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ABSTRACT

We present an algorithm that aims at solving a family of nonconvex optimization
problems with convergence guarantee to a global optimum. This family of non-
convex optimization problems share the formulation of maximizing the volume
of a matrix subject to linear constraints. Problems of this form have found a lot
of applications in unsupervised learning and representation learning, especially
when identifiability of the latent representation is important for the task. Specific
examples based on the types of constraints include bounded component analysis,
sparse component analysis (complete dictionary learning), nonnegative component
analysis (nonnegative matrix factorization), and admixture component analysis,
to name a few. Computationally, the problem is hard because of the nonconvex
objective. An algorithm based on linearized ADMM is proposed for these problems.
Although a similar algorithm has appeared in the literature, we note that a small
modification has to be made in order to guarantee that the algorithm provably
converges even for non-convex problems. Our main contribution is convergence
guarantee to a global optimum at a sublinear rate. We do assume some mild
conditions on the initialization, but our numerical experiments indicate that these
initialization conditions are very easy to satisfy.

1 INTRODUCTION

Many problems in unsupervised representation learning require identifying the latent components
from data with structural assumptions/constraints on the latent representation. While some works
show that volume optimization can guarantee identifiability of the latent components under mild
conditions, the provably convergent algorithm is still missing for any of these problems. To bridge this
gap, we propose an algorithm that aims at solving the following (family of) nonconvex optimization
problem:

minimize
𝑾

−1
2

log det𝑾𝑾⊤+ 𝑔 (𝑾𝑿 ), (1)

where 𝑔 is some regularization function to enforce or promote certain problem-specific structure to
the transformation𝑾𝑿 to a lower dimension, therefore𝑾 should be a wide matrix with full row
rank. This type of problems naturally arises in many unsupervised learning problems, where data
samples are stacked in the columns of 𝑿 and the goal is to find a linear transformation𝑾 that makes
the learned representation/embedding𝑾𝑿 satisfy some structural requirements. A classical example
is independent component analysis (ICA), where ideally 𝑔 (𝑾𝑿 ) should be a function to enforce that
the rows of𝑾𝑿 are statistically independent (Comon, 1994; Hyvärinen et al., 2004), although in
practice it is fairly hard to find such a well-defined function, especially if working with a finite set of
data 𝑿 . Ever since, some structural constraints/regularizations that are more suitable for finite data
sets with explicitly well-defined functional forms have been studied, including:

• Bounded component analysis (BCA) (Tatli & Erdogan, 2021; Hu & Huang, 2023b). In this
case 𝑔 is an indicator function defined as

𝑔 (𝑺 ) =
{
0 |𝑆𝑖 𝑗 | ≤ 1 for all 𝑖 , 𝑗
+∞ otherwise.

1
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Notice that | · | could mean magnitude of a complex number if data are complex, in which
case replace matrix transpose⊤with Hermitian transpose ⊢⊣ (Hu & Huang, 2024).

• Sparse component analysis (SCA) (Hu & Huang, 2023a), also known as (complete) dictio-
nary learning. Here 𝑔 is simply the (vector) ℓ1 norm, i.e., sum of absolute values

𝑔 (𝑺 ) = ∥𝑺 ∥1 =
∑︁
𝑖 ,𝑗

|𝑆𝑖 𝑗 |.

Again, it can be extended to complex numbers with ease (Sun & Huang, 2024). We will
not consider overcomplete dictionaries in this paper, although a related formulation has
appeared (Sun & Huang, 2025).

• Nonnegative component analysis (NCA) (Fu et al., 2018), which is a variant of nonnegative
matrix factorization (NMF) with only one of the factors to be nonnegative:

𝑔 (𝑺 ) =
{∑

𝑖 ,𝑗 𝑆𝑖 𝑗 𝑆𝑖 𝑗 ≥ 0 for all 𝑖 , 𝑗
+∞ otherwise.

• Admixture component analysis (ACA). In this case, each embedding 𝑾𝒙 𝑖 represent the
abundance/admixture of the components, meaning the coefficients are nonnegative and sum
to one, so 𝑔 is again an indicator function

𝑔 (𝑺 ) =
{
0 𝑺 ≥ 0, 1⊤𝑺 = 1⊤

+∞ otherwise.

ACA has been widely adopted in topic models (Blei, 2012) and hyperspectral unmixing (Ma
et al., 2013).

• Principal component analysis (PCA). We throw in PCA here for completeness, even though
it is unnecessary as there are countless algorithms that efficiently solves it. We show in the
supplementary that if 𝑔 (𝑺 ) = ∥𝑺 ∥2F, the solution of (1) recovers that of PCA, exhibiting
versatility of the framework.

