Under review as a conference paper at ICLR 2021

ARIEL: VOLUME CODING
FOR SENTENCE GENERATION COMPARISONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Mapping sequences of discrete data to a point in a continuous space makes it dif-
ficult to retrieve those sequences via random sampling. Mapping the input to a
volume would make it easier to retrieve at test time, and that is the strategy fol-
lowed by the family of approaches based on Variational Autoencoder. However
the fact that they are at the same time optimizing for prediction and for smooth-
ness of representation, forces them to trade-off between the two. We benchmark
the performance of some of the standard methods in deep learning to generate sen-
tences by uniformly sampling a continuous space. We do it by proposing AriEL,
that constructs volumes in a continuous space, without the need of encouraging
the creation of volumes through the loss function. We first benchmark on a toy
grammar, that allows to automatically evaluate the language learned and generated
by the models. Then, we benchmark on a real dataset of human dialogues. Our re-
sults indicate that the random access to the stored information can be significantly
improved, since our method AriEL is able to generate a wider variety of correct
language by randomly sampling the latent space. VAE follows in performance
for the toy dataset while, AE and Transformer follow for the real dataset. This
partially supports the hypothesis that encoding information into volumes instead
of into points, leads to improved retrieval of learned information with random
sampling. We hope this analysis can clarify directions to lead to better generators.

1 INTRODUCTION

It is standard for neural networks to map an input to a point in a d-dimensional real space (Hochre-
iter and Schmidhuber, 1997; Vaswani et al., 2017; LeCun et al., 1989). However, that makes it
difficult to find a specific point when the real space is being sampled randomly. That can limit the
applicability of pre-trained models to their initial scope. Some approaches do map an input into
volumes in the latent space. The family of approaches that stems out of the idea of Variational Au-
toencoders (Kingma and Welling, 2014; Bowman et al., 2016; Rezende and Mohamed, 2015; Chen
et al., 2018) are trained to encourage such type of representations. By encoding an input into a prob-
ability distribution that is sampled before decoding, several neighbouring points in R? can end up
representing the same input. However, it often implies having two summands in the loss, a log-prior
term and a log-likelihood term (Kingma and Welling, 2014; Bowman et al., 2016), that fight for
two different causes. In fact, if we want a smooth and volumetric representation, encouraged by the
log-prior, it might come at the cost of having worse reconstruction or classification, encouraged by
the log-likelihood. Therefore, each diminishes the strength and influence of the other.

By giving partially up on the smoothness of the representation, we propose instead a method to
explicitly construct volumes, without a loss that is implicitly encouraging such behavior. We pro-
pose AriEL, a method to map sentences to volumes in R¢ for efficient retrieval with either random
sampling, or a network that operates in its continuous space. It draws inspiration from arithmetic
coding (AC) (Elias and Abramson, 1963) and k-d trees (KdT) (Bentley, 1975), and we name it after
them Arithmetic coding and k-d trEes for Language (AriEL). For simplicity we choose to focus on
language, even though the technique is applicable for the coding of any variable length sequence of
discrete symbols. More precisely, we plan to use AriEL in the context of dialogue systems with the
goal to provide a tool to optimize interactive agents. The interaction of AriEL with longer text is left
as future work.

Under review as a conference paper at ICLR 2021

In particular, it can be used as an objective benchmark to compare other methods and to understand
how their latent space is used. AriEL attempts to fill completely the latent space with the sentences
present in the training dataset, using notions from information theory. AriEL uses a language model
to split the latent space in volumes guided by the probability assigned to the next symbol in a
sentence. For this reason, it can simplify as well the reuse of pretrained language models for new
tasks and in larger architectures. In fact, it can provide a training agent with a simpler interface with
a language model, e.g. a GPT-2 (Radford et al., 2019), where the agent could choose the optimal
dimensionality of the interwface. We prove how such a volume representation eases the retrieval of
stored learned patterns and how to use it to set references for other models.

Our contributions are therefore:

e AriEL, a volume coding technique based on arithmetic coding and k-d trees (Section 3.1),
to improve the retrieval of learned patterns with random sampling;

e the use of a context-free grammar and a random bias in the dataset (Section 3.3), that allows
us to automatically quantify the quality of the generated language;

o the notion that explicit volume coding (Section 2 and 5) can be a useful technique in tasks
that involve the generation of sequences of discrete symbols, such as sentences.

2 RELATED WORK

Volume codes: We define a volume code as a pair of functions, an encoder and a decoder func-
tions, where the encoder maps an input x into a set that contains compact and connected sets of
R? (Munkres, 2018), and the decoder maps every point within that set back to x. It is a form of
distributed representations (Hinton et al., 1984) since the latter only assumes that the input = will
be represented as a point in R%. We define point codes as the distributed representations that are not
volume codes. Volume codes differ from coarse coding (Hinton et al., 1984) since in this case the
code is represented by a list of zeros and ones that identifies in which overlapping sets x falls into.
We call implicit volume codes, when the volume code is encouraged through a term in the loss func-
tion bengio2013representation. Both generative and discriminative models (Ng and Jordan, 2002;
Kingma and Welling, 2014; Jebara, 2012) can learn volume codes this way. We call explicit volume
code, when the volumes are constructed instead through the operations that define the architecture,
and are created independently from any loss and optimizer choice.

Sentence generation through random sampling: Generative Adversarial Networks (GAN)
(Goodfellow et al., 2014) map random samples to a learned generation through a 2-players game
training procedure. They have had trouble for text generation, due to the non differentiability of
the argmax at the end of the generator, and given that partially generated sequences are non triv-
ial to score (Yu et al., 2017). Several advances have significantly improved their performance for
text generation, such as using the generator as a reinforcement learning agent trained through Pol-
icy Gradient (Yu et al., 2017), avoiding a binary classification in favor of a cross-entropy for the
discriminator that evaluates each word generated (Xu et al., 2018), or with the Gumbel-Softmax
distribution (Kusner and Herndndez-Lobato, 2016). Random sampling the latent space is used as
well by Variational Autoencoders (VAE) (Kingma and Welling, 2014), to smooth the representation
of the learned patterns. Training VAE for text has been shown to be possible with KL annealing and
word dropout (Bowman et al., 2016), and made easier with convolutional decoders (Severyn et al.,
2017; Yang et al., 2017). Several works explore how VAE and GAN can be combined (Makhzani
et al., 2015; Tolstikhin et al., 2017; Mescheder et al., 2017). AriEL can be used as a generator or a
discriminator in a GAN, or as an encoder or a decoder in an autoencoder. However it differs from
them in the explicit procedure to construct volumes in the latent space that correspond to different
inputs. The intention is to fill the entire latent space with the learned patterns, to ease the retrieval
by uniform random sampling.

Arithmetic coding and neural networks: AC is one of the most efficient lossless data compression
techniques (Witten et al., 1987; Elias and Abramson, 1963). AC assigns a sequence to a segment
in [0,1] whose length is proportional to its frequency in the dataset. AC is used for neural network
compression (Wiedemann et al., 2019) but typically, neural networks are used in AC as the model
of the data distribution, to perform prediction based compression (Pasero and Montuori, 2003; Tri-
antafyllidis and Strintzis, 2002; Jiang et al., 1993; Ma et al., 2019; Tatwawadi, 2018). We turn AC

Under review as a conference paper at ICLR 2021

into a compression algorithm in d real numbers, to combine its properties with the properties of
high-dimensional spaces, which is the domain of neural networks.

