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ABSTRACT

Reliable prediction is an essential requirement for deep neural models that are de-
ployed in open environments, where both covariate and semantic out-of-distribution
(OOD) data arise naturally. Recent studies have formulated and pursued two prob-
lems named OOD generalization and detection independently, where the former
aims to correctly recognize covariate shifts while the latter focuses on rejecting
semantic shifts. However, existing methods are misaligned with real-world appli-
cations in two aspects. First, in practice, to make safe decisions, a reliable model
should accept correctly recognized inputs while rejecting both those misclassified
covariate-shifted and semantic-shifted examples. Second, considering the poten-
tial existing trade-off between rejecting different failure cases, more convenient,
controllable, and flexible unknown rejection approaches are needed. To meet the
above requirements, we propose a novel and elegantly simple unknown rejection
framework to unify and facilitate classification with rejection under both covariate
and semantic shifts. Our key insight is that by separating and consolidating failure-
specific reliability knowledge with low-rank adapters and then integrating them,
we can enhance the unknown rejection ability effectively and flexibly. Extensive
experiments demonstrate the superiority of our framework.

1 INTRODUCTION

Deep neural models have achieved remarkable performance in closed-world scenarios, assuming
that train and test sets come from the same distribution. However, in practice, out-of-distribution
(OOD) data naturally arises during the deployment (Nguyen et al., 2015), which mainly includes
two types named covariate shifts and semantic shifts (Bai et al., 2023). Specifically, as depicted in
Fig. 1, a model trained on in-distribution (ID) data may encounter covariate shifts such as conditions
with snowy night (Sakaridis et al., 2021) or corrupted inputs resulting from camera noise and sensor
degradation (Hendrycks & Dietterich, 2018). Unfortunately, the model often suffers significant
performance deterioration when deployed in those scenarios. To ensure safety, it is expected to reject
wrong predictions instead of accepting them blindly. Alternatively, unknown categories with semantic
shifts may also emerge (Hendrycks & Gimpel, 2016; Hendrycks et al., 2018). In this case, the model
must reject to make incorrect decisions by detecting semantic-shifted examples.

In recent years, both covariate and semantic shifts have received extensive attention, and have been
formulated as OOD generalization (Hendrycks et al., 2021; Yi et al., 2021; Liu et al., 2021; Schneider
et al., 2020) and detection (Hendrycks et al., 2018; Zheng et al., 2024; Liu et al., 2020; Basart et al.,
2022) problems, respectively. Concretely, the former focuses on recognizing inputs with covariate
shifts while the latter focuses on rejecting inputs with semantic shifts. Instead of pursuing those two
problems independently, Bai et al. (2023) handles OOD generalization and detection simultaneously
by leveraging unlabeled wild data consisting of both covariate and semantic shifts during training.
However, the aforementioned efforts still have primary limitations. First, for OOD generalization,
there is no rejection option involved, and accepting misclassified covariate-shifted inputs could lead
to catastrophic issues. Second, for OOD detection, the performance of prevalent methods drops a lot
when inputs of known classes suffer from covariate shifts, and rejecting semantic-shifted samples
while accepting all covariate-shifted samples may also lead to serious safety issues.

In addition, the trade-off between the rejection of different failure sources further complicates
the problem. Recent studies (Jaeger et al., 2022; Kim et al., 2023b; Narasimhan et al., 2024)
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Figure 1: (a) Unknown rejection rejects both the (✗) misclassified covariate-shifted and all semantic-
shifted OOD samples, and accepts the (✓) correct prediction. (b) Illustration of three types of
common failure cases in the natural open environment.

have observed that prevalent OOD detection methods proposed in the literature often sacrifice the
performance when detecting incorrect predictions of ID samples. There are a few studies (Zhu et al.,
2024a; Cen et al., 2023; Zhu et al., 2023a; Li et al., 2024) focused on developing reliable models
that can reject both misclassified ID and semantic-shifted OOD data. Nevertheless, they typically
overlook covariate-shifted samples, and it is hard to distinguish correct covariate-shifted samples
from semantic-shifted ones. Besides, they typically train a deep model from scratch or fully fine-tune
one, which is computationally heavy and inefficient. In practical scenarios, different failure sources
are not always predefined and can emerge continually. For instance, an autonomous driving system
performs classification with misclassification rejection on ID data under a normal environment (e.g.,
clean inputs on a sunny day), and switches to more challenging unknown rejection under covariate
shifts when facing sensory degeneration or bad weather (Fig. 1 (b, Middle)). Moreover, when a
car drives into the countryside, it may encounter unexpected novel objects such as sheep and deer
(Fig. 1 (b, Right)), where the model should perform OOD detection and make a warning. In more
common situations, a model is expected to have good rejection ability on various failure cases in
the wild without reliability disparity. From a multi-objective optimization perspective, we could
simultaneously optimize the model with existing methods dealing with covariate and semantic shifts.
However, it is often hard or impossible (Kendall et al., 2018; Boyd & Vandenberghe, 2004) to find a
single optimal solution that can optimize the performance on different failure sources simultaneously.
Moreover, a single prefixed, static solution lacks the flexibility to explore and calibrate the trade-off
among different requirements. Therefore, there is a demand for developing flexible and controllable
unknown rejection methods.

The goal of this paper is to show that the above-mentioned limitations and requirements can be
considerably addressed. For one thing, we aim to predict and accept correctly classified covariate-
shifted examples while rejecting those misclassified ones and all unknown samples with semantic
shifts. As illustrated in Fig. 1 (a), unlike the OOD detection problem that defines “positive” and
“negative” with regard to the label space, unknown rejection directly specifies the distinction by
the correctness of model’s predictions, which is more reasonable and aligned with the requirement
in practical applications. For another, considering the trade-off between rejecting different failure
sources, we aim to develop a more flexible method that enables us to easily separate, consolidate, and
incorporate different reliable knowledge regarding surrounding environments.

Contributions. (1) We study the unknown rejection problem under both covariate and semantic
shifts, and call for flexible and controllable methods for reliability enhancement. (2) We propose
a reliability arithmetic framework with low-rank adapters to compress and consolidate reliability
knowledge effectively and flexibly. To the best of our knowledge, this work is the first to separate
and compress reliability knowledge via low-rank adapters. Further, a random projection strategy
is proposed for rank adaptation to enhance the tuning efficiency. (3) Comprehensive experiments
demonstrating the strong performance of our method, as well as the flexibility of reliability edition.

2 PROBLEM FORMULATION

Training on in-distribution data. We focus on the multi-class classification setting. Let X ⊂ Rd

be an input space, Y = [K] = {1, ...,K} denotes the label space and Pin be the underlying in-
distribution (ID) over X × Y . Given a labeled training set Dtrain

in = {(xi, yi)}Ni=1 comprising N
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samples drawn i.i.d. from the joint data distribution Pin, multi-class classification aims to learn a
classifier h : X → Y with low misclassification error. Typically, we learn a function f : X → RK

that yields the posterior distributions of a given input by minimizing an empirical surrogate risk, e.g.,
cross-entropy (CE) loss, on Dtrain

in , and then h(x) = argmaxy∈[K] fy(x).

Inference in open environments with wild data. Trained on the ID data, a classifier f deployed in
open environments can encounter various out-of-distribution (OOD) shifts, as shown in Figure 1(a).
Typically, the OOD data can be grouped into covariate and semantic shifts (Yang et al., 2021):

• Covariate OOD Pcovariate
out has the same label space Y as the training data, but the input

space X covariate ⊂ Rd undergoes shifting and therefore is different from X .
• Semantic OOD Psemantic

out represents new-class shifted samples that do not belong to any
known classes, i.e., y /∈ Y . We further assume that the input space X semantic and X are also
in different subsets of Rd, which makes OOD detection possible.