1.1 IDENTIFIABILITY VIA VOLUME OPTIMIZATION

For a wide matrix𝑾 with linearly independent rows,
√

det𝑾𝑾⊤ is sometimes called the volume of
the matrix (Ben-Israel, 1992) with applications in change-of-variable integration (Ben-Israel, 1999)
and probability (Ben-Israel, 2000). In particular, if 𝒔 ∈ R𝑘 is a latent random variable with distribution
𝑝 (𝒔 ), and we observe 𝒙 = 𝑨𝒔 , then the distribution of 𝒙 admits the following relation

𝑝 (𝒙 ) = (det𝑨⊤𝑨)−1/2𝑝 (𝒔 ).
Therefore, applying a change-of-variable 𝑨 =𝑾 †, formulation (1) is exactly the maximum likelihood
estimate with the following latent distributions:

• PCA: standard Gaussian distribution
• SCA: standard Laplacian distribution
• NCA: standard exponential distribution
• BCA: uniform distribution in the hypercube
• ACA: uniform Dirichlet distribution

Even for general ICA models, as long as the type of latent variables are known, one can write down
the exact maximum likelihood formulation in the form of (1), for instance the Cauchy distribution
with 𝑔 (𝑠 ) = − log(1 + 𝑠 2).
The bigger benefit is identifiability, with the exception of PCA. Suppose the observations are indeed
generated from the model 𝑿 = 𝑨𝑺 with unknown 𝑨 and 𝑺 , in many cases one is interested in exactly
recover 𝑺 up to trivial ambiguities such as row permutation and scaling. Historically, the original
motivation to propose ICA was exactly because PCA is not identifiable. However, exact identifiability
of ICA requires statistical independence, which is not clear how to quantify with finite data. The
volume optimization framework for structured latent component analysis has been shown to guarantee
identifiability under realistic assumptions. In particular, denote the true latent components as 𝑺 ♮ and a
solution to (1) as 𝑺★ =𝑾 ★𝑿 , then 𝑺★ is a row permutation and scaling of 𝑺 ♮ if
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Figure 1: Illustrations of the sufficiently scattered condition in the (a) probability simplex, (b)
nonnegative orthant, and (c) hypercube in R3.

• ACA: convex hull of 𝑺 ♮, denoted as conv(𝑺 ♮) = {𝑺 ♮𝜽 | 𝜽 ≥ 0, 1⊤𝜽 = 1}, is sufficiently
scattered in the probability simplex (Fu et al., 2015; Lin et al., 2015)

{𝒙 ∈ R𝑘 | ∥𝒙 ∥2 ≤ 1/
√
𝑘 − 1, 1⊤𝒙 = 1} ⊂ conv(𝑺 ♮).

• NCA: conic hull of 𝑺 ♮, denoted as cone(𝑺 ♮) = {𝑺 ♮𝜽 | 𝜽 ≥ 0}, is sufficiently scattered in the
nonnegative orthant (Huang et al., 2013; Fu et al., 2018)

{𝒙 ∈ R𝑘 | ∥𝒙 ∥2 ≤ 1⊤𝒙/
√
𝑘 − 1} ⊂ cone(𝑺 ♮).

• BCA: disked hull of 𝑺 ♮, denoted as disk(𝑺 ♮) = {𝑺 ♮𝜽 | ∥𝜽 ∥1 ≤ 1}, is sufficiently scattered in
the hypercube (Tatli & Erdogan, 2021; Hu & Huang, 2023b)

{𝒙 ∈ R𝑘 | ∥𝒙 ∥2 ≤ 1} ⊂ disk(𝑺 ♮).

• SCA: cellular hull of 𝑺̃ ♮, where 𝑺̃ ♮ is obtained from rescaling the rows of 𝑺 ♮ to unit ℓ1 norm,
denoted as disk(𝑺̃ ♮) = {𝑺̃ ♮𝜽 | ∥𝜽 ∥∞ ≤ 1}, is sufficiently scattered in the hypercube (Hu &
Huang, 2023a)

{𝒙 ∈ R𝑘 | ∥𝒙 ∥2 ≤ 1} ⊂ cell(𝑺̃ ♮).

Notice that the complex case for BCA (Hu & Huang, 2024) and SCA (Sun & Huang, 2024) are also
true.

Illustrations of these various sufficiently scattered conditions are shown in Figure 1. More details on
identifiability of these models can be found in the aforementioned references and therein.

1.2 THIS PAPER

This work focuses on algorithmic analysis for (1). First we note that (1) is nonconvex due to the
volume term − log det𝑾𝑾⊤; although log-determinant of a positive definite matrix is concave, it
is not the case when the positive definite matrix is parameterized by𝑾𝑾⊤. On the other hand, 𝑔
is usually a convex function or indicator function of a convex set, and usually admits an efficient
proximal/projection operator. Some prior work on algorithmic design for (1) are reviewed in the
supplementary. In this paper we propose a new algorithm based on the linearized alternating direction
method of multipliers (L-ADMM) with a constant step size 𝛾 as follows

𝑾 𝑡+1 ← (𝑺𝑡 +𝑼 𝑡 +𝛾𝑺†⊤𝑡 )𝑿 †
𝑺𝑡+1 ← Prox𝛾𝑔 (𝑾 𝑡+1𝑿 −𝑼 𝑡 )
𝑼 𝑡+1 ←𝑼 𝑡 + 𝑺𝑡+1 −𝑾 𝑡+1𝑿

. (2)

Derivation of the algorithm will be explained in detail in the sequel. An immediate observation is
that (2) is very easy to implement in practice, as it only involves basic operations such as matrix
multiplication, pseudo-inverse, and proximal operators—for the aforementioned specific examples,
their corresponding proximal operators are as simple as truncations (for BCA) or soft-thresholding
(for SCA). Despite its simplicity, its performance is surprisingly good, as will be demonstrated in the
experiment section. Recognizing that we are trying to solve a nonconvex problem (1), with some
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cases shown to be NP-hard (Packer, 2002), those numerical results seem incredible as it almost always
achieves global optimality within a short amount of time. This inspires us to further investigate the
algorithmic behavior of (2) to explain its excellent performance. In this paper we make the following
contributions:

1. We proposed a general volume-optimization framework that includes the aforementioned
problems (e.g., BCA/SCA/NCA/ACA, which are generally non-convex and NP-hard). More
importantly, our newly designed algorithm is the first method with provable convergence to
global optimum.