K-d trees and neural networks: KdT (Bentley, 1975) is a data structure for storage that can handle
different types of queries efficiently. It is typically used as a fast approximation to k-nearest neigh-
bours in low dimensions (Friedman et al., 1977). It gives a binary label to the data with respect to
its median. It moves through the k dimensions of the data and repeats the process. Neural networks
are typically used in conjuction with KdT to reduce the dimensionality of the search space, for KdT
to be able to perform queries efficiently (Woodbridge et al., 2018; Yin et al., 2017; Vasudevan et al.,
2009). KdT has been used as well in combination with Delaunay triangulation for function learning,
as an alternative to NN with Backpropagation (Gross, 1995). A KdT inspired algorithm is used
in (Maillard and Solaiman, 1994) to guide the creation of neurons to grow a neural network. We
use KdT to make sure that when we make AC turn multidimensional, it makes use of all the space
available.

3 METHODOLOGY

3.1 ARIEL: VOLUME CODING OF LANGUAGE IN CONTINUOUS SPACES

Figure 1: Sentence embedding with arith-
metic coding and AriEL. In this example,
the generating context-free grammar (CFG)

S -> A | B | AA|AB | AC | BC |ABC|BCC is S — A|B|AA|AB|AC|BC|ABC|BCC,
grammar and bias and the bar plot on top indicates the fre-

quency of those sentences in the dataset, as

A AB AC BC an extra bias to the language. AC (middle)
ol | I i il encodes any sequence of this CFG over a

single dimension within [0, 1], and the fre-

quency of the sentence determines the length

assigned on that segment. AriEL is a mul-

1 1 1 tidimensional extension of AC (here in 2D),
B 8| BC B BC . S

where the frequency information is preserved

AA ABC B BCC
Arithmetic Coding

in the volumes. The Language Model pro-
A DWaalas| ac [DWaalag| ac | vides the boundaries where the next sym-
bols are to be found. For a 2D latent space,
0 0 ol e d = 2, the axis to split to find symbol s; is
0 vo voo ' d; = i mod d. In the image d; = 0 and

d; =1mod 2 d, =2 mod 2 d3 =3 mod 2 . .
dy=1 d, =0 dy=1 d; = 1 represent the horizontal and vertical

AriEL axis.

AriEL maps the sentence (si,---,s,) to a d-dimensional volume of P((s1,---,sn)) =

IT7_, P(s;](sj)j<i). The sentence is encoded as the center of that volume for simplicity, and any
point within it is decoded to the same sentence. Decoding iteratively computes the bounds of the
volumes for all possible next symbols and checks inside which bounds the vector is, to find the next
symbol at each step. The algorithm is described in detail in the Supplementary Material.

To adapt KdT to more splits than binary, we split the chosen dimension giving a space from 0 to
1 to each possible next symbol, proportional to its probability. The first symbol in the sentence
will be assigned a segment of length P(s;) in the first axis chosen dj, and next symbols will be
assigned a segment proportional to their probability conditional to the symbols previously seen e.g.
P(s3|(s2,51)) on the axis d3, where s1, s and s3 are the first three symbols in the sentence. Then
we turn to the following axis and continue the process of splitting and turning (figure 1). We select
the next axis in R? to split to be d; = i mod d, where i € {1,2,...,n} and n is the length of
the sequence. If n is larger than the dimension d, then the segment in d; is split again. We applied
a neural network to approximate the true statistics of the data P(s;|(s;);<;), the Language Model
(LM) of AriEL, Pras(s;|(sj)j<i). This will approximate the frequency information that makes

Under review as a conference paper at ICLR 2021

AC entropically efficient since after a successful training, Py ps(-) will converge to P(-). AriEL
conserves then the arithmetic coding property of assigning larger volume to frequent sentences.

AriEL only uses a bounded region of R, the interval [0, 1]¢, so encoder and decoder map each
input to a compact set and from a compact set. Moreover, they assign sequence = to a hyper-
rectangle (Johnson, 2018) and back. Since hyper-rectangles cannot be divided into two disjoint non-
empty closed sets, they are connected (Munkres, 2018). Therefore AriEL is a volume code. AriEL
is an explicit volume code since its LM is trained only on a next word prediction log-likelihood
loss, without a regularization term that encourages smoothness, and the volumes are constructed by
arranging the softmax outputs into a d dimensional grid, operation performed with any choice of
loss or optimizer.

AriEL with a RNN-based language model has a computational complexity of O(nD?) for both
encoding and decoding, as it can be seen in algorithms 1 and 2, where n is the length of the sequence
and D is the dimensionality of the RNN hidden state. We use capital D to refer to the length of the
longest hidden layer among the recurrent layers in the encoder or in the decoder, while d refers to the
length of the latent space. AriEL has a minimum number of sequential operations of O(n) for both
encoding and decoding, which is on par with conventional recurrent networks for seq2seq learning.

3.2 NEURAL NETWORKS: MODELS AND EXPERIMENTAL CONDITIONS

We compare AriEL to some of the classical approaches to map variable length discrete spaces to
fixed length continuous spaces. These are the sequence to sequence recurrent autoencoders (AE)
(Sutskever et al., 2014), their variational version (VAE) (Bowman et al., 2016) and Tranformer
(Vaswani et al., 2017). We trained them for next word prediction of word s;, when all the previous
words are given as input, and they are trained over the biased train set, defined in section 3.3. All
of them can be split into an encoder that maps the sentences at the input into R%, and a decoder that
maps back from R? into a sentence. More training details can be found in the appendix.

In this work, AriEL’s language model neural network Pr ;s consists of a word embedding of size
64, followed by a 140-unit LSTM, a feedforward layer and a softmax over next possible symbols.
At test time the argmax is not applied directly to the softmax, but the latent space point is used as
the deterministic pointer that chooses the position in cumulative sum of the softmax probabilities.
However the language model is trained for next time step prediction through cross-entropy. For both
AE and VAE, we stack two GRU layers (Cho et al., 2014) with 128 units at both, the encoder and
the decoder, to increase their representational capabilities (Pascanu et al., 2014). Other recurrent
networks gave similar results (Hochreiter and Schmidhuber, 1997; Li et al., 2018). The last encoder
layer has either d = 16 units or d = 512 for all methods. The decoder outputs a softmax over the
entire vocabulary.

Tranformer (Vaswani et al., 2017) is the state-of-the-art in many S2S problems (Vaswani et al., 2017;
Dai et al., 2019; Radford et al., 2018). Since it is a fixed-length representation at the word level but
it is variable-length at the sentence level, we padded all sentences to the maximum length in the
dataset to be able to compare its latent space capacity to the other models. We take as its latent
dimension the connection between the encoder and decoder, with d,,,,4¢; Size, that will take a value
of 16 or 512. We choose most parameters as in the original work (Vaswani et al., 2017): the number
of attention heads as npeqq = 8, the key and value dimension as di., = 64 and dygiue = 64,
a dropout regularization of 0.1, and we only change the stack of identical decoders and encoders
t0 Nyayers = 2, and the dimension of the inner feed-forward network t0 dinner tayer = 256 to
have a number of parameters similar to the other methods. In the GuessWhat?! dataset we tested
Nayers = 20 to have an amount of parameters comparable for d = 16 to the other methods, but
performed worse than 7;4yers = 2, 50 we report the latter.