For inference with covariate shifts, existing literature formulates the OOD generalization problem
(Hendrycks et al., 2021; Yi et al., 2021; Liu et al., 2021; Schneider et al., 2020) which aims to improve
the classification accuracy of covariate-shifted samples. For inference with semantic shifts, prior
studies formulate the OOD detection problem (Hendrycks et al., 2018; Zheng et al., 2024; Liu et al.,
2020; Basart et al., 2022) which focuses on separating ID and semantic OOD.

Formulation of unknown rejection in the wild. In practice, one is likely to encounter both types of
samples during classifier deployment. To this end, unknown rejection allows for abstention on both
misclassified covariate-shifted and semantic-shifted data, while only accepting correctly classified
inputs from known classes (y = h(x) and y ∈ Y). Formally, considering all possible distributions
that a model may encounter in practice, we suppose the test distribution Ptest is a mixture of data
from in-distribution, covariate-shifted and semantic-shifted distributions:

Ptest = (1− πc − πs)Pin + πcPcovariate
out + πsPsematic

out , (1)

where πc, πs, πc + πs ∈ [0, 1]. The goal of unknown rejection is to learn the classifier h and design a
rejector r : Rd → {0, 1}, where an ideal rejector can ensure to make safe decisions by separating
correctly classified samples from misclassified ones or semantic OOD data as follows:

r(x) =

{
1 if x ∈ Pin(y ̸= h(x)) ∪ Pcovariate

out (y ̸= h(x)) ∪ Psemantic
out

0 if x ∈ Pin(y = h(x)) ∪ Pcovariate
out (y = h(x))

. (2)

Here we emphasize the distinction between those three problems introduced above. OOD generaliza-
tion only focuses on classification accuracy and has no rejection option; OOD detection only rejects
semantic-shifted samples from unknown classes (y /∈ Y), and blindly accepts misclassified samples
from known classes (y ̸= h(x) and y ∈ Y). Besides, misclassification detection (MisD) focuses on
known classes and rejects misclassified ones. Unknown rejection provides a unified classification
with rejection framework that satisfies the practical requirements.
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Figure 2: Covariate shifts remarkably complicate the problem of unknown rejection.

Unknown rejection in the wild is quite challenging. Prior works (Hendrycks & Gimpel, 2016;
Hendrycks et al., 2018; Liu et al., 2020; Cen et al., 2023) often study the rejection ability of a model
without considering covariate shifts that will be anticipated at inference time. Actually, unknown
rejection under covariate shifts is quite difficult. As shown in Fig. 2 (ResNet-18 (He et al., 2016)
trained on CIFAR-10): (1) Within known classes, covariate shifts make it much harder to separate
misclassified examples from correct ones. When increasing the corruption severity, the performance
of MisD continually drops. (2) Considering OOD detection performance, the model struggles to

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

distinguish between known and unseen classes when the samples of known classes undergo covariate
shifts. (3) From (1)-(2), we know that Pcovariate

out (y ̸= h(x)) and Pcovariate
out (y = h(x)) are hard to be

separated, and the confidence distributions of Pcovariate
out and Psemantic

out are also mixed. Therefore, it
is quite challenging to achieve the goal of unknown rejection in Eq. (2).

3 THE PROPOSED FRAMEWORK: TRUSTLORA

3.1 MOTIVATION

Limitation of failure-specific full training. It is acknowledged that rejecting incorrect predictions is
essential for reliable learning. However, the failure sources are rich in uncontrolled environments,
including incorrect predictions of ID or corrupt-shifted samples, and also inputs from unknown new
categories. Current methodologies predominantly focus solely on rejecting one specific failure case,
e.g., OOD detection only rejects data with semantic shifts while accepting all other samples. This
paradigm, however, has evident limitations: (1) Unrecoverable. Enhancing the ability of rejection on
one specific failure may lead to unrecoverable damage on other aspects of the model, since it has
been empirically revealed that trade-off existed when rejecting different failure sources (Jaeger et al.,
2022; Kim et al., 2023b). This is undesirable in practice: an autonomous car can not return to its
“standard” mode for normal environment after full tuning in OOD environment. (2) Inflexible. Full
training with failure-specific optimization objectives often leads to a static solution. Considering the
complexity of open environments, it is beneficial to have convenient ways that can flexibly adjust the
trade-off at inference time without full retraining. (3) Inefficient. When facing new failure cases, full
training a model is computationally intensive and time-consuming. In practice, to avoid catastrophic
consequences, we expect the model to handle novel failure sources with minimal overhead in latency.

Reliability knowledge separation and integration. With the above limitations in mind, we propose
to develop unknown rejection framework with separable and combinable reliability knowledge, which
is different remarkably from the prior efforts. As demonstrated by Gueta et al. (2023), knowledge can
be represented by a region in weight space. Our high-level idea is to compress reliability knowledge
regarding different failure cases and then selectively integrate them based on real-world requirements.
To this end, two important questions arise: how to get failure-specific knowledge and how to compress
it. (1) Acquire reliability. Many methods have been developed in recent years for reliable prediction,
and they often excel at one specific failure case. Those methods form a rich and diverse toolbox,
which can be interpreted as encapsulating the specific reliability knowledge naturally. (2) Compress
reliability. Common strategies to compress knowledge such as pruning (Tanaka et al., 2020) and
knowledge distillation (Hinton et al., 2015) often suffer from the heavy computation issue, which
conflicts with the efficient principle. Therefore, we hope to compress knowledge to a small set of
parameters, enabling cheap computation and lightweight integration.

Based on the above discussion, we propose a novel TrustLoRA framework to acquire and integrate
trustworthy knowledge, which is illustrated in Fig. 3 and detailed below.

3.2 RELIABILITY KNOWLEDGE SEPARATION WITH LOW-RANK ADAPTATION

LoRA-adapted reliability acquiring. To acquire and compress specific reliable knowledge related
to covariate shits, we propose to fine-tune the model in specific low-rank subspace. Concretely, we
leverage parameter efficient tuning technique with an auxiliary low-rank adapter (LoRA) (Hu et al.,
2021). As illustrated in Fig. 3, LoRA composes of two rank decomposition matrices B ∈ Ru×r and
A ∈ Rr×v where r ∈ N is the rank and r ≪ min(u, v). v and u are the dimensionality of the input
x̂ ∈ Rv for current layer and hidden features, respectively. Therefore, BA ∈ Ru×v has the same
size as the parameters, i.e., W ∈ Ru×v, of the corresponding fully-connected layer in the feature
extractor. The modified forward pass with LoRA becomes:

z = (W +BA)x̂ = Wx̂+BAx̂, (3)

where z ∈ Ru is the output, which will be the input of the next layer after passing non-linear
activation. During the training stage, the original parameters W remain frozen, while only A and B
are trainable, which is low-cost and parameter efficient.

To acquire and separate reliable knowledge in dynamic open environments, we propose to optimize
the failure-specific objectives via the LoRA branch as follows. In this work, we follow most of
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Figure 3: Illustration of the proposed reliability arithmetic framework. (Left) We freeze the pre-
trained backbone and add a LoRA module to acquire failure-specific knowledge. (Right) The LoRAs
are stored in the memory, and will be merged via arithmetic for unified unknown rejection in the wild.

existing studies that assume the real OOD data is unavailable. For covariate shifts, we leverage
AugMix (Hendrycks et al., 2019b), which is a simple augmentation method with the following
learning objective:

LLoRA,cov = LCE(f(x), y) + λJS (f(x); f(xaugmix1); f(xaugmix2)) . (4)

Denote f = (f(x) + f(xaugmix1) + f(xaugmix2)) /3 the averaged posterior distributions of x
and its augmented variants, and then the JS loss is: JS (f(x); f(xaugmix1); f(xaugmix2)) =
λ
3

(
LKL(f(x), f) + LKL(f(xaugmix1), f) + LKL(f(xaugmix2), f)

)
. For semantic shifts, we use

OE (Hendrycks et al., 2018), which helps the model acquire the knowledge of unknown classes by
introducing auxiliary outliers Daux. Specifically, we minimize the following objective:

LLoRA,sem = LCE(f(x), y) + λ · LKL (f(xaux),U([K])) , (5)

where λ > 0 is a scalar, U([K]) represents the uniform distribution over the training label space
Y = [K]. {A,B} denotes all trainable parameters. Since the pre-trained backbone is frozen, the
newly added LoRA captures the residual knowledge regarding the specific learning objectives.

