
Automated Dynamic Mechanism Design

Hanrui Zhang
Duke University

hrzhang@cs.duke.edu

Vincent Conitzer
Duke University

conitzer@cs.duke.edu

Abstract

We study Bayesian automated mechanism design in unstructured dynamic environ-
ments, where a principal repeatedly interacts with an agent, and takes actions based
on the strategic agent’s report of the current state of the world. Both the principal
and the agent can have arbitrary and potentially different valuations for the actions
taken, possibly also depending on the actual state of the world. Moreover, at any
time, the state of the world may evolve arbitrarily depending on the action taken by
the principal. The goal is to compute an optimal mechanism which maximizes the
principal’s utility in the face of the self-interested strategic agent.
We give an efficient algorithm for computing optimal mechanisms, with or without
payments, under different individual-rationality constraints, when the time horizon
is constant. Our algorithm is based on a sophisticated linear program formulation,
which can be customized in various ways to accommodate richer constraints.
For environments with large time horizons, we show that the principal’s optimal
utility is hard to approximate within a certain constant factor, complementing our
algorithmic result. These results paint a relatively complete picture for automated
dynamic mechanism design in unstructured environments. We further consider a
special case of the problem where the agent is myopic, and give a refined efficient
algorithm whose time complexity scales linearly in the time horizon.
In the full version of the paper, we show that memoryless mechanisms, which are
without loss of generality optimal in Markov decision processes without strategic
behavior, do not provide a good solution for our problem, in terms of both opti-
mality and computational tractability. Moreover, we present experimental results
where our algorithms are applied to synthetic dynamic environments with different
characteristics, which not only serve as a proof of concept for our algorithms, but
also exhibit intriguing phenomena in dynamic mechanism design.

1 Introduction

Consider the following scenario. A company assembles an internal research group to develop key
technologies to be used in the company’s next-generation product in 5 years. The more progress
the group makes, the more successful the product is likely to be. Since research progress is hard to
monitor, the company manages the group based on its annual reports. At the beginning of each year,
the group submits a report, summarizing its progress in the preceding year, as well as its needs for
the current year. Taking into consideration this report (and possibly also reports from previous years),
the company then decides the compensation level and the headcount of the group in the current year.
Moreover, after the product launches, the company may also pay a bonus to members of the group,
depending on how successful the product is.

For simplicity, suppose an annual report consists of two items: research progress (satisfac-
tory/unsatisfactory), and need to expand (no request/request for an intern/request for a full-time
employee). The company’s goal is to encourage and facilitate research progress while keeping the
expenses reasonable. So, a natural managing strategy is to increase (resp. decrease) the compensation

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

level when the reported research progress is satisfactory (resp. unsatisfactory), and to allow the group
to expand only when necessary, i.e., when the reported research progress is unsatisfactory. However,
the research group may have a different goal than the company’s. Suppose members of the group do
not care about the success of the product per se. Instead, their primary goal is to maximize the total
compensation received from the company, and for this reason, they may be incentivized to misreport
the situation. In other words, the company faces a dynamic mechanism design problem, where the
principal (i.e., the company) needs to implement (and commit to) a mechanism (i.e., a managing
strategy) that achieves its goal through repeated interactions, in the presence of strategic behavior of
the agent (i.e., the research group).

Indeed this problem is nontrivial. For example, if the company implements the above strategy, then
the group will report satisfactory progress regardless of the actual situation, which maximizes the
group’s total compensation over the 5 years, but also causes greater expenses for the company and
jeopardizes the success of the product. To counter this, the company may additionally promise a
significant bonus contingent on the success of the product. This creates incentives for the group to
make more progress, and discourages overreporting the progress, because the group is not allowed to
expand when the reported progress is satisfactory. That is, if actual progress is unsatisfactory, this
introduces an incentive to report this truthfully so that the group may expand. However, this also runs
the risk of encouraging the group to report unsatisfactory progress in order to expand even if actual
progress is satisfactory, because more members always make more progress, which leads to a higher
(chance of) bonus, whereas the cost of expanding is paid by the company and therefore irrelevant to
the group.

One may try to fix this by introducing more rules, possibly replacing existing ones. For example, the
company may allow the group to recruit an intern, but not a full-time employee, when the reported
progress is unsatisfactory. Then, in the next year, if the reported progress improves, the company
allows the group to make a return offer to the intern as a full-time employee. Or alternatively, the
company may unconditionally allow the group to recruit interns (which are less costly), but never
full-time employees. In addition to the above, the company could also temporarily decrease the
compensation level when a new member joins, and later adjust the compensation based on how the
reported progress improves. While all these ad hoc rules make intuitive sense, it is not immediately
clear which (combinations of) rules are better, how to optimize parameters of these rules (e.g., the
number of new members allowed per year and the amount by which the compensation is adjusted), or
whether there is a better set of rules that look totally different.

