Under review as a conference paper at ICLR 2026

PROVABLY CONVERGENT NONCONVEX ALGORITHM
FOR VOLUME OPTIMIZATION-BASED
LATENT COMPONENT ANALYSES

Anonymous authors
Paper under double-blind review

ABSTRACT

We present an algorithm that aims at solving a family of nonconvex optimization
problems with convergence guarantee to a global optimum. This family of non-
convex optimization problems share the formulation of maximizing the volume
of a matrix subject to linear constraints. Problems of this form have found a lot
of applications in unsupervised learning and representation learning, especially
when identifiability of the latent representation is important for the task. Specific
examples based on the types of constraints include bounded component analysis,
sparse component analysis (complete dictionary learning), nonnegative component
analysis (nonnegative matrix factorization), and admixture component analysis,
to name a few. Computationally, the problem is hard because of the nonconvex
objective. An algorithm based on linearized ADMM is proposed for these problems.
Although a similar algorithm has appeared in the literature, we note that a small
modification has to be made in order to guarantee that the algorithm provably
converges even for non-convex problems. Our main contribution is convergence
guarantee to a global optimum at a sublinear rate. We do assume some mild
conditions on the initialization, but our numerical experiments indicate that these
initialization conditions are very easy to satisfy.

1 INTRODUCTION

Many problems in unsupervised representation learning require identifying the latent components
from data with structural assumptions/constraints on the latent representation. While some works
show that volume optimization can guarantee identifiability of the latent components under mild
conditions, the provably convergent algorithm is still missing for any of these problems. To bridge this
gap, we propose an algorithm that aims at solving the following (family of) nonconvex optimization
problem:

1
minli;nize -3 logdetWW™ + g(WX), (1)

where g is some regularization function to enforce or promote certain problem-specific structure to
the transformation WX to a lower dimension, therefore W should be a wide matrix with full row
rank. This type of problems naturally arises in many unsupervised learning problems, where data
samples are stacked in the columns of X and the goal is to find a linear transformation W that makes
the learned representation/embedding W X satisfy some structural requirements. A classical example
is independent component analysis (ICA), where ideally g(W X) should be a function to enforce that
the rows of WX are statistically independent (Comonl |1994; Hyvérinen et al., 2004)), although in
practice it is fairly hard to find such a well-defined function, especially if working with a finite set of
data X. Ever since, some structural constraints/regularizations that are more suitable for finite data
sets with explicitly well-defined functional forms have been studied, including:

* Bounded component analysis (BCA) (Tatli & Erdogan, {2021} | Hu & Huang, [2023b). In this
case g is an indicator function defined as

0 |S;j| < 1foralli,j
+o0o0 otherwise.

g(8) ={
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Notice that | - | could mean magnitude of a complex number if data are complex, in which
case replace matrix transpose T with Hermitian transpose " (Hu & Huang), 2024).

* Sparse component analysis (SCA) (Hu & Huang|, [2023a)), also known as (complete) dictio-
nary learning. Here g is simply the (vector) ¢; norm, i.e., sum of absolute values

g(8) =Sl = > 18y1.
ij

Again, it can be extended to complex numbers with ease (Sun & Huang| 2024). We will
not consider overcomplete dictionaries in this paper, although a related formulation has
appeared (Sun & Huang] 2025)).

* Nonnegative component analysis (NCA) (Fu et al.,2018]), which is a variant of nonnegative
matrix factorization (NMF) with only one of the factors to be nonnegative:

2ijSij  Sij 2 0foralli,j

+00 otherwise.

g(8) = {

* Admixture component analysis (ACA). In this case, each embedding Wx; represent the
abundance/admixture of the components, meaning the coefficients are nonnegative and sum
to one, so g is again an indicator function

(S) = 0 §>0I'S=1"
g = +o0o otherwise.
ACA has been widely adopted in topic models (Blei,|2012)) and hyperspectral unmixing (Ma

et al.,[2013).