Remark. We would like to clarify that we do not propose novel failure-specific learning objectives
in this paper. Instead, we focus on designing a unified framework to integrate different sources of
reliability knowledge in a flexible and parameter-efficient manner.

LoRA with random projection. For the initialization of LoRA, the common way is to initialize B
with an all-zero matrix, while initialize A with a normal distribution. Specifically, each element in A
is independently sampled from a standard Gaussian distribution. In other words, LoRA first projects
the input x̂ into a low-rank space via random projection, and then decodes it to the original space.
For random projection, the Johnson-Lindenstrauss (Dasgupta & Gupta, 2003) states that the pairwise
relation between any two data points can be preserved in an appropriate lower-rank space. Therefore,
we further fix the parameters of A once initialized and only optimize B in a LoRA module during
the training stage, which is much more efficient than learning the original LoRA. Besides, we can
store the random seed that generates the random projection of A, requiring much less memory than
storing the full matrix, as shown in Fig. 3. We empirically verify that LoRA only introduces a quite
small amount of extra trainable parameters that are less than 1% of the original parameters.

3.3 RELIABILITY KNOWLEDGE CONSOLIDATION WITH LORA ARITHMETIC

Let θpre ∈ RM be the parameters of a given pre-trained model, where M is the number of parameters.
In order to deal with unknown rejection in the wild, we freeze θpre and learn an additional LoRA
module with a loss function related to a specific emerged failure at phase t (e.g., OE loss for semantic
shifts). Let θLoRA,t−1 ∈ Rm be the weights of the LoRA before fine-tuning, θLoRA,t ∈ Rm be the
corresponding weights after fine-tuning and m ≪ M . The LoRA vector τLoRA,t is given by the
element-wise difference between {θpre, θLoRA,t} and {θpre, θLoRA,t−1} as follow:

τLoRA,t = {θpre, θLoRA,t} − {θpre, θLoRA,t−1} = θLoRA,t − θLoRA,t−1. (6)

The intuition behind LoRA vector is to encapsulate crucial directions in which the model’s parameters
move when learning with a loss function (Ilharco et al., 2022) dealing with a specific failure source.
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As illustrated in Fig. 3 (Right), after fine-tuning each LoRA module with its respective learning
objective, we can perform reliability enhancement or reduction easily and flexibly via element-wise
addition or negation with a scaling term α ∈ [0, 1] as follows:

• LoRA addition. The sum of the LoRA vectors τ =
∑

t αtτLoRA,t is added to a pre-trained
model θpre to produce a model that performs unknown rejection on different failure sources.
In our cases, we focus on model reliability under both covariate and semantic shifts, and we
can get a model {θpre, τ} with unified unknown rejection ability by merging the two LoRA
vectors trained using AugMix and OE easily, in which

τ = (1− α) · τLoRA,cov + α · τLoRA,sem. (7)

• LoRA negation. We can reduce the ability of rejecting specific failure while retaining
performance in other cases by subtracting the LoRA vector from the given LoRA-augmented
model. For example, we can get a model {θpre, τ}, whose OOD detection ability is weaken
with τ = −α · τLoRA,sem.

The LoRA arithmetic is simple and effective to address the challenging unified unknown rejection.
Specifically, in our case, we get LoRA vectors regarding covariate and semantic shits via learning
objectives presented in Eq. (4) and Eq. (5), respectively. Then we perform LoRA addition to
consolidate those two aspects of reliability. The proposed LoRA arithmetic has the following
advantages: (1) Flexible. the scaling term α provides the possibility and flexibility to control the
strength of reliability edition, easily adjusting the trade-off without full retraining. (2) Efficient.
When facing new failure cases, we only fine-tune the LoRA, which is lightweight and computationally
efficient with minimal latency compared with full training. (3) Recoverable. We can easily recover
the model to the default setting without losing the original knowledge by removing the LoRA module.

Theoretical analysis. The investigated problem involves dealing with multiple failure cases, which
can be formulated as a multi-objective learning problem. Recently, it has been proved that a linear
combination of multiple base models can lead to a pareto-optimal solution with diverse preferences
(Dimitriadis et al., 2023). In our work, we build on a pre-trained base model with parameters and
introduce LoRA vectors to capture and compress the failure-specific reliable knowledge. Based on
the Theorem in Dimitriadis et al. (2023), we can state the approximation power of the proposed
LoRA arithmetic as the following Proposition, which states that TrustLoRA can flexibly find a model
with a controllable solution for any scaling term α ∈ [0, 1]. The proof can be found in the Appendix.

Proposition 3.1. Given a compact X ⊆ RD and a family of continuous mappings fn : X → RD′
,

n = 1, . . . , N , there exists a ReLU multi-layer perceptron f with base parameters θpre and two low-
rank vectors τLoRA,cov and τLoRA,sem, such that for any ϵ > 0 and all n, there exists an α ∈ [0, 1]
satisfying ∥fn(x)− f(x; θpre + (1− α) · τLoRA,cov + α · τLoRA,sem)∥ ≤ ϵ for all x ∈ X .

4 EXPERIMENTS

Datasets and implementation. Following the common setup in literature, we assume that the real
distribution of OOD data remains unknown during training. For covariate-shifted data, we use CIFAR-
10/100-C (Hendrycks & Dietterich, 2018) consists of 15 diverse corruption types; for semantic-shifted
data, we use natural image datasets including SVHN (Netzer et al., 2011), Textures (Cimpoi et al.,
2014), Places (Zhou et al., 2018), LSUN-Crop (Xu et al., 2015), LSUN-Resize (Yu et al., 2015),
and iSUN (Xu et al., 2015). To focus on the unknown rejection ability on distribution shifts, we first
evaluate the performance with a mixture of covariate-shifted and semantic-shifted data at the inference
stage and generally keep equal numbers of misclassified covariate-shifted data Pcovariate

out (y ̸= h(x))
and semantic OOD data Psemantic

out , which are two kinds of failure sources we want to reject. Then,
we provide the unified unknown rejection results evaluated on both clean ID and distribution-shifted
data. We use the ResNet-18 (He et al., 2016) and optimize it with SGD optimizer for 200 epochs to
get the standard pre-trained model. Then it is fine-tuned for 10 epochs to acquire different aspects of
reliability. For LoRA, we simply set r = 4. More implementation details are provided in Appendix.

Metrics and comparison methods. We leverage AURC (‰) (Geifman & El-Yaniv, 2017; Jaeger
et al., 2022), FPR95 (%) and AUC (%) (Hendrycks & Gimpel, 2016) to evaluate the performance of
unknown rejection. Besides, we also introduce the F-AUC (%) (defined in Appendix). We compare
TrustLoRA with various methods including CE (MSP) (Hendrycks & Gimpel, 2016), RegMixUp

6
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Table 1: Unknown rejection performance under mixture of covariate and semantic shifts on CIFAR-10
with ResNet-18. Methods with ∗ train from scratch, methods with + fully fine-tune the pretrained
model, while others only fine-tune the LoRA.