2. Compared to state-of-the-art baselines (BCD, FW, ADMM algorithms) that tailor designed
for each identifiable problems, our new method is either significantly faster or at least
comparable. This is also a non-trivial contribution on top of our theoretical results.

We want to remark our major technical significances. We introduce one version of linearized
alternating direction method of multipliers (L-ADMM) that has not been proposed to the best of our
knowledge. The reason we choose this version is thanks to its simplicity in proving convergence for
convex problems, with minimal assumptions. It inspired us to generalize into non-convex problem.

Recognizing that convexity of the objective function is only used to form first-order lowerbounds and
the other point is always a global optimum, a similar inequality is established for (2) even though
− log det𝑾𝑾⊤ is not convex. The claim is that if 𝑿 is indeed generated from an identifiable model
𝑿 = 𝑨♮𝑺 ♮ and the initialization 𝑺0 satisfies

log | det𝑺0𝑺
†
♮
| ≤ max

𝜫 ,𝑫
Tr𝜫𝑫𝑺0𝑺

†
♮
− 𝑘 , (3)

where 𝜫 are permutation matrices and 𝑫 are diagonal matrices with ±1 on the diagonal, then L-
ADMM converges to a global optimum. Although we do not provide an initialization scheme that
always satisfies (3), our numerical experiments suggest that it is very easy to satisfy (3) with random
initializations, thus explaining the above mentioned excellent performance.

2 LINEARIZED ADMM

Alternating direction method of multipliers (ADMM) has been a widely adopted algorithm in machine
learning (Boyd et al., 2011). Consider a generic linearly constrained optimization problem

minimize
𝒘 ,𝒔

𝑓 (𝒘 ) + 𝑔 (𝒔 )

subject to 𝑨𝒘 + 𝑩𝒔 = 𝒄 ,
(4)

ADMM takes the following iterative form
𝒘 𝑡+1 ← arg min𝒘 𝑓 (𝒘 ) + 1

2𝛾 ∥𝑨𝒘 + 𝑩𝒔 𝑡 − 𝒄 + 𝒖𝑡 ∥2

𝒔 𝑡+1 ← arg min𝒔 𝑔 (𝒔 ) + 1
2𝛾 ∥𝑨𝒘 𝑡+1 + 𝑩𝒔 − 𝒄 + 𝒖𝑡 ∥2

𝒖𝑡+1 ← 𝒖𝑡 + 𝑨𝒘 𝑡+1 + 𝑩𝒔 𝑡+1 − 𝒄

where 𝛾 is the step size. One of the possible downside is that it involves potentially nontrivial
minimizations within each iteration that may not admit to closed-form updates. Suppose this is true
for the update of 𝒘 , then one way to mitigate this is to linearize 𝑓 (𝒘 ) in each iteration, leading to
Linearized ADMM (L-ADMM)

𝒘 𝑡+1 ← arg min𝒘 ∇𝑓 (𝑨† (𝒄 − 𝑩𝒔 𝑡 ))⊤𝒘 + 1
2𝛾 ∥𝑨𝒘 + 𝑩𝒔 𝑡 − 𝒄 + 𝒖𝑡 ∥2

𝒔 𝑡+1 ← arg min𝒔 𝑔 (𝒔 ) + 1
2𝛾 ∥𝑨𝒘 𝑡+1 + 𝑩𝒔 − 𝒄 + 𝒖𝑡 ∥2

𝒖𝑡+1 ← 𝒖𝑡 + 𝑨𝒘 𝑡+1 + 𝑩𝒔 𝑡+1 − 𝒄
(5)

Note that the first order Taylor approximation of 𝑓 is taken at 𝑨† (𝒄 − 𝑩𝒔 𝑡 ), not 𝒘 𝑡 as in (Hu &
Huang, 2023a). To the best of our knowledge, this type of linearization has not appeared in the
literature, among the various inexact ADMM variants (He et al., 2002; Ng et al., 2011; Lin et al.,
2017; Gao et al., 2018; Lu et al., 2021). However, we find that this version leads to a relatively simple
convergence proof for convex problems with minimal assumptions, i.e., 𝑓 is Lipschitz smooth and
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columns of 𝑨 are linearly independent. This would be a particularly useful property for us to further
apply it to nonconvex problems that are of interest in this work, as we will see shortly.

Here we provide a concise convergence proof for L-ADMM assuming both 𝑓 and 𝑔 are convex, while
𝑓 is also Lipschitz smooth. Our analysis differs from most existing work by employing a different
Lyapunov function, which will be shown to converge to zero. Consider the Lagrangian function of (4)

𝐿 (𝒘 , 𝒔 ,𝝀) = 𝑓 (𝒘 ) + 𝑔 (𝒔 ) + 𝝀⊤(𝑨𝒘 + 𝑩𝒔 − 𝒄 ).