3.3 DATASETS: TOY AND HUMAN SENTENCES
We perform our analysis on two datasets. A toy dataset of sentences generated from a context-free
grammar (CFG) and a realistic dataset of sentences written by humans playing a cooperative game.

The toy dataset: we generate questions about objects with a CFG (appendix 1). To stress the learn-
ing methods and understand their limits we choose a CFG with a large vocabulary and numerous

Under review as a conference paper at ICLR 2021

grammar rules, rather than more classic alternatives (e.g. REBER). The intention is as well to focus
on dialogue agents and that’s the reason why all sentences are framed as questions about objects.

We distinguish between unbiased sentences, those that have been simply sampled from the CFG,
and biased sentences, those that after being sampled from the CFG have been selected according to
an additional structural constraint. To do so we generate an adjacency matrix of words that can occur
together in the same sentence, and we use that as the filter to bias the sentences. Once a sentence
is produced from the CFG, if all its words can be together in a sentence judged by the adjacency
matrix, the sentence is considered as biased, and unbiased otherwise. For simplicity the adjacency
matrix is a random matrix of zeros and ones, generated only once for all the experiments, making
sure that some symbols such as the, it or ?, can be found in both types of sentences. The intention is
to emulate the setting were a CFG is constrained by realistic scenes, where not all the grammatically
correct sentences are semantically correct: e.g. “Is it the wooden shower in the kitchen ?” could
be grammatical, but semantically incorrect given that it is unusual in a realistic scene. We use it to
detect how each learning method is able to extract the grammar and extract the roles of each word,
despite a bias that makes it harder.

The vocabulary consists of 840 words. The maximal and mean length of the sentences is of 19 and
9.9 symbols. We split the biased dataset into 1M train, 10k test and 512 validation sentences, where
no sentence is shared between sets. We created another set of 10k unbiased test sentences with the
same CFG, where we only gather sentences that do not follow the adjacency matrix, to make sure
that the overlap of this test set is zero with previous ones. We train on the biased sentences and we
test if they grasped the grammar behind, with the unbiased.

The real dataset: we choose the GuessWhat?! dataset (De Vries et al., 2017), a dataset of sentences
asked by humans to humans to solve a cooperative game. It has a vocabulary of 10,469 words, an
order of magnitude larger than the toy CFG. The maximal and mean length of the sentences are of
57 and 5.9 symbols.

3.4 EVALUATION METRICS

3.4.1 QUALITATIVE EVALUATIONS

The two qualitative studies are: (1) we list a few samples of reconstruction via next word prediction
of unbiased sentences, to understand the generalization capabilities of the different models (table
1), (2) we list a few samples of generated sentences when the latent space is sampled randomly, to
understand the generation capabilities (table 2).

3.4.2 QUANTITATIVE EVALUATIONS ON THE TOY GRAMMAR, CFG

We propose measures for 3 properties of an autoencoder: the quality of generation, prediction and
generalization. We perform our studies for networks with a latent dimension of 16 units, to under-
stand their compression limits, and for 512 units, which is often taken as the default size (Kingma
and Welling, 2014; Vaswani et al., 2017).

Generation/Decoding Quality is evaluated with sentences produced by the decoder when the latent
space of each model is sampled randomly. The sampling is done uniformly in the continuous latent
space, within the maximal hyper-cube defined by the encoded test sentences. We sample 10k sen-
tences and apply four measures: i) grammar coverage (GC) as the number of grammar rules (e.g.
single adjective, multiple adjectives) that could be parsed in the sampled sentences, over four, the
maximal number of adjectives plus one for sentences without adjectives; ii) vocabulary coverage
(VC) as the ratio between the number of words in the sampled sentences, over 840, the size of the
complete vocabulary; iii) uniqueness (U) as a ratio of unique sampled sentences; and iv) validity (V)
as a ratio of valid sampled sentences, sentences that were unique and grammatically correct. We
keep our definition of grammar rule simple, for computational efficiency, and for clarity, given that
the grammar tree is defined with an ambiguous number of placeholders and terminal symbols.

Prediction Quality is evaluated by encoding and decoding the 10k biased test sentences as follows:
i) prediction accuracy biased (PAB) as a ratio of correctly reconstructed sentences (i.e. all words
must match); ii) grammar accuracy (GA) as a ratio of grammatically correct reconstructions (i.e.

Under review as a conference paper at ICLR 2021

can be parsed by the CFG, even if the reconstruction is not accurate). and iii) bias accuracy (BA) as
the ratio of inaccurate reconstructions that are still grammatical and keep the bias of the training set.

Generalization Quality is evaluated using the 10k unbiased test sentences while the embeddings
were trained on the biased training set. The prediction accuracy unbiased (PAU) is computed in the
same way as PAB, as the ratio of correctly reconstructed ubiased sentences. It allows us to measure
how well the latent space generalizes to grammatically correct sentences outside the bias.

3.4.3 QUANTITATIVE EVALUATIONS ON THE REAL DATASET, GUESSWHAT?!

In a real dataset we don’t have a notion of what is grammatically correct, since humans can use
spontaneously ungrammatical constructions. We quantified the quality of the language learned with
two measures: uniqueness is the percentage of the sentences generated with random sampling that
was unique over the 10K generations and validity was the percentage of the unique sentences that
could be found in the training data, indicating how easy it was to retrieve the learned information.

3.4.4 QUANTITATIVE EVALUATIONS: RANDOM INTERPOLATIONS WITHIN ARIEL

In figure 2 we show what we call the interpolation diversity given the dimension of the latent space.
It measures how many of the sentences generated through a straight line between two random points
in R? were unique and grammatically correct for AriEL for different values of d. The Language
Model tested is the one trained on the toy grammar.

4 RESULTS

4.1 QUALITATIVE EVALUATIONS

We present the qualitative studies performed for d = 16. Table 1 shows the output of the gener-
alization study. To avoid cherry picking, we display the first 4 reconstructed sentences. AE and
VAE fail to generalize to the unbiased language, however both manage to keep the structure at the
output of the input sentence. Their behavior improved significantly when the latent space dimension
is increased to d = 512, with the corresponding increase of parameters. In theory, AriEL is able to
reconstruct any sequence by design, by keeping a volume for each of them. However in practice, it
failed only slightly less often than the Transformer. Both produce reconstructions of the unbiased
input at a similar rate, as it can be see in table 1 and in the metric PAU in table 3 and figure S2. This
means that to a reasonable degree, the areas that represent unseen data during training, are available
and relatively easy to track for AriEL and Transformer. Instead, all the latent space seems to be
taken almost exclusively by the content of the training set for AE and VAE, since sentences that are
not seen during training (the unbiased sentences) cannot be reconstructed at all.

The generation study is shown in Table 2 (first 4 samples for each model). AriEL excels at this
task, and almost all generations are unique and grammatically correct (valid). AE and VAE perform
remarkably well given the small latent space. As it is shown in the quantitative study, VAE almost
triples AE performance in terms of generation of valid sentences when d = 16 (table 3). Transformer
performs poorly at generating grammatical sentences when the latent space is sampled randomly.
The quantitative analysis reveals however that with the increase of the latent space, Transformer,
AE and VAE achieve all improved validity, remaining at one third the reference set by AriEL.

