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Abstract

In this paper, we study the problem of solving a simple bilevel optimization prob-
lem, where the upper-level objective is minimized over the solution set of the
lower-level problem. We focus on the general setting in which both the upper- and
lower-level objectives are smooth but potentially nonconvex. Due to the absence
of additional structural assumptions for the lower-level objective—such as con-
vexity or the Polyak—t.ojasiewicz (PL) condition—guaranteeing global optimality
is generally intractable. Instead, we introduce a suitable notion of stationarity
for this class of problems and aim to design a first-order algorithm that finds
such stationary points in polynomial time. Intuitively, stationarity in this setting
means the upper-level objective cannot be substantially improved locally with-
out causing a larger deterioration in the lower-level objective. To this end, we
show that a simple and implementable variant of the dynamic barrier gradient
descent (DBGD) framework can effectively solve the considered nonconvex simple
bilevel problems up to stationarity. Specifically, to reach an (e, ¢,)-stationary
point—where € and €, denote the target stationarity accuracies for the upper- and

lower-level objectives, respectively—the considered method achieves a complex-
3+p 3+

ity of O(max(e; ", E;Tp)), where p > 0 is an arbitrary constant balancing
the terms. To the best of our knowledge, this is the first complexity result for a
discrete-time algorithm that guarantees joint stationarity for both levels in general
nonconvex simple bilevel problems.

1 Introduction

In this paper, we consider the following nonconvex simple bilevel optimization problem

min f(x) s.t. x € X = argmin g(z), (1
xER™ : zZER®

where f, g : R" — R are continuously differentiable and X denotes the solution set of the lower-
level problem. This problem is referred to as simple bilevel. The term “simple” distinguishes this
setting from general bilevel optimization, where the lower-level solution set X7 may depend on
the upper-level variable, introducing additional complexity. Owing to its numerous applications in
areas such as lifelong learning [1} 2] and over-parameterized machine learning [3| 4], simple bilevel
optimization has garnered significant recent interest in understanding its structure and developing
efficient algorithms for finding its solution [2} 4H6]].
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The main challenge in solving Problem (I)) stems from the fact that the feasible set, defined as the
optimal solution set of the lower-level problem, lacks a clear characterization and is not explicitly
given. As aresult, a direct application of projection-based or projection-free methods is infeasible.
Several works have studied the case where both the upper- and lower-level objectives are convex.
In this case, Problem (I)) is “well-behaved”, facilitating the application of various optimization
techniques. For instance, several works [7H10] employ Tikhonov regularization [[11], combining the
upper- and lower-level objectives with an appropriately chosen weight. Another line of research [2, 4,
12] provides a linear approximation of the lower-level objective to form an outer approximation of
the lower-level optimal solution set X/

However, in several applications such as neural network training [I5]], sparse representation learning
[3, 6], and adversarial training [[13H15]], the objective functions at both levels are not necessarily
convex. As a result, the lower-level solution set X" could be a nonconvex set, making it intractable
to achieve any form of global optimality. Consequently, in nonconvex simple bilevel optimization,
similar to its single-level counterpart, the primary objective is to find a near-stationary point rather

than a near-optimal solution, as defined in [2}[12}[16].

The search for near-stationary points in nonconvex simple bilevel problems has been addressed by
only a few works. Among these, Gong et al. [3]] proposed the Dynamic Barrier Gradient Descent
(DBGD) algorithm, which employs a dynamic barrier constraint on the search direction at each
iteration. By adaptively balancing objectives f and g with a dynamic combination coefficient, it
guides the optimization trajectory. It was originally introduced to solve the constrained problem:

){I&}%}L f(x) st gx)<e )

where f and g are smooth but possibly nonconvex, ¢ > ¢*, and g* is the minimum value of g.
Note that the analysis in [3] is limited to the continuous-time limit behavior of DBGD (step size
n—0). Specifically, it was shown that the continuous-time dynamics of DBGD converge at a rate
of O(1/t) in terms of the violation of the Karush—Kuhn-Tucker (KKT) conditions of Problem ()
with the assumption of bounded dual iterates, i.e., max; \; < +oc. For the specific choice of ¢ = g%,
the problem in (Z)) becomes equivalent to the simple bilevel problem in (I). However, in this case,
the assumption of bounded dual iterates is violated, rendering the associated theoretical guarantees
inapplicable. Under the additional assumption that ||V f|| and ||Vg|| are uniformly bounded, the
presented continuous-time convergence rate deteriorates to O(max(1/t%/7,1/t'=1/7)) for any user-
defined 7 > 1. More importantly, their analysis does not hold when considering the discrete time
case (step size > 0).

Another closely related work is [5], which introduced BLOOP (BiLevel Optimization with Orthogonal
Projection) for stochastic nonconvex simple bilevel problems. The core idea of BLOOP is to project
the upper-level gradient onto the space orthogonal to the lower-level gradient. However, their analysis
is limited to a non-asymptotic convergence rate of O(1/K Y 4) for the lower-level objective, where
K is the number of iterations, without providing any rate guarantees for the upper-level objective.

Motivated by the above discussion, we aim to address the following research question:

Is it possible to design a first-order method with discrete-time guarantees for both levels of the
nonconvex simple bilevel problem in (1)) under the given assumptions?

Contributions. Motivated by this research question, We begin by defining a first-order stationarity
metric for nonconvex simple bilevel problems in Section [3] which intuitively identifies points where
no significantly better solution exists in a local neighborhood. In Section [3.1] we relate this notion to
existing stationarity concepts in the literature. We then develop and analyze a practical variant of the
dynamic barrier gradient descent (DBGD) method proposed in [3]], providing theoretical guarantees
for its convergence in discrete time. The specifics of our main contributions are as follows:

(i) We define an (e, €4)-stationary point for nonconvex simple bilevel optimization as a point X for
which there exists A > 0 such that ||V f(X) + AVg(%)|> < e and ||[Vg(%)||* < €,, where €7 and €,
specify the desired stationarity accuracy for the upper and lower levels. We also discuss how this
notion relates to existing stationarity metrics in the constrained and bilevel optimization literature.

(ii) We show that to achieve an (e, €4)-stationary point of the considered nonconvex simple bilevel
3+p
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problem, the studied method has a complexity of O(max(e; """, €5 * )), where p > 0. This is the



first explicit (discrete-time) complexity bound that guarantees stationarity at both levels for nonconvex
simple bilevel problems.

Further connections between first-order methods for convex and nonconvex simple bilevel problems
and the DBGD framework are discussed in Appendix [C|

1.1 Related Work

Convex simple bilevel problems. Most studies on the “simple bilevel optimization problem"
focus on cases where both the upper-level and lower-level objective functions are convex. Various
approaches have been developed to address such convex simple bilevel optimization problems,
including regularization-based methods [7H10, [17]], penalty-based methods [[18], sequential averaging
methods [[19,20], online-learning-based methods [21]], lower-level linearized based methods [12} 14} 12]],
and bisection-based methods [22}[16]. However, due to the convexity assumption underlying these
algorithms, they are not applicable in our setting.