If strong duality holds, then we have

𝐿 (𝒘 , 𝒔 ,𝝀★) ≥ 𝐿 (𝒘★, 𝒔★,𝝀★) = 𝑓 (𝒘★) + 𝑔 (𝒔★),

where (𝒘★, 𝒔★) and 𝝀★ are optimal primal and dual variables, since (𝒘★, 𝒔★) minimizes 𝐿 (𝒘 , 𝒔 ,𝝀★)
and they are also feasible, i.e.,

𝑨𝒘★ + 𝑩𝒔★ = 𝒄 . (6)

We will show in the sequel that 𝐿 (𝒘 𝑡 , 𝒔 𝑡 ,𝝀★) − 𝐿 (𝒘★, 𝒔★,𝝀★), which is a nonnegative sequence,
goes to zero as 𝑡 →∞.

Theorem 2.1. Suppose 𝑓 and 𝑔 are convex functions, 𝑓 is Lipschitz smooth, meaning there exists a
constant 𝑀 such that for all 𝒘 and 𝒘̃ in the domain of 𝑓

∥∇𝑓 (𝒘 ) − ∇𝑓 (𝒘̃ )∥ ≤ 𝑀 ∥𝒘 − 𝒘̃ ∥,

and matrix 𝑨 has full column rank: there exists a constant 𝜇 such that

𝑨⊤𝑨 ⪰ 𝜇𝑰 .

Then with 𝛾 ≤ 𝜇/𝑀 , we have

min
𝑡=1,...,𝑇

𝐿 (𝒘 𝑡 , 𝒔 𝑡 ,𝝀★) − 𝐿 (𝒘★, 𝒔★,𝝀★) ≤
1
𝑇

(
1

2𝛾
∥𝑨 (𝒘 0 −𝒘★) + 𝒖0 −𝛾𝝀★∥2

)
. (7)

Proof. First we rearrange the order of L-ADMM to
𝒔 𝑡+1 ← arg min𝒔 𝑔 (𝒔 ) + 1

2𝛾 ∥𝑨𝒘 𝑡 + 𝑩𝒔 − 𝒄 + 𝒖𝑡 ∥2

𝒖𝑡+1 ← 𝒖𝑡 + 𝑨𝒘 𝑡 + 𝑩𝒔 𝑡+1 − 𝒄
𝒘 𝑡+1 ← arg min𝒘 ∇𝑓 (𝑨† (𝒄 − 𝑩𝒔 𝑡+1))⊤𝒘 + 1

2𝛾 ∥𝑨𝒘 + 𝑩𝒔 𝑡+1 − 𝒄 + 𝒖𝑡+1∥2
(8)

This is equivalent to decreasing the iteration index of 𝒘 by 1.

The update of 𝒔 implies

− 1
𝛾
𝑩⊤(𝑨𝒘 𝑡 + 𝑩𝒔 𝑡+1 − 𝑐 + 𝒖𝑡 ) ∈ 𝜕𝑔 (𝒔 𝑡+1),

for convex 𝑔 we have

𝑔 (𝒔 𝑡+1) − 𝑔 (𝒔★) ≤
1
𝛾
(𝑨𝒘 𝑡 + 𝑩𝒔 𝑡+1 − 𝒄 + 𝒖𝑡 )⊤𝑩 (𝒔★ − 𝒔 𝑡+1). (9)

The update of 𝒖𝑡+1 in (5) implies

𝑩𝒔 𝑡+1 = 𝒄 − 𝑨𝒘 𝑡 + 𝒖𝑡+1 − 𝒖𝑡 .

Substituting it into (9) together with 𝑩𝒔★ = 𝒄 − 𝑨𝒘★ from (6) gives

𝑔 (𝒔 𝑡+1) − 𝑔 (𝒔★) ≤
1
𝛾
𝒖⊤𝑡+1 (𝑨𝒘 𝑡 − 𝑨𝒘★ + 𝒖𝑡 − 𝒖𝑡+1). (10)

Denote 𝒘̂ 𝑡 = 𝑨† (𝒄 − 𝑩𝒔 𝑡+1). From convexity and Lipschitz-smoothness of 𝑓 , we have

𝑓 (𝒘 𝑡+1) ≤ 𝑓 (𝒘̂ 𝑡 ) + ∇𝑓 (𝒘̂ 𝑡 )⊤(𝒘 𝑡+1 − 𝒘̂ 𝑡 ) +
𝑀

2
∥𝒘 𝑡+1 − 𝒘̂ 𝑡 ∥2,

𝑓 (𝒘★) ≥ 𝑓 (𝒘̂ 𝑡 ) + ∇𝑓 (𝒘̂ 𝑡 )⊤(𝒘★ − 𝒘̂ 𝑡 ).
(11)
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From the update of 𝒘 in (5), we have

∇𝑓 (𝒘̂ 𝑡 ) = −
1
𝛾
𝑨⊤(𝑨𝒘 𝑡+1 + 𝑩𝒔 𝑡+1 − 𝒄 + 𝒖𝑡+1) = −

1
𝛾
𝑨⊤(𝑨𝒘 𝑡+1 − 𝑨𝒘 𝑡 + 2𝒖𝑡+1 − 𝒖𝑡 )

All three equations above shows

𝑓 (𝒘 𝑡+1) − 𝑓 (𝒘★) ≤
1
𝛾
(𝑨𝒘 𝑡+1 − 𝑨𝒘 𝑡 + 2𝒖𝑡+1 − 𝒖𝑡 )⊤𝑨 (𝒘★ −𝒘 𝑡+1) +

𝑀

2
∥𝒘 𝑡+1 − 𝒘̂ 𝑡 ∥2. (12)

