
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FAIRDROPOUT: USING EXAMPLE-TIED DROPOUT TO
ENHANCE GENERALIZATION FOR MINORITY GROUPS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep learning models frequently exploit spurious features in training data to
achieve low training error, often resulting in poor generalization when faced with
shifted testing distributions. To address this issue, various methods from imbal-
anced learning, representation learning, and classifier recalibration have been pro-
posed to enhance the robustness of deep neural networks against spurious correla-
tions. In this paper, we observe that models trained with empirical risk minimiza-
tion tend to generalize well for examples from the majority groups while memo-
rizing instances from minority groups.Building on recent findings that show mem-
orization can be localized to a limited number of neurons, we apply example-tied
dropout as a method we term FairDropout, aimed at redirecting this memoriza-
tion to specific neurons that we subsequently drop out during inference. We em-
pirically evaluate FairDropout using the subpopulation benchmark suite encom-
passing vision, language, and healthcare tasks, demonstrating that it significantly
reduces reliance on spurious correlations.

1 INTRODUCTION

Deep neural networks trained with empirical risk minimization (ERM) continue to achieve remark-
able performance on a wide range of tasks. However, ERM-trained models can experience a drop in
predictive performance when facing a variety of subpopulation shifts (Yang et al., 2023; Quionero-
Candela et al., 2009). In particular, if datasets contain spurious features, i.e., patterns that are highly
predictive of the training labels but not causally related to the target, ERM may fail to learn robust
features that generalize across subpopulation shifts (Geirhos et al., 2020). For example, image clas-
sifiers can make use of non-robust features such as image backgrounds or hair colors, which may be
not relevant to the task. The usage of such spurious features (e.g., hair colors) for some domains can
hurt the fairness of classifiers, thus raising potential safety concerns in deployment (Amodei et al.,
2016).

To address the problem of learning more robust features in the presence of spurious features, several
works have been proposed. The widely practical setup is to assume the presence of a group partition
in datasets (Liu et al., 2021; Sagawa et al., 2019). In such a setting, training labels and spurious
features can be highly correlated in a particular group of the training distribution, but not in testing
distributions. Thus, naive training algorithms can easily maximize training performance by relying
on spurious features, but observe a significant drop in worst-group performance on testing when
this correlation does not hold. Most of the existing work in this area assumes the presence of group
annotations in the training set to learn more robust-to-spurious-correlation features. For example,
GroupDRO (Sagawa et al., 2019) directly minimizes the worst group error. However, this type of
work has a hard requirement to know prior training group labels, which is impractical in large-scale
datasets. There exist other works that do not assume this availability of group annotations on the
training set. An example is DFR Kirichenko et al. (2023), which observes that ERM learns core (or
robust) and spurious features, and then proposes a two-stage approach, where the first stage is ERM
and the second stage is classifier retraining with a group-balanced validation dataset. While DFR
has been successful in improving worst group performance, it still needs group annotations to form
a group-balanced set to down-weigh spurious features.

In this work, we hypothesize that reducing example-level memorization can address spurious corre-
lations without the need for group labels. Building on recent advances that explain the interconnec-
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tion between memorization and generalization (Baldock et al., 2021; Maini et al., 2023), we study
this interconnection for the first time in the context of spurious correlation. We further apply a re-
cently proposed technique to localize memorization, originally designed in label noise settings with
small networks, scaling it to larger networks, and demonstrating its application to the spurious cor-
relation setting for the first time. We name our method FairDropout. FairDropout fairly distributes
memorizing neurons during training, and during dropout, we drop out these neurons. Our contribu-
tions can be summarized as follows: (i) We show a discrepancy in behaviors between majority group
and minority group generalization and link this phenomenon to memorization. (ii) We show for the
first time that one can scale and apply the example-tied dropout –previously used in label noise set-
tings with smaller networks (Maini et al., 2023)– to larger architectures such as ResNet-50 (He et al.,
2016) and BERT (Sung et al., 2019), and term it as FairDropout. (iii) We evaluate FairDropout on
the subpopulation benchmark suite and show improvements over worst-group accuracy on image,
medical (X-Ray), and language tasks.

2 RELATED WORK

Methods have been proposed to fight against spurious correlation.