Nonconvex constrained minimization problems. The simple bilevel problem (I)) can also be
reformulated as Problem (2) with ¢ = g*. This reformulation suggests that existing method for
functionally constrained optimization [23H30] could be applied to solve (2). However, this approach
presents several challenges. First, since g is nonconvex, estimating g* to high accuracy is intractable.
Moreover, Problem (2)) does not satisfy strict feasibility, and most common constraint qualifications,
such as the Mangasarian-Fromovitz Constraint Qualification, do not hold. Hence, many results, such
as those in [27} 130, [29] may no longer hold.

Nonconvex general bilevel problems. Recent works on nonconvex general bilevel optimization
[31H36] rely on different stationarity notions or assumptions and are thus not directly applicable to our
setting. For instance, the works in [31},132] define stationarity based on the norm of the hyper-gradient,
which may be ill-defined in the simple bilevel setting where no upper-level variables are present,
rendering it an invalid metric. Moreover, most existing approaches assume the Polyak—t.ojasiewicz
(PL) condition [33} 135131}, 132] for the lower-level problem—an assumption not made in our setting,
thereby invalidating the convergence guarantees established in those works. A detailed comparison
between algorithms for general and simple bilevel problems, along with a discussion of different
stationarity metrics and other related methods, is provided in Appendix [D]

After our submission, we became aware of a concurrent work [37]], which provides a similar analysis
for a variant of our algorithm. Their study further demonstrates the algorithm’s effectiveness in the
context of machine unlearning, revealing an additional and complementary application area to our
theoretical and empirical findings.

2 Assumptions

We denote g* > —oo and f* > —oo as the minimum value of g and f, respectively. We next formally
state our assumptions.

Assumption 2.1. We assume these conditions hold:

(i) f has bounded gradients, i.e.,

Vi) <Gy < ooforanyx € R™
Vi) =V < Lyllx =yl

(iii) g is continuously differentiable, and V g is L4-Lipschitz, i.e., ||Vg(x) — Vg(y)|| < Lgl|x — y||.

(ii) f is continuously differentiable, and V f is L y-Lipschitz, i.e.,

3 Stationarity Metric

This section introduces our performance metric for evaluating convergence rates of algorithms for
Problem (T)). While objective value gap is commonly used in convex settings [2, 10} 12} 22 [16]], it
is intractable here due to the potential nonconvexity of f and g. Instead, we measure stationarity,
defining an approximate stationary point as a point X € R™ where no significantly better solution
exists nearby—i.e., one that lowers g, or lowers f without increasing g. We next present first-order
conditions that capture this notion, followed by their interpretation.



Definition 3.1. Given ¢; > 0 and ¢, > 0, a point x € R" is an (e, ¢4)-stationary point of
Problem (1)) if there exists a scalar A\ > 0 such that:

IVg(X)|? < e, and [[Vf(X)+AVgR)|® <e;. )

Definition [3.1] consists of two conditions that measure the stationarity of a given solution X. The first
condition requires that the gradient of the lower-level objective g at X is small, meaning that x is near
stationary for g. To better interpret the second condition, we first introduce a decomposition that
expresses the upper-level gradient V f (X) as the sum of two orthogonal components: one parallel to
V(%) and the other orthogonal to it. Specifically, we write V f(X) = V f(X) + V f1 (%), where
V f|(x) is the component parallel to Vg(X) and V f, (X) is the component orthogonal to Vg(xX).
Using this decomposition, we can further express:

V(%) +AVy(x) = VIL(Z) + (V%) + AVy(x)), 4)

where the first term is orthogonal to Vg(X) and the second part (in parenthesis) is parallel to it. Hence,
the conditions in (3] ensure that all the following norms are small: (i) || Vg(%)||, (i) ||V fL (%), and
(iii) ||V fj (%) + AVg(x)||. Interestingly, as we shall show in the convergence analysis, these terms
do not necessarily diminish at the same rate.

This decomposition offers key insights into the final output. If the first two terms are small, the
resulting point satisfies two key conditions: (i) the gradient norm of the lower-level problem is small,
and (ii) the component of the upper-level gradient orthogonal to the lower-level gradient is also
small. In other words, in directions that do not negatively impact the lower-level objective, there is no
remaining energy to further decrease the upper-level objective.

The third term being small leads to two possible cases. If V f||(X) is aligned with Vg(x), then since
[Vg(x)]| is small and A > 0, it follows that V f| (%) is also small. Combined with the smallness of
|V fL(x)]], this implies ||V f(%X)|| is small as well. On the other hand, if V f||(X) is in the opposite
direction of Vg(x), we cannot make a definitive statement about ||V f|(x)|], as A could be large.
Hence, any point satisfying the conditions in (3) must fall into one of the following two cases:

 Case I: At x, both ||[Vg(%x)|| and ||V f(x)|| are small, indicating near-stationarity for both the
lower- and upper-level objectives.

* CaseIl: At x, ||Vg(x)|| is small and the gradient of f has minimal energy in directions orthogonal
to Vg(x) and its remaining energy (norm) is in the opposite direction of Vg(x).

In both cases, we reach a point where further decreasing f would necessarily increase g, indicating that
no additional progress can be made without violating the constraint. This means the objective function
cannot be significantly improved in its local neighborhood without incurring greater infeasibility.
This concept is formally characterized in the following lemma.

Lemma 3.1. A point x € R" is an (e, €4)-stationary point of Problem (1)) if and only if the following
holds: for any 6 > 0, there exists a radius * > 0 such that for all 0 < r < 7:

* For any x satisfying ||x — x|| < r, we have g(x) > g(x) — (1 +9),/&|x — x|
* For any x satisfying ||x — X|| < rand g(x) < g(x), we have f(x) > f(x) — (1 +6),/€f||x —x]|.

The first condition of the lemma guarantees that the lower-level objective g cannot be improved by
more than O(, /€4 % — x||) locally. The second condition further shows that the upper-level objective
cannot be significantly improved without negatively impacting g.

3.1 Connections with Other Stationarity Metrics

In this section, we examine the connection between our proposed stationarity metrics in Definition[3.1]
and existing notions of stationarity in both constrained optimization and bilevel optimization literature.

3.1.1 Connection with the Metrics in Constrained Optimization Literature

We note that Definition [3.1]is closely related to approximate KKT conditions for a reformulation
of Problem (I). Specifically, recall g* = minyegr~ g(x) and the constraint in () is equivalent to



g(x) — g* < 0. Thus, Problem () can be reformulated as Problem (2)) with ¢ = g*. Given a point x
and its Lagrange multiplier A > 0, the KKT conditions for (2)) are:

g(x)—g" <0, A>0, Vf(x)+AVg(x)=0, A(g(x)—g")=0.

