Paper2Code: Automating Code Generation
from Scientific Papers in Machine Learning

Minju Seo!, Jinheon Baek', Seongyun Lee!, Sung Ju Hwang'?
KAIST!, DeepAuto.ai?
{minjuseo, jinheon.baek, seongyun, sungju.hwang}@kaist.ac.kr

Abstract

Despite the rapid growth of machine learning research, corresponding code imple-
mentations are often unavailable, making it slow and labor-intensive for researchers
to reproduce results and build upon prior work. In the meantime, recent Large Lan-
guage Models (LLMs) excel at understanding scientific documents and generating
high-quality code. Inspired by this, we introduce PaperCoder, a multi-agent LLM
framework that transforms machine learning papers into functional code reposito-
ries. PaperCoder operates in three stages: planning, where it constructs a high-level
roadmap, designs the system architecture with diagrams, identifies file depen-
dencies, and generates configuration files; analysis, which focuses on interpreting
implementation-specific details; and generation, where modular, dependency-aware
code is produced. Moreover, each phase is instantiated through a set of specialized
agents designed to collaborate effectively across the pipeline. We then evaluate Pa-
perCoder on generating code implementations from machine learning papers based
on both model-based and human evaluations, particularly from the authors of those
papers, with author-released repositories as ground truth if available. Our results
demonstrate the effectiveness of PaperCoder in creating high-quality, faithful im-
plementations. Furthermore, it consistently shows strengths in the recently released
PaperBench benchmark, surpassing strong baselines by substantial margins. Code
is available at: https://github.com/going-doer/Paper2Code.

1 Introduction

Reproducibility lies at the heart of scientific progress, which enables researchers to validate findings,
build upon prior work, and ultimately push the boundaries of knowledge [6}(3,131]]. However, reproduc-
ing scientific results remains an enduring challenge. This is often due to incomplete documentation,
missing experimental details, lack of access to data or proprietary tools, and, especially in machine
learning research, the absence of corresponding code: for example, only average 19.5% of the papers
accepted to top-tier machine learning conferences in 2024 provide their code implementations shown
in Figure[T] As a result, researchers frequently invest substantial effort in reverse-engineering methods
and experimental results from papers, a process that is both time-consuming and labor-intensive,
subsequently slowing down the overall pace of science.

Meanwhile, recent Large Language Models (LLMs) have shown outstanding capabilities in under-
standing and generating both natural language and programming code [10, 29, 136]], with performances
increasingly approaching or even surpassing that of domain experts in some scenarios. In addition,
this progress has sparked growing interest in leveraging LLMs to accelerate scientific workflows, par-
ticularly in the early stages of ideation for new and valid research hypotheses [24} (1849} [38L148L |37, [2]].
Furthermore, some of these studies, as well as others focusing on later stages of automating experi-
mental validations and improvements [[14} 52,42} 4]], demonstrate the potential of LLMs to generate
code and even carry out experiments end-to-end; however, they typically assume and heavily rely

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://github.com/going-doer/Paper2Code

PoperCOder 4000 mm Accepted Paper

q&) With Code
1. Planning 2. Analysis 3. Coding Codpos 53000
— _T 11 ; 2000
5% 6
- 21.2% 16.7% A0{50
ICLR 2024 ICML 2024 NeurIPS 2024
(a) PaperCoder overview (b) Code availability

Figure 1: (a) PaperCoder, which aims to transform given scientific papers into code repositories, consisting of
planning, analysis, and coding steps. (b) Code availability, where blue bars indicate the total number of accepted
papers and orange regions show those with officially released code (See Appendix for calculation details).

on access to pre-existing implementations, partial code snippets, or well-defined APIs. As such, it
remains questionable whether generating faithful implementations solely from papers (without access
to prior code, APIs, or additional supplementary materials) can be achievable.

To answer this question, we introduce PaperCoder, a multi-agent LLM-powered framework, designed
to automatically generate faithful code repositories in machine learning directly from and contextual-
ized with research papers, which differs from prior work that requires partial implementations from
human inputs. Specifically, PaperCoder aims to emulate the typical life cycle of human developers
and researchers in writing the repository-level code, by decomposing the task into three structured
stages: planning, analysis, and generation. First, during the planning stage, the proposed framework
constructs a high-level roadmap to identify core components to implement, draws the overall system
architecture with class and sequence diagrams to model structural relationships between modules,
identifies file dependencies with their execution orders to guide correct build and execution flows, and
generates configuration files to enable flexible customization of experimental workflows by human
researchers. This is followed by the analysis stage, performing a fine-grained interpretation of each
file and function with respect to their intended functionality, such as required inputs and outputs,
interactions with other modules, and any algorithmic or architectural constraints derived from the
source paper. Finally, in the generation stage, the framework synthesizes the entire code base based
on the execution order determined earlier, along with the artifacts produced in the previous stages.

To validate the effectiveness of PaperCoder, we conduct extensive evaluations on a subset of recent
machine learning papers from ICLR, ICML, and NeurIPS referred to as our proposed Paper2Code
benchmark (in short, Paper2CodeBench). Also, we incorporate the recent benchmark [39] in our
evaluation suite, enabling fine-grained evaluations of code implementations. Then, on a battery
of tests conducted not only with automated model-based evaluations (covering both reference-free
and reference-based settings, conditional on the availability of author-released ground-truth repos-
itories) but also with expert human evaluations (based on authors of original papers), PaperCoder
demonstrates substantial improvements over baselines, generating more valid and faithful code repos-
itories that could meaningfully support human researchers in reproducing prior work. Specifically,
88% of the generated repositories by PaperCoder are rated as the best over baselines, and 92% of
human judges report that the generated repositories are indeed helpful. Also, analyses show that
each component of PaperCoder (consisting of planning, analysis, and generation) contributes to the
performance gains, but also that the generated codebases can be executed, sometimes with only minor
modifications (averaging 0.81% of total code lines) in cases where execution errors occur.

2 Related Work

Large Language Models for Code LLMs have shown impressive capabilities in text understanding
and generation [29, |10, 36] and widely utilized for specialized domains (beyond general tasks), such
as mathematics, science, and coding [33| 44, 41]]. Particularly, code-specialized LLMs [15, 8} 9]
have received significant attention thanks to remarkable performance on various software engineering
tasks [46l], including software design and development [35, [13], requirements elicitation [28]], and
formal specification generation [25]]. Our work aligns closely with this line of research, exploring
and expanding upon the capabilities and applications of (code-specialized) LLMs.

Repository-Level Coding Early work on code generation typically focuses on single-file tasks,
whose objective is to generate short code snippets to solve isolated tasks, such as (algorithmic-
level) programming competition problems [5, (1, [12} [19]. However, as LLMs have advanced in



comprehending and generating code with the long-context reasoning ability, recent studies have
increasingly shifted their attention toward more challenging repository-level coding tasks, which in-
volve generating multi-file repositories that jointly account for architectural design, modular structure,
and inter-file dependencies [21 16, 40]]. In particular, several recent efforts explore this emerging
paradigm [51} 30], adopting multi-agent or role-based frameworks to emulate realistic development
workflows. For instance, ChatDev instantiates LLMs into role-playing agents that collaborate through
structured dialogues [35]], while MetaGPT implements a waterfall-style development pipeline with
specialized agents [13]]. Beyond prior work, we explore the underexplored task of transforming full,
complex papers into repository-level code.

LLM-Powered Scientific Research LLMs have been adopted to support the scientific process
from ideation to experimental validation [32} 34, 18} 49, [7] 20, |2} |45]]; thereby, helping researchers
overcome existing challenges and ultimately accelerate scientific discovery [17} 24, 48]]. Specifically,
in fields such as computer science (where code-based experimentation is central), LLMs have been
used to design, refine, and extend code implementations. However, many recent efforts in this space
assume access to and build on top of the original codebase [14} 42|47, 4], which significantly limits
their applicability in real-world scenarios since such implementations are oftentimes unavailable
(See Figure E]) To address this, concurrent to our work, Starace et al. [[39] introduces a benchmark
dataset called PaperBench, evaluating the capability of existing agentic Al systems in reproducing
papers with fine-grained metrics. Notably, on top of PaperBench (which emphasizes evaluation), we
further complement and extend this line by focusing on methodological aspects of how to transform
scientific papers into repository-level code implementations.

3 Method

In this section, we start with describing the task of repository-level code generation from machine
learning papers, and propose PaperCoder, a multi-agent, multi-stage framework designed to tackle it.

3.1 Repository-Level Code Generation from Machine Learning Papers

The goal of our repository-level code generation task is to automatically produce a repository that
faithfully implements methods and experiments described in machine learning papers (especially for
cases where authors do not release their code), to support reproducibility and accelerate scientific
progress [31,[27]. Formally, we define this task as a function (or a model) M that maps a paper R
to a corresponding code repository C, as follows: M (R) = C. Here, C' is composed of multiple
files {¢1, ca, ..., ¢ }, each responsible for implementing different components of the methods and
experiments in R, but together they should form a cohesive pipeline.

The most straightforward approach to instantiating M is to instruct the LLM to generate the entire
code repository, conditioned on the given paper, as follows: M(R) := LLM(7 (R)), where T is
the prompt template that specifies the intended behavior of the LLM for the target task (including
task descriptions, detailed instructions, and any other relevant context). Yet, generating a complete,
modular, and faithful repository in a single pass is extremely challenging, even for powerful LLMs,
due to the inherent complexity of scientific papers and their corresponding implementations, the long-
context limitations of current models, and the difficulty in maintaining consistent global structure and
cross-file dependencies. Therefore, we propose to decompose the overall task into smaller subtasks,
each handled by a specialized agent tailored to a specific aspect of paper-to-code transformation.

3.2 PaperCoder: LLM-Powered Multi-Agent Framework for Paper-to-Code

We now introduce PaperCoder, a structured, multi-agent framework for generating code repositories
directly from machine learning papers (without access to pre-existing artifacts or implementations,
such as skeleton code). Specifically, inspired by typical software development workflows, PaperCoder
decomposes the task into three coordinated stages: Planning, Analysis, and Coding, each orchestrated
by specialized LLM agents. Formally, given a paper R, the overall process can be defined as follows:

Planning: P = My, (R), Analysis: A = Myaysis(R, P), Coding: C = M. (R, P, A),

where P, A, and C' represent the high-level implementation plan, the detailed function-level analysis,
and the final code repository, respectively. The overall pipeline of PaperCoder is shown in Figure



Nai PaperCoder
» ave P [ 1. Planning ]
Paper

o 1= 7 B F3 %
Attention is All
You Need A ¥ N
q A d . 9
3.5 Positional 1.1 Overall Plan ?%@ 1.3 Logic Design .: 1.4 Configuration
Encoding
5.3 Optimizer 1. OVERVIEW N
We used Adam op.. S 1. dataset_loader.py: training: | .
6. IMPLEMENTATION ROADMAP & DatasetLoader class:... model: "Transformer
ACTION STEPS EXPERIMENT SETUP 2. model.py: model_size: "base"
. Tm"sfor:ZrMo del training_steps: 100000
Step 3. Model Components " - batch_token_count: 25000
Implementation 3. trainer.py: Trainer class:... N
LLM N Cfea"e_the . 4. evaluation.py: Evaluation ..... optimizer:
positional encoding 5. main.py: Main entry point: .. type: "Adam”
module using sine and cosine 6. utils.py: Utility functions: ....
functions
</>| Code
[ 2. Analysis ] [ 3. Coding ]
E 87 E 87

e main.py # model. # main.
No positional model.py Closs Poct tionalEncoding Ge main() > None:
encoding! 1. Initialization and (nn.Module): -
6. SUBMODULE Configuration Parsing def _init_(self, .. optinizer: .
CONSIDERATIONS . Reiad and pa'rTe the def encode(self, . (DZ(T;:v;;:’;‘(‘)p()m)zer =
a. Multi-Head Attention con! ‘fgmamln e # Add positional encoding ptransfnrmer_mndel..
b. Feed-Forward Network (configyaml) using PYYAML. and optional dropout. o,
- ..., optimizer settings betas=(betal, beta2),
(FFN) (Adam with B1, B2, self.positional_encoding eps=epsilon
B2, )

c. Positional Encoding (embedded)

No optimizer!

epsilon),

Figure 2: (Left) The naive approach, which directly generates an entire code repository from a paper. (Right) Our
PaperCoder framework, which is operationalized by decomposing the task into three stages: (1) Planning, where
a high-level implementation plan is constructed from the paper, including overall plan, architectural design, logic
design, and configuration file; (2) Analysis, where the plan is translated into detailed file-level specifications;
and (3) Coding, where the final codes are generated to implement the methods and experiments of the paper.

3.2.1 Planning

It is worth noting that, in contrast to implementation specifications designed explicitly for software
development, papers are written to communicate ideas and findings to humans. As a result, they often
contain high-level motivations, persuasive narratives, and auxiliary details that are crucial for human
understanding but noisy, loosely specified, or ambiguous from a software engineering perspective.
To mitigate this, we introduce a planning phase that transforms unstructured textual content into
implementation-level abstractions. Also, we decompose the planning process into four sequential
subcomponents (to simplify the task and reduce cognitive load of LLM-powered agents at each step):
1) overall plan, 2) architecture design, 3) logic design, and 4) configuration generation. Formally, we
define this as: M (R) — P = {0,d,l, g}, where o is the overall plan, d is the architecture design,
l is the logic design, and g is the configuration file, with each stage using the outputs of the previous
ones as contextual input. We then describe how each subcomponent is instantiated below.

Overall Plan The first step is to extract a high-level summary of the core components and func-
tionalities described throughout the paper, to identify the specific methods and experiments to be
implemented. In other words, this high-level overview includes model components, training objec-
tives, data processing steps, and evaluation protocols (distributed across the entire paper), which can

form the foundation for all subsequent steps, formalized as follows: M;ﬁi?1 (R) := LLM(’E&? (R)) — o.

Architecture Design Based on the extracted overall plan alongside the input paper, the next step
is to define the repository-level architecture, which includes identifying files, organizing them into
modules, and defining their relationships, to ensure a coherent and maintainable structure. Specifically,
the LLM-powered agent is prompted to generate a file list, which outlines the overall file structure of
the repository; a class diagram, which details static representations of files (such as core classes and
their attributes); and a sequence diagram, which models the dynamic interactions. Formally, similar

to overall plan, this process can be defined as follows: Mp(lizl(R, 0) := LLM(ﬁgfg (R,0)) — d.



Logic Design While the previous architecture design focuses on what to build, the logic design phase
specifies how these components should be instantiated in practice by considering their dependencies
in terms of overall execution flow. This step is crucial because individual modules often depend on
shared utilities, configurations, or data loaders that are defined in other parts of the repository, and
without an explicitly defined execution order, the code generation can result in failure or inconsistency
(e.g., generating file B before file A when B imports modules from A). To address this, the logic
design stage not only produces an ordered file list that dictates the sequence in which the files should
be implemented and executed, but also further elaborates on the logic within each file; thereby,

(R,0,d) = LLM(T\2)(R, 0,d)) — .

providing more fine-grained specifications. Formally, M (3) plan

plan

Configuration Generation In the last stage of planning, PaperCoder synthesizes a configuration
file (config.yaml) that includes key hyperparameters, model settings, and other runtime options
based on prior outputs alongside the given paper. We note that, in addition to grounding the code
generation process with the explicit configuration details, it enables researchers to easily review and

(Rv o,d, l) =

LLM(E&Q (R,0,d,1)) — g. We provide prompts used to elicit each planning output in Appendix E

adjust experimental configurations without modifying the source code. Formally, Méézl

3.2.2 Analysis

Following the planning stage, which defines the overall structure and execution flow of the repository,
the analysis phase focuses on interpreting and specifying the implementation-level details for modules
within each file. In other words, unlike planning that answers what components to build and how
they relate, this phase addresses the question of how each component should be operationalized and
concretely implemented at the file level, which includes the definition of functional goals, input-output
behaviors, intra- and inter-file dependencies, and algorithmic specifications derived from the original
paper. Specifically, given the input paper R and planning outputs P = {0, d, [, g}, the analysis agent
iteratively processes each file f; (identified during planning) and generates a detailed analysis a;
describing what needs to be implemented in that file. Formally, { Manaiysis(R, P, fv)}f::llF‘ where
Manaysis (R, P, f;) := LLM(Tanaysis (R, P, fi)) — a;, with F as the set of identified files, e.g., f; € F.

3.2.3 Coding

The final stage is the coding phase, where the complete code repository is produced. In particular,
each file is generated based on all the available contextual information accumulated from the previous
stages, including the overall plan, architecture design, logic design, configuration file, and file-specific
analyses, as well as the original paper. Additionally, to ensure consistency across different files, we
generate them sequentially according to the execution order (i.e., the ordered file list determined during
the logic design stage). To be formal, for each file f;, the corresponding code c¢; is generated as follows:
Mcode(R7 P7 fi; ag, {Cl, ceey Ci—l}) = LLM(,];Ode(R, P7 fi, ag, {Cl, ceny Ci—l})) — Cj, resulting in the

complete code repository C' = {cl}?:l‘Fl We note that this iterative formulation can ensure that ¢-th

code is generated with full awareness of its dependencies and the evolving state of the repository.

4 Experiment

We now describe the experimental setup and the experimental results with reproducibility analyses.

4.1 Experimental Setup

Datasets To evaluate our PaperCoder, we construct a new benchmark (Paper2CodeBench). Specif-
ically, we collect the accepted papers from recent machine learning venues (such as ICLR, ICML,
and NeurIPS 2024) with the OpenReview AP]B and filter them based on the availability of code with
its total number of tokens less than 70,000, to ensure the full repository remains within reasonable
processing limits of modern LLMs for generation and evaluation. Also, to maintain the quality, we
perform model-based evaluation [22] with GPT-40 on all the collected repositories and select the top

'https://docs.openreview.net/reference/api-v2



30 from each venue, resulting in a total of 90 papers listed in Tables[T7} [T8] and [I9 Moreover, we ad-
ditionally consider 21 papers for human evaluation (See Table [20). In addition to Paper2CodeBench,
we also use the recently released PaperBench Code-Dev [39], which consists of 20 papers from
ICML 2024 with paper-specific rubrics annotated by humans. In particular, those rubrics are used to
judge the correct implementation based on LLM-based evaluation.

Baselines and Our Model We target the novel problem of Paper2Code, and there are no baselines
designed for it to enable direct comparison. Nevertheless, we consider several related approaches
proposed to implement repository-level code (or the entire software) from natural language inputs
(such as software requirements), in addition to the ablated variants of our full PaperCoder framework,
as follows: ChatDev [35]] is a multi-agent framework for software development, where several
role-specific LLM-powered agents collaborate via structured dialogues; MetaGPT [13]] similarity
adopts a role-based multi-agent paradigm, but its process is organized by the principle of Standardized
Operating Procedures (SOPs); Abstract is a variant of our PaperCoder, which uses only the paper
abstract for implementation; Paper, while using the full paper, performs one-shot code generation;
PaperCoder (Ours) is our full framework, structured into three stages of planning, analysis, and
code generation. Additionally, for the PaperBench Code-Dev, we consider baselines suggested by it:
Basic Agent is the agentic architecture that can run a predefined set of tools with the ReAct-style
approach [50]], built upon the agent from Inspect A]E], and Iterative Agent that extends Basic Agent,
iteratively instructing the model to complete the next subtask.

Evaluation Setup Recall that, as shown in Figure[I] the official code implementations of many
papers are not available; however, manually annotating their corresponding code implementations
to evaluate the quality of automatically generated code repositories is highly labor-intensive and
challenging. To address this and ultimately perform the evaluation at scale, we design two evaluation
protocols: reference-based (when ground-truth code is available) and reference-free (when it is not),
following the recent trends in using LLMs as a judge [53}[11} 22]]. In addition to this, we also perform
human evaluations with the authors of the original papers, to ensure reliable judgments and to assess
the quality of our model-based evaluations by measuring their correlation with human scores. We
discuss each evaluation protocol in detail below.

* Reference-Based Evaluation. We use the official author-released repository as the gold standard
only if it is available, since it most accurately reflects the implementations intended by the authors,
including the components they consider essential to their main ideas. Specifically, we prompt the
model (such as 03-mini-high’) to judge the quality of the generated repository with respect to the
gold repository, alongside the input paper as context (See Appendix [F| for the detailed prompt).
The model then identifies components (to be implemented), categorizes them into three severity
levels (high, medium, and low), and critiques how well each component is implemented. After that,
it returns the overall score on a 5-point Likert scale. We note that, to ensure the reliability of the
model-based evaluation, we sample multiple outputs (e.g., 8) and report the average score.

* Reference-Free Evaluation. For cases where the official author-released code is not available, we
introduce the reference-free evaluation protocol that leverages only the paper to assess the quality of
its generated repository. Similar to the reference-based evaluation, the evaluation model is prompted
to identify key components, categorize them by severity, and critique their implementations in the
generated code, but they are performed solely based on the information provided in the paper. The
rest of the evaluation process, such as sampling and score averaging, follows the same setup.