4.2 QUANTITATIVE EVALUATIONS

The results of the quantitative study are shown in table 3 and in figure S2. AriEL outperforms or
closely matches every other method for all the 8§ measures, outperforming the rest by a large margin
for validity, i.e. unique and grammatical sentences generated, the most important of the metrics.
Transformer performs remarkably well at not overfitting and it is able to reconstruct biased and
unbiased sentences better than the other non-AriEL methods, even under-parameterized (d = 16).
It manages to cover all grammar rules in generation but it performs very poorly at generating a
diverse set of valid sentences by random sampling. It only needed one iteration through the data
to achieve almost perfect validation accuracy, without losing performance when we trained for the
remaining 9 epochs. VAE 16 despite the poor generalization to the biased and the unbiased test set,

Under review as a conference paper at ICLR 2021

Input Sentences

is the thing this linen carpet made of tile ?

is it huge and teal ?

is the thing transparent , huge and slightly heavy ?
is the object antique white , tiny and closed ?
AriEL

is the thing this lime carpet made of tile ?

is it huge and teachable ?

is the thing transparent , huge and slightly heavy ?
is the object antique white , tiny and closed ?
Transformer

is the thing this stretchable carpet made of tile ?

is it huge and magenta ?

AriEL

is the object that tiny very light set ?

is the thing a tiny destroyable abstraction ?

is the thing this mint cream textured organic structure ?
is the object this small large wearable textile ?
Transformer

is the thing slightly heavy heavy stone squeezable

closed sea heavy ?

is it pale lime executable executable shallow decoration
drab turquoise , heavy and potang ?

is the thing transparent , huge and slightly heavy ? is it an tomato slot box made of decoration facing stone ?
is the object antique white , tiny and closed ? is the thing short and spring heavy slightly heavy potang ?
AE AE

is the thing this small toilet made of laminate ? is the object that light light laminate ?

is it this average-sized and average-sized laminate ? is the thing a light , small and small lammats ?

is the thing very heavy , heavy and very heavy ? is the thlpg that tiny small'decoratlon stone ?

is the object light pink , small and textured ? fs th? Obe’Ct th? a\fefageq— sized , textured and

VAE average-sized laminate ?

. . VAE
is Fhe thlpg a small and textured deep stone ? is the thing a light and deep office ?
is it the light deep bedroom ?

N . is it light , light and light and pink ?
is the thing textured , textured and moderately heavy ?
is the thing light , moderately heavy and light green ?

Table 1: Generalization: next word predic-
tion of unbiased sentences at test time. An un-
biased sentence is encoded and decoded by each
model. Color means that the word was incor-
rectly reconstructed. Blue means that the sen-
tence complies with the bias and purple means
that the incorrect reconstruction is still unbi-
ased. Most reconstructions seem grammatically
correct. In practice AriEL also made errors.
Some of its failed reconstructions comply with
the training bias, some do not. Transformer per-
forms remarkably well, and interestingly the er-
rors made tend to turn the unbiased input sen-
tence into a biased version at the output. AE

is the object dark , light and pink ?
is the object a light deep living room ?

Table 2: Generation: output of the decoder
when sampled uniformly in the latent space.
Red defines grammatically incorrect genera-
tions according to the CFG the models are
trained on. AriEL produces an extremely varied
set of grammatically correct sentences, most of
which keep the bias of the training set. Trans-
former reveals itself to be hard to control via
random sampling of the latent space, since it
almost never produces correct sentences with
this method. AE and VAE manage to produce
several different sentences, the latter producing
more non grammatical, but as well more varied
grammatical ones.

produced only biased sentences whose struc-
ture resembled the unbiased ones. VAE behaved
similarly, producing more unbiased sentences.

results in the best non-AriEL generator, measured by validity. The conflict between log-prior and
log-likelihood, encouraged VAE to look for sentences outside the bias, since it was able to produce
more grammatically correct sentences, albeit unbiased, than AE. Increasing the learned parameters
(d = 512), had no effect on Transformer, that was already excellent in several of the metrics, apart
from a significant improvement in validity. However, a larger latent space and the increase in number
of parameters that followed, prevented AE and VAE from overfitting (better PAU and PAB).

When trained on human sentences, on the GuessWhat?! dataset, AriEL sets again a large validity to
be reached. Every approach seems to generate more unique sentences than AriEL, but the fraction
of them that is a good generation is very small. Less than 6% of the unique sentences generated by
AE, VAE and Transformer are in the training set, while AriEL achieves 22.47% and more.

In the interpolation diversity study (figure 2) we see that for low d, we have to pass through many
sentences in between two random points in the latent space, while as we augment the dimensionality,
we distribute the sentences in different directions. Therefore we find less sentences when we move
on the straight line between two random points. The specific curve, lower threshold and speed of
decay, will vary for different vocabulary sizes and given the complexity of the language learned.

d=16
AriEL
Transformer
AE

VAE

d =512
AriEL
Transformer
AE

VAE

param

237K
258K
258K
258K

237K

120M
120M

Under review as a conference paper at ICLR 2021

grammar
coverage

100.0 +
100.0 +
100.0 +
100.0 +

0.0%
0.0%
0.0%
0.0%

100.0 +
100.0 = 0.0%
100.0 + 0.0%
85.0 £ 12.6%

0.0%

Generation

vocabulary
coverage

704 £
70.1 £
6.89 =
115+

0.2%
0.8%
0.7%
2.6%

70.2 £
67.3 £
393+
289 +

0.3%
0.9%
6.0%
2.4%

validity

97.6 £ 0.2%
47+ 2.7%
115+ 42%
16.0 £ 9.2%

979 £ 0.2%
172 £ 6.3%
21.0+ 11.8%
265+ 2.4%

uniqueness

99.7 £ 0.1%
99.1 £ 0.5%
139+ 5.1%
243 £ 14.8%

99.8 + 0.1%
872+ 7.5%
71.8 £ 5.6%
952 £ 3.8%

bias
accuracy

100.0 £ 0.0%
99.98 £+ 0.01%
895+ 2.3%
854+ 5.2%

100.0 = 0.0%
99.99 + 0.01%
822+ 3.5%
73.8 £ 2.2%

Prediction

grammar
accuracy

100.0 £ 0.0%
99.95 £ 0.02%
980+ 1.7%
85.1+ 8.8%

100.0 = 0.0%
99.91 £ 0.03%
86.8 + 1.3%
895+ 2.8%

prediction
accuracy

biased

100.0 £ 0.0%
99.92 £ 0.02%
00+ 0.1%
00=£ 0.1%

100.0 = 0.0%

99.86 = 0.05%
347+ 11.4%
43+ 3.7%

Table 3: Evaluation of continuous sentence embeddings on the toy dataset. Results for a latent
space of d = 16 and d = 512. Each experiment is run 5 times. AriEL, achieves almost perfect
performance in most metrics, especially in validity, which quantifies how many random samples
were decoded into a unique and grammatical sentence. Transformer performed exceptionally, except
for validity. All methods improved their performance increasing d, particularly in validity, but still
achieved less than one third the performance of AriEL. VAE is the second best in validity, supporting
our hypothesis, that volume coding facilitates retrieval of information by random sampling.