As demonstrated by the foregoing discussion, in general, the problem of finding an optimal mechanism
in unstructured dynamic environments, such as the above example, turns out to be extremely rich and
challenging. In such environments, the actions of the principal may go beyond the allocation of items
to the agent, and affect the state of the world in arbitrary ways. Moreover, both the principal and the
agent may have arbitrary valuations for these actions, which also depend on the current state of the
world. In economic theory, the characterize-and-solve approach [25, 13, 30] to mechanism design
has achieved spectacular success in both static and dynamic environments, by exploiting structure of
the environment to construct a characterization of optimal mechanisms, often leading to closed-form
or computationally tractable solutions. However, since the environments under consideration here are
loosely structured at best, the classical characterize-and-solve approach does not seem particularly
suited. When disregarding the agent’s incentives, one could treat the problem of finding an optimal
strategy as a planning problem, which is known to be solvable efficiently [6, 21, 31]. However, as
discussed above, the agent’s strategic behavior can ruin the performance of such a strategy. From
a computational perspective, while numerous methods for automated mechanism design, which
efficiently compute optimal mechanisms without heavily exploiting structures of the environment,
have been proposed [10, 11, 12], all existing methods work only for static environments with one-time
interactions, and it is not immediately clear how to generalize these methods to dynamic environments.
All this brings us to the following question:

Can we efficiently compute optimal mechanisms in unstructured dynamic environments?

2

1.1 Our Results

In this paper, we study the problem of computing optimal mechanisms in single-agent, discrete-time
dynamic environments with a finite time horizon, without any further structural assumptions. Our
main results (presented in Section 3) can be summarized as follows:

• Efficient algorithm: when the time horizon is fixed, there is a polynomial-time algorithm for
computing optimal mechanisms, with or without payments, that maximize the principal’s utility
facing a strategic agent.

• Inapproximability: when the time horizon can be large, it is NP-hard to approximate the
principal’s optimal utility within a factor of (7/8 + ε) for any ε > 0.

To the best of our knowledge, our algorithm for constant time horizons is the first that efficiently
computes optimal mechanisms in unstructured dynamic environments. The fact that our algorithm
cannot scale beyond constant time horizons is by no means surprising: optimal dynamic mechanisms
generally depend on the entire history, and as a result, the straightforward description of such a
mechanism is exponentially large in the time horizon. Our inapproximability result further rules
out the possibility of computing succinct representations of approximately optimal mechanisms that
can be efficiently evaluated. These results together paint a complete picture of the computational
complexity of dynamic mechanism design in unstructured environments.

1.2 Further Related Work

Dynamic mechanism design. The problem we study can be situated in the broad area of dynamic
mechanism design, and below we discuss some representative related work. For a more comprehensive
exposition, see, e.g., the survey by Pavan [29] and the one by Bergemann and Välimäki [8]. In the
context of efficient (i.e., welfare-maximizing) mechanisms, Bergemann and Välimäki [7] propose the
dynamic pivot mechanism, which generalizes the VCG mechanism in static environments, and Athey
and Segal [2] propose the team mechanism, which focuses on budget-balancedness. As for optimal
(i.e., revenue-maximizing) mechanisms, which are more closely related to our results, following
earlier work [5, 13, 17], Pavan et al. [30] generalize the classical characterization by Myerson
[25] into dynamic environments, unifying previous results with continuous type spaces. Ashlagi
et al. [1] study ex-post individual-rational dynamic mechanisms for repeated auctions, and give an
efficient (1− ε)-approximation to the optimal revenue for a single agent with independent valuations
across items. Mirrokni et al. [24] study non-clairvoyant dynamic mechanism design, where future
distributional knowledge is unavailable to the principal. All these results for optimal mechanisms
follow the characterize-and-solve approach, which is quite different from the computational approach
that we take.

Particularly related to our results is the work by Papadimitriou et al. [28], who study a setting where
one item is sold at each time, and agents’ valuations can be correlated across items. They show that
designing an optimal deterministic mechanism is computationally hard even when there is only one
agent and two items (thereby ruling out the possibility of efficiently computing optimal deterministic
mechanisms in our model, which is more general). And moreover, they give a polynomial-size linear
program formulation for optimal randomized mechanisms for independent agents when the number
of agents and the time horizon are both constant. Restricted to a single agent, their LP formulation
can be viewed as a special case of our main result: they focus on revenue maximization with a single
item to be allocated at each time, in a model where the principal’s actions cannot affect the future
valuations of the agent; on the other hand, we allow the principal to care about actions as well as
revenue, with actions being general and unstructured (as opposed to allocation/no allocation), where
the future state of the world can depend arbitrarily on the principal’s actions as well as the current
state.

Automated Mechanism Design. There is a rich body of research regarding automated mechanism
design (AMD) in (essentially) static environments. Conitzer and Sandholm [10, 11] initiated the
study of automated mechanism design. They consider various specific static setups, and show that
computing optimal deterministic mechanisms, even with a single agent, is often NP-hard (which also
rules out the possibility of efficiently computing optimal deterministic mechanisms in our model,
since the 1-period case is a special case), while computing optimal randomized mechanisms is often
tractable. Conceptually related to our model, Hajiaghayi et al. [20] consider a model where agents