* Human Evaluation. While model-based evaluation offers a scalable and automated way of assess-
ment, we also conduct human evaluations to validate our PaperCoder based on expert-grounded
evaluation. Specifically, to ensure informed and accurate judgment, each participant is assigned a
paper for which they are the first author. Also, they are presented with multiple implementations
generated by different approaches, and asked to rank them. We offer more details in Appendix [A.2]

Lastly, for evaluation on the PaperBench Code-Dev benchmark [39], we follow their evaluation setup,
measuring the score over the paper-specific rubrics with LLM-based evaluation.

Zhttps://inspect.ai-safety-institute.org.uk/agents.html#sec-basic-agent
3Unless otherwise stated, we use 03-mini-high due to strong code understanding and reasoning capability.



Table 1: Results on our Paper2CodeBench, where we report average scores and standard deviations (in parenthe-
ses) grouped by conferences. Oracle denotes the evaluation results with the official repository released by the
paper authors. Also, on the right side, we report statistics on the number of tokens, files, and functions, averaged
over all implementations. Bold indicates the best scores, statistically significant than baselines (p < 0.05).

Reference-Based Evaluation Reference-Free Evaluation Statistics
ICLR ICML NeurIPS ICLR ICML NeurIPS # of Tokens # of Files # of Funcs

ChatDEV ~ 2.70 (0.63) 2.97 (0.58) 2.96 (0.69) 4.00 (0.65) 4.12(0.53) 4.01 (0.74) 6150.54 6.99 23.82
MetaGPT  2.48 (0.48) 2.75(0.70) 2.95(0.87) 3.52 (0.60) 3.63 (0.75) 3.59 (0.92) 5405.21 3.24 18.08

Abstract 2.28(0.42) 2.43(0.49) 2.35(0.62) 3.03 (0.64) 3.01 (0.60) 2.99(0.78) 3376.99 1.28 12.62

Paper 3.08 (0.66) 3.28 (0.67) 3.22(0.80) 4.15 (0.63) 4.30(0.53) 4.08 (0.84) 3846.33 1.79 14.84
PaperCoder 3.68 (0.52) 3.72 (0.54) 3.83(0.50) 4.73 (0.32) 4.73 (0.44) 4.77 (0.38) 14343.38 6.97 35.22
Oracle N/A N/A N/A 4.84 (0.26) 4.80(0.32) 4.83(0.38) 32149.04 28.00 122.03

Table 2: Results with human evaluation. For model-based evaluations (both reference-
based and reference-free), 5-point Likert evaluation scores are converted to rankings
for comparability with human ranking results. Human rankings are also converted to
scores of 5 (top repository), 3 (middle repository), and 1 (bottom repository).

~

w

Ref-free Score

2 . ; Score (1) Ranking ()
. r=079 Ref-based Ref-free Human Ref-based Ref-free Human
1 2 3 4 5
Ref-based Score Abstract 226(0.37) 2.94(0.61) 2.68(0.56) 2.96(0.20) 2.96(0.00) 2.70 (0.56)
. . Paper 3.00(0.54) 3.91(0.63) 2.76(1.20) 1.92(0.41) 1.88(0.38) 2.09 (0.60)
Figure 3: Correlation be- PaperCoder (Ours) ~ 3.66 (0.43)  4.55(0.51) 4.60 (1.00) 1.08 (0.28) 1.08 (0.28) 1.22 (0.52)
tween model-based eval- ChatDEV 268 (0.60) 3.82(0.37) 2.12(1.17) 2.58(0.50) 223(0.59) 2.43(0.59)
uations: reference-based MetaGPT 2.61(0.54) 3.39(0.67) 2.12(1.17) 2.38(0.58) 2.46(0.51) 2.43(0.59)

and reference-free PaperCoder (Ours)  3.66 (0.43) 4.55(0.51) 4.76 (0.88) 1.04(0.20) 1.04(0.20) 1.13 (0.46)

4.2 Experimental Results and Analysis

Main Results  Table[T|presents main results on Paper2CodeBench, in which PaperCoder consistently
outperforms all baselines. We hypothesize that this performance gap stems from its top-down behavior,
analyzing full papers thoughtfully before generation, unlike prior approaches that typically follow a
bottom-up strategy, which begins with and expands short requiremental descriptions (via role-playing
or SOP). In other words, the top-down approach, operationalized through the sequence of planning,
analysis, and coding, is effective in handling long-form scientific documents, which are often loosely
structured from a software engineering perspective. Also, when compared to the non-comparable
Oracle setting (which performs evaluations on the author-released repositories), PaperCoder achieves
performance that is on par, without statistically significant differences, demonstrating its effectiveness
in faithfully implementing code whose quality is closer to the implementation by authors.

Correlation between Reference-Based and Reference-Free Evaluation Recall that the reference-
free evaluation protocol is designed for cases where the ground-truth repository is not available, and
to investigate whether it works as a reliable proxy for the reference-based evaluation protocol, we
measure their rank correlation on all samples from Paper2CodeBench. Then, as shown in Figure 3}
there is a strong positive correlation between them, achieving a Pearson correlation coefficient of
r = 0.79. This result supports that the reference-free evaluation can serve as a reliable proxy for the
reference-based evaluation, ultimately functioning as a standalone metric to assess the code quality.

Human Evaluation Results In addition to automatic evalu- Table 3: Rank correlation coefficient
ations, we conduct human evaluations and report the results in  between human and model-based eval-
Table[2} From this, we confirm that PaperCoder achieves the best  uations (with GPT-40 or 03-mini).
ranking, consistent with model-based evaluations, which reaf-
firms its effectiveness. Also, to ensure whether the model-based
evaluations are a reasonable proxy to judge the implementation Ref-based  0.74 0.78
quality, we measure their correlations with human evaluation ~ _Ref-free 071 0.73
scores. As shown in Table[3] we observe strong rank correlations

across both reference-based and reference-free settings, which suggests that model-based evaluation
can reliably approximate human judgment. Also, based on this result, we use 03-mini-high as the
default evaluation model. Lastly, we ensure the quality and reliability of human evaluations by
measuring the inter-annotator agreement based on Cohen’s kappa coefficient, which exhibits a high
score of 0.79, indicating strong consistency.

GPT-40  03-mini-high




Table 4: PaperBench Code-Dev results. Table 5: Results based on both model-based and human evaluations
We report the averaged performance over with varying backbone LLMs for PaperCoder.

three runs with standard deviations. DS-Coder Qwen-Coder DS-Distill-Qwen  o3-mini-high

Replication Score (%) Score (1)  Ref-based 1.47(0.46)  1.78 (0.28) 2,05 (0.25) 3.66 (0.43)
Model 03-mini-high  claude-3.5-sonnet Ref-free 1.62(0.54)  2.09 (0.22) 2.31(0.24) 4.55(0.51)
Human  1.32(0.58) 2.71(1.12) 329 (0.98) 4.68 (0.80)

BasicAgent 5.1+0.8 354+ 0.8 Remkine () Ref T ooy a o s aas s T 100100
: , 2(1) Ref-based 3.46(0.00) 2.92(0.88) 2.25 (0.65) 1.00 (0.20)
_ MerativeAgent 16.4+£14 = 27.5+16 Ref-free  3.50 (0.00)  2.88 (0.83) 212 (0.54) 1.00 (0.25)
PaperCoder 4514 +0.3 5114+ 1.4 Human  3.74 (0.45)  2.74 (0.86) 2.30 (0.70) 1.22 (0.60)

Table 6: Ablation results on the Table 7: Results of the PaperCoder and 4.0 Poster
. : = 1 ligh
subset of Paper2CodeBench with PaperCoder with Self-Refine, under the 8. Oral/ Spotlight 372
scores and standard deviations. ~ reference-based evaluation protocol. '
©
Ref-based Ref-free PaperCoder w/ Self-Refine § 3.0
< 2.83 | 2.87
Paper 328(0.67) 430(0.53) Qverall Plan i 4876020 .
+Overall Plan 340 (0.57) 4.34 (0.58) rch. Design 3 3.96 (+0. . - —
+ Arch. Design 3%3 (0.68)  4.07 (0.74) %gﬁl(_‘_cgll;:eﬁégn Aztgg ég% gi(])%g; - 4 Gli’/"[l" 4;)1 b (2:13 mlnllhlgh'
+ Logic Design 3.60(0.52) 4.50(0.57) J -3 3.93 g : _
+ Conlig File 3166 (045) 445 (053) Analysis 418 432(+0.14) 1gure odel-based eva uation
+ Analysis (Ours) 372 (0.54)  4.73 (0.44) Code 339 3.89 (+0.50) results by paper presentation types.

Results on PaperBench Code-Dev In addition to our Paper2CodeBench, we further validate the
effectiveness of PaperCoder on another PaperBench Code-Dev dataset, which enables fine-grained
evaluations for code implementations. As Table[d]shows, PaperCoder achieves the highest replication
scores across two different LLMs of 03-mini-high and Claude 3.5 Sonnet, substantially outperforming
baselines designed for PaperBench Code-Dev. These results further demonstrate the generalizability
and robustness of PaperCoder across diverse evaluation benchmarks and models.

Analysis on Different LLMs Extending the model variations results on PaperBench Code-Dev,
we conduct an auxiliary analysis with DS-Coder [DeepSeek-Coder-V2-Lite-Instruct; 8], Qwen-
Coder [Qwen2.5-Coder-7B-Instruct; [15], DS-Distill-Qwen [DeepSeek-R1-Distill-Qwen-14B;9]], and
03-mini-high (the high reasoning-effort variant of 03-mini) on Paper2CodeBench. As summarized in
Table[3] the proprietary model (03-mini-high) consistently outperforms all other backbones across all
evaluation settings. Among other open-source models, DS-Distill-Qwen performs the best, followed
by Qwen-Coder and DS-Coder. These results suggest the importance of selecting a capable backbone
to instantiate PaperCoder, particularly one with strong reasoning capabilities. Also, based on this, we
primarily use 03-mini-high as the basis.

Ablation Studies To see how much each component of PaperCoder contributes to the performance
gain, we conduct ablation studies on the subset of Paper2CodeBench (composed of ICML papers).
Specifically, we start with the method that uses only the full paper and incrementally add components
in the order they are executed (such as overall plan, architecture design, logic design, configuration
generation, and final analysis), reported in Table[6] We then observe that the performance steadily
improves as additional components are incorporated. Meanwhile, a performance drop occurs when
the architecture design module is added; however, while this might seem surprising at first, it is in fact
expected: architecture design alone does not specify the execution or implementation order of files,
which leads to confusion during the code generation stage. However, this issue is addressed once the
subsequent logic design module explicitly defines file dependencies and establishes a clear generation
order. Overall, integrating all modules in the pipeline yields the highest performance, confirming the
effectiveness of our fully structured, multi-stage pipeline with various modules proposed.

Experiment with Refinement We confirm in Table|[6|that the planning and analysis stages play a
pivotal role in guiding subsequent analysis and coding, and we further test whether refining earlier
outputs can improve downstream performance. Specifically, we augment the planning and analysis
phases with verification-and-refinement steps (See Figures [19]to 28] for prompts), following Self-
Refine [26], and evaluate a total of 30 papers subsampled from Paper2CodeBench (10 from each
conference). As shown in Table[7] refinement of planning and analysis improves their own outputs
but also leads to measurable gains in the subsequent stages, reducing downstream errors.

Correlation on Paper Type To see whether the acceptance category (or presentation format) of
papers correlates with the quality of their corresponding implementations by PaperCoder, we analyze
it by separating papers into oral/spotlight and poster categories on Paper2CodeBench (which includes
14 oral or spotlight papers and 76 poster papers). As shown in Figure 4] scores are slightly higher for



mmm Base

. . 36.1

Table 8: Replication scores on 10 40 (+15.6)
R w/ Debugging

papers from PaperBench, includ-

v
. . o
ing execution and result match. g

1]

Helpfulness
24.4

(+4.3)

20.2

Data 9.2
Processing (+1'9) 16.4
1300 173 0 (+2.9)
(+7.3) 13.6

20.4

Evaluation Model Score (%) =
0 y Y y y Abstract Paper MetaGPT ChatDEV PaperCoder
0 zoperfgmagﬁg (%)80 100 BasicAgent 2.60 i "’ ) " ]
IterativeAgent 11.22 Figure 6: Results on the author-written rubric
Figure 5: Fine-grained analyses PaperCoder 28.46 for papers from Paper2CodeBench (human

on code by PaperCoder. evaluated), with gains in parentheses.

oral/spotlight papers on model-based evaluations with GPT-40 and 03-mini, suggesting that papers
with higher recognition might reflect clearer writing, probably leading to faithful code generation.
For further analysis on how the completeness of papers impacts the results, please refer to Table [IT]

Fine-Grained Analysis of Generated Repositories To more thoroughly evaluate the quality and
practical utility of the generated code, we conduct a set of fine-grained human analyses according to
its usability for reproduction and its component-wise implementation quality. Specifically, we ask
annotators whether the top-ranked repository from PaperCoder would make reproducing the original
work easier than starting from scratch, and 92% agree, highlighting its practical value. Also, we
conduct a component-level analysis to assess which parts of the papers are most effectively translated
into code, by asking human annotators to identify key elements for Data Processing, Method, and
Evaluation, then measure how many are actually implemented. As shown in Figure[5] the coverage
reaches 80% for Method and 79% for Evaluation. Notably, among the errors observed, many of
them originate from the Data Processing stage, where papers often under-specify details about data
formats, preprocessing steps, or loading procedures. Lastly, to investigate why human annotators
prefer PaperCoder over its baselines and ablated variants (with 22 out of 25 selecting the repositories
from PaperCoder), we ask them to provide the reasons for their choices, and the majority of which
are completeness, clean structure, and faithfulness to the original papers, summarized in Table[T4]

4.3 Additional Analysis on Reproduction from Implemented Code Repository

While our focus is on generating faithful implementations that can aid research, we further examine
whether these implementations can fully reproduce the original experimental results end-to-end.

Analysis on Executability It is worth noting that making the repository-level code executable and
fully reproducible in one go is extremely challenging (even for humans), as demonstrated by Starace
et al. [39]. Also, our goal is to provide a faithful starting point that meaningfully aids reproduction
efforts (Figure[5), rather than aiming for perfect reproduction. Nevertheless, to assess how close our
generated repositories are to being directly executable, we perform manual execution evaluations
on five papers. Specifically, when execution fails, we manually debug and refine the code and adapt
the input data as needed to enable successful runs. We then find that, on average, only 0.81% of
the code lines require minor modification, such as updating deprecated API or correcting data type
mismatches, for successful execution (See Examples in Figures[7) and [] with statistics in Table[T3),
which highlights that our generated repositories are near-executable with minimal human intervention.

Analysis on Reproducibility An equally important, though not our primary focus, question is
whether the generated repositories can reproduce the results intended by the original authors. To
examine this, we sample 10 papers from PaperBench and another 10 from the human evaluation set
of Paper2CodeBench. Also, we automatically invoke LLM-assisted debugging (only when execution
errors occur), where the model was provided with error messages, source code, and relevant training
data (if needed) to resolve issues. First, for PaperBench, we use the full rubric provided, including the
aspects of result match as well as code development and execution, with 03-mini serving as the judge.
Then, as shown in Table 8] PaperCoder achieves the highest score. Also, for Paper2CodeBench, we
adopt the rubric defined by the paper authors, covering Data Processing, Method, and Evaluation,
with o4-mini as the judge, and as shown in Figure [6] PaperCoder outperforms all baselines regardless
of whether debugging is used. These results show that its repositories are not only executable with
minimal (and automatically debuggable) intervention but also more faithfully reproduce the papers.

Case Study We further conduct a manual case study on five repositories, where annotators check
whether the returned outputs match the reported results. As described in Table[I5] with Appendix [A.5]
four reproduce results (at least partially), while one fails due to issues in loss function design.



5 Conclusion

In this work, we introduced PaperCoder, a framework that automatically generates code repositories
from research papers in machine learning through a structured, three-stage pipeline. Specifically, we
defined a high-level roadmap, system architecture, execution logic, and configuration via the planning
stage, which are then enhanced through detailed per-file analysis, followed by the sequential code
generation informed by artifacts from prior stages. To validate PaperCoder, we performed evaluations
on two benchmarks: our Paper2CodeBench, comprising recent papers from top-tier machine learning
venues, and (recently released) PaperBench Code-Dev, providing fine-grained evaluation protocols,
on which PaperCoder consistently outperforms existing baselines on both model-based and human
evaluations. Furthermore, additional analyses demonstrate its robustness and practicality: it remains
effective across different LLM backbones, shows strong executability with only 0.81% of the lines
requiring minor fixes, and benefits from each stage in the pipeline. We envision PaperCoder as one
important step toward accelerating scientific progress by aiding the reproduction of research papers.

References

[1] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis
with large language models, 2021. URL https://arxiv.org/abs/2108.07732.

[2] Jinheon Baek, Sujay Kumar Jauhar, Silviu Cucerzan, and Sung Ju Hwang. Researchagent:
Iterative research idea generation over scientific literature with large language models, 2025.
URL https://arxiv.org/abs/2404.07738|

[3] Monya Baker. 1,500 scientists lift the lid on reproducibility, 2016. URL https://www.nature,
com/articles/533452a.

[4] Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, Lilian Weng, and Aleksander Madry.
Mle-bench: Evaluating machine learning agents on machine learning engineering, 2025. URL
https://arxiv.org/abs/2410.07095|

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant
Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating large language models trained on code, 2021. URL https:
//arxiv.org/abs/2107.03374,

[6] Open Science Collaboration. Estimating the reproducibility of psychological science. Science,
349(6251):aac4716, 2015. doi: 10.1126/science.aac4716. URL https://www.science.org/
doi/abs/10.1126/science.aac4716.

[7] Mike D’ Arcy, Tom Hope, Larry Birnbaum, and Doug Downey. Marg: Multi-agent review
generation for scientific papers, 2024. URL https://arxiv.org/abs/2401.04259.

[8] DeepSeek-Al, Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu,
Y. Wu, Yukun Li, Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao Bi, Zihui Gu, Hanwei
Xu, Damai Dai, Kai Dong, Liyue Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie, Zhewen Hao,
Bingxuan Wang, Junxiao Song, Deli Chen, Xin Xie, Kang Guan, Yuxiang You, Aixin Liu,
Qiushi Du, Wenjun Gao, Xuan Lu, Qinyu Chen, Yaohui Wang, Chengqi Deng, Jiashi Li,
Chenggang Zhao, Chong Ruan, Fuli Luo, and Wenfeng Liang. Deepseek-coder-v2: Breaking
the barrier of closed-source models in code intelligence, 2024. URL https://arxiv.org/
abs/2406.11931.

10


https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2404.07738
https://www.nature.com/articles/533452a
https://www.nature.com/articles/533452a
https://arxiv.org/abs/2410.07095
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://www.science.org/doi/abs/10.1126/science.aac4716
https://www.science.org/doi/abs/10.1126/science.aac4716
https://arxiv.org/abs/2401.04259
https://arxiv.org/abs/2406.11931
https://arxiv.org/abs/2406.11931

(9]

[10]

[11]

[12]

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan
Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li,
Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian
Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian,
Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong
Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting
Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao
Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang
Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X.
Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao
Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang
Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He,
Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu,
Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang,
and Zhen Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning, 2025. URL https://arxiv.org/abs/2501.12948.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne
Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano,
Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily
Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee,
Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey
Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M.
Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason
Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee,
Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe
Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden
Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The
Ilama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783,

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei Liu. Gptscore: Evaluate as you
desire. In Kevin Duh, Helena Gémez-Adorno, and Steven Bethard, editors, Proceedings of
the 2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers), NAACL 2024, Mexico
City, Mexico, June 16-21, 2024, pages 6556—6576. Association for Computational Linguistics,
2024. doi: 10.18653/V1/2024. NAACL-LONG.365. URL https://doi.org/10.18653/v1/
2024 .naacl-long.365.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring

11


https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/2024.naacl-long.365
https://doi.org/10.18653/v1/2024.naacl-long.365

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

coding challenge competence with APPS. In Joaquin Vanschoren and Sai-Kit Yeung, ed-
itors, Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks 1, NeurlPS Datasets and Benchmarks 2021, December 2021, virtual, 2021.
URL https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/
c24cd76elced1366a4bbe8ad9b02a028-Abstract-round2.html.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang,
Ceyao Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran,
Lingfeng Xiao, Chenglin Wu, and Jiirgen Schmidhuber. Metagpt: Meta programming for A
multi-agent collaborative framework. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=VtmBAGCN7o,

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language
agents on machine learning experimentation. In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=1Fs1LvjYQW,

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei
Huang, Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng
Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL https:
//arxiv.org/abs/2409.12186,

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code, 2024. URL https://arxiv.org/abs/
2403.07974.

