Under review as a conference paper at ICLR 2025

TOWARDS FLEXIBLE AND CONTROLLABLE UNKNOWN
REJECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reliable prediction is an essential requirement for deep neural models that are de-
ployed in open environments, where both covariate and semantic out-of-distribution
(OOD) data arise naturally. Recent studies have formulated and pursued two prob-
lems named OOD generalization and detection independently, where the former
aims to correctly recognize covariate shifts while the latter focuses on rejecting
semantic shifts. However, existing methods are misaligned with real-world appli-
cations in two aspects. First, in practice, to make safe decisions, a reliable model
should accept correctly recognized inputs while rejecting both those misclassified
covariate-shifted and semantic-shifted examples. Second, considering the poten-
tial existing trade-off between rejecting different failure cases, more convenient,
controllable, and flexible unknown rejection approaches are needed. To meet the
above requirements, we propose a novel and elegantly simple unknown rejection
framework to unify and facilitate classification with rejection under both covariate
and semantic shifts. Our key insight is that by separating and consolidating failure-
specific reliability knowledge with low-rank adapters and then integrating them,
we can enhance the unknown rejection ability effectively and flexibly. Extensive
experiments demonstrate the superiority of our framework.

1 INTRODUCTION

Deep neural models have achieved remarkable performance in closed-world scenarios, assuming
that train and test sets come from the same distribution. However, in practice, out-of-distribution
(OOD) data naturally arises during the deployment (Nguyen et al., [2015)), which mainly includes
two types named covariate shifts and semantic shifts (Bai et al.,|2023)). Specifically, as depicted in
Fig.[1} a model trained on in-distribution (ID) data may encounter covariate shifts such as conditions
with snowy night (Sakaridis et al.| 2021)) or corrupted inputs resulting from camera noise and sensor
degradation (Hendrycks & Dietterichl 2018). Unfortunately, the model often suffers significant
performance deterioration when deployed in those scenarios. To ensure safety, it is expected to reject
wrong predictions instead of accepting them blindly. Alternatively, unknown categories with semantic
shifts may also emerge (Hendrycks & Gimpel, 2016; [Hendrycks et al.,[2018). In this case, the model
must reject to make incorrect decisions by detecting semantic-shifted examples.

In recent years, both covariate and semantic shifts have received extensive attention, and have been
formulated as OOD generalization (Hendrycks et al., 2021} Y1 et al., 2021 |Liu et al., 2021} Schneider
et al.,|2020) and detection (Hendrycks et al.,|2018} Zheng et al.,|2024; [Liu et al., [2020; |Basart et al.,
2022) problems, respectively. Concretely, the former focuses on recognizing inputs with covariate
shifts while the latter focuses on rejecting inputs with semantic shifts. Instead of pursuing those two
problems independently, [Bai et al.[(2023)) handles OOD generalization and detection simultaneously
by leveraging unlabeled wild data consisting of both covariate and semantic shifts during training.
However, the aforementioned efforts still have primary limitations. First, for OOD generalization,
there is no rejection option involved, and accepting misclassified covariate-shifted inputs could lead
to catastrophic issues. Second, for OOD detection, the performance of prevalent methods drops a lot
when inputs of known classes suffer from covariate shifts, and rejecting semantic-shifted samples
while accepting all covariate-shifted samples may also lead to serious safety issues.

In addition, the trade-off between the rejection of different failure sources further complicates
the problem. Recent studies (Jaeger et al., 2022 Kim et al., |2023b; [Narasimhan et al., [2024)



Under review as a conference paper at ICLR 2025

<] semantic X X
E out — X
_S ngﬁ\t/ariate X »
a0 B x X
s X b X X J X
2 X v
>>§ X v x v .
Vv vV [ x X —— ST
in distribution covariate shift semantic shift
A)(‘jn Xout

(a) (b)
Figure 1: (a) Unknown rejection rejects both the (X) misclassified covariate-shifted and all semantic-
shifted OOD samples, and accepts the (V') correct prediction. (b) Illustration of three types of
common failure cases in the natural open environment.

have observed that prevalent OOD detection methods proposed in the literature often sacrifice the
performance when detecting incorrect predictions of ID samples. There are a few studies
2024al, [Cen et all, 2023} [Zhu et al},[2023a} [Li et al.l 2024) focused on developing reliable models
that can reject both misclassified ID and semantic-shifted OOD data. Nevertheless, they typically
overlook covariate-shifted samples, and it is hard to distinguish correct covariate-shifted samples
from semantic-shifted ones. Besides, they typically train a deep model from scratch or fully fine-tune
one, which is computationally heavy and inefficient. In practical scenarios, different failure sources
are not always predefined and can emerge continually. For instance, an autonomous driving system
performs classification with misclassification rejection on ID data under a normal environment (e.g.,
clean inputs on a sunny day), and switches to more challenging unknown rejection under covariate
shifts when facing sensory degeneration or bad weather (Fig. [T] (b, Middle)). Moreover, when a
car drives into the countryside, it may encounter unexpected novel objects such as sheep and deer
(Fig.[T] (b, Right)), where the model should perform OOD detection and make a warning. In more
common situations, a model is expected to have good rejection ability on various failure cases in
the wild without reliability disparity. From a multi-objective optimization perspective, we could
simultaneously optimize the model with existing methods dealing with covariate and semantic shifts.
However, it is often hard or impossible (Kendall et al., 2018} [Boyd & Vandenberghe), [2004) to find a
single optimal solution that can optimize the performance on different failure sources simultaneously.
Moreover, a single prefixed, static solution lacks the flexibility to explore and calibrate the trade-off
among different requirements. Therefore, there is a demand for developing flexible and controllable
unknown rejection methods.

The goal of this paper is to show that the above-mentioned limitations and requirements can be
considerably addressed. For one thing, we aim to predict and accept correctly classified covariate-
shifted examples while rejecting those misclassified ones and all unknown samples with semantic
shifts. As illustrated in Fig. [T] (a), unlike the OOD detection problem that defines “positive” and
“negative” with regard to the label space, unknown rejection directly specifies the distinction by
the correctness of model’s predictions, which is more reasonable and aligned with the requirement
in practical applications. For another, considering the trade-off between rejecting different failure
sources, we aim to develop a more flexible method that enables us to easily separate, consolidate, and
incorporate different reliable knowledge regarding surrounding environments.

Contributions. (1) We study the unknown rejection problem under both covariate and semantic
shifts, and call for flexible and controllable methods for reliability enhancement. (2) We propose
a reliability arithmetic framework with low-rank adapters to compress and consolidate reliability
knowledge effectively and flexibly. To the best of our knowledge, this work is the first to separate
and compress reliability knowledge via low-rank adapters. Further, a random projection strategy
is proposed for rank adaptation to enhance the tuning efficiency. (3) Comprehensive experiments
demonstrating the strong performance of our method, as well as the flexibility of reliability edition.

2 PROBLEM FORMULATION

Training on in-distribution data. We focus on the multi-class classification setting. Let X C R?
be an input space, Y = [K] = {1, ..., K'} denotes the label space and Py, be the underlying in-
distribution (ID) over X x Y. Given a labeled training set D" = {(x;,y;)}Y, comprising N
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samples drawn i.i.d. from the joint data distribution P;,, multi-class classification aims to learn a
classifier h : X — ) with low misclassification error. Typically, we learn a function f : X — R
that yields the posterior distributions of a given input by minimizing an empirical surrogate risk, e.g.,
cross-entropy (CE) loss, on D™ and then h(x) = arg max,e(x] fy(X).

Inference in open environments with wild data. Trained on the ID data, a classifier f deployed in
open environments can encounter various out-of-distribution (OOD) shifts, as shown in Figure 1(a).
Typically, the OOD data can be grouped into covariate and semantic shifts (Yang et al.| 2021):

¢ Covariate OOD peovariate hag the same label space ) as the training data, but the input
space Xcovariate — Rd yndergoes shifting and therefore is different from X'.

