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Abstract

Deep neural network autoencoders are routinely used computationally for model reduc-
tion. They allow recognizing the intrinsic dimension of data that lie in a k-dimensional
subset K of an input Euclidean space Rn. The underlying idea is to obtain both an
encoding layer that maps Rn into Rk (called the bottleneck layer or the space of latent
variables) and a decoding layer that maps Rk back into Rn, in such a way that the
input data from the set K is recovered when composing the two maps. This is achieved
by adjusting parameters (weights) in the network to minimize the discrepancy between
the input and the reconstructed output. Since neural networks (with continuous acti-
vation functions) compute continuous maps, the existence of a network that achieves
perfect reconstruction would imply that K is homeomorphic to a k-dimensional subset
of Rk, so clearly there are topological obstructions to finding such a network. On the
other hand, in practice the technique is found to “work” well, which leads one to ask
if there is a way to explain this effectiveness. We show that, up to small errors, indeed
the method is guaranteed to work. This is done by appealing to certain facts from
differential topology. A computational example is also included to illustrate the ideas.

1 Introduction

Many real-world problems require the analysis of large numbers of data points inhabiting some Euclidean
space Rn. The “manifold hypothesis” Fefferman et al. (2016) postulates that these points lie on some
k-dimensional submanifold with (or without) boundary K ⊆ Rn, so can be described locally by k < n
parameters. When K is a linear submanifold, classical approaches like principal component analysis and
multidimensional scaling are effective ways to learn these parameters. But when K is nonlinear, learning
these parameters is the more challenging “manifold learning” problem studied in the rapidly developing
literature on “geometric deep learning” Bronstein et al. (2017).
One popular approach to this problem relies on deep neural network autoencoders (also called “repli-
cators” Hecht-Nielsen (1995)) of the form G ◦ F , where the output of the encoder F : Rn → Rk is the
desired k < n parameters, G : Rk → Rn is the decoder, and F and G are continuous. See Figure 1 for
an illustration. The goal is to learn F , G to create a perfect autoencoder, one such that G(F (x)) = x
for all x ∈ K. The latter condition implies that F |K : K → F (K) ⊆ Rk is a homeomorphism, since it is
a continuous map with a continuous inverse G : F (K) → K. Thus, a perfect autoencoder F , G exists if
and only if the k-dimensional K is homeomorphic to a subset of Rk, so there are topological obstructions
making this goal impossible in general, as observed in Batson et al. (2021).
And yet, the wide practical applicability of the method evidences remarkable empirical success from
autoencoders even when K is not homeomorphic to such a subset of Rk. (We give an illustrative
numerical experiment in §3.) How can this be?
This apparent paradox is resolved by the following Theorem 1, which asserts that the set of x ∈ K for
which G(F (x)) ̸≈ x can be made arbitrarily small with respect to the “intrinsic measures” ∂µ and µ
(defined in §B.3) on ∂K and K generalizing length and surface area. For the statement, Fℓ,m denotes any
set of continuous functions Rℓ → Rm with the “universal approximation” property that any continuous
function H : Rℓ → Rm can be uniformly approximated arbitrarily closely on any compact set L ⊆ Rℓ by
some H̃ ∈ Fℓ,m.
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Figure 1: An autoencoder consists of an encoding layer, which maps inputs that lie in a subset K of
Rn (n = 12 in this illustration) into a hidden or latent layer of points in Rk (here k = 4), followed by
a decoding layer mapping Rk back into Rn. The goal is to make the decoded vectors (in red) match
the data vectors (in blue). In a perfect autoencoder, G(F (x)) = x for all x in K. Due to topological
obstructions, a more realistic goal is to achieve G(F (x)) ≈ x for all x in a large subset of K.

Theorem 1. Let k, n ∈ N and K ⊆ Rn be a union of finitely many disjoint compact smoothly embedded
submanifolds with boundary each having dimension less than or equal to k. For each δ > 0 and finite set
S ⊆ K, there is a closed set K0 ⊆ K disjoint from S with intrinsic measures µ(K0) < δ, ∂µ(K0 ∩∂K) < δ
such that M \K0 is connected for each component M of K, and the following property holds. For each
ε > 0 there are functions F ∈ Fn,k, G ∈ Fk,n such that

sup
x∈K\K0

∥G(F (x)) − x∥ < ε. (1)

Theorem 1 may be interpreted as a “probably approximately correct (PAC)” theorem for autoencoders
complementary to recent PAC theorems obtained in the manifold learning literature Fefferman et al.
(2016; 2018; 2023). Our theorem asserts that, for any finite training set S of data points in K, there is
an autoencoder G ◦ F with error smaller than ε on S such that the “generalization error” will also be
uniformly smaller than ε on any test data in K \K0.
Remark 1. In particular, Theorem 1 applies when Fℓ,m is a collection of possible functions Rℓ →
Rm that can be produced by neural networks. Neural networks, particularly in the context of deep
learning, have been extensively studied for their ability to approximate continuous functions. Specifically,
the Universal Approximation Theorem states that feedforward networks (even with just one hidden
layer) can approximate scalar continuous functions on compact subsets of Rℓ (and thus, componentwise,
can approximate vector functions as well), under mild assumptions on the activation function. This
result was proved for sigmoidal activation functions in Cybenko (1989) and generalized in Hornik et al.
(1989). Upper bounds on the numbers of units required (in single-hidden layer architectures) were given
independently in Jones (1992) and Barron (1993) for approximating functions whose Fourier transforms
satisfy a certain integrability condition, providing a least-squares error rate O(n−1/2), where n is the
number of neurons in the hidden layer, and similar results were provided in Donahue et al. (1997) for
(more robust to outliers) approximations in Lp spaces with 1 < p < ∞. Although these theorems show
that single-hidden layer networks are sufficient for universal approximation of continuous functions, it is
known from practical experience that deeper architectures are often necessary or at least more efficient.
There are theoretical results justifying the advantages of deeper networks. For example, Sontag (1992)
showed that the approximation of feedback controllers for non-holonomic control systems and more
generally for inverse problems requires more than one hidden layer, and deeper networks (those with
more layers) can represent certain functions more efficiently than shallow networks, in the sense that
they require exponentially fewer parameters to achieve a given level of approximation Eldan & Shamir
(2016); Telgarsky (2016).
Remark 2. While the intrinsic measures µ, ∂µ are a convenient choice for the statement of Theorem 1,
Theorem 1 still holds verbatim if µ, ∂µ are replaced by any finite Borel measures ν, ∂ν that are absolutely
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continuous with respect to µ, ∂µ, respectively. Moreover, Dr. Joshua Batson suggested to us the
observation that Theorem 1 implies that the L2(ν) loss∫

K

∥G(F (x)) − x∥2 dν(x)

can always be made arbitrarily small (this includes the case ν = µ). See Remarks 5, 6 in §2 for a detailed
explanation of these observations and their implications for autoencoder training.
Remark 3. The fact that one can pickM\K0 to be connected for each componentM ofK, which implies
that also each encoded “good set” F (M\K0) is connected, makes Theorem 1 particularly informative and
interesting. For example, suppose that our data manifold K is connected. Then Theorem 1 guarantees
that K \K0 is connected. If this property were not claimed, then a much simpler proof could be based on
splitting up K (up to a set of measure zero) into a potentially large number of submanifolds and patching
together autoencoders for each piece. One should emphasize that Theorem 1 is a statement about the
fundamental capabilities of autoencoders, but it does not imply that numerical learning algorithms will
always succeed at finding an autoencoder that satisfies the connectedness constraint (or the desired
bounds, for that matter). Our numerical experiments illustrate this phenomenon. For example, Figure 5
shows a learning run in which the encoded good set is (up to sampling resolution) connected, but Figure 8
shows a learning instance in which it is not.

The remainder of the paper is organized as follows. Theorem 1 is proved in §2. The numerical ex-
periments are in §3. A result ruling out certain extensions of Theorem 1 is proved in §4. §5 includes
further discussion and directions for future work. An appendix contains the implementation code for
these experiments. Another appendix reviews some notions of topology and related concepts that are
used in the paper.
In this paper, we adopt the standard convention that manifolds are the special case of manifolds with
boundary for which the boundary is empty.