* Principal component analysis (PCA). We throw in PCA here for completeness, even though
it is unnecessary as there are countless algorithms that efficiently solves it. We show in the
supplementary that if g(S) = ||S||]2:, the solution of (1) recovers that of PCA, exhibiting
versatility of the framework.

1.1 IDENTIFIABILITY VIA VOLUME OPTIMIZATION

For a wide matrix W with linearly independent rows, Ydet WW is sometimes called the volume of
the matrix (Ben-Israell [1992) with applications in change-of-variable integration (Ben-Israel, | 1999)
and probability (Ben-Israel,2000). In particular, if s € RF is a latent random variable with distribution
p(s), and we observe x = As, then the distribution of x admits the following relation

p(x) = (det ATA) " p(s).

Therefore, applying a change-of-variable A = W, formulation (T)) is exactly the maximum likelihood
estimate with the following latent distributions:

* PCA: standard Gaussian distribution

» SCA: standard Laplacian distribution

* NCA: standard exponential distribution

* BCA: uniform distribution in the hypercube
* ACA: uniform Dirichlet distribution

Even for general ICA models, as long as the type of latent variables are known, one can write down
the exact maximum likelihood formulation in the form of , for instance the Cauchy distribution
with g(s) = —log(1 + s2).

The bigger benefit is identifiability, with the exception of PCA. Suppose the observations are indeed
generated from the model X = AS with unknown A and S, in many cases one is interested in exactly
recover S up to trivial ambiguities such as row permutation and scaling. Historically, the original
motivation to propose ICA was exactly because PCA is not identifiable. However, exact identifiability
of ICA requires statistical independence, which is not clear how to quantify with finite data. The
volume optimization framework for structured latent component analysis has been shown to guarantee
identifiability under realistic assumptions. In particular, denote the true latent components as S, and a
solution to as 8, =W, X, then S, is a row permutation and scaling of S, if
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(a) probability simplex (b) nonnegative orthant (c) hypercube

Figure 1: Illustrations of the sufficiently scattered condition in the (a) probability simplex, (b)
nonnegative orthant, and (c) hypercube in R3.

* ACA: convex hull of Sy, denoted as conv(Sy) = {§;0 | 8 > 0,170 = 1}, is sufficiently
scattered in the probability simplex (Fu et al., 2015} [Lin et al., 2015)

{x e R¥ | |lx|l2 < 1/Vk = 1, I'x = 1} C conv(Sy).

* NCA: conic hull of Sy, denoted as cone(Sy) = {S;0 | 8 > 0}, is sufficiently scattered in the
nonnegative orthant (Huang et al., 2013} |Fu et al., 2018)

{x € R | |lx]l2 < I"'x/Vk — 1} C cone(Sy).

» BCA: disked hull of Sy, denoted as disk(Sy) = {S;0 | [|0]|; < 1}, is sufficiently scattered in
the hypercube (Tatli & Erdogan||2021;|Hu & Huang| [2023b)

{x e RF | |lx|l> < 1} < disk(Sy).

e SCA: cellular hull of Sh? where Sh is obtained from rescaling the rows of Sy to unit £; norm,
denoted as disk(Su) = {Sh() | |10]]l < 1}, is sufficiently scattered in the hypercube (Hu &
Huang, [2023al)

{x e RF | [lx]l2 < 1} € cell(§y).

Notice that the complex case for BCA (Hu & Huang| 2024)) and SCA (Sun & Huang| 2024) are also
true.

Ilustrations of these various sufficiently scattered conditions are shown in Figure[I] More details on
identifiability of these models can be found in the aforementioned references and therein.