* Semantic OOD Psemantic represents new-class shifted samples that do not belong to any
known classes, i.e., y ¢ ). We further assume that the input space X semantic and X are also
in different subsets of R%, which makes OOD detection possible.

For inference with covariate shifts, existing literature formulates the OOD generalization problem
(Hendrycks et al.} 20215 |Yi et al.L 2021} [Liu et al.| 2021} |Schneider et al.| 2020) which aims to improve
the classification accuracy of covariate-shifted samples. For inference with semantic shifts, prior
studies formulate the OOD detection problem (Hendrycks et al., [2018}; [Zheng et al., | 2024; Liu et al.,
2020; Basart et al.| [2022) which focuses on separating ID and semantic OOD.

Formulation of unknown rejection in the wild. In practice, one is likely to encounter both types of
samples during classifier deployment. To this end, unknown rejection allows for abstention on both
misclassified covariate-shifted and semantic-shifted data, while only accepting correctly classified
inputs from known classes (y = h(x) and y € )). Formally, considering all possible distributions
that a model may encounter in practice, we suppose the test distribution P***t is a mixture of data
from in-distribution, covariate-shifted and semantic-shifted distributions:

test covariate sematic
P = (1 — Te — 71'S)Pin + chout + 7Tsfpout , (D

where 7., 75, m. + 75 € [0, 1]. The goal of unknown rejection is to learn the classifier h and design a
rejector 7 : R? — {0, 1}, where an ideal rejector can ensure to make safe decisions by separating
correctly classified samples from misclassified ones or semantic OOD data as follows:

oy = 11X € Pl 7 R0 U Py 4 o)) L PR o

0 if x € Pu(y = h(x)) UPe™™*(y = h(x)) '
Here we emphasize the distinction between those three problems introduced above. OOD generaliza-
tion only focuses on classification accuracy and has no rejection option; OOD detection only rejects
semantic-shifted samples from unknown classes (y ¢ )), and blindly accepts misclassified samples
from known classes (y # h(x) and y € V). Besides, misclassification detection (MisD) focuses on
known classes and rejects misclassified ones. Unknown rejection provides a unified classification
with rejection framework that satisfies the practical requirements.
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Figure 2: Covariate shifts remarkably complicate the problem of unknown rejection.

Unknown rejection in the wild is quite challenging. Prior works (Hendrycks & Gimpel, 2016}
Hendrycks et al., 2018 [Liu et al.| 2020; (Cen et al.,|2023)) often study the rejection ability of a model
without considering covariate shifts that will be anticipated at inference time. Actually, unknown
rejection under covariate shifts is quite difficult. As shown in Fig. [2| (ResNet-18 (He et al., [2016)
trained on CIFAR-10): (1) Within known classes, covariate shifts make it much harder to separate
misclassified examples from correct ones. When increasing the corruption severity, the performance
of MisD continually drops. (2) Considering OOD detection performance, the model struggles to
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distinguish between known and unseen classes when the samples of known classes undergo covariate
shifts. (3) From (1)-(2), we know that PSoyar1ate(y = (x)) and POy 12t (y = h(x)) are hard to be

out

separated, and the confidence distributions of POy 2t and P5eantic are also mixed. Therefore, it

is quite challenging to achieve the goal of unknown rejection in Eq. (2).

3 THE PROPOSED FRAMEWORK: TRUSTLORA

3.1 MOTIVATION

Limitation of failure-specific full training. It is acknowledged that rejecting incorrect predictions is
essential for reliable learning. However, the failure sources are rich in uncontrolled environments,
including incorrect predictions of ID or corrupt-shifted samples, and also inputs from unknown new
categories. Current methodologies predominantly focus solely on rejecting one specific failure case,
e.g., OOD detection only rejects data with semantic shifts while accepting all other samples. This
paradigm, however, has evident limitations: (1) Unrecoverable. Enhancing the ability of rejection on
one specific failure may lead to unrecoverable damage on other aspects of the model, since it has
been empirically revealed that trade-off existed when rejecting different failure sources (Jaeger et al.}
2022; Kim et al., [2023b)). This is undesirable in practice: an autonomous car can not return to its
“standard” mode for normal environment after full tuning in OOD environment. (2) Inflexible. Full
training with failure-specific optimization objectives often leads to a static solution. Considering the
complexity of open environments, it is beneficial to have convenient ways that can flexibly adjust the
trade-off at inference time without full retraining. (3) Inefficient. When facing new failure cases, full
training a model is computationally intensive and time-consuming. In practice, to avoid catastrophic
consequences, we expect the model to handle novel failure sources with minimal overhead in latency.

Reliability knowledge separation and integration. With the above limitations in mind, we propose
to develop unknown rejection framework with separable and combinable reliability knowledge, which
is different remarkably from the prior efforts. As demonstrated by |Gueta et al.[(2023)), knowledge can
be represented by a region in weight space. Our high-level idea is to compress reliability knowledge
regarding different failure cases and then selectively integrate them based on real-world requirements.
To this end, two important questions arise: how to get failure-specific knowledge and how to compress
it. (1) Acquire reliability. Many methods have been developed in recent years for reliable prediction,
and they often excel at one specific failure case. Those methods form a rich and diverse toolbox,
which can be interpreted as encapsulating the specific reliability knowledge naturally. (2) Compress
reliability. Common strategies to compress knowledge such as pruning (Tanaka et al., [2020) and
knowledge distillation (Hinton et al., [2015) often suffer from the heavy computation issue, which
conflicts with the efficient principle. Therefore, we hope to compress knowledge to a small set of
parameters, enabling cheap computation and lightweight integration.

Based on the above discussion, we propose a novel TrustLoRA framework to acquire and integrate
trustworthy knowledge, which is illustrated in Fig. 3] and detailed below.

3.2 RELIABILITY KNOWLEDGE SEPARATION WITH LOW-RANK ADAPTATION

LoRA-adapted reliability acquiring. To acquire and compress specific reliable knowledge related
to covariate shits, we propose to fine-tune the model in specific low-rank subspace. Concretely, we
leverage parameter efficient tuning technique with an auxiliary low-rank adapter (LoRA) (Hu et al.,
2021). As illustrated in Fig. |3} LoRA composes of two rank decomposition matrices B € R**" and
A € R"™*" where r € N is the rank and r < min(u,v). v and u are the dimensionality of the input
% € R for current layer and hidden features, respectively. Therefore, BA € R“*? has the same
size as the parameters, i.e., W € R"*", of the corresponding fully-connected layer in the feature
extractor. The modified forward pass with LoRA becomes:

z = (W + BA)x = WX + BAX, 3)
where z € R is the output, which will be the input of the next layer after passing non-linear

activation. During the training stage, the original parameters W remain frozen, while only A and B
are trainable, which is low-cost and parameter efficient.

To acquire and separate reliable knowledge in dynamic open environments, we propose to optimize
the failure-specific objectives via the LoRA branch as follows. In this work, we follow most of
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Figure 3: Illustration of the proposed reliability arithmetic framework. (Left) We freeze the pre-
trained backbone and add a LoRA module to acquire failure-specific knowledge. (Right) The LoRAs
are stored in the memory, and will be merged via arithmetic for unified unknown rejection in the wild.

existing studies that assume the real OOD data is unavailable. For covariate shifts, we leverage
AugMix (Hendrycks et al.l [2019b), which is a simple augmentation method with the following
learning objective:

['LORA,COV == ['CE(f(X)a y) + AJS (f(x)a f(xaugmixl); f(XaugmiXQ)) . (4)

Denote f = (f(x)+ f(Xaugmix1) + f(Xaugmix2)) /3 the averaged posterior distributions of x
and its augmented variants, and then the JS loss is: JS (f(x); f(Xaugmix1); f(Xaugmix2)) =

2 (Lxu(f(x), ) + Lxu(f (Xaugmixt )s f) + LKL(f (Xaugmixz), f)). For semantic shifts, we use
OE (Hendrycks et al.,[2018)), which helps the model acquire the knowledge of unknown classes by
introducing auxiliary outliers D,,. Specifically, we minimize the following objective:

'CLORA,sem = LCE(f(X)a y) + A EKL (f(xdux)7u([K])) ’ (5)

where A > 0 is a scalar, U ([K]) represents the uniform distribution over the training label space
Y = [K]. {A,B} denotes all trainable parameters. Since the pre-trained backbone is frozen, the
newly added LoRA captures the residual knowledge regarding the specific learning objectives.