2 Proof of Theorem 1

In this section we prove Theorem 1. As described in Appendix B (§B.3), there is an intrinsic notion of
“measure zero” subsets of a smooth manifold with boundary (Lee, 2013, Ch. 6).
Lemma 1. Let M be a k-dimensional connected compact smooth manifold with boundary. There exists
a set C ⊆ M such that C is closed and has measure zero in M , C ∩ ∂M has measure zero in ∂M , and
M \ C is connected and admits a smooth embedding into Rk.
Remark 4. If ∂M = ∅, an alternative proof equips M with any Riemannian metric, fixes p ∈ M , and
defines C ⊆ M to be the cut locus (Sakai, 1996, Def. III.4.3) with respect to p and the metric. This C
is closed and has measure zero, and M \ C is diffeomorphic to Rk (Sakai, 1996, Lem. III.4.4).

Proof. Fix any p ∈ int(M) and Riemannian metric on M . There is a smooth function φ : M → [0, 1]
such that all equilibria of the negative gradient vector field −∇φ are hyperbolic and belong to int(M),
{p} = φ−1(0) is the unique local minimum, and ∂M = φ−1(1) (Koditschek & Rimon, 1990, Thm 3).
Define

C :=
⋃

{W s(q) : ∇φ(q) = 0, q ̸= p},

where W s(q) ⊆ M is the set of initial conditions whose (−∇φ)-trajectories converge to the equilibrium
q ∈ int(M) as t → ∞. The complement W s(p) = M \C of C is open and connected since it is the basin
of attraction of p for −∇φ, so C is closed. Since C ⊆ M is a union of smoothly embedded submanifolds
with boundary N satisfying dimN < dimM and ∂N = N ∩ ∂M (Pajitnov, 2006, Prop. 1.3.2.13), C
and C ∩ ∂M have measure zero in M and ∂M , respectively. Finally, since int(M) \ C is the basin of
attraction of p for the rescaled vector field −(1 −φ)(∇φ) there is a diffeomorphism F : int(M) \C ≈ Rk

(Wilson, 1967, Thm 3.4), so if Φ1 : M → int(M) is the smooth embedding sending initial conditions
x(0) ∈ M to the values x(1) of their (−∇φ)-trajectories x(t), then F ◦ Φ1 : M \ C ↪→ Rk is the desired
smooth embedding.
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Lemma 2. In the setting of Lemma 1, C can be chosen disjoint from any finite subset S ⊆ M .

Proof. If M is diffeomorphic to a point or an interval, then C can be taken to be the empty set. If
M is diffeomorphic to a circle, then C can be taken to be any point disjoint from S. It remains only
to consider the case that dimM ≥ 2 (Lee, 2013, Ex. 15-13). Since Lemma 1 implies that C does not
contain any component of ∂M , there is a diffeotopy ∂Jt of ∂M such that the image of S∩∂M under the
diffeomorphism ∂J1 : ∂M → ∂M does not intersect C, that is, it satisfies ∂J1(S ∩∂M) ∩C = ∅ (Hirsch,
1994, p. 186), Michor & Vizman (1994). The diffeotopy ∂Jt extends to one generating a diffeotopy Jt

of M such that the diffeomorphism J1 : M → N satisfies J1(S) ∩ C = ∅ Michor & Vizman (1994),
(Hirsch, 1994, Thm 8.1.3, Thm 8.1.4). Hence the image C̃ := J−1

1 (C) of C under the diffeomorphism
J−1

1 is a closed measure zero set disjoint from S, M \ C̃ is connected, and C ∩ ∂M has measure zero in
∂M . Moreover, if F : M \C → N ⊆ Rk is the smooth embedding from the statement of Lemma 1, then
F ◦J1 : M \ C̃ → N ⊆ Rk is a smooth embedding. Upon replacing C with C̃, this finishes the proof.

As described in Appendix B (§B.3), any union K of smoothly embedded submanifolds of a Euclidean
space has an intrinsic measure µ given by the Riemannian density (Lee, 2013, p. 428) of the restriction
of the Euclidean metric to each component of K. We use the notation ∂µ for the intrinsic measure of
∂K. Any measure zero subset C of K in the sense of (Lee, 2013, p. 128) has intrinsic measure µ(C) = 0,
and similarly ∂µ(C ∩ ∂K) = 0 when C ∩ ∂K has measure zero in ∂K.
See Appendix B (§B.3) for discussion of the smooth extension lemma used in the following proof.
Lemma 3. Let k, n ∈ N and K ⊆ Rn be a union of finitely many disjoint compact smoothly embedded
submanifolds with boundary each having dimension less than or equal to k. For each δ > 0 and finite
set S ⊆ K, there are smooth functions F : Rn → Rk, G : Rk → Rn and a closed set K0 ⊆ K disjoint
from S such that µ(K0) < δ, ∂µ(K0 ∩ ∂K) < δ, M \K0 is connected for each component M of K, and

G ◦ F |K\K0 = idK\K0 .

Proof. Each component M of K is a connected compact smooth manifold with boundary of dimension
less than or equal to k. Lemmas 1, 2 thus imply the existence of a closed set C ⊆ K disjoint from S such
that C has measure zero in K, C ∩ ∂K has measure zero in ∂K, and M \ C is connected and admits
a smooth embedding into Rk for each component M of K. Compressing the images of these smooth
embeddings into arbitrarily small disjoint disks by post-composing each with a suitable diffeomorphism
of Rk produces a smooth embedding F0 : K \ C → Rk.
Let h : K \ C → [0,∞) be any continuous function such that {h ≤ r} is compact for every r ∈ R (Lee,
2013, Prop. 2.28). Arbitrarily select one point in each component of K, and let Un ⊆ K be the open set
equal to the union of the components of {h < n} containing each of these points. The properties of h
imply that the increasing union

⋃
n∈N Un = K \ C. Thus, finiteness of S, compactness of C, and outer

regularity of the intrinsic measures (§B) imply the existence of N ∈ N such that K0 := K \ UN satisfies
K0 ∩ S = ∅, K0 ⊇ C, µ(K0) < δ and ∂µ(K0 ∩ ∂K) < δ.
Defining F : Rn → Rk and G : Rk → Rn respectively to be any smooth extensions (Lee, 2013, Lem. 2.26)
of F0|cl(UN ) and (F0|cl(UN ))−1 : F0(cl(UN )) → cl(UN ) ⊆ Rn completes the proof.

Assume given for each ℓ,m ∈ N a collection Fℓ,m of continuous functions Rℓ → Rm with the following
“universal approximation” property: for any ε > 0, compact subset L ⊆ Rℓ, and continuous function
H : Rℓ → Rm, there is H̃ ∈ Fℓ,m such that supx∈L ∥H(x) − H̃(x)∥ < ε. Equivalently, Fℓ,m is any
collection of continuous functions Rℓ → Rm that is dense in the space of continuous functions Rℓ → Rm

with the compact-open topology (Hirsch, 1994, Sec. 2.4). See Appendix B (§B.3) for discussion of the
compact-open topology. We now restate and prove Theorem 1.
Theorem 1. Let k, n ∈ N and K ⊆ Rn be a union of finitely many disjoint compact smoothly embedded
submanifolds with boundary each having dimension less than or equal to k. For each δ > 0 and finite set
S ⊆ K, there is a closed set K0 ⊆ K disjoint from S with intrinsic measures µ(K0) < δ, ∂µ(K0 ∩∂K) < δ
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such that M \K0 is connected for each component M of K, and the following property holds. For each
ε > 0 there are functions F ∈ Fn,k, G ∈ Fk,n such that

sup
x∈K\K0

∥G(F (x)) − x∥ < ε. (1)

Proof. Fix a finite set S ⊆ K and δ > 0. Lemma 3 implies the existence of smooth functions F̃ : Rn → Rk,
G̃ : Rk → Rn and a closed set K0 ⊆ K disjoint from S such that µ(K0) < δ, ∂µ(K0 ∩ ∂K) < δ, M \K0
is connected for each component M of K, and G̃ ◦ F̃ |K\K0 = idK\K0 .

Fix ε > 0. Since K is compact, density of Fn,k, Fk,n and continuity of the composition map (G,F ) 7→
G ◦ F in the compact-open topologies (Hirsch, 1994, p. 64, Ex. 10(a)) imply the existence of F ∈ Fn,k,
G ∈ Fk,n such that G ◦ F is uniformly ε-close to G̃ ◦ F̃ on K. Since G̃(F̃ (x)) = x for all x ∈ K \ K0,
the functions F , G satisfy (1). This completes the proof.