1.2 THIS PAPER

This work focuses on algorithmic analysis for (I). First we note that (I is nonconvex due to the
volume term — log det WWT; although log-determinant of a positive definite matrix is concave, it
is not the case when the positive definite matrix is parameterized by WW'. On the other hand, g
is usually a convex function or indicator function of a convex set, and usually admits an efficient
proximal/projection operator. Some prior work on algorithmic design for (I) are reviewed in the
supplementary. In this paper we propose a new algorithm based on the linearized alternating direction
method of multipliers (L-ADMM) with a constant step size y as follows

Wt+l — (St + Ut + ')’SIT)XT
St — Proxyg(WtHX -u,) . 2
Ups1 < U + 841 — WX

Derivation of the algorithm will be explained in detail in the sequel. An immediate observation is
that (2) is very easy to implement in practice, as it only involves basic operations such as matrix
multiplication, pseudo-inverse, and proximal operators—for the aforementioned specific examples,
their corresponding proximal operators are as simple as truncations (for BCA) or soft-thresholding
(for SCA). Despite its simplicity, its performance is surprisingly good, as will be demonstrated in the
experiment section. Recognizing that we are trying to solve a nonconvex problem (TJ), with some
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cases shown to be NP-hard (Packer, 2002), those numerical results seem incredible as it almost always
achieves global optimality within a short amount of time. This inspires us to further investigate the
algorithmic behavior of (2)) to explain its excellent performance. In this paper we make the following
contributions:

1. We proposed a general volume-optimization framework that includes the aforementioned
problems (e.g., BCA/SCA/NCA/ACA, which are generally non-convex and NP-hard). More
importantly, our newly designed algorithm is the first method with provable convergence to
global optimum.

2. Compared to state-of-the-art baselines (BCD, FW, ADMM algorithms) that tailor designed
for each identifiable problems, our new method is either significantly faster or at least
comparable. This is also a non-trivial contribution on top of our theoretical results.

We want to remark our major technical significances. We introduce one version of linearized
alternating direction method of multipliers (L-ADMM) that has not been proposed to the best of our
knowledge. The reason we choose this version is thanks to its simplicity in proving convergence for
convex problems, with minimal assumptions. It inspired us to generalize into non-convex problem.

Recognizing that convexity of the objective function is only used to form first-order lowerbounds and
the other point is always a global optimum, a similar inequality is established for (2]) even though
—log det WW" is not convex. The claim is that if X is indeed generated from an identifiable model
X = A8y and the initialization S satisfies

log | det 8oS!| < max Tr ITDS,S! — k, (3)
1] I1,D 1]

where IT are permutation matrices and D are diagonal matrices with +1 on the diagonal, then L-
ADMM converges to a global optimum. Although we do not provide an initialization scheme that
always satisfies (3)), our numerical experiments suggest that it is very easy to satisfy (3) with random
initializations, thus explaining the above mentioned excellent performance.

2 LINEARIZED ADMM

Alternating direction method of multipliers (ADMM) has been a widely adopted algorithm in machine
learning (Boyd et al.,|2011). Consider a generic linearly constrained optimization problem

minimize f(w) + g(s)
ws 4)

subject to Aw + Bs =c,

ADMM takes the following iterative form

Wy « argminy, f(w) + %HAw +Bs; — ¢ + u;|)?

S41 < argming g(s) + zl—y||Awt+1 +Bs — ¢ + u;|)?

Upyl <~ U+ AW + Bsi — ¢
where 7y is the step size. One of the possible downside is that it involves potentially nontrivial
minimizations within each iteration that may not admit to closed-form updates. Suppose this is true

for the update of w, then one way to mitigate this is to linearize f (w) in each iteration, leading to
Linearized ADMM (L-ADMM)

Wy < argminy, Vf(AT(c — Bs;))w + %HAw +Bs; —c + u |
S+] < argming g(s) + %HAle +Bs — ¢+ u;|? )]
U] < U+ AWy + Bsi — ¢

Note that the first order Taylor approximation of f is taken at A'(¢ — Bs;), not w; as in (Hu &
Huangl 2023a). To the best of our knowledge, this type of linearization has not appeared in the
literature, among the various inexact ADMM variants (He et al.| 2002; Ng et al., 2011} Lin et al.,
2017;|Gao et al.,2018; [Lu et al., 2021). However, we find that this version leads to a relatively simple
convergence proof for convex problems with minimal assumptions, i.e., f is Lipschitz smooth and
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columns of A are linearly independent. This would be a particularly useful property for us to further
apply it to nonconvex problems that are of interest in this work, as we will see shortly.