Method Severity-1 Severity-2 Severity-3

AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC

CE∗ 56.04 37.53 89.49 87.41 89.05 44.23 86.93 84.19 122.75 48.93 84.63 81.17
RegMixUp∗ 57.05 50.60 88.56 86.86 89.13 55.62 86.30 83.89 124.50 58.52 84.05 80.99
CRL∗ 50.25 32.06 90.35 88.12 81.56 38.47 87.98 84.93 115.06 44.28 85.58 81.59
LogitNorm∗ 48.15 32.56 91.92 90.88 76.79 38.44 90.01 88.53 107.45 43.63 88.25 86.25
OE∗ 51.24 33.30 91.73 90.37 82.77 39.12 89.76 87.51 120.52 44.37 87.46 84.20
OpenMix∗ 29.46 28.13 92.45 91.08 46.90 32.61 90.95 89.12 66.86 36.94 89.18 86.83
SURE∗ 31.25 27.39 92.67 91.26 48.13 31.19 91.02 89.51 68.31 36.60 89.55 86.27
RCL+ 58.01 35.92 89.53 87.47 93.19 43.11 86.95 84.17 132.03 48.36 84.57 81.12
SCONE+ 44.01 26.99 93.13 92.08 71.28 32.75 91.17 89.37 104.06 38.91 88.83 86.15

RegMixUp 62.17 53.63 87.97 86.11 94.89 57.20 85.73 83.23 130.78 61.87 83.37 80.32
CRL 56.28 38.40 89.36 87.37 88.87 44.57 86.97 84.27 125.28 50.16 84.45 81.09
LogitNorm 59.05 36.71 89.41 87.22 94.15 42.89 86.84 83.85 133.41 48.76 84.26 80.62
OE 43.63 26.01 93.51 92.47 70.04 30.86 92.56 90.69 100.99 36.04 90.91 87.96
AugMix 36.62 36.09 90.72 89.16 51.73 39.06 89.61 87.71 67.82 41.97 88.51 86.20
MaxLogit 40.58 45.39 89.30 88.08 55.32 46.52 88.57 87.06 71.02 48.31 87.74 85.90
Energy 43.50 49.19 88.03 86.84 58.75 50.10 87.33 85.94 74.90 51.51 86.48 84.86
KNN 43.87 42.53 87.20 86.00 61.94 45.98 85.71 84.27 82.10 48.63 84.02 82.35
FS-KNN 47.54 55.75 87.29 86.01 62.36 55.35 86.79 85.30 80.36 57.86 85.52 83.74
NNGuide 51.77 63.95 85.25 84.05 68.17 63.28 84.65 83.32 84.80 63.49 84.01 82.40
Relation 58.98 59.52 80.85 79.74 77.10 60.19 80.17 78.85 97.12 61.66 79.04 77.57
GEN 41.30 46.00 88.78 87.62 56.34 47.31 88.00 86.61 72.20 48.94 87.18 85.48
ASH 41.10 45.87 89.11 87.89 55.97 47.28 88.31 86.83 72.08 49.31 87.44 85.66
TrustLoRA 28.68 23.80 93.67 92.53 41.64 27.43 92.67 91.18 56.64 30.62 91.55 89.65

(Pinto et al., 2022), CRL (Moon et al., 2020), LogitNorm (Wei et al., 2022), OE (Hendrycks et al.,
2018), OpenMix (Zhu et al., 2023a), SURE (Li et al., 2024), RCL (Zhu et al., 2024a), AugMix
(Hendrycks et al., 2019b), MaxLogit (Hendrycks et al., 2022), Energy (Liu et al., 2020), KNN
(Sun et al., 2022), FS-KNN (Cen et al., 2023), NNGuide (Park et al., 2023), Relation (Kim et al.,
2023a), GEN (Liu et al., 2023) and ASH (Djurisic et al., 2022). For training-time methods, we
report the results of both training from scratch and LoRA fine-tuning. Score-based methods are
applied to LoRA-augmented model tuning with AugMix. TrustLoRA leverages the simple MSP
score (Hendrycks & Gimpel, 2016).

4.1 RESULTS AND DISCUSSION

To fully reflect the unknown rejection performance under both covariate and semantic shifts, we
combine each of 15 corruptions under three different severity with six semantic OOD sets, resulting
in 90 wild data mixtures in total. We report the average performance on those 90 evaluations.
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Figure 4: Change of rejection ability when fine-
tuning the pre-trained ResNet-18 on CIFAR-100.

Trade-off between the two unknown rejec-
tion tasks. Fig. 4 shows the performance
change when fine-tuning the pre-trained model.
Cov-MisD denotes the ability to reject mis-
classified covariate-shifted (e.g., Gaussian
noise) examples. Unknown rejection denotes
the ability to reject both misclassified covariate-
shifted data and semantic-shifted data jointly.
We can clearly observe that when fine-tuning
with OE (after the dotted line) to acquire OOD
detection ability, it is harder to detect misclassi-
fied corrupted samples, e.g., AURC (↓) of Cov-MisD increases dramatically. As a result, the unified
unknown rejection performance becomes worse.

Our method achieves strong performance. The main results in Table 1 and 2 verify that TrustLoRA
establishes overall strong performance, especially on AURC ↓, which has been considered as
the most important metric for unknown rejection evaluation (Jaeger et al., 2022; Moon et al.,
2020). In particular, we consider two groups of baselines: training the model from scratch (denotes
with ∗) and fine-tuning the pre-trained model. We highlight a few observations: (1) TrustLoRA
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Table 2: Unknown rejection under mixture of covariate and semantic shifts on CIFAR-100.

Method Severity-1 Severity-2 Severity-3

AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC

CE∗ 163.66 54.88 82.95 76.33 218.26 61.90 79.53 71.53 279.10 67.12 76.65 68.06
RegMixUp∗ 154.87 54.34 83.12 76.72 198.08 60.46 80.25 72.64 249.93 65.33 77.43 69.25
CRL∗ 152.20 53.03 83.94 77.67 195.12 59.43 81.07 73.37 244.45 64.10 78.74 70.00
LogitNorm∗ 166.34 56.51 82.91 77.24 217.56 62.15 80.21 73.37 273.87 66.38 77.78 70.37
OE∗ 149.02 45.48 87.09 83.17 194.97 51.69 85.26 80.21 246.45 56.24 83.31 77.18
OpenMix∗ 134.18 46.46 86.57 81.84 164.32 51.49 84.47 78.78 203.87 56.18 82.29 76.10
SURE∗ 137.62 48.35 86.04 82.26 172.45 51.76 83.95 78.41 205.71 56.62 82.18 76.54
RCL+ 155.85 52.89 84.29 78.73 202.39 59.20 81.61 74.88 256.47 64.10 79.11 71.83
SCONE+ 148.50 47.65 86.50 81.69 201.73 53.92 83.57 77.37 264.59 59.29 80.74 74.03

RegMixUp 155.58 53.51 83.81 77.99 203.97 59.66 80.70 73.83 261.76 64.50 77.96 70.71
CRL 153.48 52.10 84.27 78.57 204.13 58.43 81.24 74.25 262.74 63.65 78.31 71.19
LogitNorm 155.08 52.55 84.14 78.38 207.23 58.92 81.07 74.10 267.35 63.96 78.16 71.06
OE 147.40 46.57 87.21 83.04 197.74 52.09 84.73 79.32 259.43 57.08 82.12 76.15
AugMix 141.23 51.24 84.69 79.69 158.07 54.44 83.47 77.63 177.71 57.12 82.26 75.69
MaxLogit 150.37 57.84 83.33 78.72 166.31 59.89 82.35 76.96 185.83 61.91 81.20 75.10
Energy 158.37 60.62 81.52 77.58 175.02 62.48 80.47 75.90 194.12 64.27 79.40 74.28
KNN 168.58 66.07 80.55 77.54 184.77 67.07 79.41 75.79 204.44 68.17 78.22 74.09
FS-KNN 143.83 56.08 84.71 81.69 167.36 58.13 83.03 79.74 183.17 59.21 82.26 77.12
NNGuide 180.32 66.12 76.27 72.23 197.55 67.51 75.21 70.47 215.89 68.58 74.39 69.10
Relation 171.64 67.49 80.28 76.20 186.00 67.95 79.49 74.63 204.07 68.98 78.58 73.07
GEN 157.47 60.25 81.68 77.69 174.32 62.19 80.57 75.99 193.63 64.04 79.50 74.32
ASH 150.38 57.78 83.22 78.77 167.33 59.93 82.09 76.90 185.92 61.75 81.05 75.13
TrustLoRA 129.64 46.46 87.29 83.73 149.14 50.12 85.77 81.40 172.35 53.32 84.41 79.28
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Figure 5: Flexibility of controlling the strength of reliability edition on CIFAR-100.