Combining (10) and (12) gives

𝑓 (𝒘 𝑡+1) + 𝑔 (𝒔 𝑡+1) − 𝑓 (𝒘★) − 𝑔 (𝒔★)

≤ 1
𝛾
(𝑨𝒘 𝑡+1 − 𝑨𝒘 𝑡 + 2𝒖𝑡+1 − 𝒖𝑡 )⊤𝑨 (𝒘★ −𝒘 𝑡+1) +

1
𝛾
𝒖⊤𝑡+1 (𝑨𝒘 𝑡 − 𝑨𝒘★ + 𝒖𝑡 − 𝒖𝑡+1) +

𝑀

2
∥𝒘 𝑡+1 − 𝒘̂ 𝑡 ∥2

=
1
𝛾
(𝑨𝒘 𝑡+1 − 𝑨𝒘 𝑡 + 𝒖𝑡+1 − 𝒖𝑡 )⊤𝑨 (𝒘★ −𝒘 𝑡+1) +

1
𝛾
𝒖⊤𝑡+1 (𝑨𝒘 𝑡 − 𝑨𝒘 𝑡+1 + 𝒖𝑡 − 𝒖𝑡+1) +

𝑀

2
∥𝒘 𝑡+1 − 𝒘̂ 𝑡 ∥2

=
1
𝛾
(𝑨𝒘 𝑡+1 − 𝑨𝒘 𝑡 + 𝒖𝑡+1 − 𝒖𝑡 )⊤(𝑨𝒘★ − 𝑨𝒘 𝑡+1 − 𝒖𝑡+1) +

𝑀

2
∥𝒘 𝑡+1 − 𝒘̂ 𝑡 ∥2

Adding both sides by

𝝀⊤★ (𝑨𝒘 𝑡+1 + 𝑩𝒔 𝑡+1 − 𝒄 ) = 𝝀⊤★ (𝑨𝒘 𝑡+1 − 𝑨𝒘 𝑡 + 𝒖𝑡+1 − 𝒖𝑡 ),
where the right-hand-side is obtained from the update rule of 𝒖𝑡+1, we get

𝐿 (𝒘 𝑡+1, 𝒔 𝑡+1,𝝀★) − 𝐿 (𝒘★, 𝒔★,𝝀★)

≤ 1
𝛾
(𝑨𝒘 𝑡+1 − 𝑨𝒘 𝑡 + 𝒖𝑡+1 − 𝒖𝑡 )⊤(𝑨𝒘★ − 𝑨𝒘 𝑡+1 +𝛾𝝀★ − 𝒖𝑡+1) +

𝑀

2
∥𝒘 𝑡+1 − 𝒘̂ 𝑡 ∥2

=
1

2𝛾
∥𝑨𝒘★ − 𝑨𝒘 𝑡 +𝛾𝝀★ − 𝒖𝑡 ∥2 −

1
2𝛾
∥𝑨𝒘★ − 𝑨𝒘 𝑡+1 +𝛾𝝀★ − 𝒖𝑡+1∥2

− 1
2𝛾
∥𝑨𝒘 𝑡+1 − 𝑨𝒘 𝑡 + 𝒖𝑡+1 − 𝒖𝑡 ∥2 +

𝑀

2
∥𝒘 𝑡+1 − 𝒘̂ 𝑡 ∥2

(13)

Notice that we defined 𝒘̂ 𝑡 = 𝑨† (𝒄 −𝑩𝒔 𝑡+1) = 𝑨† (𝑨𝒘 𝑡 +𝒖𝑡 −𝒖𝑡+1), and if 𝑨⊤𝑨 ⪰ 𝜇𝑰 and 𝛾 ≤ 𝜇/𝑀 ,
then

𝑀

2
∥𝒘 𝑡+1 − 𝒘̂ 𝑡 ∥2 ≤

𝑀

2𝜇
∥𝑨𝒘 𝑡+1 − 𝑨𝒘 𝑡 + 𝒖𝑡+1 − 𝒖𝑡 ∥2 ≤

1
2𝛾
∥𝑨𝒘 𝑡+1 − 𝑨𝒘 𝑡 + 𝒖𝑡+1 − 𝒖𝑡 ∥2.

This means the last line of (13) is nonpositive, and thus

𝐿 (𝒘 𝑡+1, 𝒔 𝑡+1,𝝀★) − 𝐿 (𝒘★, 𝒔★,𝝀★)

=
1

2𝛾
∥𝑨𝒘★ − 𝑨𝒘 𝑡 +𝛾𝝀★ − 𝒖𝑡 ∥2 −

1
2𝛾
∥𝑨𝒘★ − 𝑨𝒘 𝑡+1 +𝛾𝝀★ − 𝒖𝑡+1∥2

(14)

Taking the summation of (14) with 𝑡 = 1, . . . ,𝑇 , omit the negative terms on the right-hand-side, and
replace each 𝐿 (𝒘 𝑡 , 𝒔 𝑡 ,𝝀★) with their min on the left-hand-side, gives us (7). □