3

enter and leave the mechanism online (but still have one-time interactions with the mechanism), and
provide an algorithm for computing mechanisms that are competitive against the optimal allocation
from hindsight. Sandholm et al. [35] study automated design of multistage mechanisms, but these are
not for dynamic settings; instead, the motivation is to implement static mechanisms using multiple
rounds of queries in order to minimize the communication cost. Sandholm and Likhodedov [34] study
automated design of combinatorial auction mechanisms, and Balcan et al. [3, 4] study the sample
complexity thereof. Kephart and Conitzer [22, 23] and Zhang et al. [37] study AMD with partial
verification and/or reporting costs. More recently, various methods have been proposed for automated
mechanism design via machine learning [14, 27], and in particular, deep learning [15, 18, 36, 32].
All these results are essentially for static environments, whereas in this paper, we focus solely on
AMD in dynamic environments. Another emerging research direction is Bayesian persuasion in
dynamic environments [16, 33]. In particular, Celli et al. [9] study an algorithmic persuasion problem
in extensive-form games, where a single signal is sent at the very beginning, and Gan et al. [19] study
an algorithmic persuasion problem in infinite-horizon discounted MDPs, where a new signal is sent
at every time. These persuasion problems can be viewed as a dual problem of ours: in our problem,
the principal has the commitment power, and tries to encourage the agent to truthfully report their
private information, whereas in (dynamic) Bayesian persuasion, the agent has the commitment power,
and tries to induce the principal to act in favor of the agent by selectively revealing their private
information.

2 Preliminaries

Dynamic environments. Throughout this paper, we consider single-agent, discrete-time environ-
ments with a finite time horizon. Below, we give a general definition of such a dynamic environment.
Let T be the time horizon, S be the state space, and A be the action space. The agent observes the
state, but the principal controls the action that is taken. For each t ∈ [T], let vPt : S ×A → R be the
principal’s valuation function, where for each state s ∈ S and action a ∈ A, vPt (s, a) is the value of
the principal when playing action a in state s, at time t; similarly, let vAt : S ×A → R be the agent’s
value function. Let P0 ∈ ∆(S) be the initial distribution over states, and for each s ∈ S, denote by
P0(s) the probability that the initial state is s. Moreover, for each t ∈ [T], let Pt : S ×A → ∆(S)
be the transition operator, which maps a state-action pair (s, a) at time t to the distribution of the next
state at time t+ 1, Pt(s, a) ∈ ∆(S). We denote by Pt(s, a, s′) the probability that the next state is s′
when playing action a in state s at time t ∈ [T]. For notational simplicity, let P0(s, a, s′) = P0(s′)
for all s, s′ ∈ S and a ∈ A. (Note that the first actual action is taken at t = 1 — not t = 0 —
possibly based on the state at t = 1.)

Histories. A t-step history is a sequence of states and actions (s1, a1, s2, . . . , at−1, st, at), where
for each i ∈ [t], it is the case that si ∈ S and ai ∈ A. For each t ∈ [T], let Ht be the set of all
possible t-step histories, i.e.,

Ht = {(s1, a1, . . . , st, at) | si ∈ S, ai ∈ A for all i ∈ [t]}.

For each h = (s1, a1, . . . , st, at) ∈ H, let |h| = t, and moreover, for any st+1 ∈ S, at+1 ∈ A,
let h + (st+1, at+1) = (s1, a1, . . . , st+1, at+1). Let H0 = {∅}, where ∅ corresponds to the empty
history with |∅| = 0. LetH = H0 ∪

⋃
t∈[T−1]Ht be the set of all possible histories of length at most

T − 1 in the dynamic environment. Note thatH does not contain histories of length T .

Dynamic mechanisms. Dynamic mechanisms are more powerful than static ones, in that they
may depend on the entire history, rather than only the current state. A (randomized) dynamic
mechanism M = (π, p) consists of an action policy π and a payment function p. The action policy
π : H × S → ∆(A) maps each history h ∈ H, extended with the reported current state s ∈ S, to
a distribution over actions π(h, s) ∈ ∆(A). We denote by π(h, s, a) the probability that the action
taken by the mechanism is a for (h, s). The payment function p : H× S → R maps the extended
history (h, s) to a real number, i.e., the payment, made from the agent to the principal (but it can be
negative). We remark that in principle, one can absorb payments into the action space. However,
doing so would make the action space uncountable, introducing subtleties into the computational
problem (which is the main focus of this paper). Here, we keep payments separate and explicit to
avoid such issues. Also, our algorithm allows linear constraints on feasible payments, including but
not limited to: nonnegative payments, no payments, etc. See Section 3.2 for more details.

4

Utilities. Fixing a mechanism M = (π, p), we can then define the onward utility of the principal
and the agent. Let uMP : H× S → R be the principal’s onward utility function under mechanism M ,
defined inductively such that

uMP (h, s) =
∑
a

π(h, s, a) ·

(
vP|h|+1(s, a) +

∑
s′

P|h|+1(s, a, s′) · uMP (h+ (s, a), s′)

)
+ p(h, s),

with the boundary condition that uMP (h, s) = 0 for all h ∈ HT and s ∈ S . Here, all summations are
over the entire state/action space. Let uMP (∅) be the overall utility of the principal, i.e.,

uMP (∅) =
∑
s

P0(s) · uMP (∅, s).

Similarly, let uπA : H× S → R be the agent’s onward utility function under mechanism M , defined
such that

uMA (h, s) =
∑
a

π(h, s, a) ·

(
vA|h|+1(s, a) +

∑
s′

P|h|+1(s, a, s′) · uMA (h+ (s, a), s′)

)
− p(h, s),

where uMA (h, s) = 0 for all h ∈ HT and s ∈ S . And let uMA (∅) be the overall utility of the agent, i.e.,

uMA (∅) =
∑
s

P0(s) · uMA (∅, s).