2.1 USING TRAINING GROUP INFORMATION

Most methods that fight against spurious correlation assume to have training group annotations.
Some methods directly adapt ERM. For instance, groupDRO (Sagawa et al., 2019) and its vari-
ant CVaRDRO (Duchi & Namkoong, 2021) aim to minimize the worst group error rather than the
average error used by ERM. Similarly, when group information is known, methods from out-of-
distribution generalization (Arjovsky et al., 2019; Krueger et al., 2021; Wald et al., 2021; Krueger
et al., 2021) can be framed to learn more robust-to-spurious-correlation features. Other approaches
use training group information to synthetically augment minority group samples via generative mod-
eling (Goel et al., 2020). Reweighting and subsampling techniques can also be employed to balance
majority and minority groups (Sagawa et al., 2020; Byrd & Lipton, 2019). However, all these works
share a major limitation: they rely on the knowledge of group information, which is not easily scal-
able to large datasets. Manually annotating group labels requires task-specific expertise, making it
prohibitively expensive.

2.2 WITHOUT USING TRAINING GROUP INFORMATION

Given the expensive cost of manual group annotation, there has been a growing interest in combating
spurious correlation without group annotations in the training set. Some methods, after observing
the training dynamics of SGD, propose regularization terms based on margins to learn more robust
features (Pezeshki et al., 2021; Puli et al., 2023). Two-stage algorithms, among the most popular
methods that do not assume the knowledge of training group information, typically start with ERM.
In this first stage, the minority group is inferred, and in the second stage, robustness to spurious
correlations is introduced, for example through contrastive learning (Zhang et al., 2022) or by up-
weighting the loss of inferred minority group samples (Qiu et al., 2023; Liu et al., 2021). A recent
study (Kirichenko et al., 2023) explains the importance of the first stage ERM, by showing that ERM
learns both spurious and core (or robust to spurious correlation) features. It then proposes retraining
only the classifier head in the second stage using a group-balanced validation set. This approach
has been extended to HTT-DFR (Hameed et al., 2024), where the second phase involves retraining
a sparse network. Our work is inspired by this observation of the ability to learn core features from
ERM, but instead of using a more computationally demanding two-phase algorithm, our work on
reducing spurious features by its link to the memorizing neurons.

2.3 MEMORIZATION AND GENERALIZATION LINKS

There have been recent advances in exploring and explaining the links between generalization and
memorization. Memorization is seen here as the ability to correctly predict atypical examples with
potentially wrong patterns (Maini et al., 2023). In particular, Jiang et al. (2021); Carlini et al. (2019)
have developed metrics to quantify to which extent an example is regular or atypical. Some works
firstly have established that memorization happens in later layers Baldock et al. (2021); Stephenson
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Figure 1: Discrepancy in generalization behaviors between majority groups and minority groups on
CelebA. We observe that models trained exhibit a large generalization gap on minority groups, a
synonym of minority group overfitting.

et al. (2021) while a Maini et al. (2023) recently show that it can appear at every network depth. Fur-
thermore, Maini et al. (2023) conceptualizes the idea of localizing memorization by computing the
minimum number of neurons required to flip predictions. This paper uses the Maini et al. (2023)’s
method to flag memorization not in the context of label noise as them but in the context of spurious
correlation. Indeed, there have been various works that show that when mechanistically interpreting
deep neural networks, there are neurons that specialize for certain tasks Zenke et al. (2017); Cheung
et al. (2019); Hendel et al. (2023).

3 METHODS

This section begins by outlining the problem, followed by an analysis of minority group example
memorization, and then introduces FairDropout.

3.1 PROBLEM DESCRIPTION

We consider a classification problem with a training sample Dtr = {(x, y)}Ni=1 drawn from a training
distribution ptr, where xi ∈ X is the input and yi ∈ Y is its class label. We further assume that the
existence of a spurious attribute a ∈ A, which is non-predictive of y Ye et al. (2024). We denote by
groups, the pairs g := (y, a) ∈ Y × A := G. Since a is not predictive in y, if there is a correlation
between y and a in the training distribution ptr, and not in the test distribution pte, therefore trained
models may performance drop in groups where this correlation does not hold.