Remark 5. The intrinsic measures µ, ∂µ are a convenient choice for the statement of Theorem 1, but
Theorem 1 still holds verbatim if µ, ∂µ are replaced by any finite Borel measures ν, ∂ν that are absolutely
continuous with respect to µ, ∂µ, respectively. This is because such measures have the property that
for each δ1 > 0 there is δ2 > 0 such that ν(A), ∂ν(B) < δ1 whenever µ(A), ∂µ(B) < δ2 (Folland, 1999,
Thm 3.5).
Remark 6. Many practical algorithms for autoencoders, such as the one used to compute the example
in §3, attempt to minimize a least-squares loss, in contrast to the supremum norm loss that Theorem 1
guarantees. In a private communication, Dr. Joshua Batson pointed out to us that, as a corollary of
Theorem 1, one can also guarantee a global L2 loss. We next develop the argument sketched by Dr.
Batson.

Theorem 1 implies that, for any finite Borel measures ν and ∂ν that are absolutely continuous with
respect to µ and ∂µ, respectively, the L2(ν) and L2(∂ν) losses∫

K

∥G(F (x)) − x∥2 dν(x) and
∫

∂K

∥G(F (x)) − x∥2 d∂ν(x)

can be made arbitrarily small. To see this, first note that G can be modified off of F (K \ K0) so that
the modified G maps Rk into the convex hull of {x ∈ Rn : dist(x,K) < 2ε}, and the diameter of this
convex hull is smaller than the diameter of K plus 4ε. Thus, the L∞ loss

sup
x∈K

∥G(F (x)) − x∥ < diam K + 4ε (2)

is smaller than diam K + 4ε. This and (1) imply the pair of inequalities∫
K

∥G(F (x)) − x∥2 dν(x) < (diam K + 4ε)2ν(K0) + ε2ν(K),∫
∂K

∥G(F (x)) − x∥2 d∂ν(x) < (diam K + 4ε)2∂ν(K0 ∩ ∂K) + ε2∂ν(∂K).

Since both right sides → 0 as δ, ε → 0 by the same measure theory fact in Remark 5 (Folland,
1999, Thm 3.5), this establishes the claim. The claim seems interesting in part because the loss
1
N

∑N
i=1 ∥G(F (xi)) − xi∥2 typically used to train autoencoders converges to the L2(ν) loss as N → ∞

with probability 1 under certain assumptions on the data x1, . . . , xN ∈ K. Namely, convergence occurs
if the data are drawn from a Borel probability measure ν and satisfy a strong law of large numbers,
which occurs under fairly general assumptions on the data (they need not be independent) (Doob, 1990,
Thm X.2.1), (Andrews, 1987, p. 1466), (Pötscher & Prucha, 1989, Thm 1, Thm 2). However, Theorem 2
in §4 implies that the L∞ loss (2) cannot be made arbitrarily small in general.
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3 Numerical illustration

We next illustrate the results through the numerical learning of a deep neural network autoencoder. In
our example, inputs and outputs of the network are three dimensional, and the set K is taken to be
the union of two smoothly embedded submanifolds of R3. The first manifold is a unit circle centered at
x = y = 0 and lying in the plane z = 0. The second manifold is a unit circle centered at x = 1, z = 0
and contained in the plane y = 0. See Figure 2 (left).

Figure 2: Left: Two interlaced unit circles, one centered at x = y = 0 in the plane z = 0 (blue),
and another centered at x = 1, z = 0 in the plane y = 0 (red). The circles are parameterized as
x(θ) = (cos(θ), sin(θ), 0) and x(θ) = (1 + cos(θ), 0, sin(θ)) respectively, with θ ∈ [0, 2π]. Right: The
output of the autoencoder for the two interlaced unit circles, one centered at x = y = 0 in the plane
z = 0 (blue), and another centered at x = 1, z = 0 in the plane y = 0 (red). The network learning
algorithm automatically picked the points at which the circles should be “opened up” to avoid the
topological obstruction.

The choice of suitable neural net architecture “hyperparameters” (number of layers, number of units in
each layer, activation function) is a bit of an art, since in theory just single-hidden layer architectures
(with enough “hidden units” or “neurons”) can approximate arbitrary continuous functions on compacts.
After some experimentation, we settled on an architecture with three hidden layers of encoding with 128
units each, and similarly for the decoding layers. The activation functions are ReLU (Rectified Linear
Unit) functions, except for the bottleneck and output layers, where we pick simply linear functions.
Graphically this is shown in Figure 3. An appendix lists the Python code used for the implementation.
We generated 500 points in each of the circles, and used 5000 epochs with a batch size of 20. We used
Python’s TensorFlow with Adaptive Moment Estimation (Adam) optimizer and a mean squared error
loss function. The resulting decoded vectors are shown in Figure 2(right). Observe how the circles have

Figure 3: The architecture used in the computational example. For clarity in the illustration, only 6
units are depicted in each layer of the encoder and decoder, but the number used was 128.

been broken to make possible their embedding into R1.

6



Under review as submission to TMLR

The errors ∥G(F (x)) −x∥ on the two circles are plotted in Figure 4. Observe that this error is relatively
small except in two small regions.

Figure 4: The errors ∥G(F (x)) − x∥ on the two cirles. The x axis shows the index k representing the
kth point in the respective circle, where θ = 2πk/1000.

In Figure 5 we show the image of the encoder layer mapping as a subset of R1 as well as the encoding
map F .

Figure 5: Left: The bottleneck layer, showing the images of the blue and red circles. Middle and Right:
The encoding maps for the two circles. The x-axis is the angle θ in a 2π parametrization of the unit
circles. The y axis is the coordinate in the one-dimensional bottleneck layer.

It is important to observe that most neural net learning algorithms, including the one that we employed,
are stochastic, and different executions might give different results or simply not converge. As an
illustration of how results may differ, see Figures 6, 7, and 8.

Figure 6: Left: Showing again the two interlaced unit circles. Right: For a different run of the algorithm,
shown is the output of the autoencoder.

For a slightly different view angle, we have rotated the images in Figure 6, see Figure 9.
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Figure 7: Result from another run of algorithm. The errors ∥G(F (x)) − x∥ on the two circles. The x
axis shows the index k representing the kth point in the respective circle, where θ = 2πk/500.

Figure 8: Result from another run of algorithm. Left: The bottleneck layer, showing the images of
the blue and red circles. Middle and Right: The encoding maps for the two circles. The x-axis is the
angle θ in a 2π parametrization of the unit circles. The y axis is the coordinate in the one-dimensional
bottleneck layer.

Figure 9: A different view of the original and decoded data in Figure 6.
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4 Theorem 1 cannot be made global

Theorem 1 asserts that arbitrarily accurate autoencoding is always possible on the complement of a
closed subset K0 ⊆ K having arbitrarily small positive intrinsic measure. This leads one to ask whether
that result can be improved by imposing further “smallness” conditions on K0. For example, rather
than small positive measure, can one require that K0 has measure zero? Alternatively, can one require
that K0 is small in the Baire sense, i.e., meager (§B.3)? In either case, the complement K \ K0 of K0
in K would be dense, so the ability to arbitrarily accurately autoencode K \K0 as in Theorem 1 would
imply the same for all of K. This is because continuity implies that the inequality (1) also holds with
K \K0 replaced by its closure cl(K \K0), and cl(K \K0) = K if K \K0 is dense in K.

The following Theorem 2 eliminates the possibility of such extensions by showing that, for a broad class
of K, the maximal autoencoder error on K is bounded below by the reach rK ≥ 0 of K, a constant
depending only on K. Here rK is defined to be the largest number such that any x ∈ Rn satisfying
dist(x,K) < rK has a unique nearest point on K Federer (1959); Aamari et al. (2019); Berenfeld et al.
(2022); Fefferman et al. (2016; 2018). Figure 10 illustrates this concept.