However, since Problem (2) with ¢ = g* is not strictly feasible, Slater’s condition does not hold, and
the KKT conditions may not hold at an optimal solution. Moreover, since g is nonconvex, enforcing
strict feasibility is intractable. To resolve this, the literature on nonconvex constrained optimization
has considered relaxed stationarity conditions such as the scaled KKT conditions [23H27]]. When
specialized to Problem (T, these papers aim to find a point X that satisfies one of the following for
given accuracy parameters €, and €,4: (i) X satisfies an approximate scaled KKT conditions, i.e.,

9(x%) —g" <&, A= 0, [VF(X) +AVyg(R)[ < (1 +A). ®)

Here, the accuracy of the last condition is proportional to the Lagrange multiplier A. (ii) X is an
infeasible stationary point of the constraint function, i.e.,

9(%) —g" 2099, [[Vg(x)| < ea. (©)
Moreover, [28] considered the stronger unscaled KKT conditions, where (3)) is replaced by
9(X) —g" <6, A2 0, [[VF(X) + AVyF)|| < €a. ©)

Unlike the scaled KKT conditions, the accuracy requirement in the last condition does not depend on
the multiplier A. We observe that our Definition [3.1]implies the unscaled KKT conditions. Suppose X
is an approximate (efl, eﬁ)-stationary point. Then, if g(%x) — g* > 0.99¢,, the condition in (6] holds;
otherwise, the condition in is satisfied.

3.1.2 Connection with the Metrics in Bilevel Optimization Literature

In this section, we also relate our proposed stationarity metric for the original simple bilevel prob-
lem (T)) to those used in common reformulations in the bilevel optimization literature. A widely used
reformulation is the value-function-based approach, defined as follows:

min f(x) st g(x)-g"=0 ®)

However, the KKT conditions of the value-function reformulation are not necessary for optimality,
as standard constraint qualifications may be violated—even when the lower-level objective satisfies
additional conditions such as the Polyak-Lojasiewicz (PL) condition [33}35]]. Instead, we aim to con-
nect our proposed stationarity condition with the KKT conditions of the gradient-based reformulation.
Before establishing this connection, we introduce the following definition and assumption.

Definition 3.2 ((¢,, €4)-KKT conditions [35]]). A gradient-based reformulation of Problem (1)) is

min f(x), st Vg(x) =0, ©)
A point X is an (ep, €q)-KKT point of Problem ) if there exists w € R™ such that
IVf(x) + Vgx)w|? < e, [IVgF)[* < e (10)

Note that the reformulation (9) is equivalent to Problem (I)) when g satisfies the PL condition. To
analyze the relationship between Definition [3.I]and [3.2] we introduce the following assumption.

Assumption 3.1 (Local Error Bound [38]]). There exists ¢ > 0 such that for € small enough and for
any x satisfying |Vg(x)|| < € we have dist(x, Vg~ ({0})) < ¢[|[Vg(x)]l.

This local error bound condition is implied by a local PL inequality, which itself is a relaxation of
the global PL condition. We are now ready to connect our proposed stationarity metric with the
(€p, €a)-KKT conditions of the gradient-based reformulated problem. The Proof is in Appendix

Theorem 3.2. Suppose Assumption holds and V?g(x) is Ly-Lipschitz. If a point X € R™ is
an (e, €4)-stationary point of Problem (1)) for some €y, e, > 0, then it is an (e, €4)-KKT point of
Problem () for €, = O(ey + \||Vg(X)|eg) and eq = 4.

Theorem [3.2)implies that although the KKT solutions of Problem (9) typically rely on second-order
information of the lower-level objective, they can still be approximated using first-order methods. In
particular, this result holds without requiring any constraint qualification (CQ) conditions commonly
assumed in the bilevel optimization literature [3 33} 39].



4 Algorithmic Framework

To efficiently find a stationary point for the nonconvex simple bilevel problem in (I, we adopt the
dynamic barrier gradient descent (DBGD) framework in [3]. It was first proposed for the constrained
optimization problem in (2, with theoretical guarantees established only in the continuous-time
limit. One of our contributions is applying this framework to the nonconvex simple bilevel problem
(T) and establishing the first discrete-time stationarity guarantees. The core idea of DBGD is to
choose a descent direction that aligns with the upper-level gradient while minimizing its impact on
the lower-level problem. Specifically, consider the general update rule

Xpy1 = X — Nrdy, (1D

where 7, > 0 is a step size and dy, is a descent direction. For the simple bilevel problem of interest,
we seek a vector dj, that balances progress on both objectives. When the lower-level objective is
far from optimal, the focus is on minimizing it while ensuring that any reduction in the upper-level
objective f does not hinder the decrease of g. As the lower-level objective nears optimality, priority
shifts to minimizing f, which may require a controlled increase in g to keep iterates x within or close
to the solution set X7 It turns out that both properties can be achieved if dy, is selected as

d, = aaglﬂgin |V f(xx) — d]? st Vg(xp)'d > o(xp). (12)
-

Here, ¢ : R — R is a non-negative function that controls the inner product between the selected
direction and the gradient of the lower-level problem. Specifically, Gong et al. [3]] propose the choice
#(x) = min{a(g(xx) — g%), B]|Vg(xx)||?}. This represents one possible design, and as elaborated
in Appendix |C] alternative choices for ¢ give rise to other methods studied in the literature. The
main property of ¢ is that it should capture some form of infeasibility for the original problem, i.e.,
suboptimality in the lower-level problem.

A key point is that dj, is chosen as the closest vector to the upper-level gradient V f while maintaining
a positive angle with the lower-level gradient. The set of feasible directions depends on how far the
current point is from feasibility. If g(x5) = g*, i.e., ¢(xx) = 0, any direction with an angle less than
90 degrees is feasible, allowing us to reduce f without increasing g (up to first-order). But if ¢(xy)
is large, we prioritize reducing g by choosing a direction closely aligned with Vg.

Close form solution of the subproblem. Since (12) is a quadratic convex program with a single
inequality constraint, its optimal solution can be explicitly expressed as

d],C = Vf(xk) + Ang(xk), (13)

where )\, can be computed as follows:

p(xx) = Vf(xr) " Vg(xz) }
A = max { ,0 (14)
Vg (xk)l*
Hence, our method of interest with stepsize 7, can be easily implemented by following the update
X1 = Xk — Me(Vf (xx) + A Vg(x)). (15)

Our choice of the subproblem. To establish convergence guarantees for the nonconvex simple bilevel
problem, we analyze the version of the discussed algorithm that incorporates ¢(xx) = Sk || Vg (xx)|?
in its update. This choice is motivated by the fact that, in nonconvex lower-level problems, the
gradient norm is the most computationally tractable measure of suboptimality. In this case, the
expression for the parameter ), introduced in (I4) can be simplified as

[ BVl ~ V) V)
M= { ZEDIE ’0}

In Section[5] we establish the convergence rate of the update that follows the update in (I3) when A
is computed based on the expression in (T6).