For example, CelebA (Liu et al., 2015) is one of the most popular datasets in the spurious
correlation literature. The common task is to predict the hair color in celebrity faces (Y =
{blond hair, non-blond hair}), and the spurious attribute is the gender (a ∈ {woman,man}). In
the CelebA training set, only 1% of faces are the group from blond men. Therefore, trained models
may rely on the spurious gender feature to determine hair color. Therefore, when evaluating the pre-
dictive performance, one might not simply assess the average testing performance; the worst-group
accuracy, such as accuracy on blond men, may become crucial.

Formally, considering a parameterized model fθ : X −→ Y , the goal of learning in the presence of
spurious correlation is to find the model that will minimize the worst-group expected error

max
g∈G

E [ℓ0−1 (fθ (x) , y) |g] , (1)

where ℓ0−1 (fθ(x), y) = 1 [fθ(x) ̸= y] is the 0-1 loss (Liu et al., 2021). We are interested in the
case where there no available group information for the training set, but it is only accessible during
testing for evaluation.
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Figure 2: For each example in a subset of 100 from the minority group and 100 from other groups,
we iteratively remove the most important neurons from a ResNet-50 model trained on the CelebA
dataset, until the example’s prediction flips. (a) Minority-group examples need fewer neurons to flip
their prediction. (b) After dropping these neurons to flip the prediction for each example, the drop in
worst-group accuracy is greater from the flip related to majority groups than for the minority group,
indicating that minority-group examples are being memorized.

3.2 MEMORIZATION OF MINORITY GROUP EXAMPLES

We start our analyses with ERM on CelebA, which is the most popular, real-world, and large dataset
for studying spurious correlation, making it generalizable to real-world settings. As explained ear-
lier, it has 4 groups, namely from {blond hair, non-blond hair} × {woman,man}, with the minority
group being (blond, man). We train ResNet-50 (He et al., 2016) with ERM and track train/test
performance on the different groups.

Fig. 2 shows the average and worst group performance. It can be observed in Fig. 2, a discrepancy
in generalization behaviors between the majority groups (represented by the average performance,
but the same behavior applies) and the minority group. Specifically, we observe a large general-
ization gap for the minority group, a synonym of overfitting–a point that has not been sufficiently
emphasized in prior research.

We now turn our attention to analyzing the underlying causes of this failure in minority group gener-
alization through the lens of memorization. Indeed, deep neural networks are high-capacity models
capable of fitting complex and atypical examples, making it reasonable to associate this general-
ization failure with memorization. Leveraging recent advances in understanding memorization, we
employ the method recently proposed by Maini et al. (2023) to detect memorization. This technique
consists in finding the minimum number of neurons (channels for the case of convolutional layers)
materialized by z(l,j) (l being layer indexes, and j being neuron indexes) that preserve the training
sample’s prediction while maximizing the loss on the input to whose prediction should be flipped.
For an input xi, this is technically done by sequentially computing for each iteration

z
(l,j)
∗ = argmax

l

∇θl

L
(
fθ̂(xi), yi

)
− 1

|B|
∑

(x,y)∈B

L
(
fθ̂(x), y

)
j

, (2)

where B is the random batch on which the predictions have to be conserved, fθ̂ is the current
iteration of the modified model (model on which a neuron was dropped in the previous iteration).
The sequential procedure continues until the prediction of xi is flipped. The final neuron indexes j
are seen as the most critical neurons that are only related to the considered example, and Maini et al.
(2023) show that the proportion of these neurons can be used to detect memorized examples.

We conduct this experiment to analyze the memorization behaviors in the context of spurious cor-
relation on the CelebA dataset. Fig. 2 shows the number of neurons required to flip prediction each
prediction on a subsample of majority and minority groups. We observe that in general, (i) the num-
ber of neurons required to flip each prediction from the minority group is considerably lower than
the corresponding number for majority groups (see the left-most of the plot of Fig 2a). Furthermore,
as shown in Fig. 2b, (ii) these neurons have even less effect on training worst-group accuracy than

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the corresponding ones from the majority group. Referring to a similar analysis from Maini et al.
(2023), (i) and (ii) indicate that minority group examples are more prone to memorization issues.
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Figure 3: Effect on the worst-group accuracy
when dropping memorizing neurons as shown in
2. For each example in the minority-group sam-
ple, we drop the minimum number of neurons to
flip its prediction. From the quartiles on this fig-
ure, we observe that in ≈ 75% of cases dropping
out memorizing neurons significantly improves
test worst-group accuracy.