Figure 10: Left: Illustration of reach. A one-dimensional submanifold K of R2 is shown in blue. Two
segments are drawn normal to K, starting at points P and Q in a non-convex high-curvature region.
These segments intersect at a point R and have length rK . If perturbations of P and Q lead to R, then
there is no way to recover P and Q unambiguously as the unique point nearest to R. The dotted line
represents points at distance rK from K. Right: Illustration of “dewrinkled” reach: here K (in green) is
a “dimpled circle” of radius 1, with a “dimple” which is a semicircle of radius ε ≈ 0, and L is the “ironed
circle” of radius 1 in which the wrinkle has been removed. The mapping T : L → K is the obvious
projection. In this example, rK = ε ≈ 0 but r∗

K,k = 1 − ε ≈ 1.

Remark 7. The example K := {0} ∪ {1/n : n ∈ N} ⊆ R shows that a compact subset of a Euclidean
space need not have a positive reach rK ≥ 0. However, rK > 0 if K is a compact smoothly embedded
submanifold (cf. (3) below).
Theorem 2. Let k, n ∈ N and K ⊆ Rn be a k-dimensional compact smoothly embedded submanifold.
For any continuous functions F : Rn → Rk and G : Rk → Rn,

max
x∈K

∥G(F (x)) − x∥ ≥ rK > 0. (3)

Remark 8. The ability to make K0 small in Theorem 1 relies on an autoencoder’s ability to produce
functions G◦F that change rapidly over small regions. E.g., if G◦F is Lipschitz then Theorem 2 implies
a lower bound on the size of K0 in terms of rK and the Lipschitz constant.

To prove Theorem 2 we instead prove the following more general Theorem 3, because the proof is the
same. Here Hk(S;Z2) denotes the k-th singular homology of a topological space S with coefficients
in the abelian group Z2 := Z/2Z (Hatcher, 2002, p. 153). Upon taking L = Rk for the latent space,
the statement implies Theorem 2 since Hk(K;Z2) = Z2 ̸= 0 when K is a compact orientable manifold
(Hatcher, 2002, p. 236). Recall that rK denotes the reach of K ⊆ Rn. See Appendix B (§B.4) for
discussion of the topological concepts and results used in the following proof.
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Theorem 3. Let k, n ∈ N, K ⊆ Rn be a compact subset, and L be a noncompact manifold of dimension
less than or equal to k. If Hk(K;Z2) ̸= 0, then for any continuous maps F : K → L and G : L → Rn,

max
x∈K

∥G(F (x)) − x∥ ≥ rK . (4)

Proof. Let K ⊆ Rn be a compact subset and L be a noncompact manifold of dimension at most k. Since
(4) holds automatically if rK = 0, assume rK > 0. We prove the contrapositive statement that failure of
(4) for some F , G implies that Hk(K;Z2) = 0. Thus, assume there are continuous maps F , G such that

max
x∈K

∥G(F (x)) − x∥ < rK .

This implies that
G(F (K)) ⊆ NrK

(K) := {x ∈ Rn : dist(x,K) < rK}.

Since for each x ∈ NrK
(K) the optimization problem miny∈K dist(x, y) has a unique minimizer y∗ = ρ(x),

ρ : NrK
(K) → K is a continuous retraction (ρ|K = idK). The line segment from x ∈ K to G(F (x)) is

contained in NrK
(K), since for t ∈ [0, 1]

dist(tG(F (x)) + (1 − t)x,K) ≤ ∥tG(F (x)) + (1 − t)x− x∥
≤ ∥G(F (x)) − x∥
< rK .

Thus,
(t, x) 7→ ρ (tG(F (x)) + (1 − t)x)

defines a homotopy [0, 1] ×K → K from idK to (ρ ◦G ◦ F )|K : K → K. Defining the open set U ⊆ Rk

containing F (K) to be the preimage U := G−1(NrK
(K)), homotopy invariance (Hatcher, 2002, Thm 2.10,

p. 153) implies that the induced homomorphism (Hatcher, 2002, p. 111)

(ρ ◦G ◦ F |K)∗ = ρ∗ ◦ (G|U )∗ ◦ F∗ : Hk(K;Z2) → Hk(K;Z2)

is equal to the identity homomorphism (idK)∗ induced by idK . On the other hand, the homomorphism

(G|U )∗ : Hk(U ;Z2) → Hk(NrK
(K);Z2)

is zero, since U is a noncompact manifold and Hk(U ;Z2) = 0 for any noncompact manifold (Hatcher,
2002, Prop. 3.29, Prop. 2.6). Thus, Hk(K;Z2) = 0. This completes the proof by contrapositive.

The reach is a globally defined parameter, and thus our lower bound on approximation error may
underestimate the minimal possible error. In a private communication, Dr. Joshua Batson suggested
that the authors consider an example such as the one shown in Figure 10(right) and attempt to prove a
better lower bound for such an example, which led us to improve the necessary statement as follows.
For any two compact subsets K and L of Rn, we denote by C(K,L) the set of continuous mappings
T : L → K, and define the maximum deviation of T ∈ C(K,L) from the identity as:

δ(T ) := max
y∈L

∥T (y) − y∥ .

We denote by Mn,k the set of all compact smoothly embedded k-dimensional submanifolds L of Rn.
For any compact subset K ⊆ Rn, and any k ∈ N, we define the k-dimensional dewrinkled reach as

r∗
K,k := sup

L∈Mn,k, T ∈C(K,L)
{rL − δ(T )} .

When K ∈ Mn,k, we have that r∗
K,k ≥ rK (use L = K and T = identity). However, r∗

K,k may be much
larger than rK (see Figure 10(right)).

10
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Corollary 1. Let k, n ∈ N and K ⊆ Rn a compact subset. For any continuous functions F : Rn → Rk

and G : Rk → Rn,
max
x∈K

∥G(F (x)) − x∥ ≥ r∗
K,k . (5)

Proof. Pick any L ∈ Mn,k and any T ∈ C(K,L), and consider the composition F ◦ T :

F̃ : L → Rk : y 7→ F (T (y)) .

Applying Theorem 2 to L and the maps F̃ : L → Rk and G : Rk → Rn, we may pick a η ∈ L so that
∥η −G(F̃ (η))∥ ≥ rL. Let ξ := T (η), so G(F̃ (η)) = G(F (T (η)) = G(F (ξ)). Then

η −G(F̃ (η)) = η −G(F (ξ)) = (η − T (η)) + (ξ −G(F (ξ)))

so
rL ≤ ∥η −G(F̃ (η))∥ ≤ ∥η − T (η)∥ + ∥ξ −G(F (ξ))∥ ≤ δ(T ) + ∥ξ −G(F (ξ))∥

and hence
max
x∈K

∥G(F (x)) − x∥ ≥ ∥ξ −G(F (ξ))∥ ≥ rL − δ(T ) .

This is valid for all (L, T ), and thus supx∈K∥G(F (x)) − x∥ ≥ r∗
K,k, as claimed.

Remark 9. All the results in this section were stated for manifolds, meaning (recall our convention)
manifolds with empty boundary. Clearly, the same results cannot be valid for manifolds with non-empty
boundary. For example, the submanifold with boundary of R2 that consists of a one-dimensional segment
in the x-axis has infinite reach, yet can be perfectly reconstructed (project on the x axis and then include
in R2).