Steven A. Lehr, Aylin Caliskan, Suneragiri Liyanage, and Mahzarin R. Banaji. Chatgpt as
research scientist: Probing gpt’s capabilities as a research librarian, research ethicist, data
generator, and data predictor. Proceedings of the National Academy of Sciences, 121(35):
€2404328121, 2024. doi: 10.1073/pnas.2404328121. URL https://www.pnas.org/doi/
abs/10.1073/pnas.2404328121,

Long Li, Weiwen Xu, Jiayan Guo, Ruochen Zhao, Xingxuan Li, Yugian Yuan, Bogiang Zhang,
Yuming Jiang, Yifei Xin, Ronghao Dang, Deli Zhao, Yu Rong, Tian Feng, and Lidong Bing.
Chain of ideas: Revolutionizing research via novel idea development with llm agents, 2024.
URL https://arxiv.org/abs/2410.13185,

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,
Cyprien de Masson d’ Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. Science, 378(6624):1092-1097, 2022. doi: 10.1126/science.
abql158. URL https://www.science.org/doi/abs/10.1126/science.abql1158|

Weixin Liang, Yuhui Zhang, Hancheng Cao, Binglu Wang, Daisy Yi Ding, Xinyu Yang,
Kailas Vodrahalli, Siyu He, Daniel Scott Smith, Yian Yin, Daniel A. McFarland, and James
Zou. Can large language models provide useful feedback on research papers? a large-scale
empirical analysis. NEJM Al, 1(8):Al0a2400196, 2024. doi: 10.1056/Al0a2400196. URL
https://ai.nejm.org/doi/full/10.1056/AI0a2400196.

Tianyang Liu, Canwen Xu, and Julian J. McAuley. Repobench: Benchmarking repository-
level code auto-completion systems. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=pPjZI0uQuF.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval:
NLG evaluation using gpt-4 with better human alignment. In Houda Bouamor, Juan Pino, and
Kalika Bali, editors, Proceedings of the 2023 Conference on Empirical Methods in Natural

12


https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=1Fs1LvjYQW
https://openreview.net/forum?id=1Fs1LvjYQW
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://www.pnas.org/doi/abs/10.1073/pnas.2404328121
https://www.pnas.org/doi/abs/10.1073/pnas.2404328121
https://arxiv.org/abs/2410.13185
https://www.science.org/doi/abs/10.1126/science.abq1158
https://ai.nejm.org/doi/full/10.1056/AIoa2400196
https://openreview.net/forum?id=pPjZIOuQuF

[23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]

[31]

[32]

[33]

[34]

Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pages 2511-2522.
Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.153.
URL https://doi.org/10.18653/v1/2023.emnlp-main. 153

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kinney, and Daniel Weld. S20RC: The
semantic scholar open research corpus. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 4969—4983, Online, July 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.447. URL https://www!
aclweb.org/anthology/2020.acl-main.447.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The
ai scientist: Towards fully automated open-ended scientific discovery, 2024. URL https:
//arxiv.org/abs/2408.06292,

Qinyu Luo, Yining Ye, Shihao Liang, Zhong Zhang, Yujia Qin, Yaxi Lu, Yesai Wu, Xin Cong,
Yankai Lin, Yingli Zhang, Xiaoyin Che, Zhiyuan Liu, and Maosong Sun. Repoagent: An
llm-powered open-source framework for repository-level code documentation generation, 2024.
URL https://arxiv.org/abs/2402.16667.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and
Peter Clark. Self-refine: Iterative refinement with self-feedback. In Alice Oh, Tristan
Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
91edf£f07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html.

Tan Magnusson, Noah A. Smith, and Jesse Dodge. Reproducibility in NLP: what have we
learned from the checklist? In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki,
editors, Findings of the Association for Computational Linguistics: ACL 2023, Toronto,
Canada, July 9-14, 2023, pages 12789—12811. Association for Computational Linguistics,
2023. doi: 10.18653/V1/2023.FINDINGS-ACL.809. URL https://doi.org/10.18653/
v1/2023.findings-acl.809.

Fangwen Mu, Lin Shi, Song Wang, Zhuohao Yu, Binquan Zhang, Chenxue Wang, Shichao Liu,
and Qing Wang. Clarifygpt: Empowering llm-based code generation with intention clarification,
2023. URL https://arxiv.org/abs/2310.10996.

OpenAl. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Siru Ouyang, Wenhao Yu, Kaixin Ma, Zilin Xiao, Zhihan Zhang, Mengzhao Jia, Jiawei Han,
Hongming Zhang, and Dong Yu. Repograph: Enhancing ai software engineering with repository-
level code graph, 2025. URL https://arxiv.org/abs/2410.14684,

Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Lariviere, Alina Beygelzimer,
Florence d’Alché-Buc, Emily B. Fox, and Hugo Larochelle. Improving reproducibility in
machine learning research(a report from the neurips 2019 reproducibility program). J. Mach.
Learn. Res., 22:164:1-164:20, 2021. URL https://jmlr.org/papers/v22/20-303.html!

Karl Raimund Sir Popper. The logic of scientific discovery. Systematic Bi-
ology, 26:361, 1959. URL  |https://philotextes.info/spip/IMG/pdf/
popper-logic-scientific-discovery.pdf.

Vignesh Prabhakar, Md Amirul Islam, Adam Atanas, Yao-Ting Wang, Joah Han, Aastha
Jhunjhunwala, Rucha Apte, Robert Clark, Kang Xu, Zihan Wang, and Kai Liu. Omniscience: A
domain-specialized llm for scientific reasoning and discovery, 2025. URL https://arxiv,
org/abs/2503.17604.

Biqing Qi, Kaiyan Zhang, Haoxiang Li, Kai Tian, Sihang Zeng, Zhang-Ren Chen, and Bowen
Zhou. Large language models are zero shot hypothesis proposers, 2023. URL https://arxiv!
org/abs/2311.05965|

13


https://doi.org/10.18653/v1/2023.emnlp-main.153
https://www.aclweb.org/anthology/2020.acl-main.447
https://www.aclweb.org/anthology/2020.acl-main.447
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2408.06292
https://arxiv.org/abs/2402.16667
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
https://doi.org/10.18653/v1/2023.findings-acl.809
https://doi.org/10.18653/v1/2023.findings-acl.809
https://arxiv.org/abs/2310.10996
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2410.14684
https://jmlr.org/papers/v22/20-303.html
https://philotextes.info/spip/IMG/pdf/popper-logic-scientific-discovery.pdf
https://philotextes.info/spip/IMG/pdf/popper-logic-scientific-discovery.pdf
https://arxiv.org/abs/2503.17604
https://arxiv.org/abs/2503.17604
https://arxiv.org/abs/2311.05965
https://arxiv.org/abs/2311.05965

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev:
Communicative agents for software development. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pages
15174-15186. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.
ACL-LONG.810. URL https://doi.org/10.18653/v1/2024.acl-1long.810.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy P. Lillicrap, Jean-
Baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, loannis
Antonoglou, Rohan Anil, Sebastian Borgeaud, Andrew M. Dai, Katie Millican, Ethan Dyer,
Mia Glaese, Thibault Sottiaux, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu,
James Molloy, Jilin Chen, Michael Isard, Paul Barham, Tom Hennigan, Ross Mcllroy, Melvin
Johnson, Johan Schalkwyk, Eli Collins, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha
Goel, Clemens Meyer, Gregory Thornton, Zhen Yang, Henryk Michalewski, Zaheer Abbas,
Nathan Schucher, Ankesh Anand, Richard Ives, James Keeling, Karel Lenc, Salem Haykal,
Siamak Shakeri, Pranav Shyam, Aakanksha Chowdhery, Roman Ring, Stephen Spencer, Eren
Sezener, and et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens
of context, 2024. URL https://arxiv.org/abs/2403.05530.

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research assistants,
2025. URL https://arxiv.org/abs/2501.04227.

Chenglei Si, Diyi Yang, and Tatsunori Hashimoto. Can llms generate novel research ideas? a
large-scale human study with 100+ nlp researchers, 2024. URL https://arxiv.org/abs/
2409.04109.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin,
Rachel Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, Johannes Heidecke, Amelia
Glaese, and Tejal Patwardhan. Paperbench: Evaluating ai’s ability to replicate ai research, 2025.
URL https://arxiv.org/abs/2504.01848|

Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng,
Helan Hu, Kaikai An, Ruijun Huang, Shuzheng Si, Sheng Chen, Haozhe Zhao, Liang Chen,
Yan Wang, Tianyu Liu, Zhiwei Jiang, Baobao Chang, Yin Fang, Yujia Qin, Wangchunshu
Zhou, Yilun Zhao, Arman Cohan, and Mark Gerstein. Ml-bench: Evaluating large language
models and agents for machine learning tasks on repository-level code, 2024. URL https:
//arxiv.org/abs/2311.09835,

Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625:476 — 482, 2024. URL https://www.nature,
com/articles/s41586-023-06747-5.

Patara Trirat, Wonyong Jeong, and Sung Ju Hwang. Automl-agent: A multi-agent llm framework
for full-pipeline automl, 2024. URL https://arxiv.org/abs/2410.02958.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 5998-6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4aB45aa-Abstract.htmll

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang,
Linqgi Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in 1lms
for enhanced mathematical reasoning. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=z8TWOttBPpl

14


https://doi.org/10.18653/v1/2024.acl-long.810
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2501.04227
https://arxiv.org/abs/2409.04109
https://arxiv.org/abs/2409.04109
https://arxiv.org/abs/2504.01848
https://arxiv.org/abs/2311.09835
https://arxiv.org/abs/2311.09835
https://www.nature.com/articles/s41586-023-06747-5
https://www.nature.com/articles/s41586-023-06747-5
https://arxiv.org/abs/2410.02958
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=z8TW0ttBPp

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Yixuan Weng, Minjun Zhu, Guangsheng Bao, Hongbo Zhang, Jindong Wang, Yue Zhang, and
Linyi Yang. Cycleresearcher: Improving automated research via automated review, 2025. URL
https://arxiv.org/abs/2411.00816|

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
Ilm-based software engineering agents, 2024. URL https://arxiv.org/abs/2407.01489.

Yanzheng Xiang, Hanqgi Yan, Shuyin Ouyang, Lin Gui, and Yulan He. Scireplicate-bench:
Benchmarking 1lms in agent-driven algorithmic reproduction from research papers, 2025. URL
https://arxiv.org/abs/2504.00255.

Yutaro Yamada, Robert Tjarko Lange, Cong Lu, Shengran Hu, Chris Lu, Jakob Foerster, Jeff
Clune, and David Ha. The ai scientist-v2: Workshop-level automated scientific discovery via
agentic tree search, 2025. URL https://arxiv.org/abs/2504.08066.

Zonglin Yang, Xinya Du, Junxian Li, Jie Zheng, Soujanya Poria, and Erik Cambria. Large
language models for automated open-domain scientific hypotheses discovery. In Lun-Wei Ku,
Andre Martins, and Vivek Srikumar, editors, Findings of the Association for Computational
Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024, pages
13545-13565. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.
FINDINGS-ACL.804. URL https://doi.org/10.18653/v1/2024.findings-acl.804.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May -5,
2023. OpenReview.net, 2023. URL https://openreview.net/forum?id=WE_v1uYUL-X|

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pages 2471-2484. Association for Computational Linguistics, 2023.
doi: 10.18653/V1/2023. EMNLP-MAIN.151. URL https://doi.org/10.18653/v1/2023,
emnlp-main. 151,

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleashing
the power of large language models in solving machine learning tasks. In Yvette Graham and
Matthew Purver, editors, Proceedings of the 18th Conference of the European Chapter of the
Association for Computational Linguistics, EACL 2024 - Volume 1: Long Papers, St. Julian’s,
Malta, March 17-22, 2024, pages 2931-2959. Association for Computational Linguistics, 2024.
URL https://aclanthology.org/2024.eacl-long.179,

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez,
and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena. In Alice Oh,
Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, edi-
tors, Advances in Neural Information Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurlPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
91f18a1287b398d378e£22505bf41832-Abstract-Datasets_and_Benchmarks.html,

15


https://arxiv.org/abs/2411.00816
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2504.00255
https://arxiv.org/abs/2504.08066
https://doi.org/10.18653/v1/2024.findings-acl.804
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://doi.org/10.18653/v1/2023.emnlp-main.151
https://aclanthology.org/2024.eacl-long.179
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html

A Additional Experimental Designs

A.1 Implementation Details

All experiments are conducted using 03-mini with high reasoning effort version (03-mini-high)
as the default backbone, released on January 31, 2025. To collect paper metadata and content, we
use openreview_scraperﬂ with the OpenReview APIE] and Semantic Scholar AP]H For document
processing, we convert papers into structured JSON format using the s2orc-doc2json library [23ﬂ
Notably, with 03-mini-high to generate repositories for 90 papers, the total API cost of PaperCoder
amounts to $76.65, resulting in an average cost of approximately $0.90 per paper.

A.2 Human Evaluation Process

Given the complexity of the task (requiring comprehension of scientific papers and their associated
implementations), we recruit participants who have at least one peer-reviewed paper and a degree in
computer science. We note that they were compensated at a rate of $15 per hour. For annotation, they
were provided with a 4-page document, which includes task instructions, annotation examples, and 10
generated repositories grouped into three sets, as follows: (Group 1) Model Variants of Our Method
that includes repositories generated by our system using different backbone models (e.g., 03-mini
vs. three open-source alternatives); (Group 2) Naive Baselines that includes repositories generated
using only the Paper or the Abstract as input; and (Group 3) Related Works that includes repositories
generated by existing software development frameworks, such as MetaGPT and ChatDev. Each
repository was anonymized using a repo X naming format to prevent bias regarding the generation
method. Following the question guidelines in the document, annotators reviewed and evaluated the
repositories generated by different methods and models. Also, on average, evaluating 10 repositories
for a single paper took approximately 45 minutes. Table|36|shows a detailed annotation example.

A.3 Reference-Based Evaluation

In the reference-based evaluation setup, the repository may exceed the context length of (even frontier)
LLMs. Following Starace et al. [39], when this occurs, we prompt the model to select the most
relevant files for evaluation. The selected subset is then used as the reference for scoring. We use the
gpt-40-2024-11-20 as the evaluation model.

A.4 PaperBench Code-Dev Evaluation

While PaperCoder is designed to generate only the source code, the PaperBench Code-Dev benchmark
used for evaluation requires an additional script file called reproduce. sh. To meet this requirement,
we further prompt the coding agent to generate it and evaluate the code with it.

A.5 Additional Details on Execution and Reproducibility Experiments

To assist the reproduction of repositories from PaperCoder, we perform LL.M-assisted automatic
debugging. Specifically, we primarily use 04-mini for debugging, with GPT-5 used as a fallback
when identical errors persist. Furthermore, all executions are performed in a Docker environment
with an NVIDIA GeForce RTX 2080 GPU, and for experiments requiring larger memory, an NVIDIA
RTX A6000. Lastly, due to hardware constraints, we adjust certain hyperparameters (e.g., batch size
or learning rate), and in rare cases, subsampled the training data to enable successful execution. We
provide the prompts in Figure[T8] and statistics on the number of modified lines in Table[16]

*https://github.com/pranftw/openreview_scraper
Shttps://docs.openreview.net/reference/api-v2
®https://www.semanticscholar.org/product/api
"https://github.com/allenai/s2orc-doc2json

16



Table 9: Code availability across major machine learning conferences. We report the total number of accepted
papers, the number of papers with publicly available code (identified via GitHub URLSs in ArXiv abstracts), and
the corresponding percentage for each venue. The last row shows the average across all three conferences.

Conference #of Accepted w/Code Percentage (%)

ICLR 2024 2207 467 21.2
ICML 2024 2610 435 16.7
NeurIPS 2024 4006 825 20.6
Average 2941 576 19.5

Table 10: Average Replication Scores (%) on PaperBench Code-Deyv. For all OpenAl models, the reasoning
effort is set to high, and we take results for BasicAgent and IterativeAgent from [39]]. For PaperCoder, we report
the average and standard deviation over three runs, except for ol and 03 due to costs.

Model Replication Score (%)  Cost per Paper ($)
BasicAgent (03-mini) 5.1+£0.8 N/A
BasicAgent (ol) 19.5+1.2 N/A
BasicAgent (claude-3-5-sonnet) 35.4+0.8 N/A
IterativeAgent (03-mini) 16.4+1.4 N/A
IterativeAgent (ol) 43.3+1.1 400.00
IterativeAgent (claude-3-5-sonnet) 275+ 1.6 N/A
PaperCoder (03-mini) 45.14 £0.3 0.69
PaperCoder (o1) 38.31 8.81
PaperCoder (03) 60.86 8.99
PaperCoder (claude-3-5-sonnet) 51.14+1.4 3.61

B Additional Experimental Results and Analysis
B.1 Code Availability

To estimate the proportion of accepted papers that release official code repositories, we collect data
from three major machine learning conferences in 2024: ICLR, ICML, and NeurIPS. Specifically,
we first retrieve the list of accepted papers from each conference using the OpenReview AP]E] via
openreview_scraperﬂ While OpenReview abstracts sometimes include repository links, they are
more commonly found in ArXi abstracts. Therefore, we additionally use the Semantic Scholar
AP]E] to obtain ArXiv abstracts corresponding to the accepted papers. We then check whether the
abstract includes a GitHub URL as an indicator of released code. Table [9summarizes the number of
accepted papers, the number with publicly available repositories, and the corresponding percentages
for each conference. On average, only 19.5% of accepted papers in them provide official code.

B.2 PaperBench Code-Dev Results

We conduct additional experiments using various reasoning models, as shown in Table[I0] Overall, our
method achieves strong replication scores across models. Notably, when using 03, PaperCoder records
the highest score of 60.86%. These results suggest that the latest and larger models, particularly those
with stronger reasoning and coding capabilities, tend to yield better performance.

B.3 Impact of Paper Content on Code Generation

To examine the extent to which the clarity and speci- Table 11: Comparison of reference-based aver-
ficity of the paper content influence code generation 2ge scores between the full paper content and the
quality, we remove the Methodology section from each ~ P2per content without the methodology section
paper and use PaperCoder to generate the correspond- " the subsampled Paper2CodeBench. Values in
ing code repository. Specifically, this experiment is parentheses indicate the standard deviation.

conducted with 30 papers (10 from each conference) in Full (Original) _w/o Methodology
Paper2CodeBench, with 03-mini-high as the back- P
bone LLM. As shown in Table[TT] the average score  verage Score 420 (028) 3.75 (0.55)

8https://docs.openreview.net/reference/api-v2
*https://github.com/pranftw/openreview_scraper
Ohttps://arxiv.org/
"https://www.semanticscholar.org/product/api

17



drops from 4.26 to 3.75 without the Methodology section, indicating that when detailed specifications
are absent, the generated code quality degrades substantially, which supports the importance of
precise and explicit descriptions for faithful paper-to-code generation, as well as for human readers
seeking to understand and reproduce the work.

B.4 Most Common Types of Errors and Failure Modes

To analyze failure cases, we execute the generated Table 12: Categories of error types observed when
repositories on Paper2CodeBench (without debug- running Paper2CodeBench. Categories are ana-
ging) and inspect the resulting errors. We note that lyzed using o4-mini-high, and Count indicates the
each error is automatically categorized by prompt- number of papers belonging to each category.

ing o4-mini-high with the raw error message and Category Count Category Count
mapplng 1ts response to a Canonlcal taxonomy. AS MissingDependency 23 ConfigurationErrlor 5
. . ImportError 14 SyntaxError 4
summarized in Table[12} the most frequent causes are  GORTL ko 14 Success .
MissingDependency, ImportError, and ModuleNot-  ValucError 6 OSError 4
. . FileNotFoundError 6 TypeError 2
FoundError, in that order. This pattern suggests that RuntimeError 6 AuributeError 2

environment and packaging issues dominate over al-
gorithmic or logic errors in practice.

B.5 Analysis of Performance Across Paper Categories

Examining performance across different paper categories helps reveal where code generation is
easier or more challenging. To achieve this, we categorize 90 papers in Paper2CodeBench using
o4-mini-high, and then report the average reference-based scores per category in Figure 0] First, we
observe that the scores range from 3.38 to 4.21 (a maximum gap of about 0.83). Specifically, theory
and interpretability/explainability achieve the highest scores (4.21 and 3.97), while reinforcement
learning/control and dataset-focused papers yield the lowest (3.38 each). These results suggest that
there are measurable variations across different categories of papers when implementing them with
PaperCoder, with some types of papers being easier for PaperCoder to implement than others.

C Limitations and Future Work

While PaperCoder demonstrates strong performance in reproducing machine learning papers (where
code implementations are particularly helpful and usually necessary for validating research ideas),
its current scope is limited to this domain. Beyond this, we believe accelerating the reproduction of
scientific discovery to other domains where code is not the primary medium for validation, such as
theoretical mathematics, is an exciting direction for future work. In addition, the current version of
PaperCoder processes only textual inputs, and extending it to process visual inputs (such as figures in
papers) is an interesting avenue. Lastly, as with other repository-level code generation approaches,
improving executability remains an important (but still challenging) direction for future work.