While we have identified generalization prob-
lems and memorization issues within the mi-
nority group, there is no direct evidence sug-
gesting a causal link between the two phenom-
ena in this context of spurious correlation. To
investigate this potential link, we conducted
a new experiment to measure changes in test
worst-group accuracy after dropping out neu-
rons from the minority groups.

Fig. 3 shows the test worst-group accuracy after
individually (per example) dropping neurons.
We observe that for approximately 75% of the
drops, the worst-group accuracy significantly
improves. This means that most large propor-
tion of these memorizing neurons are detrimen-
tal to minority group generalization.

3.3 THE EXAMPLETIEDDROPOUT
AS A FAIRDROPOUT

After observing that certain neurons are closely
tied to specific examples (particularly the mem-
orizing ones in the minority group) and that
dropping them positively impacts minority
group generalization, it becomes important to
crucial to leverage this insight by directing this
memorization to fixed neurons. Drawing inspi-
ration from the example-tied dropout introduced in the context of label noise by Maini et al. (2023)
for small networks such as ResNet-9, and smaller datasets such as MNIST (Deng, 2012) or CIFAR-
10 (Krizhevsky, 2009), we introduce the FairDropout, which is an example-tied dropout in the con-
text of spurious correlation. Unlike the original example-tied dropout, FairDropout can be applied
not only after any intermediate layers but also after any newly added projection layer before the
linear head.

As an example-tied dropout, the FairDropout is a layer without learnable parameters, that divides
neurons into two types, governed by two hyper-parameters: pgen and pmem. The first set of neurons
are the generalizing neurons, which are seen by every example in the dataset. If the preceding layer
of the FairDropout has the size H , then there are pgenH neurons are designated as generalizing.
The remaining of (1 − pgen)H neurons are memorizing neurons and each sample is allocated a
memorizing neuron uniformly with probability pmem. Furthermore, the fair prefix comes from the
fact that every example allocates the same fixed number of memorizing neurons. As depicted in
Fig. 5, during training, given an example, the FairDropout propagates its generalizing features and
its example-wise memorizing ones. In this case, each image allocates only one memorizing neuron.
During testing, the memorizing ones are dropped. Finally, we observe that when pgen = 1 the
FairDropout is just an identity function and trained models correspond to ERM-trained models.

4 EXPERIMENTAL RESULTS

We conduct experiments to evaluate the FairDropout on CelebA as sanity check and on a benchmark
suite.

4.1 WARM-UP ON CELEBA: FAIRDROPOUT BALANCES GROUP ACCURACY

We incorporate the FairDropout after the third residual block on ResNet-50, with the hyperparame-
ters pmem = pgen = 0.2, and track the train/test average/worst-group accuracy.
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Figure 4: Training with FairDropout on CelebA. Train/test average and worst-group accuracy with
FairDropout are plotted. Training and testing mode respectively refer to the evaluation without drop-
ping memorizing neurons, and after dropping them. We observe that dropping out these memorizing
neurons has the benefit of improving worst-group accuracy.
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Figure 5: Example-Tied Dropout as a FairDropout. The FairDropout redirects the example mem-
orization on specific neurons. Memorizing neurons are uniformly allocated to training examples
during training. During testing, these features are dropped.

Fig. 4 shows the evolution of the train/test average and worst-group accuracy throughout epochs. It
can be observed on the right-most plot that if using the training mode (in this mode, memorizing
neurons are kept) of the FairDropout to evaluate accuracy, we obtain almost the same behavior as if
there was no FairDropout, i.e., ERM. Indeed, the worst-group accuracy saturates around 45% as in
Fig. 1.

In contrast, in the testing mode (in this mode, memorizing neurons are dropped) of the FairDropout,
the worst-group accuracy does not saturate around 45%, but around 80%. Thus dropping out mem-
orizing neurons after training with the FairDropout has a clear effect on boosting the worst-group
accuracy. In the following section, we compare the FairDropout against state-of-the-art methods in
spurious correlation.