5 Discussion

Our main representation result is Theorem 1. This theorem theoretically insures that data points lying
in a submanifold K (or even in a finite union of submanifolds) of a given dimension k can be encoded
through a bottleneck layer of the same dimension k, up to an arbitrary small reconstruction uniform
error ε. Moreover, the generalization error will also be uniformly smaller than ε, with arbitrarily high
probability 1 − δ, when points are randomly sampled from K. Our main necessity result is Theorem 2.
This theorem complements the representability result by providing a lower bound for global uniform
reconstruction. On the other hand, as discussed in Remark 6, one can guarantee a global reconstruction
with error less than ε in a mean least squares sense.
There is a vast amount of experimental work using autoencoders for dimension reduction, but compar-
atively few papers focus on a theoretical basis for such reductions. One theoretical result is given (with
no proof) in Hecht-Nielsen (1995), in which a theorem is stated for replicator neural networks (with
quantized middle hidden layer activations approximating the function θ(r) = 0 for r < 0, θ(r) = 1 for
r > 1 and θ(r) = r for r ∈ [0, 1]). Using our notation, the theorem claims roughly that if data belongs
to a set K which is the image of a smooth orientation-preserving diffeomorphism of a k-dimensional
unit cube, and a probability measure is given on K, then, in the limit of high dimensions (k → ∞) and
a large number of quantization levels, replicator networks trained to compute optimal encodings will
recover the natural (entropy) coordinates in the data manifold. Our Theorem 1, in contrast, studies
representations of data lying in rather arbitrary manifolds (and would indeed be quite trivial if K was
already assumed to be diffeomorphic to a cube), and is valid for arbitrary k, not merely asymptotically.
Regarding the limitations of autoencoders as reflected in our lower bounds for global reconstruction, the
authors of Batson et al. (2021), in the context of anomaly detection in high-energy physics, argue that
autoencoders might miss anomalies due to the topological shape of the phase space. Our necessity result
Theorem 2 serves to quantify these obstructions.
Theorem 1 provides an existence result. As is often the case with results regarding the expressive power
of neural networks, effective learning during training involves overcoming numerous challenges. This
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is because the landscape of the loss function (whether L2 or any other criterion) is typically highly
non-convex and irregular, presenting spurious local minima, plateaus, and potentially steep ravines,
leading gradient-based optimization methods to converge to local minima or navigate through saddle
points inefficiently, thus failing to find a low-error autoencoder. Moreover, the choice of optimizer and
network architecture and hyperparameters will affect the success of numerical methods. Finally, for
sparse training samples from K there is little hope of effective generalization to the full manifold K in
the absence of proper regularization of the loss function.
There are many possible directions in which we will be expanding our study. One of them is the extension
to time series data. Specifically, one may assume that a vector field, or an iteration in discrete-time,
exists on the data manifold K. The objective then becomes that of defining a dynamics in the bottleneck
layer that intertwines with the original dynamics in K, thus providing a reduced-order representation
of the original dynamics. Further along this direction, one may consider control systems (thought of as
families of vector fields), and the reduction to lower-dimensional control problems in the same fashion.
A related direction of study concerns representation of dynamics through the “Koopman” approach, in
which the middle-layer dynamics are linearized. Theoretical results characterizing the limitations as well
as possibilities of Koopman embeddings are given in Liu et al. (2023); Kvalheim & Arathoon (2023). In
this context, the middle dimension is often larger than the input dimension, rather than smaller, but on
the other hand linearity imposes a different type of simplification. Autoencoder realizations of Koopman
embeddings have been suggested in the literature, see for instance Otto & Rowley (2019); Azencot
et al. (2020). We will extend the theory to establish when Koopman autoencoders exist, and their
limitations. In parallel or in combination with these dynamics ideas, if our manifold K comes endowed
with a particular probability measure, we may ask to represent this measure through the bottleneck, as
a distribution on latent variables, which is a topic closely related to variational autoencoders.
Yet another direction of research is that of understanding to what extent latent representations can
mirror, or not, global topological, metric, and combinatorial features of data manifolds, adapting and
extending the recent work Wang et al. (2023) that dealt with the unavoidable distortions that arise from
low dimensional representations, especially in the context of systems biology single cell data.
Finally, another direction of study concerns the generalization of our representation result Theorem 1
from unions K of submanifolds with boundary to unions of more general stratified sets (Trotman, 2020,
Def. 1.11). A manifold with boundary is an example of a stratified set with two strata, namely, the
codimension-0 interior and codimension-1 boundary. Most of the conclusions of Theorem 1 are “strat-
ified” in the sense that the conclusion ∂µ(K0 ∩ ∂K) < δ for the codimension-1 stratum is the analog
of the conclusion µ(K0) < δ for the codimension-0 stratum, and the conclusion (1) directly implies
the analogous conclusion with K replaced by ∂K. However, Theorem 1 contains no statement on con-
nectedness of (∂M) \ K0 analogous to the conclusion of Theorem 1 that M \ K0 is connected for each
component M of K. It seems interesting to know whether this analogous statement generally holds, and
moreover whether Theorem 1 generalizes to a useful class of stratified sets in a “fully stratified” way. For
example, a suitable generalization of Theorem 1 to Whitney stratified sets (Trotman, 2020, Def. 1.2.3)
would imply a representation theorem for autoencoding of algebraic varieties and more generally sub-
analytic sets, since these admit Whitney stratifications (Trotman, 2020, p. 5). Algebraic varieties arise
naturally as the sets of steady states of mass-action biological systems and finding parametrizations of
steady states is a key problem in fitting models to data. In the special case of varieties defined by toric
ideals, global parametrizations are possible Chaves et al. (2004), but in more general cases, particularly
when analyzing single-cell data, equilibrium sets are only known numerically Wang et al. (2019), and
autoencoders might provide a useful approach to the estimation of dimension.
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A Appendix: Code used for implementation

howmany_points = 500
epochs = 5000
batch_size = 20
import matplotlib.pyplot as plt
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import scipy as sp
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model

# Define the parametric equations for the circles
def circle_xy(t, h, k, r):

x = h + r * np.cos(t)
y = k + r * np.sin(t)
z = 0 * np.ones_like(t)
return x, y, z

def circle_yz(t, h, k, r):
x = h + r * np.sin(t)
y = 0 * np.ones_like(t)
z = k + r * np.cos(t)
return x, y, z

t = np.linspace(0, 2 * np.pi, howmany_points)

x1, y1, z1 = circle_xy(t, 0, 0, 1)
x2, y2, z2 = circle_yz(t, 1, 0, 1)

input_data = np.vstack((np.column_stack((x1, y1, z1)),\
np.column_stack((x2, y2, z2))))
# Build the autoencoder architecture with a bottleneck layer of dimension 1
input_data_test = np.vstack((np.column_stack((x1test, y1test, z1test)),\
np.column_stack((x2test, y2test, z2test))))

input_dim = 3

# Encoder model
input_layer = Input(shape=(input_dim,))
encoded = Dense(128, activation=’relu’)(input_layer)
encoded = Dense(128, activation=’relu’)(encoded)
encoded = Dense(128, activation=’relu’)(encoded)
encoded = Dense(1, activation=’linear’)(encoded) # Bottleneck layer with dimension 1
encoder = Model(inputs=input_layer, outputs=encoded)

# Decoder model
decoded_input = Input(shape=(1,))
decoded = Dense(128, activation=’relu’)(decoded_input)
decoded = Dense(128, activation=’relu’)(decoded)
decoded = Dense(128, activation=’relu’)(decoded)
decoded = Dense(input_dim, activation=’linear’)(decoded)
decoder = Model(inputs=decoded_input, outputs=decoded)

# Autoencoder model
autoencoder = Model(inputs=input_layer, outputs=decoder(encoder(input_layer)))
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autoencoder.compile(optimizer=’adam’, loss=’mean_squared_error’)

autoencoder.fit(input_data, input_data, epochs=epochs, \
batch_size=batch_size, shuffle=True)

# Test the autoencoder on the training data
encoded_vectors = encoder.predict(input_data)
decoded_vectors = decoder.predict(encoded_vectors)

decoded_vectors_1 = decoded_vectors[0:howmany_points,:]
decoded_vectors_2 = decoded_vectors[-howmany_points:,:]
encoded_vectors_1 = encoded_vectors[0:howmany_points,:]
encoded_vectors_2 = encoded_vectors[-howmany_points:,:]

# Create the 3D plot of data vectors in plotly
fig1 = go.Figure()
# Add circles to the plot
fig1.add_trace(go.Scatter3d(x=x1, y=y1, z=z1, mode=’lines’,\
name=’unit circle centered at x=0, y=0 in the plane z=0’, line=dict(width=8)))
fig1.add_trace(go.Scatter3d(x=x2, y=y2, z=z2, mode=’lines’,\
name=’unit circle centered at x=1, z=0 in the plane y=0’, line=dict(width=8)))
# Setting the axis labels
zoom = 2.5
fig1.update_layout(scene_camera=dict(eye=dict(x=zoom, y=zoom, z=zoom)))\
# zoom out so plot fits
fig1.show()
fig1.write_image(pathdrive+"original.png") #this works with plotly
fig1.write_image(pathdrive+"original.svg")

fig2 = go.Figure()
fig2.add_trace(go.Scatter3d(x=decoded_vectors_1[:, 0], y=decoded_vectors_1[:, 1], z=decoded_vectors_1[:,2],\
mode=’markers’, marker=dict(size=3), name=’decoded unit circle centered at x=0, y=0 in the plane z=0’))
fig2.add_trace(go.Scatter3d(x=decoded_vectors_2[:, 0], y=decoded_vectors_2[:, 1], z=decoded_vectors_2[:,2],\
mode=’markers’, marker=dict(size=3), name=’decoded unit circle centered at x=0, y=0 in the plane z=0’))
zoom = 2
fig2.update_layout(scene_camera=dict(eye=dict(x=zoom, y=zoom, z=zoom))) # zoom out so plot fits
fig2.show()
fig2.write_image(pathdrive+"decoded1.png") #this works with plotly
fig2.write_image(pathdrive+"decoded1.svg")