Remark. We would like to clarify that we do not propose novel failure-specific learning objectives
in this paper. Instead, we focus on designing a unified framework to integrate different sources of
reliability knowledge in a flexible and parameter-efficient manner.

LoRA with random projection. For the initialization of LoRA, the common way is to initialize B
with an all-zero matrix, while initialize A with a normal distribution. Specifically, each element in A
is independently sampled from a standard Gaussian distribution. In other words, LoRA first projects
the input X into a low-rank space via random projection, and then decodes it to the original space.
For random projection, the Johnson-Lindenstrauss (Dasgupta & Gupta, [2003) states that the pairwise
relation between any two data points can be preserved in an appropriate lower-rank space. Therefore,
we further fix the parameters of A once initialized and only optimize B in a LoORA module during
the training stage, which is much more efficient than learning the original LoRA. Besides, we can
store the random seed that generates the random projection of A, requiring much less memory than
storing the full matrix, as shown in Fig.[3] We empirically verify that LoRA only introduces a quite
small amount of extra trainable parameters that are less than 1% of the original parameters.

3.3 RELIABILITY KNOWLEDGE CONSOLIDATION WITH LORA ARITHMETIC

Let Opre € RM be the parameters of a given pre-trained model, where M is the number of parameters.
In order to deal with unknown rejection in the wild, we freeze 6, and learn an additional LoRA
module with a loss function related to a specific emerged failure at phase ¢ (e.g., OE loss for semantic
shifts). Let O ora :—1 € R™ be the weights of the LoRA before fine-tuning, 01,,ra,: € R™ be the
corresponding weights after fine-tuning and m < M. The LoRA vector Tora ¢+ 1S given by the
element-wise difference between {0prc, Orora,t} and {fpre, Orora,t—1} as follow:

TLoRA,t = {0pre;, OrorA,t} — {Opre, OrorAt—1} = OLorA+ — OLoRA,t—1- (6)

The intuition behind LoRA vector is to encapsulate crucial directions in which the model’s parameters
move when learning with a loss function (Ilharco et al.,|2022) dealing with a specific failure source.
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As illustrated in Fig. [3] (Right), after fine-tuning each LoRA module with its respective learning
objective, we can perform reliability enhancement or reduction easily and flexibly via element-wise
addition or negation with a scaling term « € [0, 1] as follows:

* LoRA addition. The sum of the LoRA vectors 7 = ), a4T1.0rA,+ i added to a pre-trained
model 8, to produce a model that performs unknown rejection on different failure sources.
In our cases, we focus on model reliability under both covariate and semantic shifts, and we
can get a model {f},c, 7} with unified unknown rejection ability by merging the two LoRA
vectors trained using AugMix and OE easily, in which

T = (1 - a) * TLoRA,cov T O * TLoRA sem- @)

* LoRA negation. We can reduce the ability of rejecting specific failure while retaining
performance in other cases by subtracting the LoRA vector from the given LoRA-augmented
model. For example, we can get a model {Gpre, 7}, whose OOD detection ability is weaken
with 7 = —a - TLoRA,sem-

The LoRA arithmetic is simple and effective to address the challenging unified unknown rejection.
Specifically, in our case, we get LORA vectors regarding covariate and semantic shits via learning
objectives presented in Eq. () and Eq. (), respectively. Then we perform LoRA addition to
consolidate those two aspects of reliability. The proposed LoRA arithmetic has the following
advantages: (1) Flexible. the scaling term « provides the possibility and flexibility to control the
strength of reliability edition, easily adjusting the trade-off without full retraining. (2) Efficient.
When facing new failure cases, we only fine-tune the LoRA, which is lightweight and computationally
efficient with minimal latency compared with full training. (3) Recoverable. We can easily recover
the model to the default setting without losing the original knowledge by removing the LoRA module.

Theoretical analysis. The investigated problem involves dealing with multiple failure cases, which
can be formulated as a multi-objective learning problem. Recently, it has been proved that a linear
combination of multiple base models can lead to a pareto-optimal solution with diverse preferences
(Dimitriadis et al., [2023)). In our work, we build on a pre-trained base model with parameters and
introduce LoRA vectors to capture and compress the failure-specific reliable knowledge. Based on
the Theorem in Dimitriadis et al.| (2023, we can state the approximation power of the proposed
LoRA arithmetic as the following Proposition, which states that TrustLoRA can flexibly find a model
with a controllable solution for any scaling term « € [0, 1]. The proof can be found in the Appendix.

Proposition 3.1. Given a compact X C RP and a family of continuous mappings f, : X — RP /,
n=1,..., N, there exists a ReLU multi-layer perceptron f with base parameters 0, and two low-
rank vectors TLoRA cov ANd TLoRA sem, Sich that for any € > 0 and all n, there exists an o € [0, 1]
satisfying ||fn(x) - f(xv 917re + (1 - Ol) * TLoRA,cov + & 7—LoRA,scm)H <eforallxr e X.

4 EXPERIMENTS

Datasets and implementation. Following the common setup in literature, we assume that the real
distribution of OOD data remains unknown during training. For covariate-shifted data, we use CIFAR-
10/100-C (Hendrycks & Dietterichl [2018) consists of 15 diverse corruption types; for semantic-shifted
data, we use natural image datasets including SVHN (Netzer et al.,[2011)), Textures (Cimpoi et al.|
2014), Places (Zhou et al.,[2018), LSUN-Crop (Xu et al.,[2015), LSUN-Resize (Yuetal.,2015),
and 1SUN (Xu et al.,[20135). To focus on the unknown rejection ability on distribution shifts, we first
evaluate the performance with a mixture of covariate-shifted and semantic-shifted data at the inference
stage and generally keep equal numbers of misclassified covariate-shifted data PEOYaTa% (y £ h(x))

out
and semantic OOD data P¢mantic which are two kinds of failure sources we want to reject. Then,
we provide the unified unknown rejection results evaluated on both clean ID and distribution-shifted
data. We use the ResNet-18 (He et al.,|2016) and optimize it with SGD optimizer for 200 epochs to
get the standard pre-trained model. Then it is fine-tuned for 10 epochs to acquire different aspects of

reliability. For LoRA, we simply set » = 4. More implementation details are provided in Appendix.

Metrics and comparison methods. We leverage AURC (%o) (Geiftman & El-Yaniv, 2017; Jaeger
et al.| [2022), FPR9S5 (%) and AUC (%) (Hendrycks & Gimpel, 2016)) to evaluate the performance of
unknown rejection. Besides, we also introduce the F-AUC (%) (defined in Appendix). We compare
TrustLoRA with various methods including CE (MSP) (Hendrycks & Gimpel, 2016)), RegMixUp
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Table 1: Unknown rejection performance under mixture of covariate and semantic shifts on CIFAR-10
with ResNet-18. Methods with * train from scratch, methods with T fully fine-tune the pretrained
model, while others only fine-tune the LoRA.