= prediction
‘i 1.0 param accuracy uniqueness validity
5 d=16
o 09 AriEL 2901K 92.56% 57.41% 29.59%
2 Transformer 588K 87.91% 96.75% 1.96%
AE 2787K 11.97% 13.68% 2.67%
8 VAE 2787K 13.15% 6.26% 1.61%
A 10° 10! 102 10° d =512
latent dimension d AriEL 2,901K 92.54% 55.46% 22.47%
Transformer 18,809K 86.9% 50.33% 5.94%
. . AE 4,900K 15.45% 12.4% 2.68%
Figure 2: Interpolations between random VAE 5425K | 32.51% 98.51% 02%

points in the latent space of AriEL, and
diversity of the sentences generated in be-

tween. For low dimensions all sentences are
very densely packed, and in the extreme of
one dimension, all sentences are found follow-
ing one given dimension. As the dimensional-
ity increases, the sentences are redistributed in
[0,1]¢ and less sentences are found in a given
direction. The lower bound at 0.746 is related

Table 4: Performance on the GuessWhat?!
Questioner data. For the real dataset the pat-
tern is repeated: AriEL shows that a larger
value of valid sentences is possible

. Transformer 16 gave better results than when
Niayers Was increased from 2 to 20 to increase
its learnable parameters from 588K to 2,666K.

to the language complexity.

5 DISCUSSION

AriEL latent space d is a free parameter. It is worth to stress that the size d of the latent space
of AriEL can be defined at any time, for a fixed Language Model. It could therefore be controlled
with a learnable parameter, with the activity of another neuron, or as another function of the input.
In fact, as we increase d, the volumes will have more neighbouring volumes that represent different
sentences, as confirmed by the interpolation study, figure 2. It could have implications as well during
training e.g. to have a gradient that can rely more on its angle than on its magnitude.

What to choose for a learning agent with a language module? Our study suggests that a learn-
ing agent that needs a language model to interact with other agents, would benefit from AriEL to
generate a diverse language. It outperformed the rest both in the toy dataset and on the real data.

Generalization
prediction
accuracy
unbiased

531+ 0.4%
49.0 £ 0.1%
00+ 0.1%
00+ 0.1%

532+ 03%
49.0 £ 0.1%
244 £ 6.0%
49+ 3.6%

Under review as a conference paper at ICLR 2021

Partial evidence for volume codes. The experiments performed suggest that the volume aspect of
AriEL is to be held responsible of its success. We have provided evidence on how volume coding can
be beneficial for retrieval of stored information that is composed of discrete symbols, and variable
length, by random sampling, in contrast with simply distributed representations. It is in fact AriEL
to generate more valid sentences, an explicit volume coding method. VAE is the second on the
toy dataset, an implicit volume coding method, but it performed poorly on the real dataset. The low
prediction accuracy of AE/VAE, has to be read in conjuction with the grammar accuracy: it basically
means that those methods are overfitting the training data, and even if they often manage to produce
grammatically correct sentences when a test sentence is given at the input, the volumes/points that
would represent new test sentences, seem to have disappeared, all the latent space is dedicated to
only the training set.

Transformers are hard to sample from the latent space. The Transformer has been used in this
work in an uncommon way: by sampling its latent space instead of its input space. Its low validity
score reflects that. Our aim was to better understand the latent organization of language, so, we
do not want to suggest this is the most effective way to use Transformer. Transformer is excellent
when sampled in the input space, but it’s difficult to sample from the latent space. This is so because
Transformer represents each word by a d dimensional vector while the other approaches represent
whole sentences in d dimensional vectors, Transformer needs an extremely high dimensional vector
to represent a sentence, n - d where n is the number of words in a sentence. This makes it extremely
hard to find sentences using uniform random sampling in the latent space.

6 CONCLUSION AND FUTURE WORK

We proposed AriEL, a volume mapping of language into a continuous hypercube to be used as a
reference system. It provides a latent organization of language that excels at several metrics related
to the use of language, and especially at generating many unique and grammatically correct sen-
tences sampling uniformly the latent space. AriEL fuses arithmetic coding and k-d trees to construct
volumes that preserve the statistics of a dataset. In this way we construct a latent representation that
assigns a data sample to a volume, instead of a point. When compared to standard techniques it
highlights room for improvement in their capacity for generation, prediction and generalization.

Recurrent-based continuous sentence embeddings largely overfit the training data and only cover a
small subset of the possible language space, particularly when the size of the latent space is small.
They also fail to learn the underlying CFG and generalize to unbiased sentences from that CFG.
However they manage to generate quite a few diverse valid sentences. Transformer managed to
avoid overfitting even after being overtrained, proving its robustness. It performed a remarkable
generalization to the unbiased data. However it proves hard to use as a generator from the continuous
latent space using random sampling.

On the one hand, this study helps to realize how much of the latent space lies unused by standard
architectures. On the other hand, AriEL can be seen as a technique to provide an effective interface
between multi-modal RL agents that need a pretrained language model for language interaction.
We stress that volume based codes can provide an advantage over point codes in generation tasks.
AriEL allows us to sample/generate in theory the same probability distribution as the training set and
in practice a more diverse set of sentences, as demonstrated on the toy and on the human dataset.

Our planned next step is to use AriEL as a module in a learning agent. This study has been performed
for dialogue based language generation, which implies short sentences. It would be useful for the
NLP community to understand if this method generalizes to the compression of longer texts.

Under review as a conference paper at ICLR 2021

REFERENCES

Bentley, J. L. (1975), ‘Multidimensional binary search trees used for associative searching’, Com-
munications of the ACM 18(9), 509-517.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz, R. and Bengio, S. (2016), Generating
sentences from a continuous space, in ‘20th SIGNLL CoNLL’, Association for Computational
Linguistics, pp. 10-21.

Chen, T. Q., Rubanova, Y., Bettencourt, J. and Duvenaud, D. K. (2018), Neural ordinary differential
equations, in ‘NeurIPS’, pp. 6571-6583.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H. and Ben-
gio, Y. (2014), Learning phrase representations using rnn encoder—decoder for statistical machine
translation, in ‘EMNLP’, Association for Computational Linguistics, pp. 1724—1734.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. and Salakhutdinov, R. (2019), Transformer-XL:
Attentive language models beyond a fixed-length context, in ‘Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics’, Association for Computational Lin-
guistics, Florence, Italy.

De Vries, H., Strub, F., Chandar, S., Pietquin, O., Larochelle, H. and Courville, A. C. (2017),
Guesswhat?! visual object discovery through multi-modal dialogue., in ‘IEEE CPVR’, Vol. 1.

Edelsbrunner, H., Kirkpatrick, D. and Seidel, R. (1983), ‘On the shape of a set of points in the
plane’, IEEE Transactions on Information Theory 29(4), 551-559.

Elias, P. and Abramson, N. (1963), Information Theory and Coding, Electronic Science, st edn,
McGraw-Hill Inc.,US, pp. 72—-89.

Friedman, J. H., Bentley, J. L. and Finkel, R. A. (1977), ‘An algorithm for finding best matches in
logarithmic expected time’, ACM TOMS 3(3), 209-226.

Glorot, X. and Bengio, Y. (2010), Understanding the difficulty of training deep feedforward neural
networks, in ‘JMLR W&CP: 13th AISTATS’, Vol. 9, pp. 249-256.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and
Bengio, Y. (2014), Generative adversarial nets, in Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence and K. Q. Weinberger, eds, ‘NeurIPS 27°, Curran Associates, Inc., pp. 2672-2680.

Gross, E. M. (1995), Kd trees and delaunay based linear interpolation for kinematic control: a
comparison to neural networks with error backpropagation, in ‘Proceedings of 1995 IEEE Inter-
national Conference on Robotics and Automation’, Vol. 2, IEEE, pp. 1485-1490.

Hinton, G. E., McClelland, J. L. and Rumelhart, D. E. (1984), Distributed representations, Carnegie-
Mellon University Pittsburgh, PA.