D Broader Impacts and Ethics Statement

Our work aims to generate faithful code repositories from scientific papers in machine learning, and
we believe it has a substantial positive impact in contributing to open science and facilitating rapid
experimentation. However, we also acknowledge potential risks and misuse of our framework. For
example, some papers intentionally refrain from releasing implementations due to security concerns,
such as those involving jailbreaking or exploitation techniques. Yet, our method could potentially be
used to reproduce such sensitive implementations. To address such risks, in real-world production, it
would be necessary to develop and incorporate safeguards (such as harmful content filters, protective
prompting, and secure execution environments) to ensure responsible and safe use of our framework.

E Reproducibility Statement

We attach the code to reproduce our work in the supplementary materials. Detailed instructions for
running the experiments are included in the accompanying README files, and furthermore, all
necessary details to reproduce our experiments are described in Sectiond.1]and in Appendix

18



Table 13: Executability analysis results on the repositories: we sample five papers and generate corresponding
repositories using PaperCoder. For each repository, we report the number of lines modified during debugging,
the total number of lines, and the percentage of modified lines.

Repo Name CoLoR  cognitive-behaviors RADA  Self-Instruct G-EVAL  Average
Modified lines (*.py) 2 0 10 26 10 8
Modified lines (config.yaml) 3 6 7 1 4 35
Total lines 1132 2060 1609 1334 1374 1251.5
Percentage 0.44 0.29 1.06 2.02 1.02 0.81

Table 14: Qualitative analysis of top-ranked repositories. We categorize the reasons why human annotators select
the repositories generated by our PaperCoder framework as their top choice into six (described in the first row).

Completeness  Clean Structure  Faithfulness to Paper ~ Ease of Use  Code Quality =~ Unique Strengths

16 13 8 6 7 4

Table 15: Analysis of the results from the reproducibility case study.

Repo Name Analysis of Reproducibility

CoLoR Execution was successful, but the ORPO loss was likely mis-specified, causing
the compression model to fail in training as intended. This issue stems from the
overly simplified description of the loss function in the paper.

cognitive-behaviors Successfully reproduced SFT and RL training processes but encountered a minor
error in parsing model responses during evaluation.

RADA Implementation closely matched the paper, but missing details prevented full
reproduction of the reported results, leading to identical samples.

Self-Instruct Executed smoothly and accurately reflected the procedure described in the paper.

G-EVAL Implemented only the Coherence metric, though the original paper included

Coherence, Consistency, Fluency, and Relevance. The Coherence implementation
was faithful and correct.

Table 16: Comparison of the total lines, modified lines, and percentages when applying automatic debugging on
10 papers from Paper2CodeBench used for human evaluation.

Abstract  Paper MetaGPT ChatDEV ~ PaperCoder

Modified lines (*.py, *.sh, *.yaml) 30 705 226 275 780
Total lines 3517 3047 8225 4185 16189
Percentage 0.85 23.14 2.75 6.57 4.82

19



# data_loader.py
from openai import OpenAIl

1

o)

3

4| from rouge_score import rouge_scorer
5

1| # data_loader.py import pandas as pd
2| import openai
3| import pandas as pd B
4| from rouge_score import rouge_scorer 6| # Set up basic logging configuration
5 7| logging.basicConfig(level=logging.INFO, format="Y(
6| # Set up basic logging configuration asctime)s [%(levelname)s] %(message)s")
7| logging.basicConfig(level=logging.INFO, format="7( 8
asctime)s [%(levelname)s] %(message)s") 9| openai_api_key = os.environ.get ("OPENAI_API_KEY")
8 10| client = OpenAI(api_key=openai_api_key)
9 11
10] ... (omited)... 12| ...(omited)...
11 13
12 response = openai.Completion.create( 14 response = client.chat.completions.create(
13 engine=self.engine, 15 model=self.engine,
14 prompt=prompt , 16 messages=[{"role": "user", "content":
15 max_tokens=150, prompt}],
16 temperature=0.7, 17 max_completion_tokens=150,
17 n=1, 18 temperature=0.7,
18 stop=["Task 16"] 19 n=1,
19 ) 20 stop=["Task 16"]
20 raw_text = response.choices[0].text.strip() 21 )
22 rawv_text = response.choices[0].message.content
.strip()

Figure 7: Case study on the reproduction of the Self-Instruct paper. The left shows the code generated by
PaperCoder using 03-mini-high, and the right shows the version manually edited by the authors to correct the
error. In this example, an outdated API call is updated to its latest version. In the initial version, lines 2, 12, 14,
15, and 29 are removed; in the edited version, lines 2, 9, 10, 14, 16, 17, and 22 are added.

# trainer.py
self.optimizer = AdamW(self.model.model.parameters
(O, 1lr=float(lr))

# trainer.py
2| self.optimizer = AdamW(self.model.model.parameters

)

O, 1r=1r)
3 3
4| # model.py 4| # model.py
5| self.model = AutoModelForCausallLM.from_pretrained( 5| self.model = AutoModelForCausalLM.from_pretrained(

base_model, trust_remote_code=True)

base_model)

Figure 8: Case study on the reproduction of the CoLoR paper. The left shows the code generated by PaperCoder
using 03-mini-high, and the right shows the manually edited version by the authors. In this example, a numeric
value is cast correctly, and a required argument is added to enable execution. Lines 2 and 5 are modified.

20



Category

Average Score by Category

Theory A

Interpretability / Explainability -
Application - Time Series -
Evaluation / Benchmarking -
Application - Multimodal A
Application - NLP 1

Training Technique -
Application - Vision A
Optimization -

Architecture / Model
Application - Speech/Audio A
Application - RL / Control A

Dataset

4.21 (6)
3.97 (8)
3.95 (11)
3.94 (13)
3.83 (3)
3.80 (18)
3.79 (42)
3.74 (23)
3.67 (9)
3.65 (48)
3.50 (1)
3.38 (4)
3.38 (4)

3.0

3.4 3.6 3.8 4.0 4.2
Average Score

Figure 9: Average scores (measured by reference-based evaluation) per category on Paper2CodeBench. The
numbers to the right of each bar indicate the average score, along with the number of papers in parentheses. Bar
transparency is proportional to the count, highlighting categories with more or fewer papers.

21

4.4



F Prompts

Prompt for generating the overall plan in the planning stage

[System]

You are an expert researcher and strategic planner with a deep understanding of experimental design and reproducibility in scientific
research.

You will receive a research paper in JSON format.

Your task is to create a detailed and efficient plan to reproduce the experiments and methodologies described in the paper.

This plan should align precisely with the paper’s methodology, experimental setup, and evaluation metrics.

Instructions:

1. Align with the Paper: Your plan must strictly follow the methods, datasets, model configurations, hyperparameters, and
experimental setups described in the paper.

2. Be Clear and Structured: Present the plan in a well-organized and easy-to-follow format, breaking it down into actionable steps. 3.
Prioritize Efficiency: Optimize the plan for clarity and practical implementation while ensuring fidelity to the original experiments.

[User]
## Paper
{paper_json}

## Task

1. We want to reproduce the method described in the attached paper.

2. The authors did not release any official code, so we have to plan our own implementation.

3. Before writing any Python code, please outline a comprehensive plan that covers:

- Key details from the paper’s **Methodology**.

- Important aspects of **Experiments**, including dataset requirements, experimental settings, hyperparameters, or evaluation
metrics.

4. The plan should be as **detailed and informative** as possible to help us write the final code later.

## Requirements
- You don’t need to provide the actual code yet; focus on a **thorough, clear strategy**.
- If something is unclear from the paper, mention it explicitly.

## Instruction
The response should give us a strong roadmap, making it easier to write the code later.

Figure 10: Prompt for generating the overall plan in the planning stage.

22



Prompt for generating the architecture design in the planning stage

[User]

Your goal is to create a concise, usable, and complete software system design for reproducing the paper’s method. Use appropriate
open-source libraries and keep the overall architecture simple.

Based on the plan for reproducing the paper’s main method, please design a concise, usable, and complete software system.
Keep the architecture simple and make effective use of open-source libraries.

## Format Example
[CONTENT]
{
"Implementation approach": "We will ... ,
"File list": [
"main.py",
"dataset_loader.py",
"model.py",
"trainer.py",
"evaluation.py"

1,

"Data structures and interfaces": "\nclassDiagram\n class Main \n +__init__()\n +run_experiment()\n \n
class DatasetLoader \n +__init__(config: dict)\n +load_data() -> Any\n \n class
Model \n +__init__(params: dict)\n +forward(x: Tensor) -> Tensor\n \n class Trainer
\n +__init__(model: Model, data: Any)\n +train() -> None\n \n class  Evaluation
\n +__init__(model: Model, data: Any)\n +evaluate() -> dict\n \n Main —> DatasetLoader\n Main —>

Trainer\n Main —> Evaluation\n Trainer —> Model\n",

"Program call flow": "\nsequenceDiagram\n participant M as Main\n participant DL as DatasetLoader\n participant
MD as Model\n participant TR as Trainer\n participant EV as Evaluation\n M-»DL: load_data()\n DL—-»M:
return dataset\n M-»MD: initialize model()\n M-»TR: train(model, dataset)\n TR-»MD: forward(x)\n MD—»TR:
predictions\n TR—»M: training complete\n M-»EV: evaluate(model, dataset)\n EV-»MD: forward(x)\n MD—»EV:
predictions\n EV-»M: metrics\n",

"Anything UNCLEAR": "Need clarification on the exact dataset format and any specialized hyperparameters."

}
[/CONTENT]

## Nodes: "<node>: <type> # <instruction>"

- Implementation approach: <class ’str’> # Summarize the chosen solution strategy.

- File list: typing.List[str] # Only need relative paths. ALWAYS write a main.py or app.py here.

- Data structures and interfaces: typing.Optional[str] # Use mermaid classDiagram code syntax, including classes, method(__init__
etc.) and functions with type annotations, CLEARLY MARK the RELATIONSHIPS between classes, and comply with PEP8
standards. The data structures SHOULD BE VERY DETAILED and the API should be comprehensive with a complete design.

- Program call flow: typing.Optional[str] # Use sequenceDiagram code syntax, COMPLETE and VERY DETAILED, using CLASSES
AND API DEFINED ABOVE accurately, covering the CRUD AND INIT of each object, SYNTAX MUST BE CORRECT.

- Anything UNCLEAR: <class ’str’> # Mention ambiguities and ask for clarifications.

## Constraint
Format: output wrapped inside [CONTENT][/CONTENT] like the format example, nothing else.

## Action
Follow the instructions for the nodes, generate the output, and ensure it follows the format example.

Figure 11: Prompt for generating the architecture design in the planning stage. This prompt follows the previous
prompt and response shown in Figure [0}

23



Prompt for generating the logic design in the planning stage

[User]

Your goal is break down tasks according to PRD/technical design, generate a task list, and analyze task dependencies.
You will break down tasks, analyze dependencies.

You outline a clear PRD/technical design for reproducing the paper’s method and experiments.

Now, let’s break down tasks according to PRD/technical design, generate a task list, and analyze task dependencies.
The Logic Analysis should not only consider the dependencies between files but also provide detailed descriptions to assist in writing
the code needed to reproduce the paper.

## Format Example
[CONTENT]
{

"Required packages": [
"numpy==1.21.0",
"torch==1.9.0"

],

"Required Other language third-party packages": [

"No third-party dependencies required"

1,
"Logic Analysis": [
[
"data_preprocessing.py",
"DataPreprocessing class ........

"trainer.py",
"Trainer .......

"dataset_loader.py",
"Handles loading and ........

"model.py",
"Defines the model .......

"evaluation.py",
"Evaluation class ........

"main.py",
"Entry point .......
]
],
"Task list": [
"dataset_loader.py",
"model.py",
"trainer.py",
"evaluation.py",
"main.py"

"Full API spec": "openapi: 3.0.0 ...",
"Shared Knowledge": "Both data_preprocessing.py and trainer.py share ........ s
"Anything UNCLEAR": "Clarification needed on recommended hardware configuration for large-scale experiments."

}
[/CONTENT]

## Nodes: "<node>: <type> # <instruction>"

- Required packages: typing.Optional[typing.List[str]] # Provide required third-party packages in requirements.txt format.(e.g.,
‘numpy==1.21.0").

- Required Other language third-party packages: typing.List[str] # List down packages required for non-Python languages. If none,
specify "No third-party dependencies required".

- Logic Analysis: typing.List[typing.List[str]] # Provide a list of files with the classes/methods/functions to be implemented, including
dependency analysis and imports. Include as much detailed description as possible.

- Task list: typing.List[str] # Break down the tasks into a list of filenames, prioritized based on dependency order. The task list must
include the previously generated file list.

- Full API spec: <class ’str’> # Describe all APIs using OpenAPI 3.0 spec that may be used by both frontend and backend. If
front-end and back-end communication is not required, leave it blank.

- Shared Knowledge: <class ’str’> # Detail any shared knowledge, like common utility functions or configuration variables.

- Anything UNCLEAR: <class ’str’> # Mention any unresolved questions or clarifications needed from the paper or project scope.

## Constraint
Format: output wrapped inside [CONTENT][/CONTENT] like the format example, nothing else.

## Action
Follow the node instructions above, generate your output accordingly, and ensure it follows the given format example.

Figure 12: Prompt for generating the logic design in the planning stage. This prompt follows the previous
prompt and response shown in Figure@

24



Prompt for generating the configuration file in the planning stage

[User]
You write elegant, modular, and maintainable code. Adhere to Google-style guidelines.

Based on the paper, plan, design specified previously, follow the "Format Example" and generate the code.
Extract the training details from the above paper (e.g., learning rate, batch size, epochs, etc.), follow the "Format example" and
generate the code. DO NOT FABRICATE DETAILS — only use what the paper provides.

You must write ‘config.yaml*.

ATTENTION: Use '##’ to SPLIT SECTIONS, not ’#’. Your output format must follow the example below exactly.

# Format Example

## Code: config.yaml

“‘yaml

## config.yaml

training:
learning_rate: ...
batch_size: ...
epochs: ...

## Code: config.yaml

Figure 13: Prompt for generating the configuration file in the planning stage. This prompt follows the previous
prompt and response shown in Figure@

25



Prompt for analysis

[System]

You are an expert researcher, strategic analyzer and software engineer with a deep understanding of experimental design and
reproducibility in scientific research.

You will receive a research paper in JSON format, an overview of the plan, a design in JSON format consisting of "Implementation
approach", "File list", "Data structures and interfaces", and "Program call flow", followed by a task in JSON format that includes
"Required packages", "Required other language third-party packages", "Logic Analysis", and "Task list", along with a configuration
file named "config.yaml".

Your task is to conduct a comprehensive logic analysis to accurately reproduce the experiments and methodologies described in the
research paper.
This analysis must align precisely with the paper’s methodology, experimental setup, and evaluation criteria.

1. Align with the Paper: Your analysis must strictly follow the methods, datasets, model configurations, hyperparameters, and
experimental setups described in the paper.

2. Be Clear and Structured: Present your analysis in a logical, well-organized, and actionable format that is easy to follow and
implement.

3. Prioritize Efficiency: Optimize the analysis for clarity and practical implementation while ensuring fidelity to the original
experiments.

4. Follow design: YOU MUST FOLLOW "Data structures and interfaces”. DONT CHANGE ANY DESIGN. Do not use public
member functions that do not exist in your design.

5. REFER TO CONFIGURATION: Always reference settings from the config.yaml file. Do not invent or assume any values—only
use configurations explicitly provided.

[User]

# Context

## Paper

{The content of the paper in json format}

## Overview of the plan
{The content of the overall plan}

## Design
{The content of the architecture design}

## Task
{The content of the logic design}

## Configuration file
“‘yaml
{The content of the configuration file}

e

## Instruction

Conduct a Logic Analysis to assist in writing the code, based on the paper, the plan, the design, the task and the previously specified
configuration file (config.yaml).

You DON’T need to provide the actual code yet; focus on a thorough, clear analysis.

Write the logic analysis in ’{ The name of the file to be generated"}’, which is intended for ’{Description of the file generated through
the "Logic Analysis" step of the logic design.}’.

## Logic Analysis: {todo_file_name}

Figure 14: Prompt for analysis. {} indicate placeholders to be filled with the content described in the accompa-
nying explanation. The prompt is presented to the LLM for each file, following the sequence defined in the logic
design.

26



Prompt for coding

[System]

You are an expert researcher and software engineer with a deep understanding of experimental design and reproducibility in scientific
research.

You will receive a research paper in JSON format, an overview of the plan, a Design in JSON format consisting of "Implementation
approach”, "File list", "Data structures and interfaces", and "Program call flow", followed by a Task in JSON format that includes
"Required packages", "Required other language third-party packages", "Logic Analysis", and "Task list", along with a configuration
file named "config.yaml".

Your task is to write code to reproduce the experiments and methodologies described in the paper.

The code you write must be elegant, modular, and maintainable, adhering to Google-style guidelines.
The code must strictly align with the paper’s methodology, experimental setup, and evaluation metrics.
Write code with triple quoto.

[User]

# Context

## Paper

{The content of the paper in json format}

## Overview of the plan
{The content of the overall plan}

## Design
{The content of the architecture design}

## Task
{The content of the logic design}

## Configuration file
“‘yaml
{The content of the configuration file}

e

## Code Files
{The content of the code files generated in the previous step. }

# Format example

## Code: {todo_file_name}
“‘python

## todo_file_name

e

# Instruction
Based on the paper, plan, design, task and configuration file(config.yaml) specified previously, follow "Format example", write the
code.

We have {done_file_lst}.

Next, you must write only the "{todo_file_name}".

1. Only One file: do your best to implement THIS ONLY ONE FILE.

2. COMPLETE CODE: Your code will be part of the entire project, so please implement complete, reliable, reusable code snippets.
3. Set default value: If there is any setting, ALWAYS SET A DEFAULT VALUE, ALWAYS USE STRONG TYPE AND EXPLICIT
VARIABLE. AVOID circular import.

4. Follow design: YOU MUST FOLLOW "Data structures and interfaces”. DONT CHANGE ANY DESIGN. Do not use public
member functions that do not exist in your design.

5. CAREFULLY CHECK THAT YOU DONT MISS ANY NECESSARY CLASS/FUNCTION IN THIS FILE.

6. Before using a external variable/module, make sure you import it first.

7. Write out EVERY CODE DETAIL, DON’T LEAVE TODO.

8. REFER TO CONFIGURATION: you must use configuration from "config.yaml". DO NOT FABRICATE any configuration
values.

{detailed_logic_analysis}

## Code: {todo_file_name}

Figure 15: Prompt for coding. {} indicate placeholders to be filled with the content described in the accompanying
explanation. The prompt is presented to the LLM for each file, following the sequence defined in the logic
design. Previously generated code files are accumulated and provided as part of the ## Code Files input.

27



Prompt for model-based reference-based evaluation

[System]
You will be given a research paper along with two corresponding code repositories: a gold repository and a target repository.

Your task is to compare the target repository against the gold repository, rate the target repository on one metric, and provide a
critique highlighting key differences.

Please make sure you read and understand these instructions carefully. Keep this document open while reviewing, and refer to it as
needed.

Evaluation Criteria:

Correctness (1-5): The quality of the target repository in accurately implementing the paper’s concepts, methodology, and algorithms
without logical errors, as compared to the gold repository. Additionally, provide a critique focusing on the completeness, accuracy,
and implementation choices made in the target repository relative to the gold repository.

1: Very Poor. The target repository does not correctly implement the core concepts, methodology, or algorithms from the paper.
Major logical errors or missing components are present, especially when compared to the gold repository.

2: Poor. The target repository attempts to implement the paper’s concepts but contains significant mistakes or missing components,
making the implementation incorrect when compared to the gold repository.

3: Fair. Some core components and concepts are correctly implemented in the target repository, but there are notable logical errors or
inaccuracies compared to the gold repository.

4: Good. The target repository correctly implements the key components and methodology, with only minor inaccuracies or
deviations from the gold repository.

5: Excellent. The target repository fully and accurately implements all relevant key components, methodology, and algorithms from
the paper, matching the quality of the gold repository.

Evaluation Steps

1. Identify Key Aspects of the Paper: Carefully read the research paper to understand its core concepts, methodology, and
algorithms. Pay close attention to the key aspects that are crucial for implementing the paper’s results (e.g., specific algorithms, data
preprocessing steps, evaluation protocols).

2. Analyze the Gold Repository: Examine the gold repository to understand how these key aspects have been implemented. Use the
gold repository as a reference for how the paper’s methodology should be translated into code. Note the completeness, accuracy, and
design choices in the gold repository that faithfully represent the paper’s concepts.

3. Examine the Target Repository: Analyze the target repository to assess how well it implements the key aspects of the paper.
Reference the gold repository as a guide for understanding these key aspects in the target repository. Focus on whether the target
repository’s core logic, algorithms, and structure align with the methodology and experiments described in the paper.

