehension with 2,638 carefully inspected examples.

• BLINK (Fu et al., 2024) is created to assess the visual perception capabilities of multi-
modal large language models. It features 14 key visual perception tasks, which are based
on traditional computer vision challenges but restructured into 3,807 multiple-choice ques-
tions that involve one or more images. These tasks address difficulties such as relative
depth estimation, visual correspondence, forensic detection, and multi-view reasoning.
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Additionally, we will continue to explore more challenging evaluation benchmarks to uncover pre-
viously unaddressed issues such as Yu et al. (2024b), advancing Phantom through ongoing tech-
nical development. By leveraging a wide range of methods established over the years (Lee, 2020;
Lee et al., 2021; Kim et al., 2021; Lee et al., 2022; Kim et al., 2023b; Lee et al., 2023; Kim et al.,
2023a;c; Park et al., 2024c;b; Kim et al., 2024), we aim to drive innovative breakthroughs across
both general and specialized tasks.

D PHANTOM GENERATION QUALITY

User: What type of fruit is this?

Phantom: The fruit in the image is a mangosteen. It is characterized by its deep 
purple or red outer shell and segmented white flesh inside. The mangosteen is 
known for its sweet and tangy flavor, often compared to a combination of 
strawberries and grapes. It is a popular fruit in Southeast Asia and is considered a 
luxury fruit due to its unique taste and the effort required to open the tough 
outer shell.

User: Write a fairy tale based on this painting.

Phantom: Once upon a time, in a lush, enchanted forest, there lived three 
unlikely friends: Bruno the Bear, Whiskers the Cat, and Thumper the Rabbit. They 
shared a love for tea parties under the shade of a magnificent oak tree.

One sunny afternoon, as they gathered around their favorite tree stump, Bruno 
brought out a plate of freshly baked cookies. Whiskers, with her keen sense of 
taste, brewed a pot of the finest herbal tea. Thumper, known for his playful 
antics, brought along a basket of wildflowers to decorate the table.

As they sipped their tea and nibbled on cookies, they noticed a mysterious map 
tucked under the plate. It showed a path leading to a legendary treasure hidden 
deep within the forest. Excited by the adventure, they decided to set out on a 
journey to find the treasure.

Bruno, with his strength, carried the map; Whiskers, with her sharp eyes, 
navigated the way; and Thumper, with his speed, led them through the dense 
undergrowth. They encountered challenges along the way, from crossing 
babbling brooks to outsmarting mischievous forest creatures.

After many days of travel, they reached a clearing where a magnificent tree 
stood. At its base, they found a chest filled with sparkling jewels and ancient 
coins. But the real treasure was their friendship, which shone brighter than any 
gem.

From that day on, Bruno, Whiskers, and Thumper continued their tea parties 
under the oak tree, sharing their adventures and the joy of their friendship. The 
forest was a better place because of their unity, and they all lived happily ever 
after.
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(131599200).

User: I am getting one funghi pizza and one prosciutto pizza. How much should I pay in total?

Phantom: To calculate the total cost for one Funghi pizza and one Prosciutto pizza, we need to look at the prices on the menu:

- Funghi pizza costs 6.90€.
- Prosciutto pizza costs 7.90€.

Adding these together:

6.90€ + 7.90€ = 14.80€

So, you should pay a total of 14.80€ for one Funghi pizza and one Prosciutto pizza.

(131599200).

User: What percentage does salary contribute to total income?

Phantom: To determine the percentage contribution of salary to total income, we need to calculate the total salary over the 
six months and then find its percentage of the total income.

1. Calculate Total Salary:
- Salary for each month is $5,000.
- Total salary over six months = $5,000 * 6 = $30,000.

2. Calculate Total Income:
- Total income over six months = $53,350.

3. Calculate the Percentage Contribution:
- Percentage contribution of salary = (Total Salary / Total Income) * 100
- Percentage contribution of salary = ($30,000 / $53,350) * 100

4. Perform the Calculation:
- Percentage contribution of salary = (30,000 / 53,350) * 100 ≈ 56.14%.

Therefore, the salary contributes approximately 56.14% to the total income.
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User: Answer the question in the following figure. Provide intermediate steps.