(16)

5 Convergence Analysis

In this section, we analyze the convergence rate of a variant of the dynamic barrier descent method,
which follows the updates in (15) and to solve the nonconvex simple bilevel problem in (). As



discussed, our goal is to find a point X that satisfies the conditions in (EI) To achieve this, it suffices
to show that, for at least one iterate of the method, both the lower-level gradient norm ||V g(xy,)|| and
the update direction norm ||dg|| are small. Given that d, = V f(xx) + A\ Vg(xx) and that Ay, in our
algorithm is always non-negative, this guarantees the desired convergence in Definition[3.1]

Our starting point is to use the smoothness property of the objective functions f and g (Assump-
tion [2.1{ii) and (iii)) to derive a descent-type lemma. This leads to an upper bound on ||d|| and
|I[Vg(xx)|l in each iteration, which is shown in the following lemma. The proof is in Appendix

Lemma 5.1. Suppose Assumption holds and let {x}} be the iterates generated by (13) and
(T6) with a constant step size n, = n and a constant hyperparameter 0 < i, = 3 < 1. Define

Afy = f(xx) — f(Xk11) and Agy, = g(X1,) — g(Xk+1). We have

L A
(1= P < 22 1 x990 (7)
A L
BIVg0au)I* < = + Sl (18)

Lemma shows that ||dg|| can be upper bounded in terms of Af = f(xx) — f(Xr+1) and
IV g(xx )], while ||Vg(xx)]|| can, in turn, be upper bounded in terms of Ag = g(xx) — g(x+1) and
|[dk]l- A natural strategy, therefore, is to combine the two inequalities and (I8)) and construct
a potential function of the form ||dx||? + ¢|[Vg(xy)||?, where c is an appropriate constant. This
would be easy to achieve if \g is uniformly bounded by an absolute constant M. Indeed, in this
case, by adding and multiplied by 2M, and further assuming that < m, we obtain

Hdgl? + M| Vg(xk) ||2 < M . Applying the standard telescoping argument then yields a
convergence rate of O( 7 ) for both |dx|? and || Vg(xx)||*

However, a key challenge is that we do not have an a priori upper bound on Ay, which prevents us from
setting a constant step size 7 that depends on such a bound. Moreover, such a uniform upper bound on
Ak may not even exist at all, as \;, could diverge to infinity when x;, approaches a near-stationary point
of the lower-level objective g. To see this, recall the expression for A, in (T6) and the decomposition of
the upper-level gradient V f (xx) = V f||(xx) + V f1(xx), where V f| (x},) is the component parallel
to Vg(xx) and V f (x},) is the component orthogonal to Vg(xy). When V f| (x},) is in the opposite

. . xi) T Vg(xp V(= Vg(x Vf(x
direction of V() we have A = 5 — 1) = 5+ Elge Sl = 5+ g

Thus, as ||V g(xy)|| approaches zero, A, diverges whenever V f| (x},) is nonzero—that is, when the
upper-level gradient retains nonzero energy in the opposite direction of Vg(xy).

The following lemma presents our first attempt to use the boundedness of the upper-level gradient
(Assumption [2.1{1)) to control the magnitude of A;. The proof is in Appendix [B.2}

Lemma 5.2. Recall the expression of i, in (16). If Assumption[2.1\holds, then A\, < 8 + vacii)f(k)”.

Remark 5.1. This result shows )y, is proportional to m rather than being uniformly bounded
by a constant. As a result, for the A generated by DBGD, we have €, = O(es + ¢,) in Theorem

However, this bound still suffers from the same issue: it is vacuous as || Vg(xx)|| approaches zero.

To address this challenge, we construct a new potential function that circumvents the need to explicitly
upper-bound Ay, by a constant. The key observation is that A, appears in (T7) only as a coefficient of
the term || Vg(xx)||?. Hence, while )y is potentially unbounded, the total contribution of the term
|| Vg(xx)||? in (I7) can be controlled by 3||Vg(xx)||* + G ¢||Vg(xx)||, which converges to zero
as long as ||Vg(xy)| diminishes. This suggests that we may still obtain a meaningful bound on ||d||
by appropriately combining (T7) and (I8). This is stated in the next lemma.

Lemma 5.3. Consider the updates in (13). IfAssumptlonshold n < 4L, + T, and 8 < 1, then

2(Afk + BA A L
il < W + 2\/BGf\/ngk + il (19)

Note that this is an implicit inequality for ||dy||, as ||d|| is also present in the right-hand side under
the square root. To obtain an explicit bound, we first present the following intermediate lemma.



Lemma 5.4. Suppose x > 0 and x < A+ B+/x, where A € Rand B > 0. Then x < 2A + B2

To apply Lemmaﬂ 5.4|and obtain an explicit upper bound on ||dy||?, we first manipulate (T9) to match

the form of the inequality in Lemma Specifically, adding 7 mg’f to both sides of (I9) and defining

Sk = ||di|]? + QAQ’“ , we obtain the following inequality

2(Afr + A 2A
S, < 2&J 775 g) | T N e TNI NS (20)
Applying Lemmato yields S, < 4(Afk+ﬁAg") + 4Ag’“ + QﬁGQ 7. Since Sy = [|dg]? +

2Agk
Lgn?>

, it follows

AAfk+BAGE) | 280
Lgn?
which provides an upper bound on ||d||?. As we shall see later, this inequality together with (T8)

will be the key to constructing our new potential function. We can now proceed to our main theorem,
which characterizes the convergence rate of the algorithm. The proof is in Appendix [B.3]

Theorem 5.5. Suppose Asmmptzon 2.1 holds and let {x} be generated by (I3) and (I6) with a
constant step sizen, =N = W’ where L := Ly + Ly, and hyperparameter ﬁk =p =
(Ln)P = W’ where p > 0. Further, define Ay := f(xo) —inf f, and Ay := g(x¢) — g*. Then,
there exists an index k* €{1,--- , K} such that

4LA 4LA 3LA, + 2G3
| f + 9 4 9 f
= K3/(3+p) K K?2/(3+p)

8LA 8LA 6L7A, + 4G
2 f g g f
IV 7Ge) + M Vo) I” < giyzaem + avamien L, K+0)/(3+7)

[[dg]]* < +2BGFLgn, (21)

Vg(xk-)

(23)

As a corollary, the algorithm based on the updates in (I3)) and (I6) finds an (e, €4)-stationary point

3+p 3+
after O(max(e, P G;Tp )) iterations, where p > 0. If we want to balance the rates of the upper
and lower levels, we can choose p =1,ie. f = O(n), in which case the algorithm finds an (ey, €,)-
stationary point after O (max (e > ;€ 2)) iterations. To our knowledge, this is the first discrete-time
non-asymptotic guarantee to the stationary points for nonconvex simple bilevel optimization.
Remark 5.2. Gong et al. [3] analyzed the continuous-time limit of the algorithm in and (T6).
However, their continuous-time analysis does not account for the additional error introduced by
approximating functions f and g by their first-order Taylor expansions. As a result, their convergence
result does not directly translate into a concrete convergence bound for the discrete-time algorithm.
Some of our key contributions include addressing the additional discretization error—requiring
the solution of an implicit inequality (cf. Lemma[5.3) and careful selection of the step size 7 and
hyperparameter S—as well as removing the common assumption of uniformly bounded ||Vg||.
Remark 5.3. Note that the sequence {\;},>0 may go to infinity asymptotically, which can be a
potential issue for Definition[3.1} Specifically, as ' — oo, the algorithm may converge to a point X
where Vg(xo) = 0, in which case there may not be a finite A such that ., and ) satisfy the second
condition in Definition [3.1] However, in this limiting case, the above issue can be addressed by
cons1der1ng the alternative stationarity condition in Definition 3.2} In particular, the second condition
in Deﬁmtlonls replaced by ||V f(%) + VZg(%X)w||? < ¢, for some bounded vector w. Note that
our algorithm ensures that A\, = O(1/||Vg(xx)]|), so the product k|| Vg(xy)|| remains bounded and
has a finite limit point. By applying Theorem3.2] we can show that the limit point of our algorithm
satisfies Deﬁn1t10nw1th ep = O(ey + €4) under Assumptlonn Finally, we note that reaching
a point with exactly vanishing gradient is rare in practice, and since A\, = O(1/||Vg(xz)||), the
sequence \j, remains finite in all practical cases.