# Create again the 3D plot of data vectors in plotly but use a different view in 3 and 4 below:
fig3 = go.Figure()
# Add circles to the plot
fig3.add_trace(go.Scatter3d(x=x1, y=y1, z=z1, mode=’lines’,\
name=’unit circle centered at x=0, y=0 in the plane z=0’,\
line=dict(width=8)))
fig3.add_trace(go.Scatter3d(x=x2, y=y2, z=z2, mode=’lines’,\
name=’unit circle centered at x=1, z=0 in the plane y=0’, line=dict(width=8)))
# Setting the axis labels
fig3.update_layout(scene=dict(xaxis_title=’X’, yaxis_title=’Y’,\
zaxis_title=’Z’))
# to convert spherical elev=30, azim=65 to cartesian, one uses
# x = r * math.cos(elev_rad) * math.cos(azim_rad)
# y = r * math.cos(elev_rad) * math.sin(azim_rad)
# z = r * math.sin(elev_rad)
# so I get with r=1: x=0.366, y=0.785, z=0.5
zoom = 3
fig3.update_layout(scene_camera=dict(eye=dict(x=zoom*0.366, y=zoom*0.785,
z=zoom*0.5)))
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# different view angle zoom out so plot fits
fig3.show()
fig3.write_image(pathdrive+"original2.png") #this works with plotly
fig3.write_image(pathdrive+"original2.svg")

fig4 = go.Figure()
fig4.add_trace(go.Scatter3d(x=decoded_vectors_1[:, 0], y=decoded_vectors_1[:,
1],\
z=decoded_vectors_1[:,2], mode=’markers’, marker=dict(size=3),\
name=’decoded unit circle centered at x=0, y=0 in the plane z=0’))
fig4.add_trace(go.Scatter3d(x=decoded_vectors_2[:, 0], y=decoded_vectors_2[:,
1],\
z=decoded_vectors_2[:,2], mode=’markers’, marker=dict(size=3),\
name=’decoded unit circle centered at x=0, y=0 in the plane z=0’))
fig4.update_layout(scene=dict(xaxis_title=’X’, yaxis_title=’Y’, zaxis_title=’Z’))
zoom = 3
fig4.update_layout(scene_camera=dict(eye=dict(x=zoom*0.366, y=zoom*0.785,\
z=zoom*0.5))) # zoom out so plot fits
fig4.show()
fig4.write_image(pathdrive+"decoded2.png") #this works with plotly
fig4.write_image(pathdrive+"decoded2.svg")

# Plot the bottleneck points
plt.scatter(encoded_vectors_1, np.zeros_like(encoded_vectors_1),\
marker=’o’, label=’Bottleneck Points’, color=’b’)
plt.scatter(encoded_vectors_2, np.zeros_like(encoded_vectors_1),\
marker=’x’, label=’Bottleneck Points’, color=’r’)
plt.xlabel(’Encoded Dimension’)
plt.title(’Bottleneck Points’)
plt.legend()
plt.grid()
plt.savefig(pathdrive+"bottleneck.png") # this works with matplotlib but before show
plt.tight_layout()
plt.show()

# compute matrix norm along second "axis", i.e. along "y axis", i.e. each row
delta_1 = np.linalg.norm(input_data[0:howmany_points,:] - decoded_vectors_1, axis = 1)
delta_2 = np.linalg.norm(input_data[-howmany_points:,:] - decoded_vectors_2, axis = 1)

plt.plot(delta_1)
plt.title(’Component 1 error’)
plt.savefig(pathdrive+"error1.png")
# this works with matplotlib but before show
plt.show()

plt.plot(delta_2)
plt.title(’Component 2 error’)
plt.savefig(pathdrive+"error2.png")
plt.show()

# plot the encoded as a function of the angle parameter
plt.scatter(t, encoded_vectors_1, marker=’o’, label=’Bottleneck Points’, color=’b’)
plt.xlabel(’Angle’)
plt.ylabel(’Encoded Dimension (first component)’)
plt.title(’Bottleneck Points’)
plt.legend()
plt.grid()
plt.savefig(pathdrive+"encoding1.png")
plt.show()
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plt.scatter(t, encoded_vectors_2, marker=’x’, label=’Bottleneck Points’, color=’r’)
plt.xlabel(’Angle’)
plt.ylabel(’Encoded Dimension (second component)’)
plt.title(’Bottleneck Points’)
plt.legend()
plt.grid()
plt.savefig(pathdrive+"encoding2.png")
plt.show()
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B Appendix: Review of some basic concepts and results in topology

In this appendix we review basic concepts and results in topology that are used in this paper. We discuss
general topology in §B.1, finite Borel measures in §B.2, and differential topology in §B.3.

B.1 General topology

A topology on a set X is a collection of subsets of X, called open, satisfying the following three
properties (Lee, 2013, p. 596):

• X and ∅ are open.

• The union of any family of open sets is open.

• The intersection of any finite family of open sets is open.

A set X equipped with a topology is called a topological space.
A subset C ⊆ X is closed if its complement X \ C is open (Lee, 2013, p. 596). The closure cl(S) of
a subset S ⊆ X of a topological space X is the intersection of all closed sets containing S (Lee, 2013,
p. 597). Thus, S ⊆ X is closed if and only if cl(S) = S. A subset S ⊆ X is dense if cl(S) = X.
A topological space X is connected if it is not the union of any two disjoint nonempty open sets (Lee,
2013, p. 607). A topological space X is compact if, for any collection of open sets whose union is X,
there is a finite subcollection whose union is X (Lee, 2013, p. 608).
Given a subset S ⊆ X of a topological space, the subspace topology is the topology on S that declares
a subset U ⊆ S to be open in S if and only if there is a subset V ⊆ X open in X such that U = V ∩ S
(Lee, 2013, p. 601). A subset S ⊆ X is connected if it is connected in the subspace topology, and
compact if it is compact in the subspace topology (Lee, 2013, pp. 607–608).
A topological space X is Hausdorff if any pair of distinct points in X are contained in some pair of
disjoint open sets, and is second-countable if there is a countable collection of open sets such that every
open set in X is a union of some open sets from the countable collection (Lee, 2013, p. 600). Every subset
of a Hausdorff space is Hausdorff in the subspace topology, and every subset of a second-countable space
is second-countable in the subspace topology (Lee, 2013, Prop. A.17). Only second-countable Hausdorff
topological spaces appear in this paper.
Example 1 ((Lee, 2013, Ex. A.6)). The standard topology on Euclidean space Rn is defined as follows.
A subset U ⊆ Rn is declared to be open if for each point x ∈ U there is some r > 0 such that the ball
Nr(x) := {y ∈ Rn : ∥x − y∥ < r} is a subset of U . These open sets can be checked to satisfy the three
properties above, so they define a topology on Rn. This topology is Hausdorff since any pair of points
are contained in disjoint balls with positive radii, and is second-countable, as follows from the fact that
every real number may be approximated by rational numbers. The Heine-Borel theorem asserts that
a subset of Rn is compact if and only if it is closed and has bounded diameter (Lee, 2013, p. 608).