Method Severity-1 Severity-2 Severity-3

AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC AURC FPR95S AUC F-AUC
CE* 56.04 37.53 8949 8741 89.05 4423 8693 84.19 | 12275 4893 84.63 81.17
RegMixUp* | 57.05 50.60 88.56  86.86 89.13 55.62  86.30 83.89 | 12450 58.52 84.05 80.99
CRL* 50.25 32.06 90.35 88.12 81.56  38.47 87.98 84.93 115.06 4428 8558 81.59
LogitNorm* | 48.15 3256 9192 90.88 76.79 38.44 90.01 88.53 107.45 4363 88.25 86.25
OE* 51.24 3330 91.73  90.37 82.77 39.12 89.76  87.51 120.52 4437 87.46 84.20
OpenMix* 29.46 28.13 9245 91.08 4690 32.61 9095 89.12 66.86 36.94 89.18 86.83
SURE* 31.25 27.39  92.67 91.26 48.13 31.19  91.02 89.51 68.31 36.60 89.55 86.27
RCL* 58.01 3592 89.53 8747 93.19  43.11 8695 84.17 132.03 4836 84.57 8l1.12

SCONE* 44.01 2699 93.13  92.08 7128 3275 91.17 89.37 | 10406 3891 88.83 86.15
RegMixUp 62.17  53.63 8797 86.11 9489 5720 85.73 83.23 | 130.78 61.87 83.37 80.32

CRL 56.28 3840 89.36 87.37 88.87 4457 8697 8427 | 12528 50.16 8445 81.09
LogitNorm 59.05 3671 89.41 8722 94.15 42.89 86.84 83.85 | 13341 4876 84.26 80.62
OE 43.63  26.01 93.51 9247 70.04  30.86 92.56 90.69 | 10099 36.04 9091 87.96
AugMix 36.62  36.09 90.72  89.16 51.73  39.06 89.61 87.71 67.82 4197 8851 86.20
MaxLogit 40.58 4539 89.30  88.08 5532 46.52 88.57  87.06 71.02 4831 87.74 8590
Energy 43.50  49.19 88.03 86.84 58.75  50.10 87.33 85.94 7490 5151 8648 84.86
KNN 43.87 4253 87.20 86.00 61.94 4598 8571 84.27 82.10  48.63 84.02 82.35
FS-KNN 4754 5575 8729 86.01 6236 5535 86.79 8530 80.36  57.86 8552 83.74
NNGuide 51.77 6395 8525 84.05 68.17 6328 84.65 8332 84.80 6349 84.01 8240
Relation 5898 59.52 80.85 79.74 77.10  60.19 80.17  78.85 97.12  61.66 79.04 77.57
GEN 4130  46.00 88.78 87.62 56.34 4731 88.00 86.61 7220 4894 87.18 8548
ASH 41.10 4587 89.11 87.89 5597 47.28 8831 86.83 72.08 4931 87.44 85.66

TrustLoRA 28.68 2380 93.67 9253 | 41.64 2743 92.67 91.18 | 56.64 30.62 91.55 89.65

(Pinto et al., [2022), CRL (Moon et al., 2020), LogitNorm (Wei et al.,|2022), OE (Hendrycks et al.|
2018), OpenMix (Zhu et al.| [2023a), SURE (L1 et al., [2024), RCL (Zhu et al., [2024a), AugMix
(Hendrycks et al 2019b), MaxLogit (Hendrycks et al., [2022)), Energy (Liu et al., 2020), KNN
(Sun et al., 2022)), FS-KNN (Cen et al.| [2023)), NNGuide (Park et al.l 2023)), Relation (Kim et al.,
2023a), GEN (Liu et al., 2023)) and ASH (Djurisic et al.l 2022). For training-time methods, we
report the results of both training from scratch and LoRA fine-tuning. Score-based methods are
applied to LoRA-augmented model tuning with AugMix. TrustLoRA leverages the simple MSP
score (Hendrycks & Gimpel, [2016).

4.1 RESULTS AND DISCUSSION

To fully reflect the unknown rejection performance under both covariate and semantic shifts, we
combine each of 15 corruptions under three different severity with six semantic OOD sets, resulting
in 90 wild data mixtures in total. We report the average performance on those 90 evaluations.

Trade-off between the two unknown rejec- Cov-MisD Unknown Rejection
. . 800 T 800
tion tasks. Fig. 4| shows the performance — Severity-1' — Severity-1
change when fine-tuning the pre-trained model. ~ —s00{ 32, ooo{  Severity-2
. i R . < Severity-3 ! Severity-3

Cov-MisD denotes the ability to reject mis- & :

. . . . 400 ! 400
classified covariate-shifted (e.g., Gaussian %Dé : ;
noise) examples. Unknown rejection denotes < 2004~/ —— a0y L

the ability to reject both misclassified covariate- . 3 ,

shifted data and semantic-shifted data jointly. 2468 2468 2468 2468
We can clearly observe that when fine-tuning Epoch (AugMix—0E)  Epoch (Augix—CF)
with OE (after the dotted line) to acquire OOD ~ Figure 4: Change of rejection ability when fine-
detection ability, it is harder to detect misclassi- tuning the pre-trained ResNet-18 on CIFAR-100.
fied corrupted samples, e.g., AURC (|) of Cov-MisD increases dramatically. As a result, the unified
unknown rejection performance becomes worse.

Our method achieves strong performance. The main results in Table[T]and 2] verify that TrustLoRA
establishes overall strong performance, especially on AURC |, which has been considered as
the most important metric for unknown rejection evaluation (Jaeger et al. 2022; Moon et al.,
2020). In particular, we consider two groups of baselines: training the model from scratch (denotes
with *) and fine-tuning the pre-trained model. We highlight a few observations: (1) TrustLoRA
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Table 2: Unknown rejection under mixture of covariate and semantic shifts on CIFAR-100.

Method Severity-1 Severity-2 Severity-3

AURC FPR95 AUC F-AUC AURC FPR9S AUC F-AUC AURC FPR95 AUC F-AUC
CE* 163.66 54.88 8295 76.33 | 21826 6190 79.53 71.53 | 279.10 67.12 76.65 68.06
RegMixUp* | 154.87 5434 83.12 76.72 | 198.08 60.46 80.25 72.64 | 24993 6533 7743 69.25
CRL* 15220 53.03 83.94 77.67 | 195.12 5943 81.07 73.37 | 24445 64.10 7874 70.00
LogitNorm* | 166.34  56.51 8291 7724 | 217.56 62.15 8021 73.37 | 273.87 6638 77.78 70.37
OE* 149.02 4548 87.09 83.17 | 19497 51.69 8526 80.21 | 24645 56.24 8331 77.18
OpenMix* 134.18 46.46 86.57 81.84 | 16432 5149 8447 78.78 | 203.87 56.18 8229 76.10
SURE* 137.62 4835 86.04 8226 | 17245 51.76 8395 7841 | 20571 56.62 82.18 76.54
RCL* 15585 5289 8429 7873 | 20239 5920 81.61 74.88 | 25647 64.10 79.11 71.83
SCONE™" 148.50 47.65 86.50 81.69 | 201.73 5392 83.57 77.37 | 26459 59.29 80.74 74.03
RegMixUp | 155.58 53.51 83.81 77.99 | 203.97 59.66 80.70 73.83 | 261.76 6450 77.96 70.71
CRL 15348 52.10 84.27 7857 | 204.13 5843 81.24 7425 | 262.74 63.65 7831 71.19
LogitNorm | 155.08 52.55 84.14 78.38 | 20723 5892 81.07 74.10 | 267.35 6396 78.16 71.06
OE 147.40 46.57 87.21 83.04 | 197.74 52.09 8473 79.32 | 25943 57.08 82.12 76.15
AugMix 14123  51.24 84.69 79.69 | 158.07 5444 8347 77.63 | 17771 57.12 8226 75.69
MaxLogit 15037 57.84 8333 78.72 | 16631 59.890 8235 7696 | 185.83 6191 8120 75.10
Energy 15837 60.62 81.52 77.58 | 175.02 6248 80.47 7590 | 194.12 6427 79.40 74.28
KNN 168.58  66.07 80.55 77.54 | 18477 67.07 79.41 7579 | 20444 68.17 7822 74.09
FS-KNN 143.83  56.08 8471 81.69 | 167.36 58.13 83.03 79.74 | 183.17 59.21 8226 77.12
NNGuide 180.32  66.12 7627 7223 | 197.55 67.51 7521 7047 | 21589 68.58 7439  69.10
Relation 171.64 67.49 80.28 7620 | 186.00 6795 7949 7463 | 20407 6898 7858  73.07
GEN 15747 6025 81.68 77.69 | 17432 62.19 80.57 7599 | 193.63 64.04 79.50 74.32
ASH 150.38 5778 8322 7877 | 167.33 5993 82.09 7690 | 18592 61.75 81.05 75.13
TrustLoRA | 129.64 46.46 87.29 83.73 | 149.14 50.12 8577 81.40 | 17235 5332 8441 79.28
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Figure 5: Flexibility of controlling the strength of reliability edition on CIFAR-100.

outperforms strong training methods like LogitNorm (Wei et al., [2022), CRL (Moon et al., [2020)
and RegMixUp (Pinto et al.| [2022) in both training from scratch and fine-tuning scenarios. (2)
TrustLoRA outperforms competitive post-hoc OOD detection methods, which are applied to the
same model fine-tuned with AugMix and hence they have the same classification accuracy. (3) The
proposed reliability arithmetic framework excels in detecting both misclassified covariate-shifted and
semantic-shifted data, achieving the best performance among all compared methods.