We remark that while the above definition assumes that the principal cares about payments as much
as the agent does, in fact, our algorithm allows for the principal to care about payments in an arbitrary
linear way (including possibly not at all). See Section 3.2 for a detailed discussion.

Incentive-compatible mechanisms. We say a mechanism M is incentive-compatible (IC) if the
agent can never achieve a higher overall utility by misreporting the state, even in sophisticated ways.
Formally, a reporting strategy r : H× S → S maps each history h extended with the current state s
to a reported state s′, which is possibly different from s. Note that the agent only (mis)reports the
current state, since the principal can memorize all historical reports. This reporting strategy induces a
reported history r(h) = (s′1, a1, . . . , s

′
t, at) for each actual history h = (s1, a1, . . . , st, at), where

for each i ∈ [t],
s′i = r((s1, a1, . . . , si−1, ai−1), si).

Note that we abuse notation here: in particular, r(h, s) denotes a reported state, whereas r(h) denotes
a reported history. And without loss of generality, we only consider deterministic reporting strategies.
Given a mechanism M and a reporting strategy r, we can define the agent’s utility function uM,r

A
under M and r inductively such that

uM,r
A (h, s) =

∑
a

π(r(h), r(h, s), a) ·

(
vA|h|+1(s, a) +

∑
s′

P|h|+1(s, a, s′) · uM,r
A (h+ (s, a), s′)

)
− p(r(h), r(h, s)),

where uM,r
A (h, s) = 0 for all h ∈ HT and s ∈ S. And let uM,r

A (∅) be the overall utility of the agent,
i.e.,

uM,r
A (∅) =

∑
s

P0(s) · uM,r
A (∅, s).

In words, uM,r
A is the utility function of the agent applying the reporting strategy r in response to the

mechanism M . The mechanism M is IC iff for any such reporting strategy r,

uMA (∅) ≥ uM,r
A (∅).

Since the revelation principle holds in dynamic environments (see, e.g., [26]), we focus on IC
mechanisms in the rest of the paper.1

1Of course, the revelation principle will not hold in our dynamic setting if we allow it to generalize a static
setting in which the revelation principle does not hold. For example, in the case of partial verification — not
every type being able to misreport every other type — or costly misreporting, the revelation principle is known to
hold only under certain conditions [23]. In this paper, we only consider the standard mechanism design setting in
which every type can freely misreport any other type, but our techniques can be generalized to the other settings
as well.

5

Individually-rational mechanisms. When payments are allowed, it is standard to impose
individual-rationality (IR) (also known as voluntary-participation) constraints on the mechanism,
which roughly say that the agent should never be made worse off by participating in the mechanism.
In this paper, we consider two versions of IR constraints:

• A mechanism M is overall IR if the overall utility of the agent is nonnegative, i.e., uMA (∅) ≥ 0.
This ensures that the agent is willing to participate in the overall mechanism.

• A mechanism M is dynamic IR if the onward utility of the agent is nonnegative for every history
h and current state s, i.e., uMA (h, s) ≥ 0 for all h ∈ H and s ∈ S. This stronger notion of IR
further ensures that the agent has no incentive to leave the mechanism at any time.

As discussed in later sections, our algorithms work for all 3 cases regarding IR constraints: no IR
(which results in an unbounded objective value if payments are allowed and valued by the principal),
overall IR, and dynamic IR.

3 Computation of Optimal Mechanism

In this section, we investigate the computational problem of finding an optimal dynamic mechanism,
which maximizes the principal’s overall utility. For concreteness, we assume that all components of
the dynamic environment, including the time horizon T , state and action spaces S and A, valuation
functions vP and vA, and transition operator P , are given explicitly as input.

3.1 Hardness Result for Long-Horizon Environments

First we show that the problem with an arbitrarily large time horizon T is intractable. In general, it
takes exponentially many parameters in T to describe a dynamic mechanism, which immediately
rules out the possibility of computing a flat representation of an optimal mechanism in polynomial
time. However, this leaves the possibility of computing succinct representations, e.g., an oracle which
maps extended histories to distributions over actions. Our hardness result shows that it is hard to
approximate the principal’s maximum utility within a constant factor, which rules out the possibility
of such succinct representations that can be efficiently evaluated, assuming P 6= NP. The proof of
the theorem, as well as all other proofs, are deferred to the appendices.

Theorem 1. When the time horizon T can be arbitrarily large, it is NP-hard to approximate the
principal’s maximum utility within a factor of 7/8 + ε for any ε > 0.

3.2 Algorithm for Short-Horizon Environments

Now we give a polynomial-time algorithm for computing an optimal mechanism when T is a constant.
Our algorithm is based on a delicate linear program (LP) formulation, which relies on the following
notation and concepts.

Feasible history-state pairs. A history-state pair (h, s), where h = (s1, a1, . . . , st, at), is i-
feasible if Pj(sj , aj , sj+1) > 0 for every j ∈ {i, i + 1, . . . , t − 1}, and Pt(st, at, s) > 0. In
other words, starting from si and taking the actions specified in h, there is a positive probability that
the rest of the history and the state s are generated from the transition operator. We say a pair (h, s)
is feasible if it is 1-feasible.