6 Numerical Experiments

While the primary focus of this work is theoretical, we include a set of numerical experiments to
illustrate the behavior of the proposed algorithm and to support our theoretical findings. Since
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Figure 1: The performance of DBGD compared with Penalty methods with different choices of A on
Problem in terms of ||Vg||2, || VL f]|?, and cosf.

prior studies [3} 5] have already demonstrated the strong empirical performance of DBGD in large-
scale neural network training tasks, we do not repeat such experiments here. Instead, we evaluate
DBGD on deterministic optimization problems, which align more closely with the scope of this
paper. For comparison, we consider a penalty-based method with updates of the form x;; =
xk — M (V f(xk) + AVg(xx)), where A > 0 is fixed. We justify the use of this penalty method as a
baseline in Appendix [D] and provide full experimental details in Appendix [E}

Toy Example. We study the following nonconvex simple bilevel problem,

min (x; + 1)2 + (29 4+ 1)? s.t. X € argmin(zy — sin(1021))? (24)

x€ER2 20 zER2
Based on Definition[3.1] we use ||Vg||, |V L f|, and cos 6—where § is the angle between Vg and
V f—to measure stationarity. Specifically, ||V g|| corresponds to the first condition in Definition
while ||V, f|| and cos  reflect the second condition. As shown in Figure[I] DBGD outperforms the
penalty methods across all the metrics, regardless of the choice of penalty parameter \. In Figure[T](a),
although increasing the penalty parameter ) in the penalty method accelerates early-stage convergence,
the lower-level stationarity metric ||Vg|| ultimately plateaus. In Figure [I|(b), only small values of
A effectively reduce the norm of the orthogonal component of V f. In Figure [I] (c), the penalty
methods produce iterates where the angle between V f and Vg remains less than 90°, indicating that
the gradients are not fully conflicting and that further improvement is possible. In contrast, DBGD
consistently improves both ||Vg||? and ||V 1 f]|? in Figure|l|(a) and (b). Moreover, the angle between
Vg and V f approaches 180° in Figure[I](c), indicating that further local improvement is not possible.
Taken together, these observations show that the iterate generated by DBGD satisfies Definition

Matrix Factorization. We formulate matrix factorization [40-42] as a simple bilevel problem that
seeks to approximate a symmetric matrix via M ~ UU ", where U is a low-rank tall matrix, while
simultaneously optimizing a secondary criterion.

min f(U) st Ucargming(V)=|M-VV'|% (25)

UeRnXr VERnXr
In our experiments, the lower-level objective is the reconstruction loss, while the upper-level objective
f(U) is designed to promote sparsity. Since the ¢1-norm is non-smooth, one can adopt a smooth

approximation such as f1(U) = Ei, Ix /Ufj + «. Alternatively, a log-smooth sparsity penalty can
be used [43]: f2(U) = 3_, ;log(1+ U/a). Both f; and fo are smooth and encourage sparsity in U.

Figure 2] presents the results of applying DBGD and the penalty method with various choices of 3 or A
to solve Problem (25). Similar to the previous experiment, we use || Vg|| and ||V L f|| as convergence
metrics, corresponding to the two conditions in Definition 3.1} Additionally, we report the objective
values of both the upper- and lower-level problems, which represent the sparsity and reconstruction
loss, respectively. As shown in Figures (a) and (c), the solutions obtained by DBGD consistently
outperform those produced by the penalty method with respect to both stationarity metrics, | Vgl|
and ||V f||. This superiority holds across a wide range of hyperparameter values, regardless of
the choice of 5 for DBGD or A for the penalty method, highlighting the effectiveness of DBGD in
achieving stationarity. In addition to the stationarity metrics, DBGD also consistently achieves low
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reconstruction loss g(U) and sparsity penalty f(U) across a wide range of 3 values. In contrast, the
performance of the penalty-based methods is highly sensitive to the choice of the penalty parameter
A, often resulting in suboptimal trade-offs between reconstruction and sparsity. These differences are
clearly illustrated in Figures [2](b) and (d), further demonstrating the effectiveness of DBGD.

7 Conclusion

In this paper, we focused on nonconvex simple bilevel problems and introduced the definition of
(e, €4)-stationary points as a stationarity metric for this problem class, examining its relationship
with existing metrics in the literature. We then established a novel non-asymptotic analysis for

a variant of the dynamic barrier gradient descent algorithm framework from [3]], demonstrating a

_3tp  _a4p
convergence rate of O(max(e; """, e, *)), where p > 0, for achieving (e, €, )-stationary points

for nonconvex simple bilevel problems.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly stated our contributions in the introduction aligned with the main
claims in the abstract.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: This is a theoretical paper with standard assumptions.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Our paper provides the full set of assumptions in Section[2]and a complete
proof in Section [A]and Section

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental results are stated in Section[6] The implementation details
are included in Section [E] The code and data are attached in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code and data are attached in the supplementary material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We explained how we performed the experiments in Section[6] Moreover, the
implementation details are included in Section [E]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The algorithm is designed for deterministic simple bilevel optimization, which
does not include any randomness.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources we used are stated in Section [E]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper conforms, in every respect, with the NeurIPS Code of Ethics
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed in this paper.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix / supplemental material

A Omitted Proofs in Section

A.1 Proof of Lemma[3.1]

First, we show that if the point X is an (e, €,)-stationary point as defined in Definition then the
two conditions in Lemmaare satisfied. For any § > 0, let 7 = min{24,/€,/ Ly, 25, /e5 /(AL +
L¢)}. For any x satisfying ||x —x|| < r < #, Using the fact that g is L,-smooth and ||Vg(x)||* < e,
it holds that

9(x) > 9(3) + (Vg (), x %) — 2%~ x]?

> 9(%) = Vegllx = x[| = 0\/&Ix = x| = (%) = (1 +6) /& lx — ],

where we used [|x — x|| < r < 20,/€;/L, in the second inequality. Thus, the first condition in
Lemma [3.1]is satisfied. Moreover, Consider any x that satisfies ||x — X[ < r and g(x) < g(x).
Since f is Ly-smooth, it holds that f(x) > f(x) + (Vf(X),x — %) — L—Hx — x||2. By using
(IVf(x)+ )\Vg( ) < /€, we further have

F6) 2 J(3)+ (V) + AVg(%), % — ) = A(Tg(x), % — %) — L[ — x|
> J(5) ~ ezl — &)~ MVg(%), % — %) — L%~ x].

Using the smoothness of g, we also have g(x) > g(x) + (Vg(X),x — X) — % ||x — %]|%. Hence, we
get —(Vg(x),x — %) > —%2x — %||?. Thus, this leads to

L L
£0) 2 F3) = /e lx = &l = A2 % = x]* = S - x|

Since ||x — x|| < r < 2d,/€5/(ALg + Ly), we obtain f(x) > f(x) — (1 +0),/€f[x — x||. This
shows that the second condition in Lemmalﬂlls also satisfied.