Flexibility of controlling the strength of reli- o5 95

ability edition. We separate reliability knowl- MisD = 00D Cov-MisD ¥ Cov-00D
edge with LoRAs and merge them to get a uni- = 7 851

fied failure detector. One of the primary advan- 3:— 754 75 4

tages of our method is to control the strength of =~ 2

each kind of reliability flexibly based on end- 7 &7

user preference without training the model again 55

55
0 02 04 06 08 1 0 02 04 06 08 1
negation weight a negation weight a

or affecting the original model. In Fig. [5](Left),
we show that the scaling « in Eq. (7) can eas-
ily control the preference between MisD under
covariate shits and OOD detection. In Fig. [3]
(Middle and Right), we observe that an overall
strong unified unknown rejection performance can be achieved with « € [0.4, 0.6], and we simply set
a = 0.5 for all experiments.

Figure 6: Accurate forgetting of OOD detection
ability while keeping the MisD ability on clean ID
(Left) and covariate-shifted data (Right).

Selective reliability forgetting with LoRA negation. Besides LoRA addition for unified unknown
rejection, here we explore accurate reliability forgetting. We apply the OOD detection vector
T = —Q - TLoRA,sem (learned with OE) to a given model (e.g., LoRA tuning with AugMix). The
experiments on CIFAR-100 in Fig. [6]show that we can enable the model to forget OOD detection
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Table 3: Unknown rejection performance on CIFAR-100 with ViT.

Method Severity-1 Severity-2 Severity-3

AURC FPR95 AUC F-AUC AURC FPR9S AUC F-AUC AURC FPR95 AUC F-AUC
Full-FT 49.17 3380 91.07 89.09 69.78  37.67 89.77 87.08 9246 4143 8839 84.81
Linear 98.88 3734 90.03 8723 | 11638 4022 8894 8533 | 13455 4336 87.70 83.20
CE 51.68 3377 9130 89.61 7333 3691 90.14 87.88 9337 40.73 88.87 85.95
RegMixUp | 50.54  37.70 90.83 89.21 7442 4421 8897 86.78 97.86  49.19 87.35 84.41
CRL 5448 3401 9123 8944 | 7632 37.63 90.01 87.65 9583 40.86 88.74 85.70

LogitNorm | 59.66  49.24 88.70  87.39 81.65 50.18 88.16 86.44 | 101.24 51.96 87.25 85.03

AugMix 46.13 3427 91.12 89.37 65.15  37.65 90.06 87.75 8536  41.12 88.83 85.89
MaxLogit 5222 4366 89.35 88.08 70.65 4535 88.76  87.11 89.95 4721 8793 85.79

Energy 5552 4850 8824  87.00 7424  49.68 87.76  86.18 9374  51.18 87.02 85.07
KNN 58.91 53.46 86.82  85.46 7890  54.02 86.11 8451 99.20 5478 85.32 83.38
NNGuide 53.86 4697 88.53 87.28 7253 4836 87.96 86.40 92.06 5020 87.17 85.23
GEN 54.15 4631 88.59 87.36 73.01  47.82 88.00 86.48 9240 4949 87.25 85.28

TrustLoRA | 43.40 31.25 9213 90.78 | 63.01 34.08 9122 8936 | 8337 3791 89.90 87.56

ability, while with little deterioration of MisD ability on clean ID (Left) and covariate-shifted data
(Right). This demonstrates that our method can enable flexible reliability knowledge edition.

Experiments with ViT. We also conduct experiments on pre-trained ViT backbone (ViT-B16)
(Dosovitskiy et al.l 2020), and perform full fine-tuning, linear prob and LoRA tuning. Detailed
implementation can be found in Appendix. Despite the strong performance of pre-trained ViT-B16,
results in Table [3|reveal that our method yields notable improvement, especially on AURC.

Large scale experiments on ImageNet. We Table 4: Experimental results on ImageNet.
provide additional large-scale results on the

ImageNet-200/500 benchmark with ResNet-50.  Method

ImageNet-200  ImageNet-500

The classes were randomly sampled from 1K, AURC AUC AURC AUC
and we also sampled another set of classes (with ~ CE* 188.37 92.55 268.42 89.08
equal numbers) as outliers for OE. At inference =~ MaxLogit* 198.44  90.11 28690 85.03
stage, we use a mixture of covariate and seman- ~ Energy” 20302 89.28 29591 8371
tic OOD data. Specifically, for semantic shifts, AugMix (LoRA) 16653 9325 23625 8995

OE (LoRA) 180.18 9278 265.11 89.50

we use the fixed ImageNet OOD dataset pro- MaxLogit (AugMixLoRA) 187.54 91.97 259.65 87.82
posed in (Bitterwolf et al, 2023), whichincludes  gyepoy (AugMixLoRA)  197.60 9163 26637 86.65
truly OOD versions of 11 popular OOD datasets  TrustLoRA 159.67 93.91 22992 90.15
with in total of 2715 OOD samples; for covari-
ate shifts, we use the corruption type Frost with severity-1. Results in Table 4] suggest that our
method yields strong unknown rejection performance compared with competitive baselines.

TrustLoRA outperforms the multi-task learn- T,pje 5: Comparison with more baselines and

ing. We further compare our method with more  ,1(j_task learning on CIFAR-100, severity-1.
baselines: (1) Two new methods named SIRC

(Xia & Bouganis}, 2024) and FMFP (Zhu et al., Method AURC FPR9S AUC F-AUC
2023b) (FlatLoRA in our comparison). (2) SIRC* (MSP, z1) 160.26  52.17 8375  76.65
FlatLoRA 15294 5197 8440 78.74

Multi-task tuning with combined OE and Aug- )
Mix learning objectives. The results in TableE] SIRC (AugMixLoRA) | 139.86 ~ 50.53  85.50  80.04
i AugMix (Full FT) 133.68  49.79 85.05  80.48
verify that our method outperforms SIRC and  AugMix+OE (Full FT) | 13892 5026 8540 81.44
FlatLoRA consistently. In particular, our LORA  TrustLoRA 129.64 4646 8729 83.73
arithmetic outperforms the multi-task learning,
i.e., AugMix+OE (Full FT) in Table[5] Intuitively, this is because when optimizing both two ob-
jectives in a multi-task learning (MTL) manner, there exist remarkable conflicts between pulling
covariate-shifted samples close to class centers while pushing semantic-shifted samples away from
class centers since those two types of shifted samples are often overlapping. Theoretically, the
Bayes-optimal reject rule for MisD is based on maximum class-posterior probability max,cyP(y|x),
while OOD detection rejects samples with small density ratio p(x|in) /p(x|out) (Zhu et al.,|2023bj
Narasimhan et al.| [2024). OOD detection methods such as OE and Energy score often perform
density estimation explicitly or implicitly. However, to separate samples from known classes and
unknown semantic-shifted unknown classes, binary discrimination would compress the confidence
distribution of correct and incorrect covariate-shifted samples. As a result, MTL of the two objectives
would be unstable. Differently, our proposed LoRA arithmetic overcomes the above limitation with
reliability knowledge separation and consolidation.
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Table 6: Robustness to different auxiliary data when acquiring OOD detection ability.