Feasible extensions. For two history-state pairs (h, s) and (h′, s′) where h = (s1, a1, . . . , st, at)
and h′ = (s′1, a

′
1, . . . , s

′
t′ , a

′
t′), we say that (h′, s′) feasibly extends (h, s), i.e., (h, s) ⊆ (h′, s′), if

(h, s) = (h′, s′), or the following conditions hold simultaneously:

• t = |h| < |h′| = t′.

• For any i ∈ [t], (si, ai) = (s′i, a
′
i) (this holds automatically when h = ∅ and therefore |h| = 0).

• s = s′t+1.

• (h′, s′) is (|h|+ 1)-feasible (note that this does not require h itself to be feasible).

6

objective: max
∑

h∈H,s∈S:(h,s) is feasible

(∑
a∈A

vP|h|+1(s, a) · x(h, s, a) + y(h, s)

)
(1)

flow constraints: z(h, s) =
∑
a∈A

x(h, s, a) ∀h ∈ H, s ∈ S (2)

z(∅, s) = PE0 (s) ∀s ∈ S (3)

z(h+ (s, a), s′) = PE|h|+1(s, a, s′) · x(h, s, a) ∀h ∈ H, s, s′ ∈ S, a ∈ A
(4)

utility: u(h, s) =
∑

h′∈H,s′∈S:(h,s)⊆(h′,s′)

(∑
a∈A

vA|h′|+1(s′, a) · x(h′, s′, a)− y(h′, s′)

)
∀h ∈ H, s ∈ S

(5)

IC constraints: u(h, s, s′) =
∑
a∈A

vA|h|+1(s, a) · x(h, s′, a)− y(h, s′)

+
∑

a∈A,s′′∈S

P|h|+1(s, a, s′′)

PE|h|+1(s′, a, s′′)
· u(h+ (s′, a), s′′) ∀h ∈ H, s, s′ ∈ S

(6)

u(h, s) ≥
PE|h|(sp, ap, s)

PE|h|(sp, ap, s
′)
· u(h, s, s′),where (sp, ap) = last(h) ∀h ∈ H, s, s′ ∈ S

(7)

IR constraints: u(h, s) ≥ 0 ∀h ∈ H, s ∈ S (8)

feasible actions: x(h, s, a) ≥ 0 ∀h ∈ H, s ∈ S, a ∈ A (9)

feasible payments: y(h, s) ≥ 0 ∀h ∈ H, s ∈ S (10)

Figure 1: Linear program for computing an optimal dynamic mechanism.

Extended transition operator. For notational simplicity we define the following extended transi-
tion operator PEt : S ×A → ∆(S) for all t ∈ {0} ∪ [T], such that

PEt (s, a, s′) =

{
Pt(s, a, s

′), if Pt(s, a, s′) > 0

1, otherwise
.

In words, the extended transition operator assigns phantom probability 1 to each way of transitioning
that happens with probability 0 (so PEt (s, a) does not always normalize to 1). As a shorthand, let
PE0 (s′) = PE0 (s, a, s′) for some s ∈ S and a ∈ A (the specific choice does not matter). The
extended transition operator helps in constructing the flow and IC constraints below and simplifies
the formulation. In particular, we always have PEt (s, a, s′) > 0.

Last state-action pair. For a history h ∈ H where h = (s1, a1, . . . , st, at), we use last(h) as a
shorthand for the last state-action pair, i.e., last(h) = (st, at). In particular, when h = ∅, last(h) can
be any state-action pair (the choice does not affect our results — it is merely a simplifying shorthand).

Now we are ready to describe the LP formulation. The complete formulation is given in Figure 1.
The formulation is for nonnegative payments and dynamic IR constraints — we will discuss later

7

how the formulation can be modified to allow other types of constraints. Below, we describe each of
its components.

Variables, flow constraints, and the corresponding mechanism. There are 5 classes of variables
in the LP:

• x(h, s, a): the absolute, unconditional probability that the mechanism reaches state s via history
h, and takes action a.

• y(h, s): the payment for history-state pair (h, s), scaled by the probability that the mechanism
reaches s via h (i.e., z(h, s)).

• z(h, s): the probability that the mechanism reaches state s via history h, which by definition
satisfies

z(h, s) =
∑
a∈A

x(h, s, a).

• u(h, s): the onward utility of the agent at state s with history h assuming truthful reporting, scaled
by the probability that the mechanism reaches s via h (i.e., z(h, s)).

• u(h, s, s′): the onward utility of the agent at state s with history h if the agent misreports s′,
assuming truthful reporting in the future, scaled by the probability that the mechanism reaches s′
via h (i.e., z(h, s′)).

The flow constraints (Eq. (2)-(4)) enforce roughly the above interpretation of variables to x(h, s, a)
and z(h, s), except for ways of transition that have probability 0. For each way of transition
with probability 0, the extended transition operator assigns phantom probability 1. This phantom
probability is not counted in the objective function (because only feasible history-state pairs are
counted) or in the utility variables u(h, s) (because only feasible extensions are counted). So, the
phantom probability does not affect the principal’s or the agent’s utility assuming truthful reporting.
Instead, together with other constraints, it guarantees that the mechanism behaves well even for
history-state pairs that appear with probability 0 under truthful reporting, which is necessary for
the mechanism to be IC (see later paragraphs). Under the above interpretation, the LP variables
(and in particular, x(h, s, a), y(h, s) and z(h, s)) naturally correspond to a mechanism M = (π, p).
Formally, for each h ∈ H, s ∈ S:

• If z(h, s) > 0, then
p(h, s) = y(h, s)/z(h, s),

and for each a ∈ A,
π(h, s, a) = x(h, s, a)/z(h, s).