For the other direction, assume that x satisfies both conditions in Lemma Consider any direction
d € R™. Then Condition (i) implies that, for all ¢ small enough, we have g(x — td) > g(x) — (1 +

Jd)egt]|d||, which can be rewritten as M < (1 + d)egl/d||. By taking the limit t — 0, we
obtain (Vg(x),d) < (1+0)e,4|d|. By takmgd 'Vg(x), this implies that || Vg(%)| < (1 +0)eg.
Since this holds for any § > 0, taking the limit § — 0 yields ||Vg(%)|| < ¢,. Moreover, let
d € R" be any direction that satisfies (Vg(%),d) > 0. Then for all ¢ small enough, it holds that
g(x — td) < g(x). Thus, using Condition (ii), we have

F& 1) > £ - (Lt o)egtfa] = LETIETID g gy

Similarly, by taking the limits ¢ — 0 and § — 0, we obtain (V f(x),d) < ef||d||. Since this holds
for any d that satisfies (Vg(x),d) > 0, continuity ensures that it also holds for any d such that
(Vg(x),d) > 0.If (V f(x), Vg(x)) > 0, then by settingd = V f(x), we obtain that ||V f(X)|| < €.

Otherwise, if (V f(x), Vg(x)) < 0, let A = —{EL20) > 0 and set d = V(%) + AVg(%).
Note that this choice of A ensures that (Vg(%),d) = 0, and hence (Vf(x),d) = ||d||* < ef|/d],

which implies that ||d|| < e;. This completes the proof.

A.2 Proof of Theorem 3.2]
Suppose X is an (ey, €4)-stationary point of Problem (), the second inequality in Definition

is satisfied with ¢; = ¢,. Now, we start to prove the first inequality in Definition [3.2] by setting
w = A(X — x*), where x* denotes the stationary point closest to X.
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IVF(%) + Vig(x)w]| < [V (%) + VZg(x")w]| + [[VZg(x) — VZg(x*)|[[|w]

V(%) + AVg(X)|| + A Vg(%) = VZg(x") (% — x*) || + ALglx — x*|?
ef + A|Vg(%) = Vg(x*) = VZg(x")(x = x")|| + ALg % — x*|?

€f + 22 L% — x*||* < e + \|Vg(X)| - 2L g e,

Oler + AIVa(x)lleg)

A

<
<

where the second and fourth inequalities follow from the Lipschitz continuity of V2g(x), the third
follows from the second condition in Definition[3.T} and the last follows from Assumption[3.1} Hence,
the first condition in Definition [3.2holds with €, = O(es + A||Vg(x)[ ).

B Omitted Proofs in Section [3

B.1 Proof of Lemma[5.1]
From Assumption f has an L y-Lipschitz continuous gradient, hence,
FOxwen) = F0) < —n9 Foex) di + o
= (Vi) i) T~ (1~ L) el
= V() T~ (1~ 2L
where in the last equality we used V f(x1) = dp — A\ Vg(xx). Since dj is the optimal solution of

subproblem with the corresponding optimal dual multiplier \g, the complementarity slackness
implies that A\t (Vg(xx) "dx — B||Vg(xx)||?) = 0. Hence, we further obtain

L
fXhy1) = fxx) < —n(1 - 71077)”011@”2 + 1BV () 1.
By dividing both sides by 7 and rearranging the inequality, we obtain (T7).
Moreover, from Assumption[2.1} g has an L ,-Lipschitz continuous gradient, which implies that
L L
9(%kt1) = 90xk) < —nVg(xx) i + Fnlldi]|* < =Bl V(i) |* + Tl dk?,

where we used Vg(x;) "dy > B||Vg(x)||? from in the last inequality. Dividing both sides by
7 and rearranging the inequality yields (T8).

B.2 Proof of Lemma[5.2]
By Assumption the gradient of f is bounded by G'y. Thus, we have

[(Vf(xx), Vg(xz)) | Gy

A —
N PN D]

<pB+
This completes the proof.

B.3 Proof of Lemma[5.3]

By combining Lemma with (I7), we have (1 — %)Hdkﬂ2 < % + B%|Vg(xk)||* +

BGf||Vg(xy)||. Substituting the upper bound on ||Vg(xs)|| in (I8) and combining terms, we arrive
Ly+BLg Afr+BAgk Age | L .

at (1 2ELEBE)) | g, |2 < ALEBOG 4 /BGy, [A0 1 Daplidy||2. Since < 4 < L,

the left side of this inequality can be lower bounded by %|/dy||?. By multiplying both sides by 2 the
claim follows.
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B.4 Proof of Lemma[5.4
Sincex < A+B/z, wehave (yVz—£)? < A+Z- ® . which further implies V-2 <\ /A+ %2. By
B2
addmg to both sides, takmg the square, and using Young’s inequality we obtain z < (y/A + - +
Byr=4+% +B,/A+ 2 < A—i———i— (A"‘T) = 2A + B2, This completes the proof.

B.5 Proof of Theorem 5.3
Multiplying (T8) by +- - and adding it to (2I), implies

d. |12 2 4Af Agyg A
I +/3||Vg<xk>|| < MBSt PAG) | 389k | gpnar
2 Lgn n Lgn?

Define the potential function as G, £ 1||dy|* + Liqn [Vg(xk)||>. Averaging the above inequality
over k = 0 to K — 1 and noting that Zf:_ol Afy = f(xo0) — f(xk) < f(x0) —inf f = Ay and
Yo Agr = g(x0) — g(xx) < g(x0) — g* = Ay, we obtain

Kz: A(Af+BA,)  3A

I +28G%Lyn.
ok T ogpr TG

. 1 . .
Since 1) = /ey and B = 7G5y, by letting k* = argming << 1 Gk, We get

ALA; ALA, 3L2A, 2G%
S Ke /G T K@)/ 6 LK)/ K +0)/Grn)

G~

|2, it follows that [|dg-~ ||> < 2Gk~ and || Vg(xp+ ) ||? <

Lg"gk* = LK(%% By the definition dy, = V f(xx) + A\ Vg(xx) and the fact that A, > 0,
the proof is complete.

Finally, since Gy = 1 [|dg-[|?+ Lign Vg (xi-)

C Other Choices of ¢(x) and their connection to methods considered in the
literature.

In this section, we briefly discuss the connection between other methods studied in the literature and
the general algorithmic framework described in (LT)-(12)).

Lower-level linearization based methods. If we set ¢(x) = a(g(x) — g*) in the update (12),
where av = 1/, the resulting method closely aligns with the lower-level linearization-based approach
introduced in [2]. This method was originally developed to solve simple bilevel optimization problems
with a convex lower-level objective. The key idea of this type of method is to construct a halfspace to
approximate the lower-level solution set X’;. Specifically, the approximated set is constructed using a

g
linear approximation of the lower-level objective as follows,

X ={xeR": g(xx) + Vg(xk)—r(x —x) < g}

If g is convex, then the constructed set X}, contains X for all k. The update of the projection variant
of the algorithm in [2] is as follows,

X1 = g (x5 =V f(x))
which would be equivalent to

I?