- Severity-1 Severity-2 Severity-3
Auxiliary Data
AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC
TIN597 130.45 4526 8741 83.19 15250 49.63 8581 80.83 178.82 52.73 84.30 78.66

RandomImage 129.64 46.46 87.29 83.73 149.14 50.12 85.77 8140 17235 5332 84.41 79.28

Robustness to different auxil- 100 %0
iary data. In this paper, the g5
proposed TrustLoRA acquires 90

OO0D detection via OE technique, 807

which requires access to auxil- 807 75 H
iary outlier data. For CIFAR 7 . : NINININEE
benchmark, the RandomImage CIFAR-10 CIFAR-100 & R &g
is used as auxiliary outliers fol- Original ™ LoRA-2 I LoRA-3 R
lowing existing work. In Table
(CIF. A%Q—lOO), %v e show that Trus@— Figure 7: MisD ability on clean ID.
LoRA is robust to other auxiliary outliers like TIN597 (Zhang et al.| 2023b)).

AUC (%)1

Unified unknown rejection Typle 7. Comparison of unified unknown rejection ability evalu-

on clean ID and distribution- ¢4 on both clean ID and distribution-shifted data.
shifted data. In above exper-

iments, to clearly reflect the  Method CIFAR-10 CIFAR-100

unknown rejection ability under AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC
covariate and semantic shits, we  "g 3262 3156 91.59 89.98 |134.19 4870 8547 79.71
do not include clean ID data at  gegniixup | 3482 44.92 9056 89.27 | 133.88 4925 84.96 79.35
inference time. With integrated  cRrL 3037 2624 9230 90.54 |129.75 47.73 8597 80.47

LoRAs of covariate and semantic ~ LogitNorm | 27.11  26.10 93.76 92.97 | 138.73 51.38 85.22 80.20

shifts, the MisD performance  “0 0 ™00 0075175 9185 0045 | 13373 49.50 8534 8070
on the original clean set can be oo | 3253 4617 $9.95 88.86 | 14231 S6.11 84.00 79.74
well preserved on CIFAR-10  prooy | 3548 5048 8852 8749 |149.95 5896 8223 78.55
while suffering from a slight  ggN 3333 4673 8931 8831 |149.52 58.66 8230 78.59
drop on CIFAR-100. As shown  AsH 33.09 4695 89.67 88.61 |142.67 56.05 83.87 79.75
in Fig. m (Left), TrustLoRA can TrustLoRA | 20.86 20.86 94.42 93.47 |121.90 44.44 87.75 84.35
further recover and integrate
MisD knowledge on clean set by merging an additional LoRA fine-tuned with flat minima loss|Zhu
et al] (2023b), and we denote the model “LoRA-3”. Fig[7] (Right) compares the MisD on clean
ID data, where our method successfully achieves comparable MisD performance with the original
model, and outperforms other methods. Table [7]further reports the results on full spectrum of test set
including clean ID, covariate and semantic OOD data. As can be observed, our method still achieves
strong performance and outperforms other methods.

Computational costs. Table §|reports the num-  Table 8: Comparison of the computational costs.
ber of parameters of the base model and all -
LoRA modules, where our method has much ~_Model ResNet-20 ResNet-18  ViT (B16)
smaller parameters than the base model. Note BaseModel  0.2871M 1091 M 81.89M

that we further fix the parameters of A once ini-  TrustLoRA  0.0275M 0.25M 021M

tialized and only optimize B in LoRA during
the training stage, which is much more efficient than learning the original LoRA.

5 CONCLUSION

In this work, we present a novel reliability arithmetic framework to address the unknown rejection
under both covariate and semantic shifts. For the first time, we introduce low-rank adaptation to
separate and compress reliability knowledge. The proposed framework is a powerful tool to easily
achieve unified, flexible and controllable reliability towards different failure sources. Extensive
experiments and analysis show the superiority of our method over existing approaches for unknown
rejection under both covariate and semantic shifts. We hope this work can inspire the community to
investigate the trade-off among different failure sources, and further develop flexible and controllable
methods for reliable prediction in real-world applications.

10
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A RELATED WORK

Covariate OOD generalization. To improve the generalization, some methods assume that a set

of covariate-shifted samples are available at training time (Yao et al., 2022} [Wang et al.,[2022},
let alll 2021} [Bai et al., 2023)), others aim to learn domain-invariant representations that generalize

better under covariate shifts (Rusak et al 2020; [Hendrycks et al 2019bja). Recently, Bai et
al., leveraged unlabeled wild data consisting of covariate and semantic shifts to
build a model to recognize covariate-shifted data while rejecting semantic-shifted data. However,
there is no rejection option in covariate shits generalization, and users would accept the widely
existing misclassification blindly. Contrary to the above prior works, in this work, we aim to reject
misclassified covariate-shifted samples reliably.

Semantic OOD detection. Current OOD detection methods have been proposed under the setting
of post hoc or training regularization, aiming to reject samples from unseen classes. Some post hoc
methods (Hendrycks & Gimpell, 2016} [Liu et al.,[2020; [Liang et al., 2018}, Basart et all, 2022} [Huang|

et al., 2021} Sun et al., 2022; |[Hendrycks et al., 2022} [Park et al., 2023; [Kim et al., [2023a; Liu et al.,
2023) focus on designing proper confidence scores, which others (Sun et al., 2021}, [Sun & Lil [2022;

Djurisic et al.} 2022} [Song et al.| 2022} [Djurisic et al,[2022)) remove undesirable parts of feature or

activation to facilitate the separation of ID and OOD examples. Training regularization approaches
(Hendrycks et all 2018; |Du et al, 2024} Ming et all, 2022} [Zheng et all, 2024} Du et all, 2021}
[Zhu et al.l [2024b; [Zhang et al., [2023a}; [Katz-Samuels et al.,[2022) often require real or synthesized
auxiliary dataset with extra training processes. Nevertheless, current OOD detection methods could
harm the performance of detecting misclassified examples from known classes. This work aims to
develop unified and flexible framework to detect different kinds of failures.

Recently, there are a few studies (Zhu et al.} 20244; [Cen et al|[2023} [Zhu et al, 20234 [Li et al.} [2024)
focused on developing reliable models that can reject both misclassified ID and semantic-shifted OOD
data. For example,[Zhu et al.| (20234}, [2024a)) observed that existing popular OOD detection methods
are harmful for misclassification detection on clean ID test data, and proposed unified failure detection

methods by exploring outlier data (Zhu et al.| [2023a) or reliable continual learning paradigm (Zhu

et all[2024a). [Cen et al| (2023) found that the uncertainty distribution of wrongly classified samples is
extremely close to semantic-shifted samples rather than known and correctly classified samples, and

proposed FS-KNN, which is an improvement of the KNN score. proposed a method
named SURE for reliable prediction by combining multiple techniques, across model regularization,
classifier and optimization. Nevertheless, they typically overlook covariate-shifted samples, and it is
hard to distinguish correct covariate-shifted samples from semantic-shifted ones. Besides, they often
train a model from scratch or fully fine-tune it, which is computationally heavy and inefficient.

B THEORETICAL ANALYSIS

B.1 PROOF OF PROPOSITION 3.1

Proposition: Given a compact X C R and a family of continuous mappings f, : X — RY',
n=1,..., N, there exists a ReLU multi-layer perceptron f with base parameters .. and two low-
rank vectors TLoRA cov aNd TLoRA sem, Such that for any e > 0 and all n, there exists an o € [0, 1]
satisfying

||fn(w) - f(CE, epre + (1 - a) * TLoRA ,cov +a- 7-LORA,sem)H S €, Ve e X.

Proof: The proof is based on (Dimitriadis et al}[2023). Formally, denote o the ReLU non-linearity

o(z) = max(0, ). From the universal approximation theorem (Haykin, |1998), for any € > 0, there
exists Q € N, M € RP+T2xQ ¢ ¢ R?, M’ € RQ*D’ such that:

Ve e X, Vne{l,....N}, |fu(z) —g(z,a) <
where g(x, o) = M'o(M(x,a) + C).