4. Identify Logical Errors and Deviations: Check for logical errors, missing steps, or deviations from the paper’s methodology. Note
any incorrect representations, inconsistencies, or incomplete implementations that could affect the correctness of the target repository.

5. Provide a Critique: Consider both the completeness and accuracy of the implementation relative to the paper’s goals and the gold
repository’s standard. You do not need to analyze minor details like logging functions, script organization, or documentation quality.
Instead, concentrate on the correctness of the logic and implementation that ensures the core concepts from the paper are fully
reflected in the target repository. For each mismatch or deviation in implementation, note down specific critiques comparing relevant
functions in the target repository to the corresponding functions in the gold repository. Highlight incorrect logic, missing steps, or
deviations that affect the correct implementation of the paper’s methodology.

5. Assess the Correctness: Determine whether the target repository includes all the critical elements described in the paper and
implemented in the gold repository. Identify missing components, significant deviations, or incorrect implementations that could
affect the correctness of the target repository.

6. Assign a Score: Based on your evaluation, provide a critique and assign a correctness score from 1 to 5 for the target repository,
reflecting how well it implements the key aspects of the paper refer to the gold repository. Include a detailed critique in the specified
JSON format.

Severity Level:
Each identified critique will be assigned a severity level based on its impact on the correctness of the methodology implementation.

- High: Missing or incorrect implementation of the paper’s core concepts, major loss functions, or experiment components that are
fundamental to reproducing the paper’s methodology.

- Example: The main algorithm is missing or fundamentally incorrect.

- Medium: Issues affecting training logic, data preprocessing, or other core functionalities that significantly impact performance but
do not completely break the system.

- Example: Improper training loop structure, incorrect data augmentation, or missing essential components in data processing.

- Low: Errors in specific features that cause deviations from expected results but can be worked around with modifications. Any
errors in the evaluation process belong to this category unless they impact the core concepts. These include minor issues like logging,
error handling mechanisms, configuration settings, evaluation steps that do not alter the fundamental implementation and additional
implementations not explicitly stated in the paper.

- Example: Suboptimal hyperparameter initialization, incorrect learning rate schedule, inaccuracies in evaluation metrics, using a
different random seed, variations in batch processing, different weight initialization, issues in result logging or reporting, variations
in evaluation dataset splits, improper error handling in non-critical steps, mismatches in secondary evaluation criteria, or additional
implementation details not specified in the paper that do not interfere with core results.

28



Prompt for model-based reference-based evaluation

Example JSON format:

‘json

{
"critique_list": [

"gold_file_name": "preprocessing.py",
"gold_func_name": "data_process",
"target_file_name": "dataset.py",
"target_func_name": "train_preprocess"”,
"severity_level": "medium",
"critique": "A critique of the target repository’s file with reference to the gold repository."

b
{
"gold_file_name": "utils.py",
"gold_func_name": "calculate_metric",
"target_file_name": "metric.py",
"target_func_name": "f1_at_k"
"severity_level": "low",
"critique": "A critique of the target repository’s file with reference to the gold repository."
b
1,
"score": 2
‘}‘
Sample:

Research Paper:

{{The content of the paper}}

Gold Repository:

{{The gold repository, officially released by the authors, serves as the reference implementation. } }
Target Repository:

{{The generated repository, which serves as the target repository for evaluation. } }

following the Example JSON format, without any additional commentary, formatting, or chattiness.

Please provide critique of the target repository and a single numerical rating (1, 2, 3, 4, or 5) based on the quality of the sample,

Figure 16: Prompt for model-based reference-based evaluation. {{}} indicate placeholders to be filled with the

content described in the accompanying explanation.

29



Prompt for model-based reference-free evaluation

[System]
You will be given a research paper along with its corresponding code repository.
Your task is to rate the code repository on one metric and provide a critique highlighting key differences.

Please make sure you read and understand these instructions carefully. Keep this document open while reviewing, and refer to it as
needed.

Evaluation Criteria:

Correctness (1-5): The quality of the repository in accurately implementing the paper’s concepts, methodology, and algorithms
without logical errors. Additionally, provide a critique focusing on the completeness, accuracy, and implementation choices made in
the repository relative to the methodology and algorithms described in the paper.

1: Very Poor. The repository does not correctly implement the core concepts, methodology, or algorithms from the paper. Major
logical errors or missing components are present.

2: Poor. The repository attempts to implement the paper’s concepts but contains significant mistakes or missing components, making
the implementation incorrect.

3: Fair. Some core components and concepts are correctly implemented, but there are notable logical errors or inaccuracies in the
methodology.

4: Good. The repository correctly implements the key components and methodology, with only minor inaccuracies that do not
significantly affect correctness.

5: Excellent. The repository fully and accurately implements all key components, methodology, and algorithms from the paper
without logical errors.

Evaluation Steps

1. Identify Key Aspects of the Paper: Carefully read the paper to understand its core concepts, methodology, and algorithms.
Pay close attention to key aspects crucial for implementing the paper’s results (e.g., specific algorithms, data preprocessing steps,
evaluation protocols).

2. Examine the Code Repository: Analyze the repository to determine how well it implements the key aspects of the paper. Focus on
whether the repository’s core logic, algorithms, and structure align with the methodology and experiments described in the paper.

3. Identify Logical Errors and Deviations: Check for logical errors, missing steps, or deviations from the paper’s methodology. Note
any incorrect representations, inconsistencies, or incomplete implementations that could affect the correctness of the repository.

4. Provide a Critique: Consider the completeness and accuracy of the implementation relative to the paper’s goals. You do not
need to analyze minor details like logging functions, script organization, or documentation quality. Instead, concentrate on the
correctness of the logic and implementation to ensure the core concepts from the paper are fully reflected in the repository. For each
identified issue, write a detailed critique specifying the affected files and functions in the repository. Highlight missing or incorrectly
implemented steps that impact the correctness and alignment with the paper’s methodology.

5. Assess Completeness and Accuracy: Evaluate the repository for its completeness and accuracy relative to the paper’s methodology.
Ensure that all critical components—such as data preprocessing, core algorithms, and evaluation steps—are implemented and
consistent with the paper’s descriptions.

6. Assign a Score: Based on your evaluation, provide a critique and assign a correctness score from 1 to 5 for the repository,
reflecting how well it implements the key aspects of the paper. Include a detailed critique in the specified JSON format.

Severity Level:
Each identified critique will be assigned a severity level based on its impact on the correctness of the methodology implementation.

- High: Missing or incorrect implementation of the paper’s core concepts, major loss functions, or experiment components that are
fundamental to reproducing the paper’s methodology.

- Example: The main algorithm is missing or fundamentally incorrect. - Medium: Issues affecting training logic, data preprocessing,
or other core functionalities that significantly impact performance but do not completely break the system.

- Example: Improper training loop structure, incorrect data augmentation, or missing essential components in data processing.

- Low: Errors in specific features that cause deviations from expected results but can be worked around with modifications. Any
errors in the evaluation process belong to this category unless they impact the core concepts. These include minor issues like logging,
error handling mechanisms, configuration settings, evaluation steps that do not alter the fundamental implementation and additional
implementations not explicitly stated in the paper.

- Example: Suboptimal hyperparameter initialization, incorrect learning rate schedule, inaccuracies in evaluation metrics, using a
different random seed, variations in batch processing, different weight initialization, issues in result logging or reporting, variations
in evaluation dataset splits, improper error handling in non-critical steps, mismatches in secondary evaluation criteria, or additional
implementation details not specified in the paper that do not interfere with core results.

30



Prompt for model-based reference-free evaluation

Example JSON format:
““json
{
"critique_list": [
{
"file_name": "dataset.py",
"func_name": "train_preprocess",
"severity_level": "medium",
"critique": "A critique of the target repository’s file."
B
{
"file_name": "metrics.py",
"func_name": "f1_at_k",
"severity_level": "low",
"critique": "A critique of the target repository’s file."
}
1,
"score": 2
‘}‘
Sample:

Research Paper:
{{The content of the paper} }
Code Repository:

{{The generated repository, which serves as the target repository for evaluation. } }

Please provide a critique list for the code repository and a single numerical rating (1, 2, 3, 4, or 5) based on the quality of the sample,
following the Example JSON format, without any additional commentary, formatting, or chattiness.

Figure 17: Prompt for model-based reference-free evaluation. {{}} indicate placeholders to be filled with the
content described in the accompanying explanation.

31



Prompt for LLM-assisted debugging

[System]

You are a highly capable code assistant specializing in debugging real-world code repositories. You will be provided with:
(1) a code repository (in part or in full), and

(2) one or more execution error messages generated during the execution of the repository.

Your objective is to debug the code so that it executes successfully.
This may involve identifying the root causes of the errors, modifying faulty logic or syntax, handling missing dependencies, or
making other appropriate corrections.

Guidelines:

- Provide the exact lines or file changes needed to resolve the issue.

- When necessary, suggest best practices or improvements to prevent similar issues.
- Show only the modified lines using a unified diff format:

«««< SEARCH
original line

corrected line
»»»> REPLACE

- If multiple fixes are needed, provide them sequentially with clear separation.
- If external dependencies or environment setups are required (e.g., packages, versions, file paths), specify them explicitly.

Constraints:

- Do not make speculative edits without justification.

- Do not assume access to an internet connection for installation or retrieval unless explicitly stated.

- Prioritize minimal and effective fixes that preserve the original intent of the code.

- Maintain the coding style and structure used in the original repository unless refactoring is necessary for correctness.

[User]
### Code Repository
{{codes}}

### Execution Error Messages
{ {execution_error_msg} }

## Instruction
Now, you need to debug the above code so that it runs without errors. Identify the cause of the execution error and modify the code
appropriately. Your output must follow the exact format as shown in the example below.

## Format Example

Filename: train.py

«««< SEARCH

result = model.predict(input_data)

result = model(input_data)
»»»> REPLACE

## Answer

Figure 18: Prompt for LLM-assisted debugging. {{}} indicate placeholders to be filled with the content described
in the accompanying explanation.

32



Prompt for verifying overall planning
[System]
You will be given a research paper and an accompanying overall reproduction plan.

Your task is to rate the plan on one metric and provide a critique highlighting key differences between the plan and what
the paper actually requires.

Please make sure you read and understand these instructions carefully. Keep this document open while reviewing, and
refer to it as needed.

Evaluation Criteria

Plan—Paper Alignment (1-5): How well the overall plan aligns with the paper’s methodology, experimental setup, and
evaluation metrics.

1: Very Poor. The plan is largely misaligned with the paper’s goals and methods, omits critical components (datasets, algorithms, or
evaluation), and shows major misunderstandings.

2: Poor. The plan attempts to follow the paper but has significant gaps (key experiments missing, wrong resource assumptions,
unclear success criteria).

3: Fair. The plan covers several core needs but contains notable inaccuracies or omissions (partial experiments, vague milestones,
unspecified risks/assumptions).

4: Good. The plan aligns with most paper requirements, has clear milestones and resources; only minor gaps or ambiguities remain.
5: Excellent. The plan fully aligns with the paper’s methodology and experiments, specifies resources and risks precisely, and defines
clear, measurable success criteria.

Evaluation Steps

1. Extract Paper Requirements:

Identify objectives, datasets, models/algorithms, and training/evaluation protocols needed for reproduction.

2. Map Requirements to Plan:

Check whether the plan includes corresponding milestones, deliverables, resource estimates (compute, data, libraries).
3. Assess Success Criteria:

Ensure the plan defines measurable outcomes tied to the paper’s metrics and variance (e.g., seeds, confidence intervals).
4. Critique:

List concrete misalignments, missing items, and unrealistic assumptions; point to specific plan sections.

5. Score:

Provide a single 1-5 rating and a detailed critique in the specified JSON format.

Severity Level

- High: Missing core experiments, datasets, or objectives; success criteria not tied to paper metrics.
- Medium: Incomplete milestones/resources; unclear ablations; weak risk mitigation.

- Low: Minor ambiguity in timelines, non-critical tooling choices, formatting.

Example JSON format
“‘json
{
"critique_list": [
{
"plan_section": "Milestones",
"severity_level": "high",
"critique": "No milestone for ablation studies described in Section 4 of the paper; plan skips required variant training."
1
{
"plan_section": "Resources",
"severity_level": "medium",
"critique": "GPU estimate does not account for 3 seeds per experiment as required by the paper’s evaluation."
}
"score": 3
)
Sample:

Research Paper: {{Paper}}
Overall Plan: {{Plan}}

Please provide a critique of the weaknesses in the overall plan and a single numerical rating (1, 2, 3, 4, or 5), following
the Example JSON format, without any additional commentary, formatting, or chattiness.

Figure 19: Prompt for verification in overall planning. {{}} indicate placeholders to be filled with the content
described in the accompanying explanation.

33



Prompt for refining overall planning

[System]
You are an expert researcher and strategic planner with a deep understanding of experimental design and reproducibility in scientific
research.

You will receive a research paper (JSON format), the original overall plan, and an evaluation critique+score of that plan.

Your task is to revise and improve the overall plan based on the critique, ensuring it fully aligns with the paper.
This plan should align precisely with the paper’s methodology, experimental setup, and evaluation metrics.

## Instructions:

1. Fix High/Medium Issues: Correct all critical omissions and misalignments from the critique.

2. Preserve Correct Elements: Keep valid, well-aligned parts of the original plan.

3. Add Completeness: Ensure all methods, datasets, experimental setups, and evaluation metrics from the paper are included.

4. Be Clear and Structured: Present the improved plan in a roadmap format with actionable steps.

5. Prioritize Efficiency: Optimize the plan for clarity and practical implementation while ensuring fidelity to the original experiments.
6. Highlight Changes: Provide a summary of the key changes you made relative to the critique.

## Format Example
[CONTENT]
{
"summary_of_changes": [
"Added ablation milestones that were missing",
"Specified required GPU hours based on experiment scale",
"Clarified success criteria tied to accuracy and F1 metrics"

won

"improved_version": "«<Revised and detailed plan here»>"
}
[/CONTENT]

## Notes

1. We want to reproduce the method described in the attached paper.

2. The authors did not release any official code, so we have to plan our own implementation.

3. Before writing any Python code, please outline a comprehensive plan that covers:

- Key details from the paper’s **Methodology™**.

- Important aspects of **Experiments**, including dataset requirements, experimental settings, hyperparameters, or evaluation
metrics.

4. The plan should be as **detailed and informative** as possible to help us write the final code later.

## Requirements
- You don’t need to provide the actual code yet; focus on a **thorough, clear strategy**.
- If something is unclear from the paper, mention it explicitly.

## Action

The response should give us a strong roadmap, making it easier to write the code later.
Follow the instructions for the notes and requirements, generate the output, and ensure it follows the format example.

## Inputs:

Research Paper:
{{Paper}}

Original Overall Plan:
{{Plan}}

Critique+Score:
{{Critique} }

Figure 20: Prompt for refinement in overall planning. {{}} indicate placeholders to be filled with the content
described in the accompanying explanation.

34



Prompt for verifying architecture design

[System]

You will be given a research paper and an architecture design consisting of Implementation approach, File list, Data structures and
interfaces(classDiagram), Program call flow(sequenceDiagram) and Anything UNCLEAR intended to complete software system
design for reproducing the paper’s method.

Your task is to rate the architecture on one metric and provide a critique highlighting key differences between the dia-
grams and what the paper requires.

Please make sure you read and understand these instructions carefully. Keep this document open while reviewing, and
refer to it as needed.

Evaluation Criteria

Architecture—Method Fidelity (1-5): How faithfully the architecture design — Implementation approach, File list, Data
structures and interfaces (classDiagram), Program call flow (sequenceDiagram) — captures the paper’s components, data/control
flows, responsibilities, and key interfaces.

Section-specific indicators (used to inform the 1-5 rating):

- Implementation approach

- Faithfully reflects the paper’s algorithmic pipeline, major assumptions, and training/evaluation protocols.

- Mentions all required optimizer/solver variants, loss terms, constraints, and data preprocessing the paper relies on.

- Notes reproducibility-critical details (random seeds, determinism settings, hardware/precision) when the paper depends on them.

- File list

- Provides a clear, minimal, and traceable mapping from paper sections to code modules.

- Encodes strategy/factory points for ablations (optimizers, model variants, datasets) without over-coupling.
- Separates concerns (I/O vs. training vs. evaluation vs. plotting) and anticipates extensibility.

- Data structures and interfaces (classDiagram)

- Defines interfaces that match the paper’s abstractions (e.g., loss components, physics constraints, evaluation metrics).

- Shows inputs/outputs and typing consistent with the paper’s notation (tensor shapes, units, domains).

- Exhibits low coupling/high cohesion; substitution of components (optimizers, backends) is possible without ripple changes.

- Program call flow (sequenceDiagram)

- Preserves the paper’s control flow order (training — validation — testing; optimizer switching; line-search loops).

- Includes error/edge handling the paper requires (e.g., fallback when line search fails, early stopping, tolerance checks).
- Captures logging, checkpointing, and metric computation at the times the paper specifies.

1: Very Poor. Core algorithmic components or flows from the paper are missing or fundamentally wrong; responsibilities
are misplaced.

2: Poor. Attempts the paper’s structure but with major omissions (e.g., missing loss path, preprocessing stage, or evaluation path) or
incorrect interactions.

3: Fair. Most major components exist, but interactions are partially incorrect or responsibilities are muddled (tight coupling, unclear
interfaces).

4: Good. Components and interactions largely match the paper; minor omissions or coupling issues that don’t block correctness.

5: Excellent. Diagrams accurately reflect all core components and flows, with clear interfaces, appropriate separation of concerns,
and traceability to paper sections.

Evaluation Steps

1. Identify Core Components:

From the paper, list modules (data loader, model submodules, loss functions, trainers, evaluators) and key messages/flows.

- Implementation approach: Extract all algorithmic steps (data preprocessing, model construction, loss formulation, optimization
schedule, evaluation protocols).

- File list: Map each paper section/subsection to a candidate module; mark where ablation knobs (e.g., optimizer choice) must exist.
- Data structures and interfaces: Enumerate the required classes/structs/functions and their signatures implied by the paper (input
domains, tensor shapes, units).

- Program call flow: Outline the exact order of operations (including optimizer switching, line-search/inner loops, validation
checkpoints, and plotting/metric export).

2. Assess Implementation Approach:
Check whether the description faithfully covers all algorithmic components from the paper (optimizers, loss terms, constraints, PDE
formulations, evaluation metrics). Verify clarity on critical reproducibility details (hyperparameters, tolerance values, data handling).

3. Assess File List:
Judge whether files are sufficient, appropriately separated, and aligned with the paper’s modular structure. Look for missing utility
modules (e.g., configs, logging, checkpointing) or over-coupling between responsibilities.

4. Assess Data Structures and Interfaces (Class Diagrams):
Check class responsibilities, interfaces, cohesion/coupling, extensibility, and fidelity to the paper’s abstractions. Confirm that class
APIs expose exactly what the paper specifies (inputs, outputs, and typing).

5. Assess Program Call Flow (Sequence Diagrams):
Verify message order, sync/async boundaries, optimizer switching, error/edge handling, and inclusion of training/evaluation/validation
paths. Confirm that evaluation and logging happen at the correct cadence.

35



Prompt for verifying architecture design

6. Critique:
Note missing components/relations, incorrect message ordering, poor modularity, or violation of core design principles that hinder
faithful implementation.

For each identified weakness, provide a JSON entry that includes:

- section: One of Implementation approach, File list, Data structures and interfaces, Program call flow
- element: The concrete element under critique

- severity_level: high, medium, or low

- critique: A concise explanation of the issue

7. Score:
Provide a single 1-5 rating that reflects overall Architecture-Method Fidelity and a detailed critique in the specified JSON format.

Severity Level

- High: Missing/incorrect modeling of core algorithm modules or loss/evaluation flows; sequence order contradicts the pa-
per’s method.

- Medium: Over-coupling, unclear interfaces hindering ablations or reproducibility; partial flow omissions (e.g., missing validation
loop).

- Low: Naming inconsistencies, minor UML notation issues, optional utilities misplaced.

Example JSON format
“‘json
{
"critique_list": [
{
"section": "Implementation approach",
"element": "NysNewton-CG details",
"severity_level": "high",
"critique": "Implementation approach lacks specifics on Nystrom preconditioner update frequency and PCG tolerance,
which are essential for faithful reproduction.”

|8
{
"section": "File list",
"element": "config.py",
"severity_level": "medium",
"critique": "No configuration file is listed; paper requires reproducibility across experiments with tunable
hyperparameters."
{

"section": "Data structures and interfaces",

"element": "LossFunction",

"severity_level": "high",

"critique": "Loss components for PDE residuals and boundary/initial conditions are not represented as separate
classes; paper emphasizes modularity for ablation studies."