A map F : X → Y between topological spaces is continuous if the preimage

F−1(U) := {x ∈ X : F (x) ∈ U}

of any open subset of Y is open in X (Lee, 2013, p. 597). A bijective continuous map F : X → Y is
a homeomorphism if the inverse map F−1 : Y → X is continuous (Lee, 2013, p. 597). An injective
continuous map F : X → Y is a topological embedding if the codomain-restricted map F : X → F (X)
is a homeomorphism when the image

F (X) := {F (x) : x ∈ X} ⊆ Y

of F is given the subspace topology inherited from Y (Lee, 2013, p. 601).
The product topology on the Cartesian product X × Y of topological spaces X and Y is defined by
declaring a subset S ⊆ X × Y to be open if, for each (x, y) ∈ S, there are open sets U ⊆ X and V ⊆ Y
respectively containing x and y such that U × V ⊆ S.
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B.2 Finite Borel measures

A subset S ⊆ X of a topological space X is a Borel set if it can be formed from open subsets via
the operations of countable unions, countable intersections, and taking complements within X (Folland,
1999, p. 22). A finite Borel measure µ on X is a map from the Borel sets to the nonnegative real
numbers such that µ(∅) = 0 and µ(

⋃∞
j=1 Sj) =

∑∞
j=1 µ(Sj) for any countable family of pairwise disjoint

Borel sets S1, S2, . . . ⊆ X (Folland, 1999, pp. 24–25). A finite Borel measure µ on X is a probability
measure if µ(X) = 1.
A map F : X → Y between topological spaces is Borel measurable if F−1(S) is a Borel set in X for
any Borel set S in Y . For any Borel measurable function f : X → [0,∞) and finite Borel measure µ on
X, there is a well-defined integral

∫
X
f(x) dµ(x) ∈ [0,∞] (Folland, 1999, p. 50).

A finite Borel measure ν on X is absolutely continuous with respect to a finite Borel measure µ on
X if ν(S) = 0 whenever µ(S) = 0 (Folland, 1999, p. 88). In this case, the Radon-Nikodym theorem
asserts the existence of a Borel measurable function f : X → [0,∞) such that

ν(S) =
∫

S

f(x) dµ(x) :=
∫

X

1S(x)f(x) dµ(x)

for each Borel set S, where 1S(x) = 1 if x ∈ S and 1S(x) = 0 otherwise (Folland, 1999, p. 91).
A finite Borel measure µ on X is outer regular if

µ(S) = inf{µ(U) : U ⊇ S,U is open}

for all Borel sets S ⊆ X (Folland, 1999, p. 212).

B.3 Differential topology

A topological space M is an n-dimensional (topological) manifold with boundary if it is second-
countable, Hausdorff, and for each point x ∈ M there is an open set U ⊆ M containing x that is
homeomorphic to an open subset (with the subspace topology) of the closed n-dimensional upper
half-space (Lee, 2013, p. 25)

Hn := {(x1, . . . , xn) ∈ Rn : xn ≥ 0}.

A choice of homeomorphism φ : U → φ(U) ⊆ Hn is called a chart (U,φ) for M . We say that the
chart (U,φ) contains the point x ∈ M if x ∈ U . A point x ∈ M is called an interior point if the
n-th coordinate of φ(x) ∈ Hn is positive for some chart (U,φ) containing x, and a boundary point
otherwise. The collection of boundary points is called the (manifold) boundary of M , denoted by
∂M , and the complement int(M) := M \ ∂M is called the (manifold) interior of M . We say that M
is an n-dimensional (topological) manifold if ∂M = ∅. (Equivalently, one can define n-dimensional
manifolds by replacing Hn by Rn in the definition of n-dimensional manifolds with boundary (Lee, 2013,
pp. 2–3).)
A map between open subsets of Euclidean spaces is smooth if it has continuous partial derivatives of
all orders. Given an arbitrary subset A ⊆ Rn, a map F : A → Rm is smooth if for each x ∈ A there
is an open set U ⊆ Rn and a smooth map F̃ : U → Rm whose restriction F̃ |U∩A coincides with F |U∩A

(Lee, 2013, p. 645). Given a subset B ⊆ Rm, we say that F : A → B is smooth if F is smooth when
viewed as a map into Rm.
Let M be an n-dimensional manifold with boundary. Two charts (U,φ), (V, ψ) are called smoothly
compatible if either U ∩ V = ∅ or the transition map ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) ⊆ Rn is
smooth (in the sense of the previous paragraph). A smooth atlas for M is a collection of smoothly
compatible charts such that the union of chart domains is M . A smooth atlas for M is maximal if it
is not properly contained in any larger smooth atlas. A smooth structure on M is a maximal smooth
atlas (Lee, 2013, p. 28).
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An n-dimensional smooth manifold with boundary is an n-dimensional manifold with boundary M
equipped with a choice of smooth structure (Lee, 2013, p. 28). Such an M is an n-dimensional smooth
manifold if ∂M = ∅. (Equivalently, one can define n-dimensional smooth manifolds by replacing Hn

by Rn in the definition of n-dimensional smooth manifolds with boundary (Lee, 2013, pp. 4, 12–13).)
Example 2. Euclidean space Rn is an n-dimensional manifold. Every x ∈ Rn is contained in the
domain of the chart (Rn, idRn) defined by the identity map. The union of this chart with all charts
smoothly compatible with it defines the standard smooth structure on Rn making it a smooth manifold
(Lee, 2013, Ex 1.22). Similarly, Hn is an n-dimensional manifold with boundary, and a smooth manifold
with boundary when equipped with the standard smooth structure consisting of of all charts smoothly
compatible with (Hn, idHn).

Let M , N be smooth manifolds with boundary and A be an arbitrary subset of M . A map F : A → N
is smooth if for each x ∈ A there is a chart (U,φ) containing x and a chart (V, ψ) containing F (x) such
that F (U) ⊆ V and ψ ◦F ◦φ−1 : φ(U ∩A) → ψ(V ) is a smooth map between subsets of Euclidean spaces
in the sense defined above (Lee, 2013, p. 45), (Lee, 2024, p. 1). When N = Rn, such an F always admits
a smooth extension F̃ : M → Rn, meaning that F̃ is smooth and F̃ |A = F (Lee, 2013, Lem. 2.26).

A smooth map F : M → N is a smooth embedding if it is a topological embedding and the inverse
F−1 : F (M) → N is smooth. (This is equivalent to the usual definition (Lee, 2013, p. 85) by the chain
rule (Lee, 2013, Prop. 3.6(b))). A diffeomorphism is a bijective smooth embedding (Lee, 2013, p. 38).

Let x be a point in an n-dimensional smooth manifold with boundary M , and consider smooth curves
γ : Jγ → M that are defined on some interval Jγ ⊆ R containing 0 and satisfy γ(0) = x. A tangent
vector at x ∈ M is an equivalence class of such curves, where curves γ1, γ2 are called equivalent if
d
dtφ(γ1(t))|t=0 = d

dtφ(γ2(t))|t=0 for some smooth chart (U,φ) containing x (Lee, 2013, pp. 70, 72). The
tangent space TxM at x ∈ M is an n-dimensional vector space that consists of all tangent vectors at
x. The tangent bundle of M is the disjoint union TM :=

⊔
x∈M TxM of all tangent spaces, and it

has a canonical topology and smooth structure making it into a 2n-dimensional smooth manifold with
boundary (Lee, 2013, pp. 66–67).

A smooth vector field Y on a smooth manifold with boundary M is a smooth map Y : M → TM
satisfying Y (x) ∈ TxM for each x ∈ M (Lee, 2013, p. 175). A point p ∈ M such that Y (p) = 0 is called
an equilibrium (or zero) of Y . A smooth vector field is inward-pointing if for each x ∈ ∂M there is
a curve in the equivalence class defining Y (x) that is defined on an interval of the form [0, ε) (Lee, 2013,
p. 118).

When M is compact, an inward-pointing smooth vector field Y on M canonically determines a smooth
map Φ: [0,∞) × M → M such that the time-t maps Φt := Φ(t, ·) are (dimension-preserving) smooth
embeddings satisfying Φ0 = idM and Φt+s = Φt ◦Φs for all t, s ≥ 0. This semiflow Φ is the unique such
map with the property that each trajectory t 7→ Φt+s(x) belongs to the equivalence class Y (Φs(x)).
(One constructs Φ by repeating, mutatis mutandis, the proof of (Lee, 2013, Thm 9.16) for the case
∂M = ∅; cf. (Lee, 2013, Thm 9.34)).