The proof clearly explains why the linearization is taken at 𝒘̂ 𝑡 = 𝑨† (𝒄 − 𝑩𝒔 𝑡+1): the Lipschitz-
smoothness property introduces a nonnegative term (𝑀 /2)∥𝒘 𝑡+1 − 𝒘̂ 𝑡 ∥2 that needs to be eliminated
in order to guarantee convergence, and the last line of (13) provides the choice of 𝒘̂ 𝑡 to achieve
this. Numerically, this result hints that one could precondition the matrix 𝑨 for better numerical
performance (and a larger range of choice for 𝛾 ). We find that orthogonizing the columns of 𝑨
works really well in practice; since the update of 𝒘 involves solving a least squares problem, a linear
transformation of 𝒘 is not going to change the complexity of its update. The proof also suggests
that the linearization step should be done first (or, equivalently, immediately after the dual update),
not the other way around, otherwise convergence may not be guaranteed. We obtained a sublinear
convergence rate of 1/𝑇 without assuming strong convexity, which is similar to proximal gradient
descent. If we assume 𝑓 to be strongly convex, one may expect to achieve a faster linear convergence
rate with ease, but that is beyond the scope of this work.
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Remark. Throughout the proof, convexity of 𝑓 and 𝑔 are only invoked to form the linear lower-
bounds (9) and (11); moreover, one of the points is always at the optimum 𝒔★ or𝒘★. This observation
hints that even if, say, 𝑓 is not convex, as long as the iterates of L-ADMM generates 𝒘̂ 𝑡 that satisfies
(11), then global optimality can still be guaranteed. This is going to be the main focus when applying
L-ADMM to nonconvex problems.

3 L-ADMM FOR VOLUME OPTIMIZATION-BASED LATENT COMPONENT
ANALYSES

Before applying L-ADMM, we first reformulate (1) by introducing auxiliary variable 𝑺 =𝑾𝑿 as

minimize
𝑾 ,𝑺

− 1
2

log det𝑾𝑾⊤+ 𝑔 (𝑺 )

subject to 𝑺 =𝑾𝑿 .

(15)

This formulation has two separate terms for𝑾 and 𝑺 coupled by a linear constraint 𝑺 =𝑾𝑿 , which
is a form that L-ADMM can easily be applied. Its exact form has been presented in (2).

3.1 IMPLEMENTATION DETAILS

The updates of 𝑺 and 𝑼 follows exactly from the definition of L-ADMM in (5). The update of
𝑾 requires a bit more explanation. First of all, the gradient of we know the gradient of the log-
determinant objective is −(𝑾 †)⊤ and since it is evaluated at 𝑺𝑡𝑿 †, we have that

∇ − log det(𝑺𝑡𝑿
†) (𝑺𝑡𝑿

†)⊤ = −(𝑺𝑡𝑿
†)†⊤ = −𝑺†⊤𝑡 𝑿⊤,

where the last equality uses the fact that (𝑨𝑩)† = (𝑨†𝑨𝑩)† (𝑨𝑩𝑩†)† (Petersen et al., 2008), which
further equals to 𝑩†𝑨† if 𝑨 has full column rank and 𝑩 has full row rank. The update of𝑾 𝑡+1 is
explicitly defined as

𝑾 𝑡+1 = arg min
𝑾
−Tr𝑾⊤𝑺†⊤𝑡 𝑿⊤+ 1

2𝛾
∥𝑺𝑡 −𝑾𝑿 +𝑼 𝑡 ∥2.

Setting its gradient equals zero gives the𝑾 update in (2).

As for the proximal operators for various 𝑔 , it has been studied extensively, so we simply list some of
them here without derivations:

BCA: Prox𝛾𝑔 (𝑺 )𝑖 𝑗 =

{
sign(𝑆𝑖 𝑗 ), |𝑆𝑖 𝑗 | > 1,
𝑆𝑖 𝑗 , otherwise.

SCA: Prox𝛾𝑔 (𝑺 )𝑖 𝑗 =

{
sign(𝑆𝑖 𝑗 ) ( |𝑆𝑖 𝑗 | −𝛾 ), |𝑆𝑖 𝑗 | > 𝛾 ,

0, otherwise.

NCA: Prox𝛾𝑔 (𝑺 )𝑖 𝑗 =[𝑆𝑖 𝑗 −𝛾 ]+
ACA: Prox𝛾𝑔 (𝒔 𝑖 ) =[𝒔 𝑖 − 𝜈𝑖1]+

Simplex projection for ACA is taken column-wise of 𝑺 and each 𝜈𝑖 is a scalar to satisfy that
1⊤[𝒔 𝑖 − 𝜈𝑖1]+ = 1; there exist several methods that keep the complexity linear, such as bisection
(Parikh & Boyd, 2014) or divide-and-conquer (Duchi et al., 2008).

3.2 GLOBAL CONVERGENCE

We now present the main contribution of this work, namely to show that Algorithm (2) converges to a
global optimum of (1) under some mild conditions. As formulation (1) is mostly used for identifiable
latent component analyses such as BCA or SCA, we focus on the case when 𝑿 is generated from
𝑿 = 𝑨♮𝑺 ♮, where 𝑨♮ and 𝑺 ♮ are the true latent factors, and 𝑺 ♮ satisfies one of the sufficiently scattered
conditions described in §1.1, therefore any solution to (1) must be a row permutation and sign flip (if
BCA or SCA) of 𝑺 ♮.
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Denote 𝑓 (𝑾 ) = − log det𝑾𝑾⊤. Proof of Theorem 2.1 indicates that convexity of 𝑓 is only invoked
when forming a linear lowerbound (11) at 𝑺𝑡𝑿 † = 𝑺𝑡 (𝑨♮𝑺 ♮)† and𝑾 ★ = 𝑨†

♮
, i.e.,

−1
2

log det(𝑨†
♮
𝑨†⊤
♮
) ≥ −1

2
log det(𝑺𝑡 (𝑨♮𝑺 ♮)† (𝑨♮𝑺 ♮)†⊤𝑺⊤𝑡 ) − Tr𝑿𝑺⊤𝑡 (𝑨†♮ − 𝑺𝑡𝑿

†).