4.2 BENCHMARKING FAIRDROPOUT WITH BASELINES

Before presenting the results of the comparison between baselines, we present the experimental
setup used largely inspired from Yang et al. (2023).

4.2.1 EXPERIMENTAL SETUP

We use the recently proposed subpopulation shift library and benchmark suite (Yang et al., 2023)
that implements the state-of-the-art methods in spurious correlation 1.

We use 5 diverse datasets that are very used in spurious correlation litterature (Yang et al., 2023).
Waterbirds. Waterbirds Wah et al. (2011). Waterbirds is a well-known synthetic image dataset
for binary classification. The task is to classify whether a bird is a landbird or a waterbird. The

1Code is available at this ANONYMOUS LINK.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

spurious attribute is the background (water or land). There are therefore 4 groups that are from
{landbird,waterbird} × {water background, land background}.
CelebA. As introduced in Sec. 3.1, CelebA (Liu et al., 2015) is one of the largest, real-world image
datasets used in the context of spurious correlation. It has around 200,000 celebrity face images.
The task, in the spurious correlations literature, is to predict the hair color of persons (blond vs.
non-blond) and the spurious correlation is the gender.
MetaShift. The dataset Metashift (Liang & Zou, 2022) that we use here is an image dataset that
was built by Yang et al. (2023). The goal is to distinguish between the two animals (cats vs dogs).
The spurious attribute is the image background. Cats are more likely to be indoors, while dogs are
more likely to be outdoors.
MultiNLI. The MultiNLI dataset (Liang & Zou, 2022) is a text dataset very used in spurious corre-
lation literature. The target is the natural language relationship between the premise and the hypoth-
esis. It has three classes (neutral, contradiction, or entailment). The spurious attribute is a variable
that tells whether negation appears in the text or not. Indeed, negation is highly correlated with the
contradiction label. MIMIC-CXR. MIMIC-CXR (Johnson et al., 2019) is a chest X-ray dataset,
where its approximately 300,000 images come from the Beth Israel Deaconess Medical Center from
Boston, Massachusetts. We use the setting of Yang et al. (2023), where the label is “No Finding”
as the label. The positive class means that the patient is not ill. the spurious attribute domain is the
cross-product of race (White, Black, Other) and gender.

All the data preprocessing and train/val/test splits are directly adopted from Yang et al. (2023) as we
implement our method in their library.

Models. As in the benchmark (Yang et al., 2023), we use the Pytorch pretrained ResNet-50 models
for image datasets and BERT Sung et al. (2019) for the MultiNLI text datasets.

Metrics. According to most previous works, we evaluate the reliance on spurious correlation
through worst-group accuracy.

Baseline methods. We compare the FairDropout with state-of-the-art algorithms implemented in
the subpopulation shift benchmark. Our work does not need the knowledge of group information.
We thus evaluate our method in the setting where we do not have group information. However, meth-
ods that need group information have been converted by Yang et al. (2023) to an equivalent method
by considering class information instead of group. For example, GroupDRO can be converted by
an equivalent goal of minimizing worst-class error. Benchmarked methods from the spurious corre-
lation literature include GroupDRO (Sagawa et al., 2019), CVaRDRO (Duchi & Namkoong, 2021),
JTT (Liu et al., 2021), LfF (Nam et al., 2020), LISA . There are also two-phase methods that retrain
the classifier, which are DFR (Yao et al., 2022) (retraining is done on the validation set), CRT and its
variant ReWeightCRT (Kang et al., 2020). Finally, we also include methods that are mostly designed
for the imbalanced learning problem, which are ReSample (Japkowicz, 2000), ReWeight (Japkow-
icz, 2000), SqrtReWeight (Japkowicz, 2000), CBLoss (Cui et al., 2019), LDAM Cao et al. (2019)
and BSoftmax (Ren et al., 2020). Note that the FairDropout technique can be combined with any of
these baseline methods to boost its performance.

Hyperparameter tuning. As we consider the most difficult case we do not have group information
for the training and validation sets, similarly with the benchmark Yang et al. (2023), we tune the
pmem, pgen, learning rate, and weight decay with the worst-class accuracy. We use the SGD optimizer
with weight decay.