• If z(h, s) = 0, then let π(h, s) be an arbitrary distribution over A, and p(h, s) = 0.

The feasibility of the mechanism (i.e., every π(h, s) is a distribution over A and every p(h, s) is
nonnegative) is guaranteed by constraints (2), (9) and (10). We remark that while the mechanism
constructed from the LP variables may not be unique, effectively this makes no difference, since
the parts of the mechanism that are chosen arbitrarily can never be accessed when executing the
mechanism. This is because z(h, s) = 0 only if at some point in the history h, there is an action
that the mechanism would never play given the reported states and actions before that. In particular,
the above does not simply apply to all history-state pairs (h, s) that are reached with probability 0
under truthful reporting, in which case z(h, s) may still be positive due to the extended transition
operator. Moreover, given any mechanism, one can construct LP variables in a similar way, such that
the mechanism constructed from these variables is the same as the original mechanism (modulo the
unreachable parts). In other words, the above correspondence is effectively bijective.

The objective. The objective function of the LP (Eq. (1)) is precisely the overall utility of the
principal under the mechanism constructed above, assuming truthful reporting. This is captured by
the following lemma.
Lemma 1. Let M = (π, p) be the mechanism constructed from variables x(h, s, a), y(h, s), and
z(h, s) which satisfy the flow constraints. Then

uMP (∅) =
∑

h∈H,s∈S:(h,s) is feasible

(∑
a∈A

vP|h|+1(s, a) · x(h, s, a) + y(h, s)

)
.

8

From this lemma, it is clear that the objective of the LP is the natural quantity to maximize.

Utility. The utility constraints (Eq. (5)) collect the agent’s onward utility, where u(h, s) is equal to
the agent’s onward utility in state s from history h, assuming truthful reporting, scaled by z(h, s).
This is captured by the following lemma.
Lemma 2. Let M = (π, p) be the mechanism constructed from variables x(h, s, a), y(h, s), and
z(h, s) which satisfy the flow and utility constraints. For all h ∈ H, s ∈ S,

u(h, s) = z(h, s) · uMA (h, s).

The proof of Lemma 2 is essentially the same as that of Lemma 1. Given the correspondence to the
agent’s utility uMA (h, s), the utility variables u(h, s) act as auxiliary variables in IC constraints.

IC constraints. IC constraints are a key component of the LP formulation. There are two families
of IC constraints: collecting the agent’s scaled utility from single-step misreporting (Eq. (6)), and
subsequently restricting the mechanism such that there is no incentive for misreporting (Eq. (7)). In
Eq. (6), we build variables u(h, s, s′), which is supposed to be the onward utility of the agent in state
s from history h misreporting s′, assuming truthful reporting in the future, scaled by z(h, s′) (rather
than z(h, s)). This is captured by the following lemma.
Lemma 3. Let M = (π, p) be the mechanism constructed from variables x(h, s, a), y(h, s), and
z(h, s) which satisfy the flow constraints, the utility constraints, and Eq. (6). Then the following
statement holds: for all h ∈ H, s, s′ ∈ S, let reporting strategy rh,s,s′ be such that

rh,s,s′(h
′, s′′) =

{
s′, if h = h′ and s = s′′

s′′, otherwise
.

That is, rh,s,s′ misreports s′ only in state s from history h, and reports truthfully otherwise. Then for
all h ∈ H, s, s′ ∈ S,

u(h, s, s′) = z(h, s′) · uM,rh,s,s′

A (h, s).

Given Lemma 3, Eq. (7) then guarantees that the mechanism M is robust against single-step misre-
porting for all reachable history-state pairs.
Lemma 4. Let M = (π, p) be the mechanism constructed from variables x(h, s, a), y(h, s), and
z(h, s) which satisfy the flow constraints, the utility constraints, and Eq. (6). The following is true if
and only if the LP variables also satisfy Eq. (7): for all h ∈ H, s, s′ ∈ S where (h, s) is reachable
by the mechanism M ,

uMA (h, s) ≥ uM,rh,s,s′

A (h, s).

We then show that a mechanism is IC if and only if there is no incentive for single-step misreporting,
which directly implies that the mechanismM constructed from the LP variables is IC. This is captured
by the following lemma.
Lemma 5. Let M = (π, p) be the mechanism constructed from variables x(h, s, a), y(h, s), and
z(h, s) which satisfy the flow constraints, the utility constraints, and Eq. (6). Then M is IC if and
only if the LP variables also satisfy Eq. (7).

IR constraints, feasible actions, and feasible payments. These constraints are straightforward
given the correspondence between the LP variables and the mechanism that we have discussed above.
Note that while Eq. (8) is for dynamic IR (i.e., the agent has no incentive to leave the mechanism at
any point) and Eq. (10) is for nonnegative payments, it is easy to replace them with similar constraints
that correspond to overall IR or no payments. See Appendix C for more details.