This simplifies to
log | det𝑺𝑡𝑺

†
♮
| ≤ Tr𝑺𝑡𝑺

†
♮
− 𝑘 . (16)

We should be reminded that (16) does not always hold, but if it was true for all 𝑺𝑡 , then it suffices
to guarantee that L-ADMM converges to 𝑺 ♮. In fact, since any row permutation and sign flip (for
BCA and SCA) of 𝑺 ♮ is also optimal for (15), we can replace 𝑺 ♮ in (16) with 𝜫𝑫𝑺 ♮ where 𝜫 is a
permutation matrix and 𝑫 is a diagonal matrix with ±1 on the diagonal (for NCA and ACA we would
have 𝑫 = 𝑰 , but we include this term for completeness), then global convergence can be guaranteed.

To gain some insights about what (16) implies, obviously the inequality holds for positive definite
matrices. However, 𝑺𝑡𝑺

†
♮

is not positive definite. While the left-hand-side is related to the log-
determinant of is Gram matrix, the right-hand-side only depends on its diagonal values. Therefore,
intuitively, (16) would hold if 𝑺𝑡𝑺

†
♮

is “diagonally dominant”, to some extent. Indeed, if 𝑺𝑡 is optimal,

then 𝑺𝑡𝑺
†
♮
= 𝑰 , which is the most diagonally dominant matrix. To put it differently, (16) holds when

𝑺𝑡𝑺
†
♮

is relatively close to 𝑰 ; it does not have to be extremely close like many nonconvex algorithmic
analysis requires, just close enough that (16) holds suffices. In other words, (16) defines the “basin of
attraction” for the nonconvex problem (15).
Theorem 3.1. Let 𝑿 = 𝑨♮𝑺 ♮ where 𝑨♮ and 𝑺 ♮ are the true latent factors, and 𝑺 ♮ satisfies one of the
sufficiently scattered conditions described in §1.1. Suppose the L-ADMM algorithm (2) is initialized
with 𝑺0 that satisfies

log | det𝑺0𝑺
†
♮
| ≤ max

𝜫 ,𝑫
Tr𝜫𝑫𝑺0𝑺

†
♮
− 𝑘 ,

where 𝜫 is a permutation matrix and 𝑫 is a diagonal matrix with ±1 on the diagonal, then we have

min
𝑡=1,...,𝑇

𝐿 (𝑾 𝑡 ,𝑺𝑡 ,𝝀★) − 𝐿 (𝑾 ★,𝑺★,𝝀★) ≤
1
𝑇

(
1

2𝛾
∥(𝑾 0𝑿 −𝜫𝑺 ♮ +𝑼 0 −𝛾𝝀★∥2

)
.

Proof sketch. The proof largely follows that of Theorem 2.1, except that in this case 𝑓 is not convex.
However, we will show that as long as the initialization 𝑺0 satisfies

log | det𝑺0𝑺
†
♮
| ≤ max

𝜫 ,𝑫
Tr𝜫𝑫𝑺0𝑺

†
♮
− 𝑘 ,

then (11) is satisfied throughout the iterations. All we need is to prove the following lemma. □

Lemma 3.2. When running the L-ADMM iterations, if 𝑺𝑡 satisfies

log | det𝑺𝑡𝑺
†
♮
| ≤ Tr𝜫𝑫𝑺𝑡𝑺

†
♮
− 𝑘 ,

for some permutation matrix 𝜫 and diagonal matrix 𝑫 with ±1 on the diagonal, then 𝑺𝑡+1 also
satisfies

log | det𝑺𝑡+1𝑺
†
♮
| ≤ Tr𝜫𝑫𝑺𝑡+1𝑺

†
♮
− 𝑘 ,

The proof is relegated to the supplementary.

4 EXPERIMENTS

We now provide some numerical experiments to showcase the effectiveness of the proposed L-ADMM
for solving some special cases of (1), in particular BCA, SCA, NCA, and ACA. All the experiments
are conducted in MATLAB on an iMac. We synthetically generate random problems. For 𝑘 = 20
and 𝑛 = 1000, we randomly generate the groundtruth factor matrices 𝑺 ♮ ∈ R𝑘×𝑛 and 𝑨♮ ∈ R𝑘×𝑘 , and
construct the data matrix 𝑿 = 𝑨♮𝑺 ♮. Elements of 𝑨♮ are independently drawn from a standard normal
distribution, while those of 𝑺 ♮ are generated as follows:
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(a) Bounded component analysis
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(b) Sparse component analysis
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(c) Nonnegative component analysis (d) Admixture component analysis

Figure 2: Convergence of L-ADMM in (2) for various latent component analyses models on 100
random trials.

• BCA: each 𝑆𝑖 𝑗 has 50% chance to be ±1 and 50% chance uniform in [−1, 1].
• SCA: each 𝑆𝑖 𝑗 has 50% chance to be 0 and 50% chance standard normal; then each row is rescaled

to have unit ℓ1 norm.
• NCA: each 𝑆𝑖 𝑗 has 50% chance to be 0 and 50% chance exponential; then each row is rescaled to

sum to one.
• ACA: each 𝑆𝑖 𝑗 has 50% chance to be 0 and 50% chance exponential; then each column is rescaled

to sum to one.