Positions of the FairDropout Layers. In principle, the FairDropout layer can be placed after any
intermediate layer in the network. However, in large-scale, potentially pre-trained models, the place-
ment of FairDropout may require careful consideration. In models with skipped connections as in
ResNet-50, in our settings, we consider possible positions after residual blocks. In BERT-like mod-
els, we propose adding a new linear layer before the classifier head and positioning the FairDropout
layer there. This ensures that the pertaining features are preserved while controlling memorization
during fine-tuning. The optimal placement, however, depends on the dataset, as spurious correla-
tions exhibit task-specific levels of abstraction. Therefore, we tune the position of FairDropout along
with other optimization hyperparameters using worst-class accuracy as a guiding metric.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison of the FairDropout against state-of-the-art methods when spurious attribute
annotations or group annotations are unknown in both train and validation. Test worst-group accu-
racy is reported and is obtained from the subpopulation shift benchmark Yang et al. (2023). The
symbol ◦ indicates that the original method requires group information for the training whereas •
means that it requires group information for the validation.

Method Types Algorithm Waterbirds CelebA MetaShift MultiNLI MIMIC-CXR
standard ERM 69.1 ±4.7 57.6 ±0.8 82.1 ±0.8 66.4 ±2.3 68.6 ±0.2

Data augmentation Mixup 77.5 ±0.7 57.8 ±0.8 79.0 ±0.8 66.8 ±0.3 66.8 ±0.6

Spurious correlation

FairDropout (ours) 70.6 ± 0.2 75.6 ± 2.1 85.9 ± 1.1 70.3 ± 2.4 70.6 ±0.6
◦ GroupDRO 73.1 ±0.4 68.3 ±0.9 83.1 ±0.7 64.1 ±0.8 67.4 ±0.5
◦ CVaRDRO 75.5 ±2.2 60.2 ±3.0 83.5 ±0.5 48.2 ±3.4 68.0 ±0.2
JTT 71.2 ±0.5 48.3 ±1.5 82.6 ±0.4 65.1 ±1.6 64.9 ±0.3
LfF 75.0 ±0.7 53.0 ±4.3 72.3 ±1.3 57.3 ±5.7 62.2 ±2.4
◦LISA 77.5 ±0.7 57.8 ±0.8 79.0 ±0.8 66.8 ±0.3 66.8 ±0.6

Imbalanced learning

ReSample 70.0 ±1.0 74.1 ±2.2 81.0 ±1.7 66.8 ±0.5 67.5 ±0.3
ReWeight 71.9 ±0.6 69.6 ±0.2 83.1 ±0.7 64.2 ±1.9 67.0 ±0.4
SqrtReWeight 71.0 ±1.4 66.9 ±2.2 82.6 ±0.4 63.8 ±2.4 68.0 ±0.4
CBLoss 74.4 ±1.2 65.4 ±1.4 83.1 ±0.0 63.6 ±2.4 67.6 ±0.3
Focal 71.6 ±0.8 56.9 ±3.4 81.0 ±0.4 62.4 ±2.0 68.7 ±0.4
LDAM 70.9 ±1.7 57.0 ±4.1 83.6 ±0.4 65.5 ±0.8 66.6 ±0.6
BSoftmax 74.1 ±0.9 69.6 ±1.2 82.6 ±0.4 63.6 ±2.4 67.6 ±0.6

classifier retraining
•DFR 89.0 ±0.2 73.7 ±0.8 81.4 ±0.1 63.8 ±0.0 67.1 ±0.4
CRT 76.3 ±0.8 69.6 ±0.7 83.1 ±0.0 65.4 ±0.2 68.1 ±0.1
ReWeightCRT 76.3 ±0.2 70.7 ±0.6 85.1 ±0.4 65.2 ±0.2 67.9 ±0.1

4.2.2 RESULTS AND DISCUSSION

We report the worst-group accuracy results obtained after running our FairDropout method on the
subpopulation shift library, averaged over 5 independent runs. Table 1 presents these results with
methods categorized according to the presentation done in Sec. 4.2.1, following Yang et al. (2023).
As a reminder, in this setting, the spurious attribute and the group annotations are unavailable in
both the training and validation datasets. All the methods or their adapted version are tuned with
worst-class accuracy and the results come from Yang et al. (2023).