Phantom: To determine the length of the edge labeled "How long is this edge?" and the angle labeled "What is the angle 
here?" in the given right triangle, we can use trigonometric functions.

1. Determining the Length of the Edge:
- The triangle is a right triangle with one angle measuring 90∘.
- The given side lengths are 4 (opposite side) and 8 (adjacent side) to the angle in question.

Using the tangent function, which is the ratio of the opposite side to the adjacent side:

tan θ =
opposite

adjacent
=
4

8
=
1

2

To find the angle θ :

θ = tan−1
1

2

Using a calculator:

θ ≈ 26.57∘

2. Determining the Length of the Edge:
- To find the hypotenuse (the edge labeled "How long is this edge?"), use the Pythagorean theorem:

Hypotenuse2 = opposite2 + adjacent2

Hypotenuse2 = 42 + 82 = 16 + 64 = 80

Hypotenuse = 80 = 16 × 5 = 4 5

Therefore, the length of the hypotenuse is 4 5.

3. Determining the Angle:
- The angle opposite the side of length 4 is:

θ = tan−1
4

8
= tan−1

1

2
≈ 26.57∘

The angle adjacent to the side of length 8 is:

90∘ − 26.57∘ = 63.43∘

Thus, the length of the edge is 4 5 and the angle is 26.57∘.
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User: Analyze the images and decide what the next steps should be.

Phantom: The images depict the process of making sushi. Based on the sequence:

1. Rice Preparation: The first image shows rice being mashed with a spoon.
2. Sushi Formation: The second image shows the rice being shaped into a mound on a sheet of nori (seaweed).
3. Adding Fillings: The third image shows the addition of fillings like cucumber and salmon.

The next steps should be:

4. Rolling the Sushi: After adding the fillings, the sushi should be rolled using the nori sheet as a base. This involves using a 
rolling mat to ensure the sushi is neatly rolled.

5. Cutting the Sushi: Once rolled, the sushi should be cut into bite-sized pieces using a sharp knife.

These steps will complete the sushi-making process.

User: What breed is this dog and how should I properly care for it?

Phantom: The dog in the image is a Poodle. Poodles are a popular breed known 
for their intelligence, friendly demeanor, and low-shedding coats. Here's how to 
care for a Poodle:

1. Grooming: Due to their curly fur, Poodles require frequent grooming. Brush 
their coat daily to prevent tangles and mats. Schedule haircuts every 6-8 weeks 
to keep their coat healthy and manageable.

2. Exercise: Poodles are active dogs and need regular physical activity. Ensure 
they get at least 30 minutes of daily exercise, such as walks or play sessions.

3. Training: Being an intelligent breed, Poodles thrive with training. Early 
socialization and obedience training can help them become well-behaved and 
obedient dogs.

4. Health: Keep up with regular vet visits for preventive care. Poodles are 
generally healthy, but they can be prone to certain conditions like Addison's 
disease. Be aware of these potential health issues.

5. Nutrition: Feed your Poodle a high-quality dog food suitable for their age, size, 
and activity level. Consult with your veterinarian for specific dietary needs.

6. Mental Stimulation: Poodles enjoy mental challenges. Provide them with 
interactive toys or training sessions to keep them mentally engaged.

7. Hygiene: Ensure your Poodle is clean by bathing them every 4-6 weeks. Brush 
their teeth regularly to prevent dental issues.

By following these care tips, you can help your Poodle stay healthy, happy, and 
well-groomed.
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User: Could you provide detailed directions on how to reach the nearest McDonald's from this MRT station?

Phantom: To reach the nearest McDonald's from Buona Vista MRT station, exit through the main entrance and proceed 
straight. As you walk, you'll notice a McDonald's sign on your right. Descend the steps and keep going straight until you see
the McDonald's sign. The McDonald's will be on your right side.
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E DISCUSSION FOR PHANTOM DIMENSION

Comparison of methods for enlarging latent dimensions.

Enlarging Latent Dims BLINK MM-Vet MathVista
Just Repeat 44.5 55.3 59.0
MHCA+MHSA 58.9 70.8 70.9

Performance comparison of mixing strategies.

Mixing BLINK MM-Vet MathVista
Mixing (the sum of weights are not limited) 55.3 64.7 67.1
Mixing (the sum of weights are one) 58.9 70.8 70.9
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