outperforms strong training methods like LogitNorm (Wei et al., 2022), CRL (Moon et al., 2020)
and RegMixUp (Pinto et al., 2022) in both training from scratch and fine-tuning scenarios. (2)
TrustLoRA outperforms competitive post-hoc OOD detection methods, which are applied to the
same model fine-tuned with AugMix and hence they have the same classification accuracy. (3) The
proposed reliability arithmetic framework excels in detecting both misclassified covariate-shifted and
semantic-shifted data, achieving the best performance among all compared methods.
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Figure 6: Accurate forgetting of OOD detection
ability while keeping the MisD ability on clean ID
(Left) and covariate-shifted data (Right).

Flexibility of controlling the strength of reli-
ability edition. We separate reliability knowl-
edge with LoRAs and merge them to get a uni-
fied failure detector. One of the primary advan-
tages of our method is to control the strength of
each kind of reliability flexibly based on end-
user preference without training the model again
or affecting the original model. In Fig. 5 (Left),
we show that the scaling α in Eq. (7) can eas-
ily control the preference between MisD under
covariate shits and OOD detection. In Fig. 5
(Middle and Right), we observe that an overall
strong unified unknown rejection performance can be achieved with α ∈ [0.4, 0.6], and we simply set
α = 0.5 for all experiments.

Selective reliability forgetting with LoRA negation. Besides LoRA addition for unified unknown
rejection, here we explore accurate reliability forgetting. We apply the OOD detection vector
τ = −α · τLoRA,sem (learned with OE) to a given model (e.g., LoRA tuning with AugMix). The
experiments on CIFAR-100 in Fig. 6 show that we can enable the model to forget OOD detection
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Table 3: Unknown rejection performance on CIFAR-100 with ViT.

Method Severity-1 Severity-2 Severity-3

AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC

Full-FT 49.17 33.80 91.07 89.09 69.78 37.67 89.77 87.08 92.46 41.43 88.39 84.81
Linear 98.88 37.34 90.03 87.23 116.38 40.22 88.94 85.33 134.55 43.36 87.70 83.20

CE 51.68 33.77 91.30 89.61 73.33 36.91 90.14 87.88 93.37 40.73 88.87 85.95
RegMixUp 50.54 37.70 90.83 89.21 74.42 44.21 88.97 86.78 97.86 49.19 87.35 84.41
CRL 54.48 34.01 91.23 89.44 76.32 37.63 90.01 87.65 95.83 40.86 88.74 85.70
LogitNorm 59.66 49.24 88.70 87.39 81.65 50.18 88.16 86.44 101.24 51.96 87.25 85.03

AugMix 46.13 34.27 91.12 89.37 65.15 37.65 90.06 87.75 85.36 41.12 88.83 85.89
MaxLogit 52.22 43.66 89.35 88.08 70.65 45.35 88.76 87.11 89.95 47.21 87.93 85.79
Energy 55.52 48.50 88.24 87.00 74.24 49.68 87.76 86.18 93.74 51.18 87.02 85.07
KNN 58.91 53.46 86.82 85.46 78.90 54.02 86.11 84.51 99.20 54.78 85.32 83.38
NNGuide 53.86 46.97 88.53 87.28 72.53 48.36 87.96 86.40 92.06 50.20 87.17 85.23
GEN 54.15 46.31 88.59 87.36 73.01 47.82 88.00 86.48 92.40 49.49 87.25 85.28
TrustLoRA 43.40 31.25 92.13 90.78 63.01 34.08 91.22 89.36 83.37 37.91 89.90 87.56

ability, while with little deterioration of MisD ability on clean ID (Left) and covariate-shifted data
(Right). This demonstrates that our method can enable flexible reliability knowledge edition.

Experiments with ViT. We also conduct experiments on pre-trained ViT backbone (ViT-B16)
(Dosovitskiy et al., 2020), and perform full fine-tuning, linear prob and LoRA tuning. Detailed
implementation can be found in Appendix. Despite the strong performance of pre-trained ViT-B16,
results in Table 3 reveal that our method yields notable improvement, especially on AURC.

Table 4: Experimental results on ImageNet.

Method
ImageNet-200 ImageNet-500

AURC AUC AURC AUC

CE∗ 188.37 92.55 268.42 89.08
MaxLogit∗ 198.44 90.11 286.90 85.03
Energy∗ 203.02 89.28 295.91 83.71
AugMix (LoRA) 166.53 93.25 236.25 89.95
OE (LoRA) 180.18 92.78 265.11 89.50
MaxLogit (AugMixLoRA) 187.54 91.97 259.65 87.82
Energy (AugMixLoRA) 197.60 91.63 266.37 86.65
TrustLoRA 159.67 93.91 229.92 90.15

Large scale experiments on ImageNet. We
provide additional large-scale results on the
ImageNet-200/500 benchmark with ResNet-50.
The classes were randomly sampled from 1K,
and we also sampled another set of classes (with
equal numbers) as outliers for OE. At inference
stage, we use a mixture of covariate and seman-
tic OOD data. Specifically, for semantic shifts,
we use the fixed ImageNet OOD dataset pro-
posed in (Bitterwolf et al., 2023), which includes
truly OOD versions of 11 popular OOD datasets
with in total of 2715 OOD samples; for covari-
ate shifts, we use the corruption type Frost with severity-1. Results in Table 4 suggest that our
method yields strong unknown rejection performance compared with competitive baselines.

Table 5: Comparison with more baselines and
multi-task learning on CIFAR-100, severity-1.

Method AURC FPR95 AUC F-AUC

SIRC∗ (MSP, z1) 160.26 52.17 83.75 76.65
FlatLoRA 152.94 51.97 84.40 78.74
SIRC (AugMixLoRA) 139.86 50.53 85.50 80.04
AugMix (Full FT) 133.68 49.79 85.05 80.48
AugMix+OE (Full FT) 138.92 50.26 85.40 81.44
TrustLoRA 129.64 46.46 87.29 83.73

TrustLoRA outperforms the multi-task learn-
ing. We further compare our method with more
baselines: (1) Two new methods named SIRC
(Xia & Bouganis, 2024) and FMFP (Zhu et al.,
2023b) (FlatLoRA in our comparison). (2)
Multi-task tuning with combined OE and Aug-
Mix learning objectives. The results in Table 5
verify that our method outperforms SIRC and
FlatLoRA consistently. In particular, our LoRA
arithmetic outperforms the multi-task learning,
i.e., AugMix+OE (Full FT) in Table 5. Intuitively, this is because when optimizing both two ob-
jectives in a multi-task learning (MTL) manner, there exist remarkable conflicts between pulling
covariate-shifted samples close to class centers while pushing semantic-shifted samples away from
class centers since those two types of shifted samples are often overlapping. Theoretically, the
Bayes-optimal reject rule for MisD is based on maximum class-posterior probability maxy∈YP(y|x),
while OOD detection rejects samples with small density ratio p(x|in)/p(x|out) (Zhu et al., 2023b;
Narasimhan et al., 2024). OOD detection methods such as OE and Energy score often perform
density estimation explicitly or implicitly. However, to separate samples from known classes and
unknown semantic-shifted unknown classes, binary discrimination would compress the confidence
distribution of correct and incorrect covariate-shifted samples. As a result, MTL of the two objectives
would be unstable. Differently, our proposed LoRA arithmetic overcomes the above limitation with
reliability knowledge separation and consolidation.
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Table 6: Robustness to different auxiliary data when acquiring OOD detection ability.