Prior works have shown that each of these generative models is identifiable with very high probability,
despite 𝑛 being not that big compared to the number of atoms 𝑘 . Matrix 𝑿 is used as input to
the L-ADMM algorithm as described in (2). Although Problem (15) is nonconvex, as long as it is
identifiable, we know the global optimum is attained at𝑾 ★ == 𝑨†

♮
. As a result, (1/2) log det𝑨⊤

♮
𝑨♮ is

the optimal value for Problem (15) as long as the model is identifiable, and we shall see whether the
proposed algorithm is able to attain that optimal value. Inspired by the above convergence analysis,
we check the optimality gap of the Lagrangian function values using the optimal dual variable 𝜦

−(1/2) log det𝑾 𝑡𝑾
⊤
𝑡 + Tr(𝑺𝑡 −𝑾 𝑡𝑿 )𝜦★ − (1/2) log det𝑨⊤

♮
𝑨♮.

Furthermore, it is easy to show that an optimal 𝜦 is 𝑺†
♮
. In this simulation with known groundtruth

factors, we will use this to measure the optimality gap. The convergence behavior of 100 random
trials of the L-ADMM are shown in Figure 2. Indeed, even though we are trying to solve a nonconvex
problem (1), L-ADMM always converges to global optimum in our experiment. Each execution takes
no more than a few seconds.

5 CONCLUSION

A general framework of volume optimization-based latent component analyses problems are studied,
which includes many well-known unsupervised learning models such as dictionary learning, nonneg-
ative matrix factorization, topic modeling, etc. An algorithm based on linearized ADMM (L-ADMM)
is proposed, which admits simple update rules that are easy to implement in practice. Even though the
problem is NP-hard, we show both in theory and in practice that the proposed algorithm is extremely
effective at finding a global optimum.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Adi Ben-Israel. A volume associated with mxn matrices. Linear algebra and its applications, 167:
87–111, 1992.

Adi Ben-Israel. The change-of-variables formula using matrix volume. SIAM Journal on Matrix
Analysis and Applications, 21(1):300–312, 1999.

Adi Ben-Israel. An application of the matrix volume in probability. Linear Algebra and its Applica-
tions, 321(1-3):9–25, 2000.

David M Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and
Trends® in Machine learning, 3(1):1–122, 2011.

Pierre Comon. Independent component analysis, a new concept? Signal processing, 36(3):287–314,
1994.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto the
ℓ1-ball for learning in high dimensions. In Proceedings of the 25th International Conference on
Machine Learning, pp. 272–279, 2008.

Xiao Fu, Wing-Kin Ma, Kejun Huang, and Nicholas D Sidiropoulos. Blind separation of quasi-
stationary sources: Exploiting convex geometry in covariance domain. IEEE Transactions on
Signal Processing, 63(9):2306–2320, 2015.

Xiao Fu, Kejun Huang, and Nicholas D Sidiropoulos. On identifiability of nonnegative matrix
factorization. IEEE Signal Processing Letters, 25(3):328–332, 2018.

Xiang Gao, Bo Jiang, and Shuzhong Zhang. On the information-adaptive variants of the admm: an
iteration complexity perspective. Journal of Scientific Computing, 76:327–363, 2018.

Bingsheng He, Li-Zhi Liao, Deren Han, and Hai Yang. A new inexact alternating directions method
for monotone variational inequalities. Mathematical Programming, 92:103–118, 2002.

Jingzhou Hu and Kejun Huang. Global identifiability of ℓ1-based dictionary learning via matrix
volume optimization. In Advances in Neural Information Processing Systems (NeurIPS), volume 36,
2023a.

Jingzhou Hu and Kejun Huang. Identifiable bounded component analysis via minimum volume
enclosing parallelotope. In ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2023b.

Jingzhou Hu and Kejun Huang. Complex bounded component analysis: Identifiability and algorithm.
In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6680–6684. IEEE, 2024.

Kejun Huang, Nicholas D Sidiropoulos, and Ananthram Swami. Non-negative matrix factorization
revisited: Uniqueness and algorithm for symmetric decomposition. IEEE Transactions on Signal
Processing, 62(1):211–224, 2013.

A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. Adaptive and Cognitive
Dynamic Systems: Signal Processing, Learning, Communications and Control. Wiley, 2004. ISBN
9780471464198. URL https://books.google.com/books?id=96D0ypDwAkkC.

Chia-Hsiang Lin, Wing-Kin Ma, Wei-Chiang Li, Chong-Yung Chi, and ArulMurugan Ambikapathi.
Identifiability of the simplex volume minimization criterion for blind hyperspectral unmixing: The
no-pure-pixel case. IEEE Transactions on Geoscience and Remote Sensing, 53(10):5530–5546,
2015.

Tianyi Lin, Shiqian Ma, and Shuzhong Zhang. An extragradient-based alternating direction method
for convex minimization. Foundations of Computational Mathematics, 17(1):35–59, 2017.

10

https://books.google.com/books?id=96D0ypDwAkkC


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Songtao Lu, Jason D Lee, Meisam Razaviyayn, and Mingyi Hong. Linearized admm converges to
second-order stationary points for non-convex problems. IEEE Transactions on Signal Processing,
69:4859–4874, 2021.
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