Optimality of LP solution. Given the above facts, we are ready to state and prove the main result
of the paper.
Theorem 2. There is an algorithm which computes an optimal IC and (optionally) IR dynamic
mechanism, with or without payments, in time O(poly(|S|T , |A|T , L)), where L is the number of
bits required to encode each of the input parameters. In particular, when T is constant, the algorithm
runs in polynomial time.

9

4 The Case of Myopic Agents: Characterization and Faster Algorithm

In this section, we briefly discuss a special case of the problem of computing optimal dynamic
mechanisms, namely the case where the agent is myopic, or, equivalently, the agent has a discount
factor of 0. While our LP-based algorithm still applies, as we will see below, optimal mechanisms for
myopic agents enjoy a succinct representation in this case, which also enables a faster algorithm that
scales only linearly in the time horizon T . See Appendix D for more details, including the formal
definition of myopic agents and the complete description of the algorithm.

4.1 Characterization of Optimal Mechanisms

We first show that when the agent is myopic, without loss of generality, the actions and payments
specified by an optimal mechanism depend only on the time, the previous state, the previous action and
the current state (we call such a mechanism a succinct mechanism), instead of the entire history-state
pair.
Lemma 6. Fix a dynamic environment. When the agent is myopic, for any IC mechanismM = (π, p),
there is another IC mechanism M ′ = (π′, p′) (which is IR whenever M is) such that

• uM
′

P (∅) ≥ uMP (∅), and

• for all h ∈ H, s ∈ S, π′ and p′ depend only on |h|, sp, ap and s, where (sp, ap) = last(h).

Moreover, the above is true regardless of whether payments are allowed, or which IR constraints are
required.

4.2 Faster Algorithm for Myopic Agents

Based on the above characterization, we present a faster algorithm for computing an optimal mecha-
nism in the face of a myopic agent. In particular, the time complexity of this algorithm depends only
linearly on the time horizon T , making it feasible for dynamic environments with a long time horizon.
This is in contrast with the case of patient agents, for which, as we have seen, the long-horizon
problem is hard to approximate. The algorithm uses as a subroutine a blackbox algorithm that
computes an optimal IC (and optionally IR) mechanism in static environments, with or without
payments. It is known that such an algorithm can be implemented using linear programming, and in
some cases in more efficient ways [10, 12, 37].
Theorem 3. When the agent is myopic, Algorithm ?? computes an optimal IC and (optionally) IR
dynamic mechanism, with or without payments, in time

O(T |S||A| · Tstat(|S|, |A|, L)) = O(T · poly(|S|, |A|, L)),

where Tstat is the time complexity of the blackbox algorithm used for computing an optimal IC (and
optionally IR) mechanism in static environments, and L is the number of bits required to encode each
of the input parameters.

5 Conclusion

We studied automated dynamic mechanism design and showed that, while it is computationally
hard to find (even approximately) optimal mechanisms when (1) facing a patient agent and (2) the
horizon is long, when either of these two conditions is dropped, an optimal mechanism can be found
efficiently. An interesting future direction is to generalize our results to related problems with a
stronger learning flavor, e.g., reinforcement learning with IC and/or IR constraints.

Besides using our algorithms directly for appropriate applications, the experimental results that they
enable (including those that we presented in Appendix F) can guide new theory. For example, can we
rigorously prove the benefit of facing a patient agent when the setting is not all too adversarial, and
perhaps even characterize the transition point at which facing a patient agent becomes better than
facing a myopic one? Analytically derived mechanisms can also be compared to these experimental
results to see how close to optimal in performance they are. Finally, close inspection of the actual
mechanisms generated by our algorithms may reveal insights that can be used to analytically design
new mechanisms.

10

Funding Transparency Statement

Funding in direct support of this work: NSF grant IIS-1814056.

References
[1] Itai Ashlagi, Constantinos Daskalakis, and Nima Haghpanah. Sequential mechanisms with

ex-post participation guarantees. In Proceedings of the 2016 ACM Conference on Economics
and Computation, pages 213–214, 2016.

[2] Susan Athey and Ilya Segal. An efficient dynamic mechanism. Econometrica, 81(6):2463–2485,
2013.

[3] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Sample complexity of automated
mechanism design. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, pages 2091–2099, 2016.

[4] Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. A general theory of sample
complexity for multi-item profit maximization. In Proceedings of the 2018 ACM Conference on
Economics and Computation, pages 173–174, 2018.

[5] David P Baron and David Besanko. Regulation and information in a continuing relationship.
Information Economics and policy, 1(3):267–302, 1984.

[6] Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, 6(5):
679–684, 1957.

[7] Dirk Bergemann and Juuso Välimäki. The dynamic pivot mechanism. Econometrica, 78(2):
771–789, 2010.

[8] Dirk Bergemann and Juuso Välimäki. Dynamic mechanism design: An introduction. Journal
of Economic Literature, 57(2):235–74, 2019.

[9] Andrea Celli, Stefano Coniglio, and Nicola Gatti. Private bayesian persuasion with sequential
games. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
1886–1893, 2020.

[10] Vincent Conitzer and Tuomas Sandholm. Complexity of mechanism design. arXiv preprint
cs/0205075, 2002.

[11] Vincent Conitzer and Tuomas Sandholm. Self-interested automated mechanism design and
implications for optimal combinatorial auctions. In Proceedings of the 5th ACM Conference on
Electronic Commerce, pages 132–141, 2004.