Hochreiter, S. and Schmidhuber, J. (1997), ‘Long short-term memory’, Neural computation
9(8), 1735-1780.

Jebara, T. (2012), Machine learning: discriminative and generative, Vol. 755, Springer Science &
Business Media.

Jiang, W., Kiang, S., Hakim, N. and Meadows, H. E. (1993), Lossless compression for medi-
cal imaging systems using linear/nonlinear prediction and arithmetic coding, in ‘ISCAS’, IEEE,
pp. 283-286.

Johnson, N. W. (2018), Geometries and transformations, Cambridge University Press.
Kingma, D. P. and Ba, J. (2015), Adam: A method for stochastic optimization, in ‘ICLR’.
Kingma, D. P. and Welling, M. (2014), Auto-encoding variational bayes., in ‘ICLR’.

Kusner, M. J. and Herndndez-Lobato, J. M. (2016), ‘Gans for sequences of discrete elements with
the gumbel-softmax distribution’, arXiv preprint arXiv:1611.04051 .

10

Under review as a conference paper at ICLR 2021

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. and Jackel,
L. D. (1989), ‘Backpropagation applied to handwritten zip code recognition’, Neural computation
1(4), 541-551.

Li, S., Li, W., Cook, C., Zhu, C. and Gao, Y. (2018), Independently recurrent neural network (in-
drnn): Building A longer and deeper RNN, in ‘IEEE CPVR’.

Ma, C., Liu, D., Peng, X., Zha, Z.-J. and Wu, F. (2019), Neural network-based arithmetic coding for
inter prediction information in hevc, in ‘ISCAS’, IEEE, pp. 1-5.

Maillard, E. and Solaiman, B. (1994), A neural network based on 1vq2 with dynamic building of the
map, in ‘ICNN’, Vol. 2, IEEE, pp. 766-770.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I. and Frey, B. (2015), ‘Adversarial autoencoders’,
arXiv preprint arXiv:1511.05644 .

Mescheder, L., Nowozin, S. and Geiger, A. (2017), Adversarial variational bayes: Unifying varia-
tional autoencoders and generative adversarial networks, in ‘Proceedings of the 34th International
Conference on Machine Learning-Volume 70°, JMLR. org, pp. 2391-2400.

Miller, G. A. (1995), “Wordnet: A lexical database for english’, Commun. ACM 38(11), 39-41.
Munkres, J. R. (2018), Elements of algebraic topology, CRC Press.

Ng, A. Y. and Jordan, M. 1. (2002), On discriminative vs. generative classifiers: A comparison of
logistic regression and naive bayes, in ‘NeurIPS’, pp. 841-848.

Pascanu, R., Giilgehre, C., Cho, K. and Bengio, Y. (2014), How to construct deep recurrent neural
networks, in ‘ICLR’.

Pasero, E. and Montuori, A. (2003), Neural network based arithmetic coding for real-time audio
transmission on the tms320c6000 dsp platform, in ‘ICASSP’, Vol. 2, IEEE, pp. II-761.

Radford, A., Narasimhan, K., Salimans, T. and Sutskever, 1. (2018), ‘Improving language under-
standing by generative pre-training’, Technical report, OpenAl .

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and Sutskever, 1. (2019), ‘Language models
are unsupervised multitask learners’, OpenAl Blog 1(8), 9.

Rezende, D. J. and Mohamed, S. (2015), ‘Variational inference with normalizing flows’, arXiv
preprint arXiv:1505.05770 .

Saxe, A. M., McClelland, J. L. and Ganguli, S. (2014), Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks, in ‘ICLR’.

Severyn, A., Barth, E. and Semeniuta, S. (2017), A hybrid convolutional variational autoencoder for
text generation, in ‘EMNLP’.

Sutskever, ., Vinyals, O. and Le, Q. V. (2014), Sequence to sequence learning with neural networks,
in ‘NeurIPS’, MIT Press, Cambridge, MA, USA, pp. 3104-3112.

Tatwawadi, K. (2018), ‘Deepzip: Lossless compression using recurrent networks’, URL https://web.
stanford. edu/class/cs224n/reports/2761006. pdf .

Tolstikhin, I., Bousquet, O., Gelly, S. and Schoelkopf, B. (2017), ‘Wasserstein auto-encoders’, arXiv
preprint arXiv:1711.01558 .

Triantafyllidis, G. and Strintzis, M. (2002), A neural network for context-based arithmetic coding in
lossless image compression, in “WSES ICNNA’.

Vasudevan, S., Ramos, F., Nettleton, E. and Durrant-Whyte, H. (2009), ‘Gaussian process modeling
of large-scale terrain’, Journal of Field Robotics 26(10), 812—-840.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, £. and Polo-
sukhin, I. (2017), Attention is all you need, in ‘NeurIPS’, pp. 5998-6008.

11

Under review as a conference paper at ICLR 2021

Wiedemann, S., Kirchhoffer, H., Matlage, S., Haase, P., Marban, A., Marinc, T., Neumann, D.,
Osman, A., Marpe, D., Schwarz, H. et al. (2019), ‘Deepcabac: Context-adaptive binary arithmetic
coding for deep neural network compression’, arXiv preprint arXiv:1905.08318 .

Williams, R. J. and Zipser, D. (1989), ‘A learning algorithm for continually running fully recurrent
neural networks’, Neural Computation 1(2), 270-280.

Witten, I. H., Neal, R. M. and Cleary, J. G. (1987), ‘Arithmetic coding for data compression’, Com-
munications of the ACM 30(6), 520-540.

Woodbridge, J., Anderson, H. S., Ahuja, A. and Grant, D. (2018), Detecting homoglyph attacks with
a siamese neural network, in ‘SPW’, IEEE, pp. 22-28.

Xu, J., Ren, X., Lin, J. and Sun, X. (2018), Diversity-promoting gan: A cross-entropy based gener-
ative adversarial network for diversified text generation, in ‘EMNLP’, pp. 3940-3949.

Yang, Z., Hu, Z., Salakhutdinov, R. and Berg-Kirkpatrick, T. (2017), Improved variational autoen-
coders for text modeling using dilated convolutions, in ‘Proceedings of the 34th International
Conference on Machine Learning-Volume 70, JMLR. org, pp. 3881-3890.

Yin, H., Ding, X., Tang, L., Wang, Y. and Xiong, R. (2017), Efficient 3d lidar based loop closing
using deep neural network, in ‘ROBIO’, IEEE, pp. 481-486.

Yu, L., Zhang, W., Wang, J. and Yu, Y. (2017), Seqgan: Sequence generative adversarial nets with
policy gradient, in ‘Thirty-First AAAI Conference on Atrtificial Intelligence’.

12

Under review as a conference paper at ICLR 2021

SUPPLEMENTARY MATERIAL

1 CONTEXT-FREE GRAMMAR (CFGQG) USED IN THE EXPERIMENTS

The context free grammar used to generate the biased and unbiased sentences is composed by the
following rules:

1

q

gword adjective ’,’ adjective ’'and’ adjective 7’
gword adjective ’and’ adjective 7’
gword adjective ’?’