Auxiliary Data Severity-1 Severity-2 Severity-3

AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC

TIN597 130.45 45.26 87.41 83.19 152.50 49.63 85.81 80.83 178.82 52.73 84.30 78.66
RandomImage 129.64 46.46 87.29 83.73 149.14 50.12 85.77 81.40 172.35 53.32 84.41 79.28
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Figure 7: MisD ability on clean ID.

Robustness to different auxil-
iary data. In this paper, the
proposed TrustLoRA acquires
OOD detection via OE technique,
which requires access to auxil-
iary outlier data. For CIFAR
benchmark, the RandomImage
is used as auxiliary outliers fol-
lowing existing work. In Table 6
(CIFAR-100), we show that Trust-
LoRA is robust to other auxiliary outliers like TIN597 (Zhang et al., 2023b).

Table 7: Comparison of unified unknown rejection ability evalu-
ated on both clean ID and distribution-shifted data.

Method CIFAR-10 CIFAR-100

AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC

CE 32.62 31.56 91.59 89.98 134.19 48.70 85.47 79.71
RegMixUp 34.82 44.92 90.56 89.27 133.88 49.25 84.96 79.35
CRL 30.37 26.24 92.30 90.54 129.75 47.73 85.97 80.47
LogitNorm 27.11 26.10 93.76 92.97 138.73 51.38 85.22 80.20

AugMix 27.47 31.75 91.85 90.45 133.73 49.50 85.34 80.70
MaxLogit 32.53 46.17 89.95 88.86 142.31 56.11 84.00 79.74
Energy 35.48 50.48 88.52 87.49 149.95 58.96 82.23 78.55
GEN 33.33 46.73 89.31 88.31 149.52 58.66 82.30 78.59
ASH 33.09 46.95 89.67 88.61 142.67 56.05 83.87 79.75
TrustLoRA 20.86 20.86 94.42 93.47 121.90 44.44 87.75 84.35

Unified unknown rejection
on clean ID and distribution-
shifted data. In above exper-
iments, to clearly reflect the
unknown rejection ability under
covariate and semantic shits, we
do not include clean ID data at
inference time. With integrated
LoRAs of covariate and semantic
shifts, the MisD performance
on the original clean set can be
well preserved on CIFAR-10
while suffering from a slight
drop on CIFAR-100. As shown
in Fig. 7 (Left), TrustLoRA can
further recover and integrate
MisD knowledge on clean set by merging an additional LoRA fine-tuned with flat minima loss Zhu
et al. (2023b), and we denote the model “LoRA-3”. Fig.7 (Right) compares the MisD on clean
ID data, where our method successfully achieves comparable MisD performance with the original
model, and outperforms other methods. Table 7 further reports the results on full spectrum of test set
including clean ID, covariate and semantic OOD data. As can be observed, our method still achieves
strong performance and outperforms other methods.

Table 8: Comparison of the computational costs.

Model ResNet-20 ResNet-18 ViT (B16)

BaseModel 0.2871M 10.91M 81.89M
TrustLoRA 0.0275M 0.25M 0.21M

Computational costs. Table 8 reports the num-
ber of parameters of the base model and all
LoRA modules, where our method has much
smaller parameters than the base model. Note
that we further fix the parameters of A once ini-
tialized and only optimize B in LoRA during
the training stage, which is much more efficient than learning the original LoRA.

5 CONCLUSION

In this work, we present a novel reliability arithmetic framework to address the unknown rejection
under both covariate and semantic shifts. For the first time, we introduce low-rank adaptation to
separate and compress reliability knowledge. The proposed framework is a powerful tool to easily
achieve unified, flexible and controllable reliability towards different failure sources. Extensive
experiments and analysis show the superiority of our method over existing approaches for unknown
rejection under both covariate and semantic shifts. We hope this work can inspire the community to
investigate the trade-off among different failure sources, and further develop flexible and controllable
methods for reliable prediction in real-world applications.
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A RELATED WORK

Covariate OOD generalization. To improve the generalization, some methods assume that a set
of covariate-shifted samples are available at training time (Yao et al., 2022; Wang et al., 2022; Shi
et al., 2021; Bai et al., 2023), others aim to learn domain-invariant representations that generalize
better under covariate shifts (Rusak et al., 2020; Hendrycks et al., 2019b;a). Recently, Bai et
al., (Bai et al., 2023) leveraged unlabeled wild data consisting of covariate and semantic shifts to
build a model to recognize covariate-shifted data while rejecting semantic-shifted data. However,
there is no rejection option in covariate shits generalization, and users would accept the widely
existing misclassification blindly. Contrary to the above prior works, in this work, we aim to reject
misclassified covariate-shifted samples reliably.

Semantic OOD detection. Current OOD detection methods have been proposed under the setting
of post hoc or training regularization, aiming to reject samples from unseen classes. Some post hoc
methods (Hendrycks & Gimpel, 2016; Liu et al., 2020; Liang et al., 2018; Basart et al., 2022; Huang
et al., 2021; Sun et al., 2022; Hendrycks et al., 2022; Park et al., 2023; Kim et al., 2023a; Liu et al.,
2023) focus on designing proper confidence scores, which others (Sun et al., 2021; Sun & Li, 2022;
Djurisic et al., 2022; Song et al., 2022; Djurisic et al., 2022) remove undesirable parts of feature or
activation to facilitate the separation of ID and OOD examples. Training regularization approaches
(Hendrycks et al., 2018; Du et al., 2024; Ming et al., 2022; Zheng et al., 2024; Du et al., 2021;
Zhu et al., 2024b; Zhang et al., 2023a; Katz-Samuels et al., 2022) often require real or synthesized
auxiliary dataset with extra training processes. Nevertheless, current OOD detection methods could
harm the performance of detecting misclassified examples from known classes. This work aims to
develop unified and flexible framework to detect different kinds of failures.

Recently, there are a few studies (Zhu et al., 2024a; Cen et al., 2023; Zhu et al., 2023a; Li et al., 2024)
focused on developing reliable models that can reject both misclassified ID and semantic-shifted OOD
data. For example, Zhu et al. (2023a; 2024a) observed that existing popular OOD detection methods
are harmful for misclassification detection on clean ID test data, and proposed unified failure detection
methods by exploring outlier data (Zhu et al., 2023a) or reliable continual learning paradigm (Zhu
et al., 2024a). Cen et al. (2023) found that the uncertainty distribution of wrongly classified samples is
extremely close to semantic-shifted samples rather than known and correctly classified samples, and
proposed FS-KNN, which is an improvement of the KNN score. Li et al. (2024) proposed a method
named SURE for reliable prediction by combining multiple techniques, across model regularization,
classifier and optimization. Nevertheless, they typically overlook covariate-shifted samples, and it is
hard to distinguish correct covariate-shifted samples from semantic-shifted ones. Besides, they often
train a model from scratch or fully fine-tune it, which is computationally heavy and inefficient.

B THEORETICAL ANALYSIS

B.1 PROOF OF PROPOSITION 3.1

Proposition: Given a compact X ⊆ RD and a family of continuous mappings fn : X → RD′
,

n = 1, . . . , N , there exists a ReLU multi-layer perceptron f with base parameters θpre and two low-
rank vectors τLoRA,cov and τLoRA,sem, such that for any ϵ > 0 and all n, there exists an α ∈ [0, 1]
satisfying

∥fn(x)− f(x; θpre + (1− α) · τLoRA,cov + α · τLoRA,sem)∥ ≤ ϵ, ∀x ∈ X .