5

"section”: "Program call flow",
"element": "Evaluation ordering",
"severity_level": "medium",
"critique": "Evaluation occurs only at the end; the paper requires intermediate validation steps for monitoring
convergence."
1,
"score": 3
e
Sample:

Research Paper:
{{Paper}}

Architecture Design:
{ { ArchitectureDesign} }

Please provide a critique of the weaknesses in the architecture design and a single numerical rating (1, 2, 3, 4, or 5), fol-
lowing the Example JSON format, without any additional commentary, formatting, or chattiness.

Figure 21: Prompt for verification in architecture design. {{}} indicate placeholders to be filled with the content
described in the accompanying explanation.

36



Prompt for refining architecture design

[System]
You are an expert researcher and strategic planner with a deep understanding of experimental design and reproducibility in scientific
research.

You will receive a research paper (JSON format), the overall plan, the original architecture design and an evaluation cri-
tique+score of that architecture design.

Your task is to revise and improve the software architecture design for reproducing the paper’s method based on the cri-
tique, while keeping it aligned with both the paper and the overall plan.

This software architecture design design should align precisely with the paper’s methodology, experimental setup, and
evaluation metrics.
Keep the architecture simple and make effective use of open-source libraries.

## Instructions

1. Fix High/Medium Issues: Correct missing or mis-specified modules, incorrect sequence flows, or over-coupled class designs.
2. Trace to Plan/Paper: Ensure diagrams and modules reflect the methods and milestones in the paper + overall plan.

3. Keep Correct Parts: Retain any well-designed files, class structures, or flows.

4. Improve Clarity: Rewrite class diagrams (Mermaid syntax), sequence diagrams, and file lists with complete detail.

5. Highlight Changes: Provide a summary of what was fixed or added.

## Format Example
[CONTENT]
{
"summary_of_changes": [
"Separated Datal.oader and TokenizerAdapter into distinct modules",
"Added validation loop to sequence diagram",
"Improved interface design for Evaluation class"

"improved_version": {
"Implementation approach": "We will ... ,
"File list": [
"main.py",
"dataset_loader.py",
"model.py",
"trainer.py",
"evaluation.py"
1,
"Data structures and interfaces": "\nclassDiagram\n class Main \n +__init__()\n +run_experiment()\n \n class DatasetLoader
\n +__init__(config: dict)\n +load_data() -> Any\n \n class Model \n +__init__(params: dict)\n +forward(x: Tensor) -> Tensor\n \n
class Trainer \n +__init__(model: Model, data: Any)\n +train() -> None\n \n class Evaluation \n +__init__(model: Model, data:
Any)\n +evaluate() -> dict\n \n Main —> DatasetLoader\n Main —> Trainer\n Main —> Evaluation\n Trainer —> Model\n",
"Program call flow": "\nsequenceDiagram\n participant M as Main\n participant DL as DatasetLoader\n participant MD
as Model\n participant TR as Trainer\n participant EV as Evaluation\n M-»DL: load_data()\n DL-»M: return dataset\n M-»MD:
initialize model()\n M-»TR: train(model, dataset)\n TR-»MD: forward(x)\n MD—»TR: predictions\n TR—»M: training complete\n
M-»EV: evaluate(model, dataset)\n EV-»MD: forward(x)\n MD—»EV: predictions\n EV—-»M: metrics\n",
"Anything UNCLEAR": "Need clarification on the exact dataset format and any specialized hyperparameters."

}
}
[/CONTENT]

## Nodes: "<node>: <type> # <instruction>"

- Implementation approach: <class ’str’> # Summarize the chosen solution strategy.

- File list: typing.List[str] # Only need relative paths. ALWAYS write a main.py or app.py here.

- Data structures and interfaces: typing.Optional[str] # Use mermaid classDiagram code syntax, including classes, method(__init__
etc.) and functions with type annotations, CLEARLY MARK the RELATIONSHIPS between classes, and comply with PEP8
standards. The data structures SHOULD BE VERY DETAILED and the API should be comprehensive with a complete design.

- Program call flow: typing.Optional[str] # Use sequenceDiagram code syntax, COMPLETE and VERY DETAILED, using CLASSES
AND API DEFINED ABOVE accurately, covering the CRUD AND INIT of each object, SYNTAX MUST BE CORRECT.

- Anything UNCLEAR: <class ’str’> # Mention ambiguities and ask for clarifications.

## Constraint
Format: output wrapped inside [CONTENT][/CONTENT] like the format example, nothing else.

## Action
Follow the instructions for the nodes, generate the output, and ensure it follows the format example.

## Inputs:

Research Paper: {{Paper} }

Overall Plan: {{Plan}}

Original Architecture Design: {{ArchitectureDesign}}
Critique+Score: {{Critique}}

Figure 22: Prompt for refinement in architecture design. {{}} indicate placeholders to be filled with the content
described in the accompanying explanation.

37



Prompt for verifying logic design

[System]
You will be given a research paper and a logic design describing the ordered sequence of files/modules to be generated (e.g.,
scaffolding, filenames, module boundaries, dependency order, build/run scripts).

Your task is to rate the logic design on one metric and provide a critique highlighting key differences between the pro-
posed generation sequence and what the paper requires.

Please make sure you read and understand these instructions carefully. Keep this document open while reviewing, and
refer to it as needed.

Evaluation Criteria

Executable Dependency Correctness (1-5): Whether the generation order and module boundaries produce a coherent,
buildable system that correctly reflects the paper’s pipeline (data — train — eval) and enables required experiments.

1: Very Poor. Order/boundaries prevent a successful build or omit essential artifacts; critical dependencies unresolved.

2: Poor. Major steps are out of order or missing (e.g., metrics defined after their use); build/run impossible without substantial
rework.

3: Fair. Core path is present but with notable dependency leaks or circularity; buildable with non-trivial fixes.

4: Good. Mostly correct ordering and boundaries; minor leaks or script issues that don’t block execution.

5: Excellent. Fully coherent generation sequence with clear dependencies, reproducible builds, and explicit hooks for experiments/ab-
lations.

Evaluation Steps

1. Identify Required Pipeline:
Identify the main stages from the paper (e.g., preprocessing, model, training, evaluation) that must be reflected in the logic design.

2. Check Ordering & Boundaries:
Confirm that module ordering respects dependencies (e.g., data before training, training before evaluation) and avoids circular imports.

3. Reproducibility Hooks:
Verify configuration, seed control, CLI/entry points, and script orchestration match the paper’s eval protocol.

4. Assess Logic Analysis:

Evaluate whether the logic analysis correctly captures the roles, dependencies, and data flow of each file/module.
- Look for missing modules, unclear roles, or mismatched dependencies.

- Check whether shared knowledge/configuration is properly integrated.

5. Assess Task List:
Ensure the listed files/modules fully cover the required pipeline and appear in an executable order.
- Flag if key scripts are missing, duplicated, or misaligned with the analysis.

6. Critique:

Identify misplaced steps, missing files, circular dependencies, or non-reproducible sequencing; reference specific steps/filenames.
Summarize weaknesses and mismatches. Categorize by severity (High/Medium/Low) and reference specific sections (Logic Analysis
or Task list).

7. Score:
Provide a single 1-5 rating and a detailed critique in the specified JSON format.

Severity Level

- High: Missing generation of core modules or ordering that makes the pipeline non-executable (e.g., trainer created be-
fore model/loss interfaces exist).

- Medium: Misordered secondary components (configs, metrics, dataset splits) that significantly hinder correct runs or evaluations.
- Low: Naming inconsistencies, minor script flags, optional packaging artifacts.

38



Example JSON format

ceer

json
Example JSON format
{
"critique_list": [
{
"section": "Logic Analysis",
"step_ref": "evaluation.py",
"severity_level": "high",
"critique": "Evaluator script depends on metrics that are not defined before its use; imports would fail."
1
{
"section": "Logic Analysis",
"step_ref": "trainer.py",
"severity_level": "medium",
"critique": "Trainer references optimizer variants, but configuration hooks are not clearly defined."
|
{
"section": "Task list",
"step_ref": "main.py",
"severity_level": "low",
"critique": "Entrypoint is listed but lacks mention of configuration flags or seed injection for reproducibility."
}
"score": 4
‘}‘
Sample:
Research Paper:
{{Paper}}
Logic Design:
{{LogicDesign}}

Please provide a critique of the weaknesses in the logic design and a single numerical rating (1, 2, 3, 4, or 5), following
the Example JSON format, without any additional commentary, formatting, or chattiness.

Figure 23: Prompt for verification in logic design. {{}} indicate placeholders to be filled with the content
described in the accompanying explanation.

39



Prompt for refining logic design

[System]
You are an expert researcher and strategic planner with a deep understanding of experimental design and reproducibility in scientific
research.

You will receive a research paper (JSON format), the overall plan, the architecture design, the original logic design and
an evaluation critique+score of that logic design.

Your task is to revise and improve the logic design based on the critique, ensuring it is executable, complete, and aligned
with both the paper, overall plan and architecture design.

The logic design breaks down tasks according to the PRD/technical design, generates a task list, and analyzes task depen-
dencies.

The logic design outlines a clear PRD/technical plan for reproducing the paper’s methods and experiments.

The "Logic Analysis" should not only consider the dependencies between files but also provide detailed descriptions to
assist in writing the code needed to reproduce the paper.

## Instructions

1 .Fix High/Medium Issues: Correct misordered dependencies, missing files, or incomplete API specs.
2. Ensure Executability: Verify the dependency order supports a buildable and runnable system.

3. Align with Architecture: Ensure file breakdown matches the architecture’s file list and APIs.

4. Highlight Changes: Provide a clear summary of modifications.

## Format Example
[CONTENT]
{
"summary_of_changes": [
"Moved metric definition before evaluator script in task list",
"Expanded API spec to include ablation toggle endpoints",
"Clarified shared config variables for Trainer and Datal.oader"
1,
"improved_version": {
"Required packages": [
"numpy==1.21.0",
"torch==1.9.0"
1,
"Required Other language third-party packages": [
"No third-party dependencies required"

I3
"Logic Analysis": [
[
"data_preprocessing.py",
"DataPreprocessing class ........ "
3
[
"trainer.py",
"Trainer ....... "
1,
[
"dataset_loader.py",
"Handles loading and ........"
1
[
"model.py",
"Defines the model ....... "
1,
[
"evaluation.py",
"Evaluation class ........ "
1,
[
"main.py",
"Entry point ....... "
1
1,
"Task list": [
"dataset_loader.py",
"model.py",
"trainer.py",
"evaluation.py",
"main.py"
]

"

Full API spec": "openapi: 3.0.0 ...",
"Shared Knowledge": "Both data_preprocessing.py and trainer.py share ........ s
"Anything UNCLEAR": "Clarification needed on recommended hardware configuration for large-scale experiments."

}

}
[/CONTENT]

40



Prompt for refining logic design

## Nodes: "<node>: <type> # <instruction>"

- Required packages: typing.Optional[typing.List[str]] # Provide required third-party packages in requirements.txt format.(e.g.,
‘numpy==1.21.0").

- Required Other language third-party packages: typing.List[str] # List down packages required for non-Python languages. If none,
specify "No third-party dependencies required".

- Logic Analysis: typing.List[typing.List[str]] # Provide a list of files with the classes/methods/functions to be implemented, including
dependency analysis and imports. Include as much detailed description as possible.

- Task list: typing.List[str] # Break down the tasks into a list of filenames, prioritized based on dependency order. The task list must
include the previously generated file list.

- Full API spec: <class ’str’> # Describe all APIs using OpenAPI 3.0 spec that may be used by both frontend and backend. If
front-end and back-end communication is not required, leave it blank.

- Shared Knowledge: <class "str’> # Detail any shared knowledge, like common utility functions or configuration variables.

- Anything UNCLEAR: <class ’str’> # Mention any unresolved questions or clarifications needed from the paper or project scope.

## Constraint
Format: output wrapped inside [CONTENT][/CONTENT] like the format example, nothing else.

## Action
Follow the node instructions above, generate your output accordingly, and ensure it follows the given format example."""}]

## Inputs:

Research Paper:
{{Paper}}

Overall Plan:
{{Plan}}

Architecture Design:
{{ ArchitectureDesign} }

Original Logic Design:
{{LogicDesign} }

Critique+Score:
{{Critique} }

Figure 24: Prompt for refinement in logic design. {{}} indicate placeholders to be filled with the content
described in the accompanying explanation.

41



Prompt for verifying the configuration file

[System]

You will be given a research paper, an accompanying overall reproduction plan, an architecture design consisting of Implementation
approach, File list, Data structures and interfaces(classDiagram), Program call flow(sequenceDiagram) and Anything UNCLEAR
intended to complete software system design for reproducing the paper’s method, a logic design describing the ordered sequence
of files/modules to be generated (e.g., scaffolding, filenames, module boundaries, dependency order, build/run scripts) and a
‘config.yaml file generated from those artifacts.

Your task is to evaluate the quality of the ‘config.yaml® file in supporting reproduction of the paper’s experiments.

Please make sure you read and understand these instructions carefully. Keep this document open while reviewing, and
refer to it as needed.

Evaluation Criteria

Configuration Fidelity (1-5): The extent to which the ‘config.yaml‘ accurately reflects the paper’s methodology, datasets,
hyperparameters, and evaluation settings, while aligning with the planning artifacts.

1: Very Poor. The config omits or misrepresents critical settings (datasets, hyperparameters, evaluation parameters). Can-
not reproduce the experiment.

2: Poor. Includes some relevant parameters but misses major components or sets them incorrectly; partial reproducibility at best.

3: Fair. Covers most essential parameters, but with gaps, inconsistencies, or unclear defaults. Requires manual correction.

4: Good. Mostly faithful and complete, with only minor ambiguities (e.g., default values, logging frequency). Reproducible with
little adjustment.

5: Excellent. Fully specifies all required datasets, preprocessing, model parameters, training/evaluation settings, and reproducibility
details (seeds, logging). Ready to run directly.

Evaluation Steps

1. Check Paper Alignment:
Extract required datasets, hyperparameters, evaluation protocols, and reproducibility factors from the paper.

2. Compare to Planning Artifacts:
Ensure ‘config.yaml‘ contains entries consistent with the improved overall plan, architecture design, and logic design.

3. Evaluate Completeness:

Confirm inclusion of key sections:

- Dataset paths and preprocessing details

- Model hyperparameters (hidden size, learning rate, optimizer, etc.)
- Training/evaluation settings (batch size, epochs, metrics)

- Ablation/variant toggles if experiments require them

- Random seed and reproducibility parameters

4. Check Consistency:
Verify keys, structure, and naming match the architecture and logic design (file names, module references, etc.).

5. Critique:
Identify missing or inconsistent config fields, unclear values, or misaligned defaults.

6. Score:
Assign a score from 1-5 and output your critique in JSON format.

Severity Levels

- High: Missing/incorrect core parameters (datasets, learning rate, epochs, evaluation metrics).
- Medium: Incomplete experiment coverage (ablations missing, evaluation variants absent, inconsistent naming).
- Low: Formatting/naming issues, minor logging/debugging configs, optional parameters not critical to reproducibility.

42



Prompt for verifying the configuration file

Example JSON Output
“‘json
{
"critique_list": [
{
"config_key": "dataset.path",
"severity_level": "high",
"critique": "Dataset path missing; cannot locate dataset specified in the paper."
b
{
"config_key": "training.seed",
"severity_level": "medium",
"critique": "Random seed not set, reducing reproducibility across runs."
1
{
"config_key": "logging.save_dir",
"severity_level": "low",
"critique": "Output directory not clearly defined; may default to an unintended location."
}
"score": 3
s
Sample:

Research Paper:
{{Paper}}

Overall Plan:
{{Plan}}

Architecture Design:
{ { ArchitectureDesign} }

Logic Design:
{{LogicDesign}}

Config File:
{{ConfigYAML} }

Please provide a critique of the weaknesses in the ‘config.yaml‘ file and a single numerical rating (1, 2, 3, 4, or 5), fol-
lowing the Example JSON format, without any additional commentary, formatting, or chattiness.

Figure 25: Prompt for verification in the configuration file. {{}} indicate placeholders to be filled with the
content described in the accompanying explanation.

43



Prompt for refining the configuration file

[System]
You are an expert ML engineer and experiment reproducibility specialist.

You will receive a research paper (JSON format), the overall plan, the architecture design, the logic design, the original
‘config.yaml® file and an evaluation critique+score of that ‘config.yaml" file.

Your task is to revise and improve the ‘config.yaml® so that it fully supports reproducing the paper’s method based on the
critique, ensuring it is executable, complete, and aligned with the paper, the overall plan, architecture design and logic design.

## Instructions

1. Fix High/Medium Issues: Correct missing dataset paths, hyperparameters, evaluation metrics, or other essential fields noted in the
critique.

2. Preserve Correct Fields: Keep all valid and well-constructed config entries intact.

3. Ensure Completeness: Add all missing sections required by the paper:

- Dataset specifications

- Model hyperparameters

- Training settings

- Evaluation metrics and protocols

- Ablation/variant toggles if required

- Reproducibility controls (random seeds, checkpoints, logging)

4. Consistency: Ensure keys and structure match the architecture and logic design (file references, module naming).
5. Clarity: Use standard YAML conventions with clear hierarchical structure.

6. Highlight Changes: Provide a summary of what was changed relative to the critique.

## Format Example
[CONTENT]
{
"summary_of_changes": [
"Added dataset.path and preprocessing parameters"”,
"Specified random seed for reproducibility”,
"Aligned optimizer settings with paper (AdamW, Ir=3e-5)",
"Included ablation toggles for baseline vs. variant experiments"

"eon

5
"improved_version": "«<Full corrected ‘config.yaml‘ here»>"

}
[/CONTENT]

## Inputs:

Research Paper:
{{Paper}}

Overall Plan:
{{Plan}}

Architecture Design:
{ { ArchitectureDesign} }

Logic Design:
{{LogicDesign}}

Original Config File:
{{ConfigYAML}}

Critique+Score:
{{Critique} }

Figure 26: Prompt for refinement in the configuration file. {{}} indicate placeholders to be filled with the content
described in the accompanying explanation.

44



Prompt for verifying the analysis file

[System]

You will be given a research paper in JSON format, an overview of the plan, a design in JSON format consisting of "Implementation
approach”, "File list", "Data structures and interfaces", and "Program call flow", followed by a task in JSON format that includes
"Required packages”, "Required other language third-party packages", "Logic Analysis", and "Task list", a configuration file named
"config.yaml", along with an analysis file containing comprehensive logic analysis to accurately reproduce the experiments and
methodologies described in the research paper. This analysis must align precisely with the paper’s methodology, experimental setup,
and evaluation criteria.

Your task is to evaluate the quality of the analysis file in preparing to implement the code, and how well it aligns with
the paper’s methodology and the planning artifacts.

Evaluation Criteria

Analysis Fidelity (1-5): The extent to which the analysis file clearly and correctly specifies the responsibilities, methods,
and workflows required to reproduce the paper’s experiments and methodologies.

1: Very Poor. The analysis is vague, missing core methods, or contradicts the paper/planning artifacts. Cannot guide im-
plementation.

2: Poor. Contains partial method outlines but omits critical functionality (e.g., evaluation loop, config integration). Would mislead
implementation.

3: Fair. Covers most key components, but lacks detail in method responsibilities or misorders dependencies. Usable
with significant manual fixing.

4: Good. Clear and structured, with most responsibilities correctly assigned and aligned with the paper. Only minor
omissions or ambiguities.

5: Excellent. Complete, precise, and executable outline. All methods and workflows are included, responsibilities are
clear, and it directly enables faithful code implementation.

Evaluation Steps

1. Check Paper Alignment:
Verify that classes and methods in the analysis match the paper’s methodology (datasets, training, evaluation, metrics).

2. Check Plan Consistency:

Ensure responsibilities match the overall plan, architecture design, logic design (naming, APIs, flows), and configuration file. The
analysis file must follow "Data structures and interfaces" and do not use public member functions that do not exist in your design.
Also, always reference settings from the config.yaml file. Do not invent or assume any values—only use configurations explicitly
provided.

3. Check Completeness:

Confirm that the analysis covers the file’s role in the overall experiment pipeline, including relevant aspects such as:

- Core orchestration or entry-point logic (if the file defines workflows, execution flow, or script-level commands)

- Dataset handling (loading, preprocessing, augmentation, batching)

- Model initialization (architectures, weights, optimizers, schedulers)

- Training loop and checkpoints (iteration structure, loss computation, saving/restoring models)

- Evaluation loop and metrics (validation/testing, performance measurement)

- Configuration and logging integration (hyperparameters, experiment tracking, reproducibility)

- Utility methods and shared functionality (helper functions, abstractions, or cross-module dependencies that support multiple parts of
the codebase)

4. Check Clarity:
Evaluate whether the method steps are sufficiently detailed and logically ordered to be implemented directly. The analysis should
present a logical, well-organized, and actionable format that is easy to follow and apply.