QR R Qe
LiLiLd

gword 'made’ ’of’ noun_material ’?’
gword preposition np '?’
gword np 7’

np — determiner adjective adjective adjective noun

np — determiner adjective ’,’ adjective ’and’ adjective noun
np — determiner adjective ’and’ adjective noun ’'made’ ’of’ noun_material
np — determiner adjective adjective noun

np — determiner adjective ’and’ adjective noun

np — determiner adjective noun ’'made’ ’'of’ noun_-material

np — determiner noun ’made’ ’of’ noun_-material

np — determiner adjective noun

np — determiner noun

qword — ’is’ it’ | ’is’ ’the’ ’object’ | ’is’ ’'the’ ’thing’
noun — noun.object | noun_material | noun_roomtype

preposition — preposition_material

adjective — adjective_color | adjective_affordance | adjective_overall_size |
adjective_relative_size | adjective_relative_per_dimension_size |
adjective_mass | adjective_state | adjective_other
noun_object — ’accordion’ | ’acoustic’ ’'gramophone’ | ’'bar’ | ’barrier’ |
"basket > | ’outdoor’ ’lamp’ | ’outdoor’ ’seating’ |
noun_material — ’bricks’ | ’carpet’ | ’decoration’ ’stone’ | ’facing’ ’stone’ |
‘grass’ | 'ground’ | ’laminate’ | ’leather’ | ’‘wood’ |
noun_roomtype — ’aeration’ | ’balcony’ | ’bathroom’ | ’bedroom’ | ’boiler’ ’room’ |
‘garage’ | ’guest’ ’room’ | hall’ | “hallway’ | ’kitchen’
determiner — ’a’ | ‘an’ | ’that’ | ’the’ | ’this’
preposition_material — ’'made’ ’of’
adjective_color — ’antique’ ’white’ | ’magenta’ | ’maroon’ |
"slate * ’gray’ | 'white’ | ’yellow’ |
adjective_affordance — ’actable’ | ’addable’ | ’addressable’ | ’deliverable ’ |
"destroyable ’ | ’dividable ' | 'movable’ |
adjective_size — adjective_overall_size | adjective_relative_per_dimension_size
adjective_overall_size — ’average—sized’ | ’'huge’ | ’large’ | ’small’ | ’tiny’
adjective_relative_per_dimension_size — ’deep’ | ’narrow’ | ’shallow’ |
‘short’ | tall’ | wide’
adjective_mass — “heavy’ | ’light’ | ’moderately’ ’heavy’ | ’moderately’ ’light |
"slightly ° “heavy’ | ’very’ ’heavy’ | ’very’ ’light’
adjective_state — ’closed’ | ’opened’
adjective_other — ’textured’ | ’transparent’

Under review as a conference paper at ICLR 2021

2 SIZE OF THE LANGUAGE SPACE

From the CFG used in the experiment, it is possible to extract a total of 15,396 distinct grammar
rules, some are shown below. However, for simplicity, we defined only 4, related to the number
of adjectives in it. In the case of the unbiased dataset, those rules can produce a total of 9.81e+18
unique sentences. The total number of unique sentences for the biased dataset is expected to be an
order of magnitude smaller.

[gqword, prep_material , determiner, adj_state, ’'and’, adj_-other, noun_roomtype, ’?’]
[gqword, prep_spatial , determiner, adj-other, adj_state, adj_state, noun_object, ’?’]
[qword, determiner, adj-other, ’,’, adj-mass, ’'and’, adj_-affordance, noun_roomtype, ’'?’]
[qword, determiner, adj_-relative_per_dimension_size , adj-overall_size, noun_object, ’'?’]
[qword, determiner, adj_overall_size, ’,’, adj_state, ’'and’, adj_state , noun_material, ’?’]
[gword, prep_spatial , determiner, adj-other, adj_-mass, adj_affordance, noun_material, ’?’]
[gword, adj_state, ’and’, adj_relative_size , ’'?’]

[qword, prep_material , determiner, adj-mass, adj-other, adj_-other, noun_material, '?’]
[gqword, prep_spatial , determiner, adj_-state, adj-other, adj_-color, noun_object, ’?’]
[gqword, determiner, adj_relative_size , ’'and’, adj_overall_size, noun_material, ’?’]
[gword, determiner, adj_state, adj_-overall_size , adj-other, noun_roomtype, ’?’]

[gqword, determiner, adj_other, adj_state , adj_-mass, noun_material, ’?’]

[qword, determiner, adj_-overall_size, ’and’, adj.-other, noun_-material, ’?’]

[qword, determiner, adj-color, adj-other, noun_-object, ’'?’]

[gqword, prep_spatial_rel , determiner, adj_-mass, adj_color, noun_roomtype, ’'?’]

[gqword, determiner, adj_state, ’and’, adj_relative_size , noun_object, ’'?’]

[gqword, determiner, adj.color, adj_-color, adj_-relative_size , noun_material, ’'?’]

[gqword, determiner, adj-affordance, noun-object, ’'?’]

[gqword, determiner, adj-other, adj-other, adj_state, noun_-roomtype, ’'?’]

3 EXAMPLE OF SENTENCES GENERATED FROM THE CFG

3.1 BIASED SAMPLE SENTENCES

e is it large , light yellow and light ?

e is it white , deep pink and average-sized ?

e isitalight, huge and shallow laminate ?

e is the object average-sized and light ?

e is the object fashionable , ghost white and pale turquoise ?

e is the thing huge , huge and khaki ?

e is the thing small , ignitable and very light ?

e is the object a notable very light orange carpet ?

e is the object this small wood made of facing stone ?

e is the object a textured and combinable floor cover made of laminate ?

3.2 UNBIASED SAMPLE SENTENCES
e is the object the huge tiny lovable guest room ?
e is the object the closed closed transparent textile ?
e is the thing a transparent , narrow and slightly heavy textile ?
e is it steerable , dark orange and light ?
e isit gray, very heavy and textured ?
e is it closed , heavy and moderately light ?
e is it transparent , transformable and moderately light ?
e is the thing average-sized and dark red ?
e is the thing large and deep garage ?
e is it that slightly heavy stucco made of grass ?

Under review as a conference paper at ICLR 2021

4 VOCABULARY

Annotation Nb. of classes Example of classes
Noun 86 | air conditioner, mirror, window, door, piano
WordNet category (Miller, 1995) 580 | instrument, living thing, furniture, decoration
Location 24 | kitchen, bedroom, bathroom, office, hallway, garage
Color 139 | red, royal blue, dark gray, sea shell
Color property 2 | transparent, textured
Material 15 | wood, textile, leather, carpet, decoration stone
Overall mass 7 | light, moderately light, heavy, very heavy
Overall size 4 | tiny, small, large, huge
Category-relative size 10 | tiny, small, large, huge, short, shallow, narrow, wide
State 2 | opened, closed
Acoustical capability 3 | sound, speech, music
Affordance 100 | attach, bend, divide, play, shake, stretch, wear

Table S1: Description of vocabulary used.

5 USE OF LATENT SPACE

In figure S1, each dot represents a sentence in the latent space. In the first row the dot in the latent
space is passed as input to the decoder, while in the second and third row the dot is the output of
the encoder when the biased test sentence is fed at its input. Two random axis in R¢ are chosen
for the generator, first row, while two axis were chosen subjectively among the first components of
a PCA for the encoder, second and third row. In every case, the values in the latent space where
normalized between zero and one to ease the visualization. Lines are used to ease the visualization
of the clusters and shifts of data with their label, since the point clouds overlap and are hard to see.
The curves are constructed as concave hulls of the dots based on their Delaunay triangulation, a
method called alpha shapes Edelsbrunner et al. (1983).