Proof: The proof is based on (Dimitriadis et al., 2023). Formally, denote σ the ReLU non-linearity
σ(x) = max(0, x). From the universal approximation theorem (Haykin, 1998), for any ϵ > 0, there
exists Q ∈ N, M ∈ R(D+2)×Q, C ∈ RQ, M ′ ∈ RQ×D′

such that:
∀x ∈ X ,∀n ∈ {1, . . . , N}, ∥fn(x)− g(x, α)∥ ≤ ϵ,

where g(x, α) = M ′σ(M(x, α) + C).

Define two matrices R ∈ RD×(2D+2) and S ∈ R(2D+2)×D as follows:

Ri,j =


1, if j = 2i− 1,

−1, if j = 2i,

0, otherwise,
and Si,j =


1, if i = 2j − 1 or (i > 2u and j = u),

−1, if i = 2j,

0, otherwise.
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Figure 8: (Left) Discrepancy (measured by layer-wise cosine similarity) between the pre-trained
model and fine-tuned model with OE. (Right) Illustration of the distribution of classification region,
covariate and semantic reliability region.

Let Wk = (0, . . . , 0, k), k = 1, 2. Then, with x ∈ RD, we have:

∀α ≥ 0, S⊤σ(R⊤x+ (1− α)W1 + αW2) = (x, α).

We can learn a ReLU multi-layer perceptron f(x,M,C,M ′, R, S,W ) = M ′σ(MS⊤σ(R⊤x +
W ) + C). Then with θpre = (M,C,M ′, R, S, 0) and θi = (0, 0, 0, 0, 0,Wi) for i = 1, 2, we have:

f(x; θpre + (1− α) · θ1 + α · θ2) = f(x;M,C,M ′, R, S, (1− α)W1 + αW2)

= M ′σ(MS⊤σ(R⊤x+ (1− α)W1 + αW2) + C)

= g(S⊤(R⊤x+ (1− α)W1 + αW2))

= g(x, α).

Note that θi, i = 1, 2 can be reshaped into a matrix BiAi, and in this paper we define them as
θ1 = τLoRA,cov and θ2 = τLoRA,sem, respectively.

Remark. Recently, Zeng & Lee (2024) has studied the expressive power of LoRA, providing several
conditions for LoRA to be an exactly universal approximator. When the rank of LoRA is lower than
the critical threshold, the authors provided an upper bound for the approximation error. Specifically,
the approximation error is related to i) the magnitude of the target model’s parameters and the input;
ii) the rank of the adapter and the discrepancy between the frozen model and the target model; iii) the
depth of the frozen model. In our work, we do not focus on an exact universal approximator. The
low-rank module is used to approximate the residual parameters between the pre-trained model and
the failure-specific fine-tuned model. As shown in Fig. 8, the similarities of layer-wise parameters
between the pre-trained model (ResNet-18, CIFAR-100) and the fine-tuned model are very high.
Therefore, the parameter discrepancy is small. Our proof is based on the universal approximation
theorem with unconstrained width of the LoRA module, and the ϵ expresses the approximation error,
which shares a similar spirit with that in (Zeng & Lee, 2024).

C EXPERIMENTS

C.1 EXPERIMENTAL SETUP DETAILS

For pre-trained model, we train the ResNet-18 model with SGD optimizer, a momentum of 0.9, an
initial learning rate of 0.1, a weight decay of 5e-4 and mini-batch size of 128. The number of training
epoch is 200, and the learning rate is reduced by a factor of 10 at 100, and 150 epochs.

Training configures for Augmix: For augmentation, we use the official AugMix code and follow
the setup on the original AugMix paper to randomly sample k augmentation chains, where k = 3
by default. The sample mixing weights (w1, w2, ..., wk) ∼ Dirichlet(α, α, ..., α), where α = 1 by
default. The λ is set to be 12 following the official code of AugMix at line 234 in the above address.
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Table 9: Unknown rejection ability under covariate and semantic shits can be well maintained.

Method
Severity-1 Severity-2 Severity-3

AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC

TrustLoRA (LoRA-2) 129.64 46.46 87.29 83.73 149.14 50.12 85.77 81.40 172.35 53.32 84.41 79.28
TrustLoRA (LoRA-3) 128.14 46.65 86.33 81.68 140.64 49.45 85.29 80.00 155.53 52.04 84.25 78.29

Table 10: Results on less overparameterised model.

Method MD-AURC MD-FPR MD-AUC OOD-FPR OOD-AUC UR-AURC UR-FPR UR-AUC F-AUC

Baseline (C10) 57.28 41.60 86.93 48.24 81.47 85.80 40.92 87.05 84.11
w/ TrustLoRA 41.89 38.46 87.99 41.92 84.64 69.78 36.79 88.81 86.28

Baseline (C100) 210.34 54.94 81.61 84.31 62.14 222.40 67.65 78.30 70.56
w/ TrustLoRA 165.16 51.72 83.14 78.52 67.43 188.41 62.10 81.08 74.46

We then train the ResNet-18 model with SGD optimizer, a momentum of 0.9, an initial learning rate
of 0.1, a weight decay of 5e-4, and a mini-batch size of 128. The number of training epochs is 200,
and the learning rate is reduced by a factor of 10 at 100, and 150 epochs.

Training configures for TrustLoRA: For AugMixLoRA fine-tuning, we set the rank of the LoRA
as 4 and use a cosine learning rate with an initial learning rate of 0.001 and a total 10 epochs. The
augmentation configures are the same as that of AugMix described above.

For experiments on ViT, we use the pre-trained ViT-B16, which is fine-tuned for 10 epochs using
cosine learning rate with the initial learning rate of 0.03. We set the momentum to be 0.9 and the
weight decay to 0. For compared methods, the main hyper-parameters come from their original
papers. For KNN, we set k to 50. For NNGuide, we set k to 100. For GEN, the parameters (γ, M ) in
calculating generalized entropy score are set to (0.1, 100). We run each trial 3 times and report the
average performance.

For evaluation metric, the AURC, FPR95 and AUC are widely used in prior works. We further define
the F-AUC as follow: F−AUC = (2×AUCcov×AUCsem)/(AUCcov+AUCsem), where AUCcov

denotes the AUC value of separating correct and incorrect covariate-shifted data and AUCcov denotes
the AUC value of separating covariate-shifted and semantic-shifted data.

C.2 ADDITIONAL RESULTS

Unknown rejection performance can be well maintained. In Table 9, we show that the unknown
rejection ability under covariate and semantic shits can be well maintained after further integrating
the third LoRA, which demonstrates the flexibility and effectiveness of the proposed TrustLoRA
framework.

Figure 9: Risk-coverage curves on the mixture of ID,
covariate and semantic shifts.

Results on less overparameterised
model. We conduct experiments on
ResNet-20 (which is much small than
ResNet-18) for CIFAR-10/100 and the
fine-grained results are shown in Table
10. As can be seen, the proposed Trust-
LoRA successfully enhances the misclas-
sification detection, OOD detection, and
unknown rejection ability of the base
model (0.287M) by only tuning a very
small number (0.0275M) of parameters
in LoRAs. Those results verify that our
method can capture the benefit of Aug-
Mix/OE when models are less overpa-
rameterised.

More results in comparison with more baselines and multi-task learning. Table 11 provides more
results of comparison with SIRC, FlatLoRA and multi-task learning (i.e., AugMix+OE (Full FT)).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 11: Comparison with more baselines and multi-task learning on CIFAR-100, severity-1.

Method Severity-1 Severity-2

AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC

SIRC∗ (MSP,z1) 160.26 52.17 83.75 76.65 214.24 60.07 80.22 71.85
FlatLoRA 152.94 51.97 84.40 78.74 201.94 58.51 81.43 74.46
SIRC (AugMixLoRA) 139.86 50.53 85.50 80.04 156.63 54.03 83.86 78.25
AugMix (Full FT) 133.68 49.79 85.05 80.48 146.83 52.47 83.92 78.66
AugMix+OE (Full FT) 138.92 50.26 85.40 81.44 142.66 50.66 84.52 80.12
TrustLoRA 129.64 46.46 87.29 83.73 149.14 50.12 85.77 81.4

Table 12: Random projection based LoRA v.s. the original LoRA on CIFAR-10/100, severity-1.