5. Critique:
List missing steps, unclear method responsibilities, or inconsistencies with prior planning artifacts.

6. Score:
Assign a single 1-5 score and provide critiques in JSON format.

Severity Levels

- High: Missing orchestration, dataset/model/training/eval flows, or analysis contradicts paper’s methods.
- Medium: Incomplete detail on dependencies, unclear method responsibilities, or inconsistent naming compared to planning artifacts.
- Low: Minor formatting, naming clarity, or logging/debugging omissions.

45



Prompt for verifying the analysis file

Example JSON Output
“‘json
{
"critique_list": [
{
"section": "conduct_training",
"severity_level": "high",
"critique": "Training method does not mention checkpoint saving/loading, which is required for reproducibility in the
paper."
|
{
"section": "initialize_model",
"severity_level": "medium",
"critique": "Model initialization does not specify tokenizer or embedding layer setup as described in the architecture
design."
b
{
"section": "setup_logging",
"severity_level": "low",
"critique": "Logging configuration is not aligned with the shared logging utilities outlined in the logic design."
}
"score": 3
‘}‘
Sample:
Research Paper:
{{Paper} }
Overall Plan:
{{Plan}}

Architecture Design:
{ { ArchitectureDesign} }

Logic Design:
{{LogicDesign}}

Config File:
{{ConfigYAML}}

Analysis File:
{{AnalysisFile} }

Please provide a critique of the weaknesses in the analysis file and a single numerical rating (1, 2, 3, 4, or 5), following
the Example JSON format, without any additional commentary, formatting, or chattiness.

Figure 27: Prompt for verification in the analysis file. {{}} indicate placeholders to be filled with the content
described in the accompanying explanation.

46



Prompt for refining the analysis file

[System]
You are an expert researcher, strategic analyzer and software engineer with a deep understanding of experimental design and
reproducibility in scientific research.

You will receive a research paper (JSON format), the overall plan, the architecture design, the logic design, a configura-
tion file named ‘config.yaml’, the original analysis file and an evaluation critique+score of the analysis file.

Your task is to revise and improve the analysis file based on the critique and ensure that it aligns with the research paper,
the overall plan, the architecture design, the logic design, and the configuration file.

This analysis must align precisely with the paper’s methodology, experimental setup, and evaluation criteria.

The analysis must be conducted with absolute fidelity to the paper’s methodology, ensuring that every element—from datasets and
model configurations to hyperparameters and experimental setups—mirrors the original specification without deviation or assumption.

The presentation should be clear, logically structured, and actionable, allowing others to replicate or extend the work
with ease.

The established architecture design of "Data structures and interfaces" must remain intact; under no circumstances should
this design be altered, nor should functions outside those explicitly defined be introduced.

Every reference to experimental settings must be drawn directly from the config.yaml file, with no invented or inferred
values permitted.

## Instructions
1. Fix High/Medium Issues: Resolve all critical omissions and contradictions noted in the critique (e.g., missing training/eval loops,
incorrect method responsibilities, ignoring config.yaml values).

2. Preserve Correct Elements: Keep all valid, accurate, and consistent sections of the original analysis file.

3. Ensure Completeness: The improved analysis must cover the file’s role in the experiment pipeline, including relevant
aspects such as:

- Orchestration/entry-point logic

- Dataset handling

- Model initialization

- Training loop & checkpoints

- Evaluation loop & metrics

- Config and logging integration

- Utility methods and shared knowledge

4. Consistency:

- Match class/method names and APIs to those in the architecture design.

- Respect dependencies and order defined in the logic design.

- Always reference hyperparameters/settings from config.yaml — never invent values.

5. Clarity: Write method responsibilities and steps in a clear, logically ordered, and directly implementable way.

6. Highlight Changes: Provide a summary of the key changes relative to the critique.

## Format Example
[CONTENT]
{

"summary_of_changes": "Added checkpoint saving/loading steps in training, aligned model initialization with architecture
design and config.yaml, clarified logging setup to use shared utilities, expanded evaluation flow with metrics defined in config.yaml.",
"improved_version": "«<Full improved analysis file here»>"

}
[/CONTENT]

## Inputs:

Research Paper: {{Paper}}

Overall Plan: {{Plan}}

Architecture Design: {{ArchitectureDesign}}
Logic Design: {{LogicDesign}}

Config File: {{ConfigYAML} }

Original Analysis File: {{AnalysisFile}}

Critique+Score: {{Critique}}

Figure 28: Prompt for refinement in the analysis file. {{}} indicate placeholders to be filled with the content
described in the accompanying explanation.

47



G Examples output of the planning phase

Below is a comprehensive roadmap that details the steps you need to follow to faithfully the experi and jes described in “Attention Is All You Need.” This plan outiines all the key
from data to the model training regimen, and evaluation metrics—providing a solid strategy before writing any Python code. You can later translate each section into
modular code (e.g., in TensorFlow or PyTorch) while referring back to the detailed and settings in the paper.

1. OVERVIEW & KEY DETAILS

« The paper introduces the Transformer archi purely attention-based encoder-decoder model that drops and
« There are two main experimental tracks:
~ Machine ion on WMT 2014 English (=4.5M sentence pairs) and English-French (=36M sentence pairs) datasets.

— English constituency parsing on the WSJ portion of the Penn Treebank (with both small-data and semi-supervised settings)
+ The model consists of stacked encoder and decoder Iayers (base configuration uses 6 layers each, “big” models use larger dimensions) with multi-head (8 heads) scaled dot-product attention, point-wise
feed-forward networks, positional (usin: residual i and layer nor
+ The training uses the Adam optimizer with warmup and a custom learning rate schedule, extensive token-level batching, label smoothing (e = 0.1), and dropout (typically 0.1, though one variant used 0.3 for
English—French “big” models).

2. DATA PREPARATION & EXPERIMENTAL SETUP

A. Machine Translation Datasets:
« English-German:
— Data: WMT 2014 EN-DE dataset (=4.5M sentence pairs).
— Preprocessing:
o Tokenize sentences.
o App\y byte-pair encoding (BPE) W|th a shared source-target vocabulary of ~37,000 tokens.
o Gi /batch sentence pairs by sequence length; target batch size ~25,000 tokens each for source and target.
+ English—French:
— Data: WMT 2014 EN-FR dataset (=36M sentence pairs).
— Preprocessing:
o Tokenize sentences.
o Use word-piece segmentation (vocabulary size of 32,000 tokens).
o Similar batching strategy based on approximate token counts.

B. Constituency Parsing:
« Data: WSJ portion of the Penn Treebank.
— For “WSJ only” experiments, ~40K training sentences (use a vocabulary of 16K tokens)
— For semi-supervised settings, include additional high-confidence corpora (~17M sentences; use a vocabulary of 32K tokens).
+ Preprocess sentences to generate input representations and the corresponding target trees (likely represented as linearized bracketed trees).
+ For decoding, set maximum output length to “input length + 300.”

Note:

_ Some specifics of tokenization and BPE/word-piece toolchain details are not spelled out in the paper; choose
choices.

P tools (e.g.,

, Subword-NMT) and document your

3. MODEL ARCHITECTURE & MODULES

A. Embedding & Positional Encoding:
+ Embedding Layers:
— Learn token embeddings for both the encoder (source) and decoder (target)
— Use a common weight matrix (shared between input embeddings and the pre-softmax linear layer) with scaling factor Vd_model
« Positional Encoding (sinusoidal):
— Implement positional encoding with:
PE(pos, 2i) = sin(pos / 10000(2i/d_model))
PE(pos, 2i+1) = cos(pos / 100004(2i/d_model))
— This gives each embedding the same dimension as d_model (512 for the base model).

B. Encoder:
« Consists of N = 6 identical layers.
« Each layer contains:
1. Multi-head self-attention sub-layer:
— Use 8 attention heads.
— For each head: d_k = d_v = d_model / 8 = 64.
— Compute scaled dot-product attention (dot product divided by vd_k).
2. Position-wise fully connected feed-forward network:
— Two linear transformations with a ReLU activation in between.
— Dimensionality: Input/Output = 512; inner-layer (d_ff) = 2048.
+ Each sub-layer is wrapped with a residual connection and followed by layer normalization.

C. Decoder:

« Also consists of N = 6 identical layers, with one additional sub-layer compared to the encoder.

« Each layer includes:
1. Masked multi-head self-attention sub-layer (mask future tokens to preserve auto-regressive property).
2. Multi-head cross-attention sub-layer over the encoder output (encoder—decoder attention).
3. Position-wise feed-forward network (as in encoder).

« Residual connections and layer normalization are applied in each sub-layer.

« The output embedding is offset by one position to ensure proper autoregressive modeling.

D. Attention Mechanism Details:

* Scaled Dot-Product Attention:

— Given query Q, keys K, and values V, compute attention weights as: softmax(QKAT / Vd_k) times V.
* Multi-head attention:

- Linearly project Q, K, V into h (8) subspaces using learned matrices (W_Q, W_K, W_V).

— Apply scaled dot-product attention in each head.

— Concatenate the outputs and project with W_O.

— This allows the model to attend to different
« Note: The paper describes slight modifications (masking in decoder, possible variations in head imensions); be sure to these so you can later experiment with variants.

E. Additional Components:
oftmax over shared vocabulary weights for prediction.
« Dropout:
— Apply dropout (P_drop = 0.1 for base models, and 0.1 or 0.3 variant noted for EN-FR “big” model) on:
o Output of every sub-layer (after attention and feed-forward networks) before adding the residual connection.
o Sum of embedding and positional encoding.
+ Label Smoothing:
— Use ¢_lIs = 0.1 during training to soften the targets.

4. TRAINING PROCEDURE & HYPERPARAMETERS

A. Optimizer & Leaming Rate Schedule:
« Use the Adam optimizer with parameters:
—B1=09,B2=0.98, c=1e-9.
« Implement the learning rate schedule:
— Learning rate = d_model*(-0.5) * min(step(-0.5), step * warmup_steps™(-1.5))
— Use warmup_steps = 4000.
— This schedule increases the leaming rate linearly in the warmup phase and then decays as an inverse square root of the step number.

B. Batch Formation:

+ Form batches by grouping sentence pairs with approximately 25,000 tokens in both source and target sequences.
+ Ensure that batches are dynamic and based on token counts rather than fixed sentence counts to use GPU memory efficiently.

Figure 29: Artifact from Step 1.1 (Overall Plan) in the planning stage of PaperCoder, generated during repository
construction for the Transformer [43]] (1/2).

48



C. Training Schedules (per experiment):

1. Transformer Base Model:
— Train for 100,000 steps (~12 hours on 8 P100 GPUs).
— Checkpoint averaging: Average the last 5 checkpoints (recorded at 10-minute intervals).

2. Transformer Big Model:
— Configurations: Increase model dimensions (e.g., d_model = 1024, d_ff = 4096, possibly adjust the number of heads and dropout as specified in Table 3 “big” configuration).
— Train for 300,000 steps (~3.5 days on 8 P100 GPUs).
— Average the last 20 checkpoints.

3. English Constituency Parsing:
— Use a 4-layer Transformer with d_model = 1024.
— For WSJ only: vocabulary of 16K tokens.
— For the semi-supervised setting: vocabulary of 32K tokens.
— Keep most hyperparameters the same as the translation base model.
— Beam search adjustments: Use beam size = 21, length penalty a = 0.3, and set maximum output length as (input length + 300).

D. Regularization & Other Training Details:
« Apply dropout at all prescribed points.
* Use label smoothing consistently.
* (Ambiguity Note:) The paper does not specify if gradient clipping was used—this is an implementation decision. Document your choice if you add gradient clipping.
« Random seeds and consistent data shuffling should be set for reproducibility.

5. DECODING & EVALUATION

A. Decoding for Translation Tasks:

« Use beam search with:
—Beam size of 4.
— Length penalty a = 0.6.
— Maximum output length set to “input length + 50,” with early termination if possible.

« Evaluate BLEU scores on:
— WMT 2013 newstest for development.
— WMT 2014 newstest for final test performance.

« Consider using standard BLEU evaluation tools (e.g., SacreBLEU) to ensure comparability with reported numbers.

B. Evaluation for Constituency Parsing:
« Use the F1 score (WSJ 23 F1 is reported) as the primary metric.
« Evaluate on the appropriate WSJ sections as outlined in the paper.
« Compare against previous state-of-the-art results and baselines.

6. IMPLEMENTATION ORGANIZATION & ROADMAP

Step 1. Environment & Setup:
« Choose your deep learning framework (e.g., TensorFlow or PyTorch). Document framework version and GPU requirements (8 NVIDIA P100 GPUs assumed).
- Set up data pipelines for reading, tokenizing, and batching the datasets.
« Prepare preprocessing scripts for BPE or word-piece segmentation.

Step 2. Module-wise Implementation:

* Write modular code for:
— Embeddings and positional encodings.
— Scaled dot-product attention.
— Multi-head attention module (with masking functionality for decoder).
— Position-wise feed-forward layers.
— Encoder layer: Assemble self-attention and feed-forward blocks with residual connections and layer normalization.
— Decoder layer: Build a 3 sub-layer block (masked self-attention, encoder—decoder attention, and feed-forward) as described.
— Output projection and softmax layers.

« Ensure weight sharing between input embeddings and the pre-softmax projection.

Step 3. Training Loop & Learning Rate Schedule:
« Integrate the optimizer and learning rate schedule (include warmup).
« Implement batching by token count.
« Include dropout and label smoothing in the loss calculation.
« Set logging and checkpointing (including saving every 10 minutes or equivalent step intervals).

Step 4. Decoding & Inference:
« Code the beam search decoding with parameters that can be adjusted (beam size, length penalty, max output length).
« Implement early stopping during decoding as suggested.

Step 5. Checkpoint Averaging:
« Write a script to average parameters from the last 5 (or 20 for big models) checkpoints for final evaluation.

Step 6. Experiment Tracking & Reproducibility:
« Log training loss, validation BLEU/perplexity, and decoding outputs.
« Record hyperparameters and random seeds.
« Compare intermediate results (e.g., BLEU scores on dev set) to those reported in the paper.
« Note any divergences and investigate potential causes (batching differences, tokenization differences, etc.).

Step 7. Constituency Parsing Experiments:
« Adapt the Transformer implementation to work for constituency parsing by:
— Adjusting the number of layers and hidden dimensions (4 layers, d_model = 1024).
— Changing vocabulary sizes accordingly.
— Tuning beam search parameters (beam size 21, length penalty 0.3, max output = input+300).
« Evaluate the parsing F1 and compare with the numbers reported in the paper.

7. AMBIGUITIES & UNCERTAIN DETAILS

« Tokenization & BPE/Word-piece: The exact BPE merge operations and vocabulary processing details are not fully described. Choose standard tools and report your settings.

« Data Shuffling & Batching: The “approximate 25,000 tokens per direction” rule is somewhat open-ended. You may need to experiment to match the GPU memory usage described.

«+ Certain hyperparameter details for the “big” model variants (e.g., specific dropout differences for English-French) or additional tuning for parsing may require minor experimentation.

« Gradient clipping is not mentioned explicitly in the paper; decide if you want to add it for stabilization and document your choice.

« In constituency parsing, only a “small number of experiments” were done to choose dropout and beam size. Begin by using the translation hyperparameters and then adjust based on preliminary
performance.

« Although the paper uses checkpoint averaging, details such as frequency of checkpoint saves (every 10 minutes) need to be mapped to your own compute environment.

8. FINAL REMARKS

+ Document every step and ensure that any deviation from the paper’s settings is fully recorded.

« Once all modules and training loops are in place, run pilot experiments (e.g., on a subset of the data) to verify that your implementation (especially the attention mechanisms and learning rate schedule)
behaves as expected.

« Compare intermediate logs (perplexity on training batches, dev set BLEU) with the paper’s reported numbers, and refine your implementation if significant differences persist.

This roadmap should provide you with a solid foundation for translating the paper’s methodology into robust code. Each block and step is directly traced back to the paper’s sections (from model architecture
to training and evaluation), ensuring that you preserve fidelity to the original experiment design while allowing room for minor adjustments if necessary.

Figure 30: Artifact from Step 1.1 (Overall Plan) in the planning stage of PaperCoder, generated during repository
construction for the Transformer [43] (2/2).

49



[Implementation approach]

We will implement a simple, modular Transformer system in Python using open-source libraries such as PyTorch for model implementation and training, TorchText (or similar) for dataset management, and
SentencePiece/Subword-NMT for tokenization. Our system will separate concerns into distinct modules: dataset loading (preprocessing and batching), model definition (implementing Transformer
encoder-decoder with multi-head attention, positional encodings, feed-forward networks, residual connections, and layer normalization), training (with the Adam optimizer and a custom learning rate schedule
including warmup), and evaluation (using BLEU for translation and F1 for parsing). This design remains simple while leveraging established libraries to keep the code concise and maintainable.

[File list]
- main.py

- dataset_loader.py
- model.py

- trainer.py

- evaluation.py

[Data structures and interfaces]
classDiagram
class Main {
+__init__(config: dict)
+run_experiment() -> None

}

class DatasetlLoader {
+__init__(config: dict)
+load_data() -> dict

class TransformerModel {
+__init__(params: dict)

+forward(src: Tensor, tgt: Tensor) -> Tensor

class Encoder {
+__init__(params: dict)
+forward(x: Tensor) -> Tensor

}
class Decoder {
+__init__(params: dict)
+forward(x: Tensor, encoder_output: Tensor) -> Tensor

}
class MultiHeadAttention {
+__init__(d_model: int, num_heads: int)

+forward(query: Tensor, key: Tensor, value: Tensor, mask: Optional[Tensor]) -> Tensor

class FeedForward {
+__init__(d_model: int, d_ff: int)
+forward(x: Tensor) -> Tensor

class PositionalEncoding {
+__init__(d_model: int, max_len: int)
+forward(x: Tensor) -> Tensor

class Trainer {
+__init__(model: TransformerModel, data: dict, config: dict)
+train() -> None
+save_checkpoint(path: str) -> None
+load_checkpoint(path: str) -> None

}

class Evaluation {
+__init__(model: TransformerModel, data: dict, config: dict)
+evaluate() -> dict

Main --> DatasetlLoader

Main --> TransformerModel
Main --> Trainer

Main --> Evaluation
TransformerModel o-- Encoder
TransformerModel o-- Decoder
Encoder --> MultiHeadAttention
Decoder --> MultiHeadAttention
Encoder --> FeedForward
Decoder --> FeedForward
Encoder --> PositionalEncoding
Decoder --> PositionalEncoding
Trainer --> TransformerModel
Evaluation --> TransformerModel

[Program call flow]

sequenceDiagram
participant M as Main
participant DL as DatasetLoader
participant TM as TransformerModel
participant TR as Trainer
participant EV as Evaluation

M->>DL: __init__(config)

M->>DL: load_data()

DL-->>M: return {data: translation/parsing dataset}
M->>TM: __init__(params)

M->>TR: __init__(model=TM, data, config)
M->>EV: __init__(model=TM, data, config)
M->>TR: train()

TR->>TM: forward(src, tgt) [during each batch]
TM-->>TR: model predictions

TR->>TR: save_checkpoint() periodically
TR-->>M: training complete

M->>EV: evaluate()

EV->>TM: forward(src, tgt) [for inference decoding]
TM-->>EV: predictions

EV-->>M: evaluation metrics (BLEU / F1 scores)

[Anything UNCLEAR]
Clarification is needed on the exact dataset formats for both machine translation and constituency parsing (e.g., file structure, tokenization output). Additionally, details on whether to use gradient clipping,
precise checkpoint saving frequency, and any specialized hyperparameters (especially for the 'big' model configuration) would be helpful.

Figure 31: Artifact from Step 1.2 (Architecture Design) in the planning stage of PaperCoder, generated during
repository construction for the Transformer [43]).

50



+init(config: dict) ——
/ +run_experiment() : -> None \x,
7 N T
« . ™
| Trainer v

~

DatasetLoader

+init(config: dict)
+load_data() : -> dict

R A—

=

Evaluation ‘

+train() : -> None +init(model: TransformerModel, data: dict, config: dict)
+save_checkpoint(path: str) : - None +evaluate() : -> dict
+load_checkpoint(path: str) : -> None

\

TransformerModel

+init(model: TransformerModel, data: dict, config: dict) ‘

+init(params: dict)
+forward(src: Tensor, tgt: Tensor) : -> Tensor

Encoder Decoder

+init(params: dict)
+forward(x: Tensor, encoder_output: Tensor) : -> Tensor

o N

+init(params: dict) —
+forward(x: Tensor) : -> Tensor ><

_—

A//

MultiHeadAttention

FeedForward PositionalEncoding

+init(d_model: int, num_heads: int)

+forward(query: Tensor, key: Tensor, value: Tensor, mask: Optional[Tensor]) : -> Tensor

+init(d_model: int, d_ff: int)
+forward(x: Tensor) : -> Tensor

+init(d_model: int, max_len: int)
+forward(x: Tensor) : -> Tensor

Figure 32: Class diagram visualization generated from Step 1.2 (Architecture Design) in the planning stage of
PaperCoder, generated during repository construction for the Transformer [43].