X1 = argmin ||x — (xx — nV f(xx)) st g(xk) + Vg(xk)—r(x —x) < g"

Through change of variables and defining d = (x; — x)/7, we can equivalently reformulate the
above subproblem as

d, = arg;nin |d — V £(xp)||? st. Vg(xx)'d > (g(xx) — g%)/n.
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This is a special instance of (I12) with ¢(x) = (g(x) — ¢*)/n. This choice of ¢(x) is suitable for
convex problems, as the solution set X’ ; is convex and can be contained within X},. However, when
the lower-level loss is nonconvex, Xg* is also nonconvex, meaning the inclusion Xg* C A, is not

guaranteed. To address this, ¢(x) must be adapted, and using the gradient norm offers a natural
extension to the nonconvex case.

Orthogonal projection methods. BiLevel Optimization with Orthogonal Projection (BLOOP) [3]]
was recently proposed for stochastic simple bilevel optimization. Its key idea is projecting the
upper-level gradient to be orthogonal to the lower-level gradient. In the deterministic version, the
descent direction dy, for the update xx41 = X — Nrdy, is chosen as

Vf(x) " Vg(xi)
Vg(xx)|I?

The second part of dy, is the projection of the upper-level gradient onto the orthogonal space of the
lower-level gradient. If we rearrange the terms in dy, dj is equivalent to

d, = argcrlnin IId — Vf(xk)||2 s.t. Vg(xk)Td = ﬁ||Vg(xk)||2.

d. = BVyg(xk) + |V f(xk) —

Vg(xk)

This is a special case of (T12) with ¢(x) = 3||Vg(x)||?, but with an equality constraint instead of an
inequality. Solving the equality-constrained subproblem with the chosen ¢(x) ensures convergence
of the lower-level objective but not the upper-level one [5]. In contrast, we show that solving the
inequality-constrained problem also guarantees convergence for the upper level.

D Connections with Algorithms for General Bilevel Problems

In this section, we discuss why most algorithms designed for general bilevel problems are not directly
applicable to our simple bilevel setting and highlight the connections between the two classes of
algorithms. In the general form of bilevel problems, the upper-level function f may also depend on
an additional variable y € R™ that in turn influences the lower-level problem:

egin S (x,y) st x€argming(zy)
However, in our considered simple bilevel setting, there is no additional upper-level variable. As a
result, the upper-level updates present in algorithms for general bilevel problems become invalid.
When these updates are removed, some algorithms—such as those in [44} 45 35]—reduce to standard
gradient descent on g, i.e., Xg+1 = X — N Vg(xx ). Many other methods [33] 34 311 [46| [32]] reduce
to the update,

Xp+1 = Xp — M (Vf(xk) + M Vg(xx))

which we refer to as the penalty method for nonconvex simple bilevel problems. We include this
method as a baseline in our experiments in Section[6] The key challenge for the penalty method lies
in selecting an appropriate penalty parameter \;. The choices of \j; used in general bilevel problems
are not suitable for the simple bilevel setting, as they are based on different stationarity metrics.
Therefore, determining the appropriate value of \j, for this method requires a tailored analysis specific
to the simple bilevel setting. Note that DBGD algorithm essentially provides a dynamic scheme for
selecting Ay, as described in (T4).

D.1 Connections with Stationarity Metrics for General Bilevel Problems

Besides the algorithms themselves, the stationarity metrics for general bilevel problems are also not
directly applicable to the simple bilevel setting. For instance, [47, 31} 32]] adopt the norm of the
hyper-gradient as a measure of stationarity. Recall that the hyper-objective [48] is defined as follows :
min ,  where = min X,y),
Jmin e(y) ply) = mi . f(xy)
where X*(y) £ arg min, g(z,y). However, in the simple bilevel setting without upper-level vari-
ables y, the norm of the hyper-gradient constant and thus fails to serve as a valid metric. Furthermore,
most existing approaches rely on strong convexity or the Polyak—t.ojasiewicz (PL) condition for the

lower-level problem—assumptions that are violated in our case, where the hyper-gradient may not
even be well-defined.
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Other works, such as [35]], consider alternative stationarity metrics. When rewritten in the context of
our simple bilevel setting, their condition becomes: there exists w € R" such that

IV2g)(Vf(%) + VigR)wW)* <€, [Va(R)]* < .

Intuitively, the first condition ensures that the component of V f (%) + V2g(X)w projected onto the
kernel of VZg(%) is small, i.e.,

Projke(v2gx)) (VF(X) + Vig(X)w) ~ 0.

This stationary metric is generally weaker than the metric defined in Definition[3.2]

D.2 Additional Related Works on General Bilevel Problems

To go beyond strongly convex lower-level objectives, additional assumptions on the lower-level
problem are necessary to ensure meaningful guarantees, particularly in light of the negative results
for general bilevel optimization with merely convex lower-level objectives [32]. A common strategy
is to assume that the nonconvex lower-level objective satisfies the Polyak—t.ojasiewicz (PL) condition.
Specifically, a penalty-based gradient method was introduced in [34]] for both unconstrained and
constrained nonconvex-PL bilevel optimization. Later, [35] proposed GALET, a Hessian-vector-
product-based method with non-asymptotic convergence guarantees to the modified KKT points
of a gradient-based reformulation. In [31], nonconvex bilevel optimization under the proximal
error-bound (EB) condition was studied, which is analogous to the PL condition. More recently, in
[36], a Hessian/Jacobian-free method was developed that achieves optimal convergence complexity
for nonconvex-PL bilevel problems. Besides imposing the PL condition on the lower-level problem,
these works also rely on different additional assumptions. For example, [33] additionally assumes
that both the upper- and lower-level function values, as well as the norms of their gradients, are
bounded, and the lower-level optimal solution is unique. The work in [35] requires both PL and
convexity assumptions on the lower-level problem to guarantee convergence. The studies in [31] and
[32] impose the condition that a weighted sum of the upper- and lower-level objectives satisfies the
PL condition. Finally, in [36] it is assumed that V2g(x) is non-singular at the minimizer of g.

D.3 On the Role of the PL Condition

The PL condition plays a central role in the analyses of the aforementioned works in general bilevel
optimization. For example, [32] heavily relies on the fact that the PL condition induces a "strongly
convex subspace" around any minimizer of the lower-level objective. This structural property
enables the adaptation of proof techniques similar to those in [46], which developed an algorithm for
general bilevel problems with a strongly convex lower-level objective. Essentially, in general bilevel
settings, the PL condition ensures the continuity of the hyper-objective ¢(y), thereby guaranteeing
the existence of the hyper-gradient. This facilitates rapid convergence to a neighborhood of X*(y).
However, in our considered simple bilevel setting, the hyper-objective and its gradient are not well-
defined, and we instead rely on alternative stationarity metrics. Consequently, the PL condition is
less applicable and offers limited benefit compared to its role in general bilevel problems.

E Experiments Details

In this section, we include more details of the numerical experiments in Section @ All simulations
are implemented using MATLAB R2022a on a PC running macOS Sonoma with an Apple M1 Pro
chip and 16GB Memory.