[12] Vincent Conitzer and Tuomas Sandholm. Computing the optimal strategy to commit to. In
Proceedings of the 7th ACM conference on Electronic commerce, pages 82–90, 2006.

[13] Pascal Courty and Li Hao. Sequential screening. The Review of Economic Studies, 67(4):
697–717, 2000.

[14] P Dütting, F Fischer, P Jirapinyo, J Lai, B Lubin, and DC Parkes. Payment rules through
discriminant-based classifiers. ACM Transactions on Economics and Computation, 2015.

[15] Paul Dütting, Zhe Feng, Harikrishna Narasimhan, David Parkes, and Sai Srivatsa Ravindranath.
Optimal auctions through deep learning. In International Conference on Machine Learning,
pages 1706–1715. PMLR, 2019.

[16] Jeffrey C Ely. Beeps. American Economic Review, 107(1):31–53, 2017.

[17] Péter Eső and Balazs Szentes. Optimal information disclosure in auctions and the handicap
auction. The Review of Economic Studies, 74(3):705–731, 2007.

[18] Zhe Feng, Harikrishna Narasimhan, and David C Parkes. Deep learning for revenue-optimal
auctions with budgets. In Proceedings of the 17th International Conference on Autonomous
Agents and Multiagent Systems, pages 354–362, 2018.

11

[19] Jiarui Gan, Rupak Majumdar, Goran Radanovic, and Adish Singla. Bayesian persuasion in
sequential decision-making. arXiv preprint arXiv:2106.05137, 2021.

[20] Mohammad Taghi Hajiaghayi, Robert Kleinberg, and Tuomas Sandholm. Automated online
mechanism design and prophet inequalities. In AAAI, volume 7, pages 58–65, 2007.

[21] Ronald A Howard. Dynamic programming and markov processes. 1960.

[22] Andrew Kephart and Vincent Conitzer. Complexity of mechanism design with signaling costs.
In AAMAS, pages 357–365. Citeseer, 2015.

[23] Andrew Kephart and Vincent Conitzer. The revelation principle for mechanism design with
reporting costs. In Proceedings of the 2016 ACM Conference on Economics and Computation,
pages 85–102, 2016.

[24] Vahab Mirrokni, Renato Paes Leme, Pingzhong Tang, and Song Zuo. Non-clairvoyant dynamic
mechanism design. Econometrica, 88(5):1939–1963, 2020.

[25] Roger B Myerson. Optimal auction design. Mathematics of operations research, 6(1):58–73,
1981.

[26] Roger B Myerson. Multistage games with communication. Econometrica: Journal of the
Econometric Society, pages 323–358, 1986.

[27] Harikrishna Narasimhan, Shivani Brinda Agarwal, and David C Parkes. Automated mechanism
design without money via machine learning. In Proceedings of the 25th International Joint
Conference on Artificial Intelligence, 2016.

[28] Christos Papadimitriou, George Pierrakos, Christos-Alexandros Psomas, and Aviad Rubinstein.
On the complexity of dynamic mechanism design. In Proceedings of the twenty-seventh annual
ACM-SIAM symposium on Discrete algorithms, pages 1458–1475. SIAM, 2016.

[29] Alessandro Pavan. Dynamic mechanism design: Robustness and endogenous types. In Advances
in Economics and Econometrics: Eleventh World Congress, pages 1–62, 2017.

[30] Alessandro Pavan, Ilya Segal, and Juuso Toikka. Dynamic mechanism design: A myersonian
approach. Econometrica, 82(2):601–653, 2014.

[31] Martin L Puterman and Moon Chirl Shin. Modified policy iteration algorithms for discounted
markov decision problems. Management Science, 24(11):1127–1137, 1978.

[32] Jad Rahme, Samy Jelassi, Joan Bruna, and S Matthew Weinberg. A permutation-equivariant
neural network architecture for auction design. arXiv preprint arXiv:2003.01497, 2020.

[33] Jérôme Renault, Eilon Solan, and Nicolas Vieille. Optimal dynamic information provision.
Games and Economic Behavior, 104:329–349, 2017.

[34] Tuomas Sandholm and Anton Likhodedov. Automated design of revenue-maximizing combina-
torial auctions. Operations Research, 63(5):1000–1025, 2015.

[35] Tuomas Sandholm, Vincent Conitzer, and Craig Boutilier. Automated design of multistage
mechanisms. In IJCAI, volume 7, pages 1500–1506, 2007.

[36] Weiran Shen, Pingzhong Tang, and Song Zuo. Automated mechanism design via neural
networks. In Proceedings of the 18th International Conference on Autonomous Agents and
Multiagent Systems, pages 215–223, 2019.

[37] Hanrui Zhang, Yu Cheng, and Vincent Conitzer. Automated mechanism design for classification
with partial verification. In Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See appendices.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results (either in the supplemental material or as a URL)? [N/A]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were

chosen)? [N/A]
(c) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type of

GPUs, internal cluster, or cloud provider)? [N/A]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable?
[N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

13

	Introduction
	Our Results
	Further Related Work

	Preliminaries
	Computation of Optimal Mechanism
	Hardness Result for Long-Horizon Environments
	Algorithm for Short-Horizon Environments

	The Case of Myopic Agents: Characterization and Faster Algorithm
	Characterization of Optimal Mechanisms
	Faster Algorithm for Myopic Agents

	Conclusion