Define two matrices R € RP*(2D+2) and § € REP+2) XD g4 follows:

L, ifj=2i-1, 1, ifi=2j—1or(i>2uandj=u),
Ri;=q-1, ifj=2i and S;; =14 —1, ifi=2j,
0, otherwise, 0, otherwise.
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Figure 8: (Left) Discrepancy (measured by layer-wise cosine similarity) between the pre-trained
model and fine-tuned model with OE. (Right) Illustration of the distribution of classification region,
covariate and semantic reliability region.

Let W, = (0,...,0,k),k = 1,2. Then, with € R”, we have:
Va>0, STo(RTz+(1—a)W,+aWs) = (z,a).

We can learn a ReLU multi-layer perceptron f(z, M,C, M', R W) = M'o(MSTo(R"x +
W) + C). Then with Oy = (M,C, M’', R, S,0) and 0; = (0 O 0, O ,W;) fori = 1,2, we have:

f(@;0pe + (1 — )61+ - 0s) = f(x; M,C,M',R, S, (1 — o)Wy + aWs)
=Mo(MSTo(R x + (1 — )W, +aWs) + C)
=g(ST(RTz + (1 — )W) + aWy))
= g(x, a).

Note that 6;,7 = 1,2 can be reshaped into a matrix B;A;, and in this paper we define them as
01 = TLoRA ,cov and 92 = TLoRA ,sem> FESPeCtiVely-

Remark. Recently, Zeng & Lee|(2024) has studied the expressive power of LoRA, providing several
conditions for LoRA to be an exactly universal approximator. When the rank of LoRA is lower than
the critical threshold, the authors provided an upper bound for the approximation error. Specifically,
the approximation error is related to i) the magnitude of the target model’s parameters and the input;
ii) the rank of the adapter and the discrepancy between the frozen model and the target model; iii) the
depth of the frozen model. In our work, we do not focus on an exact universal approximator. The
low-rank module is used to approximate the residual parameters between the pre-trained model and
the failure-specific fine-tuned model. As shown in Fig. [§] the similarities of layer-wise parameters
between the pre-trained model (ResNet-18, CIFAR-100) and the fine-tuned model are very high.
Therefore, the parameter discrepancy is small. Our proof is based on the universal approximation
theorem with unconstrained width of the LoRA module, and the e expresses the approximation error,
which shares a similar spirit with that in (Zeng & Lee], [2024).

C EXPERIMENTS

C.1 EXPERIMENTAL SETUP DETAILS

For pre-trained model, we train the ResNet-18 model with SGD optimizer, a momentum of 0.9, an
initial learning rate of 0.1, a weight decay of Se-4 and mini-batch size of 128. The number of training
epoch is 200, and the learning rate is reduced by a factor of 10 at 100, and 150 epochs.

Training configures for Augmix: For augmentation, we use the official AugMix code and follow
the setup on the original AugMix paper to randomly sample k£ augmentation chains, where k = 3
by default. The sample mixing weights (w1, w2, ..., wk) ~ Dirichlet(c, a, ..., o), where o = 1 by
default. The A is set to be 12 following the official code of AugMix at line 234 in the above address.
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Table 9: Unknown rejection ability under covariate and semantic shits can be well maintained.

Method Severity-1 Severity-2 Severity-3

AURC FPR95 AUC F-AUC, AURC FPR95 AUC F-AUC, AURC FPR95 AUC F-AUC

TrustLoRA (LoRA-2) | 129.64 46.46 87.29 83.73 |149.14 50.12 85.77 81.40 |172.35 53.32 84.41 79.28
TrustLoRA (LoRA-3) | 128.14 46.65 86.33 81.68 |140.64 49.45 85.29 80.00 |155.53 52.04 84.25 78.29

Table 10: Results on less overparameterised model.

Method MD-AURC MD-FPR MD-AUC OOD-FPR OOD-AUC UR-AURC UR-FPR UR-AUC F-AUC
Baseline (C10) 57.28 41.60 86.93 48.24 81.47 85.80 40.92 87.05 84.11
w/ TrustLoRA 41.89 38.46 87.99 41.92 84.64 69.78 36.79 88.81 86.28
Baseline (C100) 210.34 54.94 81.61 84.31 62.14 222.40 67.65 78.30 70.56
w/ TrustLoRA 165.16 51.72 83.14 78.52 67.43 188.41 62.10 81.08 74.46

We then train the ResNet-18 model with SGD optimizer, a momentum of 0.9, an initial learning rate
of 0.1, a weight decay of Se-4, and a mini-batch size of 128. The number of training epochs is 200,
and the learning rate is reduced by a factor of 10 at 100, and 150 epochs.

Training configures for TrustLoRA: For AugMixLoRA fine-tuning, we set the rank of the LoRA
as 4 and use a cosine learning rate with an initial learning rate of 0.001 and a total 10 epochs. The
augmentation configures are the same as that of AugMix described above.

For experiments on ViT, we use the pre-trained ViT-B16, which is fine-tuned for 10 epochs using
cosine learning rate with the initial learning rate of 0.03. We set the momentum to be 0.9 and the
weight decay to 0. For compared methods, the main hyper-parameters come from their original
papers. For KNN, we set &k to 50. For NNGuide, we set k to 100. For GEN, the parameters (y, M) in
calculating generalized entropy score are set to (0.1, 100). We run each trial 3 times and report the
average performance.

For evaluation metric, the AURC, FPR95 and AUC are widely used in prior works. We further define
the F-AUC as follow: F — AUC = (2X AUC,oy X AUCsem )/ (AUC oy +AUCser ), where AUC oy
denotes the AUC value of separating correct and incorrect covariate-shifted data and AUC,, denotes
the AUC value of separating covariate-shifted and semantic-shifted data.

C.2 ADDITIONAL RESULTS

Unknown rejection performance can be well maintained. In Table[9] we show that the unknown
rejection ability under covariate and semantic shits can be well maintained after further integrating
the third LoRA, which demonstrates the flexibility and effectiveness of the proposed TrustLoRA
framework.

Results on less Overparametel'ised CIFAR-10 (Frost + Textures) CIFAR-100 (Frost + Textures)
model. We conduct experiments on b 0
ResNet-20 (which is much small than ' _
AugMixLoRA AugMixLoRA
ResNet-18) for CIFAR-10/100 and the 121 OELoRA 07 roma
fine-grained results are shown in Table
[I0] As can be seen, the proposed Trust-
LoRA successfully enhances the misclas-
sification detection, OOD detection, and
unknown rejection ability of the base
model (0.287M) by only tuning a very - I
small number (0.0275M) of parameters 0 01 02 03 04 05 0 02 04 06 08 10
in LoRAs. Those results verify that our Coversge Coverage
method can capture the benefit of Aug- Figure 9: Risk-coverage curves on the mixture of ID,
Mix/OE when models are less overpa- covariate and semantic shifts.
rameterised.

—CE 1 —CE

— TrustLoRA

— TrustLoRA

Risk (%o)

More results in comparison with more baselines and multi-task learning. Table[IT]provides more
results of comparison with SIRC, FlatLoRA and multi-task learning (i.e., AugMix+OE (Full FT)).
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Table 11: Comparison with more baselines and multi-task learning on CIFAR-100, severity-1.

Method Severity-1 Severity-2
AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC

SIRC* (MSP,z1) 160.26 52.17 83.75 76.65 214.24 60.07 80.22 71.85
FlatLoRA 152.94 51.97 84.40 78.74 201.94 58.51 81.43 74.46
SIRC (AugMixLoRA) 139.86 50.53 85.50 80.04 156.63 54.03 83.86 78.25
AugMix (Full FT) 133.68 49.79 85.05 80.48 146.83 52.47 83.92 78.66
AugMix+OE (Full FT) 138.92 50.26 85.40 81.44 142.66 50.66 84.52 80.12
TrustLoRA 129.64 46.46 87.29 83.73 149.14 50.12 85.77 814

Table 12: Random projection based LoRA v.s. the original LoORA on CIFAR-10/100, severity-1.
CIFAR-10 CIFAR-100
AURC FPR95 AUC F-AUC AURC FPR95 AUC F-AUC

B only 28.68 23.80 93.67 92.53 129.64 46.46 87.29 83.73
A&B 28.07 24.12 93.82 92.95 127.51 45.72 87.17 83.34

Method

Table 13: Performance of TrustLoRA with different rank » on CIFAR-10/100, severity-1.