Toy Example. Recall that for Problem (24), the optimal solution set of the lower-level problem
is given by X = {x € R? : x5 = sin(10x;)}. The optimal solution of the bilevel problem is
x* = (=35, —1). We apply DBGD using ¢(x) = ||[Vg(xx)||?, i.e., with 3 = 1, and also employ the
Penalty methods introduced in Section@]with A € {1,10,100,1000}. Both methods are initialized
at the point xo = (—3, —1), using a base stepsize of 7 = 10~2 and a total of K = 107 iterations.
Since the penalty methods become unstable for large values of A, we further scale the stepsize by a
factor of 1/(1 + A) in each independent run.

Matrix Factorization. For Problem @I), we set n = r = 10 to generate U, and construct
M = U,U] + I, where ¢ ~ N(0,0.01) and I, € R™*™ denotes the identity matrix. We
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apply DBGD with 58 € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1} and compare it against the penalty
methods described in Section@ using A € {1, 2,5, 10, 20, 50, 100, 200, 500, 1000}. Both methods
use a stepsize of 7 = 1075 and are run for K = 106 iterations. Since the penalty methods become
unstable for large values of \, we further scale the stepsize by a factor of 1/(1+4 ) in each independent
run. The hyperparameter « in both f; and f5 is set to 1.

F Additional Experiments

F.1 Different Stationary Points
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Figure 3: Solving Problem (24) with different Initializations

In this additional experiment, we analyze the exact stationary points to which DBGD converges and
examine the effect of different \; values at these points, as discussed in Section

We consider the problem in Equation (24) from Section|§|and run DBGD with ¢(x) = [|[Vg(x)||?
on the specified instance. As shown in Figure 3] the algorithm converges to three distinct stationary
points, depending on the initialization. This behavior corresponds to the two scenarios discussed in
Section 3] further supporting our theoretical insights.

* Case I: For Initialization 2 (green), DBGD converges to a point where both ||V f(xy)| and
IV g(xx)|| are small. As shown in Figure d), (e), and (f), all three metrics decrease. As illustrated
in Figure[3|c), the cosine of the angle between V f (x;) and Vg(xy,) remains positive and eventually
approaches 1. Figure 3{b) shows that A, decreases to 0, aligning with the closed-form expression

* Case II: For Initializations 1 and 3 (blue and red), DBGD converges to stationary points where
[V g(x)|| is small, as shown in Figure[3[f). Additionally, V f(x;) has minimal energy in directions
orthogonal to Vg(xy), as seen in Figure[3(d). The remaining energy of V f(x) is entirely in the
opposite direction of Vg(xy), since ||V f(xx)| does not converge (Figure e)), and the angle
between V f(x;) and Vg(xy) is close to 180°, as shown in Figure 3{c). In this case, A;, cannot
be bounded by an absolute constant, as depicted in Figure [3{b), which is also consistent with our
theoretical results.
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F.2 Additional Baselines

While there are no existing methods specifically tailored to the nonconvex simple bilevel setting, we
include two additional baselines—BigSAM [[19]] and a-IRG [9]—which are originally designed for
the convex case. We briefly review the update rules of these two algorithms below.
BigSAM is given by

Yit1 = Xk — g Vg(Xx),

Z1 = X — NV f(Xk),

X1 = Qp1Zk+1 + (1 — Qpy1)Yet1,
where 7); and 1), are constant stepsizes, and «y, = min{7, 1} for some y > 0.

a-IRG is given by
X1 = Xk — W(Vg(xi) +mV f(xk)),
where v, = \/% and 0, = (kﬁ# for some constants 7o and 7g.

Following the same setup as in our original paper, we report the final gradient norms and cos 6 after
1000 iterations. The table below summarizes the performance of the considered algorithms in the
first experiment, with parameters chosen via grid search.

Method Final [|Vg]2 Final [V f[|> | Final cos(6)
DBGD 8.5657 x 10717 | 1.0596 x 10~1¢ —1.0000
Penalty X = 1 1.8142 4.4409 x 10716 1.0000
Penalty A\ = 10 2.4473 x 1071 1.9800 x 10! 0.2813
Penalty A = 100 6.3210 x 1073 9.4788 0.8692
Penalty A\ = 1000 7.2475 x 107° 1.7477 x 10* 0.7334
BigSAM 2.7177 x 1074 2.1026 x 10! 0.4741
a-IRG 9.3776 x 1077 1.9802 x 10! 0.6903

Table 1: Toy Example

For the second experiment, we present the averaged results for each method across these parameter
settings in the tables below. The total number of iterations is set to 106,

Method Vgl VLA g(U) f(U)
DBGD 5.59 x 1073 472 x 101 2.73 x 1077 129.32
Penalty 9.79 x 10! 1.06 1.82 x 1072 134.67
BigSAM | 4.54 x 1073 5.71 3.96 x 104 134.80
a-IRG 1.89 x 1072 1.81 1.30 x 10~* 135.40
Table 2: Matrix Factorization f
Method [Vl VLS g(U) f(U)
DBGD 7.12 x 1073 3.95 x 1071 8.15 x 10~ 7 37.042
Penalty 1.109 2.23 3.57 x 1072 48.543
BigSAM | 4.55x 1073 7.72 3.96 x 10~* | 51.254
a-IRG 2.43 x 1072 2.75 1.05 x 10~% 52.709

Table 3: Matrix Factorization fo

As shown in the tables, it is not surprising that BiG-SAM and a-IRG underperform compared to
DBGD in terms of our proposed stationarity metrics, as they are not specifically designed for the
nonconvex setting. In particular, their performance is similar to that of the penalty method with a large
penalty parameter—overemphasizing the lower-level objective while failing to adequately control the
upper-level. The failure of algorithms designed for convex simple bilevel optimization when applied
to nonconvex simple bilevel problems highlights the necessity of studying the nonconvex setting.
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F.3 Other Applications for Simple Bilevel Optimization

Simple bilevel optimization arises in various applications, such as sparse representation learning [3|],
fairness regularization [2], and dictionary learning [4]. In what follows, we illustrate several specific
formulations.

Sparsity Representation Learning. We learn sparse feature representations on a supervised dataset
D of (x,y) pairs by applying a non-convex L,, regularization:

F(6) = E[l(y, do(ho(2)))],  9(0) = En[lha(2)II}],

where £(-, -) is the data loss, hg(z) — z € R™ is a hidden feature map, ¢y is a prediction head, and
p is a power coefficient.

Fairness Classification. Concretely, the lower-level problem is a sparse logistic-regression problem
for some \ > 0:

1 n
= —— I P Ai = Y; is 1. S )\7
éIel]lRI}l g9(8) - E_ ogP(gi = yi | v:;8) s 18111

while the upper-level objective is the squared covariance:

n 2
f(B) = <:L D (=) P(g =1 l‘ﬁﬁ)) ~

i=1

chtlonary Learning. We aim to find the dictionary D € R™*4 (g > p) and the coefficient matrix
X e R?*™ for the new dataset A’, and at the same time enforce D to perform well on the old dataset
A together with the learned coefficient matrix X . This leads to the following bilevel problem:

min min  f(D, X)
DeRqu XGR‘?X"

S.t. kaHo <46, k= ].,...7’I’L/7

D carg min g(D),
lld;ll2<1

where the objective
o 1 n’ o
F(B.X) & oS af,— D

is the average reconstruction error on the new dataset A’, and the lower-level objective

g(D) £ TZHGJ’L*D:E'L

is the error on the old dataset A.
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