Main DatasetLoader TransformerModel Trainer Evaluation
__init__(config)
load_data() R
return {data: translation/parsing dataset}
__init__(params)
__init__(model=TM, data, config) R
__init__(model=TM, data, config)
train()
J forward(src, tgt) [during each batch]
model predictions N
save_checkpoint() periodically
—
. training complete
evaluate() R
. forward(src, tgt) [for inference decoding]
predictions R
B evaluation metrics (BLEU / F1 scores)
Main DatasetLoader TransformerModel Trainer Evaluation

Figure 33: Program call flow visualization generated from Step 1.2 (Architecture Design) in the planning stage
of PaperCoder, generated during repository construction for the Transformer [43].

51



[Required packages]
21.0

-sentence‘pi‘ece--o. .
=0.10.0

[Required Other language third-party packages]
- No third-party dependencies required

[Logic Analysis]

- [dataset_loader.py', 'DatasetLoader class handles loading raw datasets for both machine translation and constituency parsing, including file I/O, tokenization (via SentencePiece or BPE), vocabulary
creation, and dynamic batching based on token counts. It imports torchtext and tokenization libraries, and provides outputs in a format consumable by the Trainer and Evaluation modules.']

- [model.py’, "Defines the TransformerModel class composed of Encoder and Decoder modules. Inside, implement subcomponents like Encoder, Decoder, MultiHeadAttention, FeedForward, and
PositionalEncoding. This module leverages PyTorch's nn.Module, and reflects the design details from the paper with attention mechanisms, residual ions, layer ization, and shared ing
layers. Dependencies include torch.nn and relevant utility functions."]

- [trainer.py’, 'Implements the Trainer class which sets up the training loop using the TransformerModel. The Trainer handles optimizer setup (Adam with custom hyperparameters and a learning rate schedule
with warmup), loss computation with label smoothing, batching, checkpoint saving/loading, and logging training statistics. It depends on both model.py and dataset_loader.py."]

- ['evaluation.py', 'Contains the Evaluation class responsible for running inference on the trained model, implementing beam search decoding, and computing evaluation metrics (BLEU for translation tasks
and F1 scores for constituency parsing). It may use external libraries like sacreBLEU for BLEU score calculation. This module depends on model.py and dataset_loader.py for data and model interfacing.]

- ['main.py', 'Acts as the entry point to the system. It reads the configuration (possibly from a config file or command-line arguments), instantiates DatasetlLoader to load data, creates the TransformerModel,
and then instantiates the Trainer and Evaluation classes. The control flow manages calling the training loop followed by evaluation and metric reporting. It ties all modules together and handles overall
experiment orchestration."]

[Task list]

- dataset_loader.py
- model.py

- trainer.py

- evaluation.py

- main.py

[Shared Knowledge]
Shared utilities include configuration management, logging functions, and checkpoint management code that are common between dataset_loader.py and trainer.py. Hyperparameters and model constants
(e.g., d_model, num_heads, d_ff, warmup_steps, dropout rates) should be centralized in a common configuration module or dictionary to ensure consistency across modules.

[Anything UNCLEAR]
Clarification is needed on the recommended hardware configuration for large-scale experiments, the exact format of the datasets (file structure, tokenization details, data splits), the frequency of checkpoint
saving, and whether gradient clipping should be incorporated in the training loop.

Figure 34: Artifact from Step 1.3 (Logic Design) in the planning stage of PaperCoder, generated during repository
construction for the Transformer [43].

## config.yaml
training:
optimizer: "Adam"
betal: 0.9
beta2: 0.98
epsilon: le-9
warmup_steps: 4000
total_steps: 100000 # Base model: 100K training steps ("12 hours on 8 P100 GPUs)
learning_rate_schedule: "d_model~-0.5 * min(step~-0.5, step * warmup_steps~-1.5)"
batch_tokens:
source: 25000
target: 25000
dropout: 0.1
label_smoothing: 0.1

model:
num_layers: 6
d_model: 512
d_ff: 2048
num_heads: 8
d_k: 64
d_v: 64
shared_embedding: true

data:
dataset: "WMT 2014 English-to-German"
encoding: "byte-pair encoding"
vocabulary_size: 37000

evaluation:
beam_size: 4
length_penalty: 0.6
max_output_length: "input_length + 50"

Figure 35: Artifact from Step 1.4 (Configuration File) in the planning stage of PaperCoder, generated during
repository construction for the Transformer [43].

52



Table 17: List of ICLR 2024 papers used in our Paper2CodeBench benchmark. We evaluate each paper using
the model-based, reference-free setting, with gpt-40-2024-11-20 as the evaluation model.

Paper Source Score
Generative Judge for Evaluating Alignment Poster 4
Distributional Preference Learning: Understanding and Accounting for Hidden
- Poster 4
Context in RLHF
Inherently Interpretable Time Series Classification via Multiple Instance Learning Oral 39
iTransformer: Inverted Transformers Are Effective for Time Series Forecasting Oral 39
Tell Your Model Where to Attend: Post-hoc Attention Steering for LLMs Poster 39
Knowledge Distillation Based on Transformed Teacher Matching Poster 39
Meaning Representations from Trajectories in Autoregressive Models Poster 3.8
A Simple Interpretable Transformer for Fine-Grained Image Classification and
- Poster 3.8
Analysis
VDC: Versatile Data Cleanser based on Visual-Linguistic Inconsistency by Mul-
- Poster 3.8
timodal Large Language Models
Vocos: Closing the gap between time-domain and Fourier-based neural vocoders Poster 33

for high-quality audio synthesis

SliceGPT: Compress Large Language Models by Deleting Rows and Columns Poster 3.8

Beyond Accuracy: Evaluating Self-Consistency of Code Large Language Models

with IdentityChain Poster 3.8
Guiding Masked Representation Learning to Capture Spatio-Temporal Relation-
- - Poster 3.8
ship of Electrocardiogram
Social Reward: Evaluating and Enhancing Generative Al through Million-User Oral 37
Feedback from an Online Creative Community :
Language Model Detectors Are Easily Optimized Against Poster 3.7
Improving protein optimization with smoothed fitness landscapes Poster 3.7
SparseFormer: Sparse Visual Recognition via Limited Latent Tokens Poster 3.7
AutoVP: An Automated Visual Prompting Framework and Benchmark Poster 3.7
Hierarchical Context Merging: Better Long Context Understanding for Pre-
- Poster 3.7
trained LLMs
SEABO: A Simple Search-Based Method for Offline Imitation Learning Poster 3.7
OpenChat: Advancing Open-source Language Models with Mixed-Quality Data Poster 3.7
Rethinking The Uniformity Metric in Self-Supervised Learning Poster 3.7
VONet: Unsupervised Video Object Learning With Parallel U-Net Attention and
- - . Poster 3.6
Object-wise Sequential VAE
Efficient Backpropagation with Variance-Controlled Adaptive Sampling Poster 3.6
Structuring Representation Geometry with Rotationally Equivariant Contrastive
. Poster 3.6
Learning
ControlVideo: Training-free Controllable Text-to-Video Generation Poster 3.6
Context-Aware Meta-Learning Poster 3.6
RECOMBINER: Robust and Enhanced Compression with Bayesian Implicit
. Poster 3.6
Neural Representations
Peering Through Preferences: Unraveling Feedback Acquisition for Aligning
Poster 3.6
Large Language Models
Modulate Your Spectrum in Self-Supervised Learning Poster 3.6

53



Table 18: List of ICML 2024 papers used in our Paper2CodeBench benchmark. We evaluate each paper using
the model-based, reference-free setting, with gpt-40-2024-11-20 as the evaluation model.

Paper Source Score
SAMformer: Unlocking the Potential of Transformers in Time Series Forecasting Oral 4
with Sharpness-Aware Minimization and Channel-Wise Attention
Autoformalizing Euclidean Geometry Poster 4
Recurrent Distance Filtering for Graph Representation Learning Poster 4
CosPGD: an efficient white-box adversarial attack for pixel-wise prediction tasks Poster 39
Token-level Direct Preference Optimization Poster 39
BayOTIDE: Bayesian Online Multivariate Time Series Imputation with Func-
. .. Oral 3.8
tional Decomposition
CurBench: Curriculum Learning Benchmark Poster 3.8
Exploring the Low-Pass Filtering Behavior in Image Super-Resolution Poster 3.8
Towards Efficient Exact Optimization of Language Model Alignment Poster 3.7
On the Effectiveness of Supervision in Asymmetric Non-Contrastive Learning Poster 3.7
Drug Discovery with Dynamic Goal-aware Fragments Poster 3.7
Fool Your (Vision and) Language Model With Embarrassingly Simple Permuta-
. Poster 3.7
tions
Image Restoration Through Generalized Ornstein-Uhlenbeck Bridge Poster 3.7
Timer: Generative Pre-trained Transformers Are Large Time Series Models Poster 3.7
Mitigating Oversmoothing Through Reverse Process of GNNs for Heterophilic
Poster 3.7
Graphs
Scribble-Supervised Semantic Segmentation with Prototype-based Feature Aug-
. Poster 3.7
mentation
ConvNet vs Transformer, Supervised vs CLIP: Beyond ImageNet Accuracy Poster 3.7
CLIF: Complementary Leaky Integrate-and-Fire Neuron for Spiking Neural
Oral 3.6
Networks
FiT: Flexible Vision Transformer for Diffusion Model Oral 3.6
Decomposing Uncertainty for Large Language Models through Input Clarifica-
- - Oral 3.6
tion Ensembling
SparseTSF: Modeling Long-term Time Series Forecasting with *1k* Parameters Oral 3.6
Sample-specific Masks for Visual Reprogramming-based Prompting Oral 3.6
Boundary Exploration for Bayesian Optimization With Unknown Physical Con-
. Poster 3.6
straints
Listwise Reward Estimation for Offline Preference-based Reinforcement Learn- Poster 36
ing ’ ’
Graph Distillation with Eigenbasis Matching Poster 3.6
Temporal Spiking Neural Networks with Synaptic Delay for Graph Reasoning Poster 3.6
Position: Quo Vadis, Unsupervised Time Series Anomaly Detection? Poster 3.6
Neural SPH: Improved Neural Modeling of Lagrangian Fluid Dynamics Poster 3.6
Self-Play Fine-Tuning Converts Weak Language Models to Strong Language
Poster 3.6
Models
Unveiling and Harnessing Hidden Attention Sinks: Enhancing Large Language Poster 36

Models without Training through Attention Calibration

54



Table 19: List of NeurIPS 2024 papers used in our Paper2CodeBench benchmark. We evaluate each paper using
the model-based, reference-free setting, with gpt-40-2024-11-20 as the evaluation model.

Paper Source Score

PACE: marrying generalization in PArameter-efficient fine-tuning with Consis-
tency rEgularization

The Road Less Scheduled Oral 4

G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding

Oral 4

and Question Answering Poster 4
Binarized Diffusion Model for Image Super-Resolution Poster
Learning to Predict Structural Vibrations Poster
Attack-Aware Noise Calibration for Differential Privacy Poster
Make Your LLM Fully Utilize the Context Poster 39
Smoothed Energy Guidance: Guiding Diffusion Models with Reduced Energy
- Poster 39
Curvature of Attention
Sm: enhanced localization in Multiple Instance Learning for medical imaging
. : Poster 39
classification
AutoTimes: Autoregressive Time Series Forecasters via Large Language Models Poster 3.9
End-to-End Ontology Learning with Large Language Models Poster 3.8
Scaling transformer neural networks for skillful and reliable medium-range
. Poster 3.8
weather forecasting
Autoregressive Image Generation without Vector Quantization Oral 3.7
Adaptive Randomized Smoothing: Certified Adversarial Robustness for Multi-
Oral 3.7
Step Defences
Generalizable Person Re-identification via Balancing Alignment and Uniformity Poster 3.7
Universal Neural Functionals Poster 3.7
Are Self-Attentions Effective for Time Series Forecasting? Poster 3.7
xMIL: Insightful Explanations for Multiple Instance Learning in Histopathology Poster 3.7
Leveraging Environment Interaction for Automated PDDL Translation and Plan-
. : Poster 3.7
ning with Large Language Models
Task-Agnostic Machine Learning-Assisted Inference Poster 3.7
Make Continual Learning Stronger via C-Flat Poster 3.7
DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning
Poster 3.7
Graph
AsyncDiff: Parallelizing Diffusion Models by Asynchronous Denoising Poster 3.7
You Only Look Around: Learning Illumination Invariant Feature for Low-light
- . Poster 3.6
Object Detection
MutaPLM: Protein Language Modeling for Mutation Explanation and Engineer- Poster 36
ing ’
Advancing Training Efficiency of Deep Spiking Neural Networks through Rate-
. Poster 3.6
based Backpropagation
Improved off-policy training of diffusion samplers Poster 3.6
Navigating the Effect of Parametrization for Dimensionality Reduction Poster 3.6
Long-Range Feedback Spiking Network Captures Dynamic and Static Represen- Post 36
tations of the Visual Cortex under Movie Stimuli oster ’
InfLLM: Training-Free Long-Context Extrapolation for LLMs with an Efficient
Poster 3.6

Context Memory

55



Table 20: List of papers used in human evaluation. We evaluate the official repository of each paper, released by
the authors, using the model-based reference-free setting with gpt-40-2024-11-20 as the evaluation model.

RepoName Paper Score

VideoICL: Confidence-based Iterative In-context Learning for Out-of-

VideoICL Distribution Video Understanding 2.6
MuDI Identity Decoupling for Multi-Subject Personalization of Text-to-Image 33
Models
KALMV Knowledge-Augmented Language Model Verification 33
sea-attention SEA: Sparse Linear Attention with Estimated Attention Mask 2.7
HarmAug: Effective Data Augmentation for Knowledge Distillation of
HarmAug Safety Guard Models 3.0
GruM Graph Generation with Diffusion Mixture 3.7
. Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Lan-
Adaptive-RAG guage Models through Question Complexity 27
Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-
SoT . : 4.0
Inspired Sketching
Mol-LLaMA Mol-LLaMA: Towards General Understanding of Molecules in Large 35
Molecular Language Model
judge_code_efficiency Rethinking Code Refinement: Learning to Judge Code Efficiency 3.1
KARD Knowledge-Augmented Reasoning Distillation for Small Language 32
Models in Knowledge-Intensive Tasks ’
COINCIDE._code Eoncept-sklll Transferability-based Data Selection for Large Vision- 30
anguage Models
Janus Aligning to thousands of preferences via system message generalization 35
Silent Branding Attack: Trigger-free Data Poisoning Attack on Text-
N/A o O N/A
to-Image Diffusion Models
VideoRAG VideoRAG: Retrieval-Augmented Generation over Video Corpus 3.0
RADA Retrieval-augmented data augmentation for low-resource domain tasks 3.0
STELLA. code STEL.LA: antmual Audio-Video Pre-training with Spatio-Temporal 33
Localized Alignment
prometheus-vision Prometheus-vmon: Vision-language model as a judge for fine-grained 31
evaluation
CoLoR Efficient Long Context Language Model Retrieval with Compression 3.0
Volcano: Mitigating Multimodal Hallucination through Self-Feedback
Volcano . L 32
Guided Revision
T1: Tool-integrated Self-verification for Test-time Compute Scaling in
N/A N/A
Small Language Models
Table 21: List of papers used in executability analysis.
Repo Name Paper
CoLoR Efficient Long Context Language Model Retrieval with Compression
cognitive-behaviors Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of
Highly Effective STaRs
RADA Retrieval-Augmented Data Augmentation for Low-Resource Domain Tasks
Self-Instruct Self-Instruct: Aligning Language Models with Self-Generated Instructions
G-EVAL G-Eval: NLG Evaluation using GPT-4 with Better Human Alignment

56



Name:
Paper:
Github:

[General]

1. If someone wants to reproduce the methods and experiments in your paper, which
components would they need to implement? Please break down into the following sections:
(1) data processing, (2) method (e.g., model training or main pipeline), and (3)
evaluation.

For example, in Self-Instruct (TLDR; Self-Instruct, a framework for improving the
instruction-following capabilities of language models by bootstrapping off their own
generations.):

Data Processing
e N/A

Method (e.g., Model training or Main pipeline)

1. Instruction Generation
2. Classification Task Identification
3. Instance Generation
4. Filtering
Evaluation

e Training the model using the generated synthetic data via our methods
e Evaluating the trained model

Your Answer

Data Processing

Method (e.g., Model training or Main pipeline)

Evaluation

Figure 36: Human Evaluation Guideline (1/3)

57



[Comparison]

2. Given a set of repositories, which one is the most helpful for reproducibility—that is,
which one best re-implements the methods and experiments as intended by the paper?

Please review the provided repositories (Group 1: repo1-repo4, Group 2: repo5—repo7,
Group 3: repo8-repo10) and rank them based on how well they are implemented.

It is worth noting that the same repository may appear more than once between repo1 and
repo10; this is not an error.

(Optional things: Feel free to leave a comment explaining why you ranked them that way)

[Group1: repo1-repo4]

1st

2nd

3rd

4th

[Group2: repo5-repo7]

1st

2nd

3rd

[Group3: repo8-repo10]

1st

2nd

3rd

Among the top-ranked repositories in each group, which one do you think is the best? If the
repositories are the same, you can select any of them. Please briefly explain your reason.

[All: repo1-repo10]

1st

Reason

Figure 37: Human Evaluation Guideline (2/3)

58



[Detailed Analysis about the 1st Repository]

3. Do you think the first-ranked repository you chose would make it easier to reproduce the
paper’s methods and experiments than starting from scratch?

Yes

No

If you selected 'No', please briefly explain why. Otherwise, you may leave this blank.

Reason for No

4. Based on the key components you mentioned in question 1, how well does the “repo10”
repository support them?

Please check one of the following for each component:

(o = fully implemented, A = partially implemented, x = not implemented)

If you select A or x, please briefly explain your reason.

Example: Self-Instruct (TLDR; Self-Instruct, a framework for improving the
instruction-following capabilities of language models by bootstrapping off their own
generations.)

Data Processing
o N/A
Method (e.g., Model training or Main pipeline)

Instruction Generation (0)

Classification Task Identification (o)

Instance Generation (A) : They don't implement output-first and input-first separately.
Filtering (A) : They only implemented it using the ROUGE-L-based filter, not with the
exact same input-output pairs.

Hoop =

Evaluation

e Training the model using the generated synthetic data via our methods (0)
e Evaluating the trained model (x): They only provided the training code.

Your Answer

Data Processing

Method (e.g., Model training or Main pipeline)

Evaluation

Figure 38: Human Evaluation Guideline (3/3)

59



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please refer to *Abstract’ section and ’Introduction’ section.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Appendix [C]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

60



Justification: The paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully provide the code and data for reproducing our results.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

61



Answer: [Yes]
Justification: We fully provide the code and data.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Section[f.T]and Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We perform a paired t-test between our method and the baselines and report
the results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

62


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to Appendix [A.T]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We confirm that this work is done following NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please refer to Appendix [D}
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

63


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: Please refer to Appendix D}
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: In our study, we explicitly cited the original sources of the code, data, and
models used, ensuring that all are properly acknowledged.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

64


paperswithcode.com/datasets

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We newly propose PaperCoder, a novel multi-agent framework that automates
code generation from scientific papers. All assets, including the implementation, benchmark
datasets (Paper2CodeBench), and evaluation pipeline, are released.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our study does not involve research with human subjects in the conventional
sense. However, we conducted a human evaluation in which the original paper authors who
are not considered human subjects under ethical guidelines reviewed model-generated code
repositories and selected the most faithful one. Full instructions and example screenshots
used in the evaluation process are provided in Appendix [A.2] and the interface is shown in

Figure [36] Figure [37] and Figure
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve human subjects in a way that requires ethical
approval. While we conducted a human evaluation, it involved the original paper authors
reviewing generated repositories. These individuals were not treated as research participants,
and no personal or sensitive data was collected.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

65



* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We use LLMs as parts of our evaluations, which are described in Section @;
however, we do not use them for developing or refining the core research ideas and methods.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

66


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Method
	Repository-Level Code Generation from Machine Learning Papers
	PaperCoder: LLM-Powered Multi-Agent Framework for Paper-to-Code
	Planning
	Analysis
	Coding


	Experiment
	Experimental Setup
	Experimental Results and Analysis
	Additional Analysis on Reproduction from Implemented Code Repository

	Conclusion
	Additional Experimental Designs
	Implementation Details
	Human Evaluation Process
	Reference-Based Evaluation
	PaperBench Code-Dev Evaluation
	Additional Details on Execution and Reproducibility Experiments

	Additional Experimental Results and Analysis
	Code Availability
	PaperBench Code-Dev Results
	Impact of Paper Content on Code Generation
	Most Common Types of Errors and Failure Modes
	Analysis of Performance Across Paper Categories

	Limitations and Future Work
	Broader Impacts and Ethics Statement
	Reproducibility Statement
	Prompts
	Examples output of the planning phase