Method CIFAR-10 CIFAR-100

AURC  FPR95 AUC  F-AUC = AURC  FPR95 AUC  F-AUC
r=2 29.31 24.92 93.32 92.24 131.06 47.17 87.11 83.38
r=4 28.68 23.80 93.67 92.53 129.64 46.46 87.29 83.73
r=38 28.45 23.11 93.60 92.72 128.15 46.03 87.40 83.82

Detailed individual unknown rejection performance. Table[T4]provides the fine-grained results
for misclassification detection on covariate shifts, OOD detection on semantic shifts and the unified
unknown rejection results on C10/100 with severity-1. We observe that our method achieves the best
unknown rejection performance. Besides, it is worth mentioning that our formulation is different
from existing works that evaluate OOD generalization via accuracy and OOD detection via rejection
metrics like FPR95, and AUC. We use the ARUC metric to reflect the classification with rejection
ability on covariate shifts, which has integrated the classification and rejection performance. We also
added the accuracy performance in Table[T4] including methods that train the model from scratch
(*) and others that fine-tune the model with LoRA. All post hoc methods have the same accuracy as
AugMixLoRA, since they are applied to the model trained with AugMixLoRA.

Risk-coverage curves. Fig.[0]provides the comparison of the risk-coverage curves when testing on
the mixture of covariate shifts (Frost with Severity-1) and semantic shifts (Textures) on CIFAR10
and CIFAR-100 datasets. Ours achieves the smallest risk given a specific coverage value.

Compare the random projection based LoRA with the original LoRA. In our method, we propose
LoRA with random projection, where only the B matrix of LoRA is trained. In Table[I2] we show
that random projection based LoRA achieves similar with that training both A and B, while needing
less computation and memory cost.

Rank of the LoRA. A higher rank r in LORA means a greater number of trainable parameters and
might lead to overfitting, while a lower rank r means fewer trainable parameters and might lead to
underfitting. When fine-tuning a pretrained model, if the dataset is significantly different and more
complex, then it’s would be better to use a high rank value (e.g., 64-256). On the other hand, if there
doesn’t involve a complex new dataset that the model hasn’t encountered before, lower values of
rank (e.g., 4—12) are sufficient. We conduct experiments under different settings of rank in LoRA
(Severity-1). As shown in Table |'1;§|, our method is robust to the different ranks of LoRA, and we
simply set = 4 (which is a common choice for LoRA tuning) for all experiments in our main paper.
In our case, we aim to teach the model learn reliability knowledge about the current task, without
introducing a complex new dataset. Therefore, low value of rank like 4 or 2 is sufficient to learn the
additional reliability knowledge without underfitting.

TrustLoRA approximates a family of mappings. One of the primary advantages of our method is
to control the strength of each kind of reliability flexibly based on end-user preference. In Fig.[I0] we
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Table 14: Individual performance on the misclassification detection under covariate shifts, OOD
detection under semantic shifts, and the unified unknown rejection on CIFAR-10/100 with severity-1.

Method ACC MD-AURC MD-FPR MD-AUC OOD-FPR OOD-AUC UR-AURC UR-FPR UR-AUC F-AUC
CIFAR-10
CE* 87.86 3533 4233 88.61 39.96 86.24 56.04 37.53 8949 874l
RegMixUp* 89.27  34.01 55.70 87.65 50.18 86.08 57.05 50.60 88.56 86.86
CRL* 87.68  29.63 3291 90.00 38.08 86.31 50.25 32.06  90.35 88.12
LogitNorm* 87.46  36.45 40.19 87.57 20.77 94.46 48.15 3256 91.92  90.88
OE* 87.13  36.04 39.31 88.78 27.34 92.02 51.24 3330 91.73  90.37
RegMixUp (LoRA) 88.48  36.62 55.64 87.52 54.89 84.74 62.17 53.63 8797 86.11
CRL (LoRA) 88.14  35.04 43.20 88.40 41.03 86.36 56.28 3840 8936 87.37
LogitNorm (LoRA) 86.87 37.83 38.33 88.76 40.97 85.74 59.05 36.71 89.41 87.22
AugMix (LoRA) 90.53  18.05 33.51 90.47 41.92 87.88 36.62 36.09  90.72 89.16
OE (LoRA) 87.38  32.67 33.82 89.89 15.47 96.06 43.63 26.01 9351 9247
Energy (AugMixLoRA) 90.53  26.77 59.77 84.16 39.36 89.69 43.50 49.19  88.03 86.84
TrustLoRA 90.77  16.27 28.98 91.40 22.41 93.68 28.68 23.80 93.67 92.53
CIFAR-100
CE* 66.08 134.63 49.00 84.74 70.45 69.44 163.66  54.88 8295 76.33
RegMixUp* 68.64 115.84 48.72 85.10 69.27 69.84 15487 5434 83.12 76.72
CRL* 6791 12545 44.88 85.79 70.21 70.96 15220  53.03  83.94 77.67
LogitNorm* 65.13  145.75 54.49 83.31 66.90 72.00 166.34  56.51 8291 77.24
OE* 62.16 163.93 51.93 83.08 47.64 84.68 149.02 4548  87.69 83.87
RegMixUp (LoRA) 67.53  126.07 50.51 84.54 66.98 72.39 15558  53.51 83.81 77.99
CRL (LoRA) 67.44 11543 48.90 84.85 66.20 73.16 15348  52.10 8427 78.57
LogitNorm (LoRA) 67.15 127.64 49.10 84.77 66.91 72.88 155.08 5255 84.14 7838
AugMix (LoRA) 70.48 102.55 49.80 84.52 63.66 75.39 141.23 51.24  84.69 79.69
OE (LoRA) 63.96 147.07 51.66 83.69 51.71 82.41 147.40 46,57  87.21 83.04
Energy (AugMixLoRA) 70.48  124.68 64.17 79.67 63.98 75.59 15837  60.62  81.52 77.58
TrustLoRA 70.25 107.13 51.30 83.95 51.05 83.51 129.64 4646  87.29 83.73

show that the scaling « in Eq. (/) can easily control the preference between MisD under covariate
shits and OOD detection. Specifically, when increasing the «, the OOD detection ability can be
remarkably enhanced, and the Cov-MisD is increased at the beginning, and then decreased. Therefore,
we can conclude that the proposed TrustLoRA can approximate a family of mappings with the simple
linear combination of LoRA weights regarding different kinds of reliability knowledge flexibly.

D BROADER IMPACTS

Reliable prediction is an essential requirement for AUC (%)1
safe Al. The method proposed in this work would 86
help the model detect unreliable prediction under 35
both covariate and semantic shifts. Our work could

contribute to the understanding of failure prediction 84 1

in the wild. We are not aware of any negative social 2 83 4
impact, and we believe the ethical aspects are not =
applicable. é 82 1
Limitations and Future Work. Since our method 814
is built on OE (Hendrycks et al., 2018)), auxiliary 80
I 1 1 I 1

outlier data is need. We have shown that TrustLoRA
is robust to different auxiliary outlier data. Future 7779 8 83 _85 87 8
work will consider developing outlier-free methods _OOD detection )

within the proposed framework. Besides, this paper Figure 10: Cov-MisD and OOD detection per-
only considers discriminative classifier in classifica- formance with different addition weight.

tion scenarios. Future work will explore unknown rejection in generative models, e.g., large language
model and diffusion model, and more complex tasks such as Object detection and segmentation.
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