We can see in figure S1 (first row) how easy it is to find grammatical sentences when randomly
sampling the latent space for each model. AriEL practically only generates grammatical sentences
and AE and VAE perform reasonably well too, while Transformer fails. AriEL failures are plot
on top, to remark how few they are, while AE and VAE failures are plot at the bottom, otherwise
they would hide the rest given how numerous they are. In the same figure (rows two and three) we
can observe how different methods structure the input in the latent space, each with prototypical
clusters and shifts. The Transformer presents an interesting structure of clusters whose purpose
remains unclear. Interestingly, the encoding maps seem to be more organized than the decoding
ones. All the models seem to cluster or shift data belonging to different classes at the encoding, that
could be taken advantage of by a learning agent placed in the latent space. However it seems hard
to use the Transformer as a generator module for an agent. The good performance of AriEL is a
consequence of the fact that all the latent space is utilized, and in no directions large gaps can be
observed. This can be seen in the two encoding rows, where the white spaces around the cloud of
dots are consequence of the rotation performed by the PCA, otherwise all the space between 0 and
1 would be utilized by AriEL.

Under review as a conference paper at ICLR 2021

ungrammatical
0 adjectives

1 adjective

2 adjectives

3 adjectives

e length percentile 75-100
length percentile 50-75

e length percentile 25-50
length percentile 0-25

Figure S1: Random-sampling-based generation in the first row, and encoding of input sen-
tences in the remaining rows. A sentence is represented by a point in the latent space. First row
shows the proportion of grammatically correct sentences that can be decoded by random uniform
sampling the latent space. AriEL sampled almost only grammatical sentences (ungrammatical are
so few that are placed on top in the plot). Transformer mainly yielded ungrammatical sentences,
while AE and VAE were able to produce many grammatical sentences (ungrammatical are below,
otherwise they would cover up the grammatical). Each dot is labeled according to how many ad-
jectives the sentence generated has. Second and third rows show the clusters of points in the latent
space for the test sentences as they are mapped by the encoders. All models seem to shift the clusters
to some degree according to the number of adjectives in the sentence, in the second row. A similar
conclusion applies to the third row, that shows where sentences of different length are encoded. For
all panels, we searched subjectively for the dimensions that would better reveal some clustering,
with the help of PCA. We scaled all latent representations between [0,1] for visualization.

Under review as a conference paper at ICLR 2021

6 VISUALIZATION OF PERFORMANCE ON TOY DATA

RlG v AriEL

Transformer
AE

VAE

GC VU GARAU GA
VC BA RAG

GC VU GARAU
VC BA RAG

PAB PAB

Figure S2: Radar Chart of the Quantitative Assessment. Latent space of RS on the left and
R°'2 on the right. Training was performed on biased sentences. The metrics are defined in Method-
ology: Generalization is measured by prediction accuracy of unbiased sentences (PAU), Prediction
by prediction accuracy of biased sentences (PAB), grammar accuracy (GA) and bias accuracy (BA)
and Generation by uniqueness (U), validity (V), vocabulary coverage (VC) and grammar coverage
(GC). AriEL excels in all the 8 metrics. Most importantly AriEL outperforms every other method
in Generation Validity (V) and it doesn’t require a large latent space to do so (R'6 similar to R?!2).
VAE performs remarkably well at generating unique and grammatical sentences (validity, V) when
the latent space is small (R'6), probably given the volume-code nature of the method. Transformer
performs exceptionally at not overfitting in the reconstruction tasks and generalizing, it manages to
cover all grammar rules, even with a very small number of parameters (R'6). Transformer proved
to be an inefficient generator using random sampling as input (validity) but improved with a larger
latent space. For a larger latent space of R%12, AE and VAE overfit less (PAU and PAB) and improve
their Generation (V).

Under review as a conference paper at ICLR 2021

7 ARIEL ALGORITHM

Algorithm 1 AriEL Encoding Algorithm 2 AriEL Decoding
Input: sentence: S = (s;)7_; Input: z represents S in [0, 1]¢
Output: z represents S in [0, 1]¢ Output: sentence: 5 = (s;)}_,

1: function ARIEL_ENCODE(S) 1: function ARIEL_DECODE(z)
2: d = latent space dimension 2: d = dimension(z)

3: Biow = zeros(d) 3 Biow = zeros(d)

4: By = ones(d) 4: By = ones(d)

5 n = length(S)

5: S = (START)
6: fori=0,---,n—1do 6: fori=0,--- ,npme — 1 do
> choose dimension to split > choose dimension to unsplit
7: d; =1 mod d 7: d; =i mod d
8: Prest(s) = Prar(s|(s)j<i) 8: Prewt(s) = Pras(s]S)
9: clow(s) = Zs>s’ Pnezt(s’) 9: Clow(s) - ZS>5/ Pne;ct(sl)
10: CUP(S) = Zs>s’—1 Pnext(sl) 10: CMP(S) = Zs>s’71 P’ﬂel't(s/)
11: range = Bup(dz) — Blow(di) 11 range = Bup(dz) - Blow(di)
> update volume bounds > update volume bounds
12: Bup(dz) = Blow(di) -+ range - 12: BSup(S) = Bup(dz) + range -
Cup(s:) Cup(s)
13: Biow(d;) = Biow(d;) + range - 13 Bsiow(8) = Biow(d;) + range -
Clow(si) Clow(s)
14: end for > any point in the volume is assigned the
> represent the volume by its center symbol s;
15: z T (Biow + Bup)/2 14: s; = find, (leow(s) <z(d;) < Bsup(s)>
16: return z
17: end function 16: Bl01;<di> _ leiu,v(si)
17: S = S.append(s;)
18: end for
19: return S

20: end function

Figure S3: Algorithms for AriEL encoder and decoder B stands for bound, and B,,, and B,y
for the upper and lower bounds that define the AriEL volumes, the blue color identifies the lines with
the major differences between encoder and decoder and Ppj, identifies the Language Model inside
AriEL. Its cumulative distributions (Cyyp, Ciow) are used to define the limits of the volumes and its
size (range). (Left) AriEL Encoding: from sentence to continuous space. Finally the volumes are
represented by their central point z for simplicity. (Right) AriEL decoding: from continuous space
to sentence. z is used to identify which volume has to be picked next.

8 TRAINING DETAILS

We go through the training data 10 times, in mini-batches of 256 sentences. We applied teacher
forcing (Williams and Zipser, 1989) during training. We use the Adam (Kingma and Ba, 2015)
optimizer with a learning rate of le-3 and gradient clipping at 0.5 magnitude. Learning rate was
reduced by a factor of 0.2 if the loss function didn’t decrease within 5 epochs, with a minimum
learning rate of le-5. For all RNN-based embeddings, kernel weights used the Xavier uniform
initialization (Glorot and Bengio, 2010), while recurrent weights used random orthogonal matrix
initialization (Saxe et al., 2014). Biases are initialized to zero. Embeddings layers are initialized
with a uniform distribution between [-1, 1]. For Transformer the multihead attention matrices and
the feedforward module matrices, used the Xavier uniform initialization (Glorot and Bengio, 2010),
the beta of the layer normalization uses zeros, and its gamma uses ones for initialization. AE and
VAE are trained with a word dropout of 0.25 at the input, and VAE is trained with KL loss annealing

Under review as a conference paper at ICLR 2021

that moves the weight of the KL loss from zero to one during the 7th epoch, similarly to the original
work (Bowman et al., 2016).