When p ∈ M is an equilibrium of an inward-pointing smooth vetor field Y with solution map Φ, Φt(p) = p
for all t ≥ 0. The equilibrium p is called hyperbolic if none of the eigenvalues of the Jacobian matrix
D(φ ◦ Φ1 ◦ φ−1)(φ(p)) have complex modulus equal to 1, where (U,φ) is a chart containing p. The
equilibrium p is called asymptotically stable if for every open set V ⊆ M containing p there is an
open set U ⊆ V containing p such that, for each q ∈ U , the the trajectory t 7→ Φt(q) takes values in V
and converges to p as t → ∞ (Pajitnov, 2006, p. 74). The basin of attraction of an asymptotically
stable equilibrium p ∈ M is a connected open set consisting of all q ∈ M such that the trajectory
t 7→ Φt(q) converges to p.

A Riemannian metric g on a smooth manifold with boundary M is an inner product (Yx, Zx) 7→
g(Yx, Zx) on each tangent space TxM such that x 7→ g(Y (x), Z(x)) is a smooth map for any smooth
vector fields Y , Z are smooth vector fields on M (Lee, 2013, Prop. 12.19, pp. 327–328). In particular, a
Riemannian metric determines a smooth gradient vector field ∇φ for each smooth function φ : M → R
(Lee, 2013, p. 342). If φ : M → [0, 1] is smooth and ∂M = φ−1(1), then ∇φ is inward-pointing.
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A Riemannian metric on a compact smooth manifold with boundary M also determines an entity called
the Riemannian density (Lee, 2013, Prop. 16.45) that can be integrated over Borel measurable subsets
of M (cf. (Lee, 2013, p. 431)) to define a finite Borel measure µ on M that is outer regular (§B.2),
(Folland, 1999, Thm 7.8). A Borel set A ⊆ M is called measure zero if µ(A) = 0. By construction,
changing the Riemannian metric changes µ to a finite Borel measure ν such that µ, ν are absolutely
continuous with respect to each other, so the property of being measure zero is well-defined independent
of the choice of Riemannian metric. Alternatively, one can define “measure zero” without referring to
any Riemannian metric (Lee, 2013, p. 128). If F : M → N is a smooth map between n-dimensional
smooth manifolds with boundary and A ⊆ M is measure zero, then F (A) ⊆ N is also measure zero (Lee,
2013, Thm 5.9).
“Measure zero” provides one notion of what it means for a subset of a smooth manifold with boundary
M to be “small”. An alternative topological “smallness” notion for subsets is “meager” . A subset
S ⊆ M is nowhere dense if M \ cl(S) is dense, and is meager if it is a countable union of nowhere
dense sets (Folland, 1999, p. 161). The Baire category theorem asserts that the complement M \ S
of any meager set S is dense (Lee, 2013, Thm A.58), (Folland, 1999, Thm 5.9).
A diffeotopy (or ambient isotopy) of a smooth manifold with boundary M is a smooth map J : [0, 1]×
M → M such that each time-t map Jt := J(t, ·) is a diffeomorphism and J0 = idM (Hirsch, 1994, p. 178).
The support of a diffeotopy J of M is the closure in M of the set

{x ∈ M : Jt(x) ̸= x for some t ∈ [0, 1]}.

Given a diffeotopy ∂J of ∂M and a diffeotopy J̃ of int(M) with compact support S ⊆ int(M), the
isotopy extension theorems assert the existence of a diffeotopy J of M such that Jt|∂M = ∂Jt and
Jt|S = J̃t|S for each t ∈ [0, 1] (Hirsch, 1994, Thm 8.1.3, 8.1.4).
Let M be a k-dimensional smooth manifold with boundary that is a subset of an n-dimensional smooth
manifold N , such that the topology on M is the subspace topology inherited from N . If the inclusion
map M ↪→ N is a smooth embedding, then M is called a smoothly embedded submanifold of N
(Lee, 2013, pp. 98–99). In this case, M has the property that each x ∈ M is contained in a chart (U,φ)
for N such that φ(U ∩M) is an open subset of the intersection of a k-dimensional affine subspace with
Hn (Lee, 2013, Thm 5.8). Conversely, if M ⊆ N is any subset of N with this property, then with the
subspace topology, M has a unique smooth structure making it into a k-dimensional smoothly embedded
submanifold of Rk (Lee, 2013, Thm 5.8, Thm 5.31).
If M is a smoothly embedded submanifold with boundary of a smooth manifold N , then any Riemannian
metric on N canonically induces a Riemannian metric on N (Lee, 2013, p. 333). Thus, if N = Rn, a
smoothly embedded submanifold M ⊆ N canonically inherits a Riemannian metric from the Euclidean
inner product, since the latter is a Riemannian metric on Rn called the Euclidean metric (Lee, 2013,
Ex. 13.1). In this case, we refer to the finite Borel measure µ on M determined from the induced metric
as the intrinsic measure. If such an M is k-dimensional, then µ(S) is simply the k-dimensional volume
of S. In particular, µ(S) is the length of S when k = 1, the surface area of S when k = 2, the volume
of S when k = 3, and so on.
Given Euclidean spaces Rℓ and Rm, the compact-open topology on the space C(Rm,Rℓ) of continuous
maps Rℓ → Rm is defined as follows. A subset S ⊆ C(Rm,Rℓ) is open if, for each f ∈ S, there is a
compact set K ⊆ Rℓ and ε > 0 such that any g ∈ C(Rm,Rℓ) satisfying supx∈K ∥f(x)−g(x)∥ < ε belongs
to S (Hirsch, 1994, p. 58). The composition map

C(Rn,Rm) × C(Rm,Rℓ) → C(Rn,Rℓ), (g, f) 7→ g ◦ f

is continuous with respect to the compact-open topologies (and the product topology on the domain).

B.4 Algebraic topology

The standard n-simplex ∆n ⊆ Rn+1 is the convex hull of the standard basis vectors for Rn+1, equipped
with the subspace topology (Hatcher, 2002, p. 103).
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Let X be a topological space. A singular n-simplex in X is a continuous map σ : ∆n → X (Hatcher,
2002, p. 108). A singular n-chain with coefficients in the abelian group Z2 := Z/2Z is a finite formal
linear combination

∑
i niσi, where each ni ∈ Z2 and each σi is a singular n-simplex in X (Hatcher,

2002, pp. 153, 108). The set of all singular n-chains in X is an abelian group Cn(X;Z2) (Hatcher, 2002,
p. 153). There are well-defined group homomorphisms ∂n : Cn(X;Z2) → Cn−1(X;Z2), called boundary
operators, that satisfy ∂n ◦∂n+1 = 0 (Hatcher, 2002, pp. 153, 108). Thus, the image Bn(X;Z2) of ∂n+1
is contained in the kernel Zn(X;Z2) of ∂n, so the n-th singular homology group with coefficients
in Z2 is well-defined as the quotient group (Hatcher, 2002, pp. 153, 108)

Hn(X;Z2) := Zn(X;Z2)/Bn(X;Z2).

From a certain point of view, Hn(X;Z2) counts the number of “n-dimensional holes” in X (cf. (Hatcher,
2002, p. 100, Thm 2.27, p. 153)).
Let X be a k-dimensional manifold (i.e., without boundary). It is a fact that Hn(X;Z2) = 0 for all
n ≥ k when X is noncompact, and that Hn(X;Z2) = 0 for all n > k when X is compact (Hatcher, 2002,
p. 236, Prop. 3.29). Unlike the noncompact case, Hk(X;Z2) = Z2 ̸= 0 when X is compact (Hatcher,
2002, p. 236).
Any continuous map f : X → Y between topological spaces induces a well-defined homomorphism
f∗ : Hn(X) → Hn(Y ) for each integer n by sending the equivalence class of an n-chain

∑
i niσi to the

equivalence class of the n-chain
∑

i nif ◦ σi (Hatcher, 2002, p. 111).
A homotopy is a continuous map H : [0, 1] × X → Y , and is a homotopy from f : X → Y to
g : X → Y if f = H(0, ·) and g = H(1, ·) (Hatcher, 2002, p. 3). Two maps f, g : X → Y are homotopic
if there is a homotopy from f to g (Hatcher, 2002, p. 3).
A fundamental result called homotopy invariance asserts that homotopic maps f, g : X → Y induce
the same homomorphisms on homology, i.e., f∗ : Hn(X) → Hn(Y ) coincides with g∗ : Hn(X) → Hn(Y )
for each integer n (Hatcher, 2002, Thm 2.10, p. 153).
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