Method CIFAR-10 CIFAR-100

AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC

B only 28.68 23.80 93.67 92.53 129.64 46.46 87.29 83.73
A & B 28.07 24.12 93.82 92.95 127.51 45.72 87.17 83.34

Table 13: Performance of TrustLoRA with different rank r on CIFAR-10/100, severity-1.

Method CIFAR-10 CIFAR-100

AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC

r = 2 29.31 24.92 93.32 92.24 131.06 47.17 87.11 83.38
r = 4 28.68 23.80 93.67 92.53 129.64 46.46 87.29 83.73
r = 8 28.45 23.11 93.60 92.72 128.15 46.03 87.40 83.82

Detailed individual unknown rejection performance. Table 14 provides the fine-grained results
for misclassification detection on covariate shifts, OOD detection on semantic shifts and the unified
unknown rejection results on C10/100 with severity-1. We observe that our method achieves the best
unknown rejection performance. Besides, it is worth mentioning that our formulation is different
from existing works that evaluate OOD generalization via accuracy and OOD detection via rejection
metrics like FPR95, and AUC. We use the ARUC metric to reflect the classification with rejection
ability on covariate shifts, which has integrated the classification and rejection performance. We also
added the accuracy performance in Table 14, including methods that train the model from scratch
(∗) and others that fine-tune the model with LoRA. All post hoc methods have the same accuracy as
AugMixLoRA, since they are applied to the model trained with AugMixLoRA.

Risk-coverage curves. Fig. 9 provides the comparison of the risk-coverage curves when testing on
the mixture of covariate shifts (Frost with Severity-1) and semantic shifts (Textures) on CIFAR10
and CIFAR-100 datasets. Ours achieves the smallest risk given a specific coverage value.

Compare the random projection based LoRA with the original LoRA. In our method, we propose
LoRA with random projection, where only the B matrix of LoRA is trained. In Table 12, we show
that random projection based LoRA achieves similar with that training both A and B, while needing
less computation and memory cost.

Rank of the LoRA. A higher rank r in LoRA means a greater number of trainable parameters and
might lead to overfitting, while a lower rank r means fewer trainable parameters and might lead to
underfitting. When fine-tuning a pretrained model, if the dataset is significantly different and more
complex, then it’s would be better to use a high rank value (e.g., 64–256). On the other hand, if there
doesn’t involve a complex new dataset that the model hasn’t encountered before, lower values of
rank (e.g., 4–12) are sufficient. We conduct experiments under different settings of rank in LoRA
(Severity-1). As shown in Table 13, our method is robust to the different ranks of LoRA, and we
simply set r = 4 (which is a common choice for LoRA tuning) for all experiments in our main paper.
In our case, we aim to teach the model learn reliability knowledge about the current task, without
introducing a complex new dataset. Therefore, low value of rank like 4 or 2 is sufficient to learn the
additional reliability knowledge without underfitting.

TrustLoRA approximates a family of mappings. One of the primary advantages of our method is
to control the strength of each kind of reliability flexibly based on end-user preference. In Fig. 10, we
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Table 14: Individual performance on the misclassification detection under covariate shifts, OOD
detection under semantic shifts, and the unified unknown rejection on CIFAR-10/100 with severity-1.

Method ACC MD-AURC MD-FPR MD-AUC OOD-FPR OOD-AUC UR-AURC UR-FPR UR-AUC F-AUC

CIFAR-10

CE∗ 87.86 35.33 42.33 88.61 39.96 86.24 56.04 37.53 89.49 87.41
RegMixUp∗ 89.27 34.01 55.70 87.65 50.18 86.08 57.05 50.60 88.56 86.86
CRL∗ 87.68 29.63 32.91 90.00 38.08 86.31 50.25 32.06 90.35 88.12
LogitNorm∗ 87.46 36.45 40.19 87.57 20.77 94.46 48.15 32.56 91.92 90.88
OE∗ 87.13 36.04 39.31 88.78 27.34 92.02 51.24 33.30 91.73 90.37
RegMixUp (LoRA) 88.48 36.62 55.64 87.52 54.89 84.74 62.17 53.63 87.97 86.11
CRL (LoRA) 88.14 35.04 43.20 88.40 41.03 86.36 56.28 38.40 89.36 87.37
LogitNorm (LoRA) 86.87 37.83 38.33 88.76 40.97 85.74 59.05 36.71 89.41 87.22
AugMix (LoRA) 90.53 18.05 33.51 90.47 41.92 87.88 36.62 36.09 90.72 89.16
OE (LoRA) 87.38 32.67 33.82 89.89 15.47 96.06 43.63 26.01 93.51 92.47
Energy (AugMixLoRA) 90.53 26.77 59.77 84.16 39.36 89.69 43.50 49.19 88.03 86.84
TrustLoRA 90.77 16.27 28.98 91.40 22.41 93.68 28.68 23.80 93.67 92.53

CIFAR-100

CE∗ 66.08 134.63 49.00 84.74 70.45 69.44 163.66 54.88 82.95 76.33
RegMixUp∗ 68.64 115.84 48.72 85.10 69.27 69.84 154.87 54.34 83.12 76.72
CRL∗ 67.91 125.45 44.88 85.79 70.21 70.96 152.20 53.03 83.94 77.67
LogitNorm∗ 65.13 145.75 54.49 83.31 66.90 72.00 166.34 56.51 82.91 77.24
OE∗ 62.16 163.93 51.93 83.08 47.64 84.68 149.02 45.48 87.69 83.87
RegMixUp (LoRA) 67.53 126.07 50.51 84.54 66.98 72.39 155.58 53.51 83.81 77.99
CRL (LoRA) 67.44 115.43 48.90 84.85 66.20 73.16 153.48 52.10 84.27 78.57
LogitNorm (LoRA) 67.15 127.64 49.10 84.77 66.91 72.88 155.08 52.55 84.14 78.38
AugMix (LoRA) 70.48 102.55 49.80 84.52 63.66 75.39 141.23 51.24 84.69 79.69
OE (LoRA) 63.96 147.07 51.66 83.69 51.71 82.41 147.40 46.57 87.21 83.04
Energy (AugMixLoRA) 70.48 124.68 64.17 79.67 63.98 75.59 158.37 60.62 81.52 77.58
TrustLoRA 70.25 107.13 51.30 83.95 51.05 83.51 129.64 46.46 87.29 83.73

show that the scaling α in Eq. (7) can easily control the preference between MisD under covariate
shits and OOD detection. Specifically, when increasing the α, the OOD detection ability can be
remarkably enhanced, and the Cov-MisD is increased at the beginning, and then decreased. Therefore,
we can conclude that the proposed TrustLoRA can approximate a family of mappings with the simple
linear combination of LoRA weights regarding different kinds of reliability knowledge flexibly.
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Figure 10: Cov-MisD and OOD detection per-
formance with different addition weight.

Reliable prediction is an essential requirement for
safe AI. The method proposed in this work would
help the model detect unreliable prediction under
both covariate and semantic shifts. Our work could
contribute to the understanding of failure prediction
in the wild. We are not aware of any negative social
impact, and we believe the ethical aspects are not
applicable.

Limitations and Future Work. Since our method
is built on OE (Hendrycks et al., 2018), auxiliary
outlier data is need. We have shown that TrustLoRA
is robust to different auxiliary outlier data. Future
work will consider developing outlier-free methods
within the proposed framework. Besides, this paper
only considers discriminative classifier in classifica-
tion scenarios. Future work will explore unknown rejection in generative models, e.g., large language
model and diffusion model, and more complex tasks such as Object detection and segmentation.
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