From the table, we can make the following observations. In all datasets and except Waterbirds, our
FairDropout method outperforms ERM by a large margin.

On these datasets, we can also observe that the FairDropout outperforms or has comparable per-
formance to spurious correlation methods and imbalance learning methods. More specifically, the
datasets on which FairDropout achieves the most successful results are MultiNLI (70.3 ± 2.4) and
MIMIC-CXR (70.6± 0.6).

On CelebA and MetaShift, although our FairDropout technique outperforms spurious correlation
methods, its performance is comparable with the Resample on CelebA (75.6 ± 2.1 vs 74.1 ± 2.2)
and ReWeightCRT on Metashift (85.9± 1.1 vs 85.1± 0.4). It is worth mentioning that our models
with the FairDropout are trained with classic cross-entropy, meaning that the performance of our
FairDropout technique can be further boosted with any of these existing imbalanced learning or
classifier retraining methods.

On the Waterbirds dataset, although our FairDropout improves upon ERM, it underperforms clas-
sifier retraining methods and some imbalanced learning methods. Since Waterbirds is a dataset
synthetically generated by placing bird objects into different backgrounds, it has already been ob-
served that ImageNet pre-trained ImageNet features can be effectively transferred (Izmailov et al.,
2022) without finetuning the entire model, which may explain the superior performance of DFR.

Overall, FairDropout proves to be an effective method for reducing reliance on spurious correlations
without explicit group annotations. It may also benefit from additional boosts if combined with
classifier retraining or imbalanced learning methods.
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5 LIMITATIONS AND CONCLUSION

In this paper, we explored for the first time the lack of generalization of minority-group examples
and its link to memorization in spurious correlation. We introduced the FairDropout, an example-
tied dropout technique that can be applied in larger networks to reduce the reliance on spurious
correlation.

FairDropout makes it possible to localize memorization and attracts the spurious features in such
fixed neurons that once dropped during inference, can improve worst-group accuracy. We show
empirical evidence that the FairDropout outperforms several baseline methods on datasets from
image, medical, and language tasks.

However, our study has some limitations that have not been addressed. First, there have been works
showing that there may exist memorization that is beneficial for generalization (Feldman, 2020)–
this warrants further investigation, particularly in the case of the Waterbird dataset. Second, while
implicitly by construction, we hypothesize that generalizing neurons are less likely to memorize
examples since memorization is more easily achieved in the memorizing neurons, this assumption
requires further exploration, which falls outside the scope of this paper.
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Table 2: Hyperparameter ranges. Here dpi stands for the position before the residual layer block i,
dplogits stands for the position before the linear classifier head, dpfc stands for a position before the
classifier head but after a newly introduced linear projection layer.

Hyperparameters sets
learning rate {1e− 3, 1e− 4, 1e− 5}
Weight decay {1e− 3, 1e− 4, 1e− 5, 1e− 6}
pfixed {.2, .3, .4, .5, 6}
pmem {.001, .1, .2, .4}
FairDropout positions on ResNet-50 {dp2, dp3, dp4, dp5 }
FairDropout positions on BERT {dplogits , dpfc}

A APPENDIX

A.1 HYPERPARAMETERS

Table 2 describes the range of hyperparameters that we used to tune the hyperparameters.

A.2 MORE DETAILS ON THE DATASETS

Table 3: Dataset overview with data types, number of attributes, classes, train, validation, and test
set sizes, and group distributions.

Dataset Data |A| |Y| |Dtr| |Dval| |Dtest| Max group (%) Min group (%)
Waterbirds Image 2 2 4795 1199 5794 3498 (73.0%) 56 (1.2%)
CelebA Image 2 2 162770 19867 19962 71629 (44.0%) 1387 (0.9%)
MetaShift Image 2 2 2276 349 874 789 (34.7%) 196 (8.6%)
MultiNLI Text 2 3 206175 82462 123712 67376 (32.7%) 1521 (0.7%)
MIMIC-CXR X-rays 6 2 303591 17859 35717 68575 (22.6%) 7846 (2.6%)
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