Here we provide a concise convergence proof for L-ADMM assuming both f and g are convex, while
f is also Lipschitz smooth. Our analysis differs from most existing work by employing a different
Lyapunov function, which will be shown to converge to zero. Consider the Lagrangian function of (@)

L(w,s,A) = f(w) + g(s) + A'(Aw + Bs - ¢).
If strong duality holds, then we have
L(wysy A’*) = L(w*’s*! A*) :f(w*) + g(s*)’

where (w4, s4) and A, are optimal primal and dual variables, since (wy, $4) minimizes L(w, s, A)
and they are also feasible, i.e.,
Aw, + Bs, =c. (6)

We will show in the sequel that L(wy, s;, Ax) — L(wy, S, A«), which is a nonnegative sequence,
goes to zero as ¢ — oo,

Theorem 2.1. Suppose f and g are convex functions, f is Lipschitz smooth, meaning there exists a
constant M such that for all w and W in the domain of f

IVf(w) - Vf@w)|l < Mllw - w]|,

and matrix A has full column rank: there exists a constant |1 such that

ATA = ul.
Then with y < pu/M, we have
: 1(1
min_ L(wy, $;, As) — LWy, S5, Ax) < — [ —|A(wo — wy) + uo — YA || . (7
t=1,..,T T \2y

Proof. First we rearrange the order of L-ADMM to

S;41 < argming g(s) + %IlAwt +Bs — ¢+ u;|?
Upyl «— U + Aw; + Bs;y 1 — ¢ (8)
Wy ¢ argming V(A" (€ ~ Bs1))'w + 2 [|Aw + Bsyi1 — € + up |I°

This is equivalent to decreasing the iteration index of w by 1.

The update of s implies
—%BT(Awt +Bs;y —c+uy) €0g(sii1),
for convex g we have
8(s1a1) = §(52) < (AWs + Bsiay = ¢+ ) B(s. =51, ©)

The update of us4; in (B) implies
Bs; .1 =¢c—Aw; + Ury — Uy.

Substituting it into (9) together with Bs, = ¢ — Aw, from (6) gives

1
g(st+1) — 8(84) < ;uL](Awt —Aw, + U —Upy). (10)

Denote ; = A'(c — Bs;41). From convexity and Lipschitz-smoothness of f, we have

. . . M .
fwen) < fQe) + V@) (Wear =) + —llweer = w1,

Fw,) > f) + V@) (wy — ).

Y
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From the update of w in @), we have
N 1 1
Vi) = —;AT(Ale +BSi1 —C+U) = _;AT(AWHI —Aw; + 22U — Uy)
All three equations above shows

1 M .
fwe) — f(wy) < ;(Awml —Aw; + 22Uy — uI)TA(w* — W) + 7||wt+1 - wt||2- (12)

Combining (T0) and (I2)) gives
Fwen) + 8(si1) — f(wy) — g(s4)

1 1 M A
< ;(Awtﬂ —Aw; + 22Uy — u) A(Wo — wiy) + ;MIH (Aw; —Aw, + Uy — Usyy) + 7|th+1 — |

T

I . 1 M -
= ;(Awm —Aw; + Uy — Uy) AWy — Wiyy) + ;um (Aw; — Aw; 1 + Uy — upy) + 7“wt+1 — ||

1 M .
= ;(AWHI —Aw; + up —u) (Awy — Awpy) — Upy) + 7”wt+1 —w,|?

Adding both sides by
A (Awiy + Bsyy =€) = AL (Awy — Aw, + 1) — Uy),
where the right-hand-side is obtained from the update rule of u; .|, we get

L(wt+1» St+ly /1*) - L(w*, Sx» A*)
1 . M -
< ;(AWHI —Aw; + e — ) (AW, — Aw + YA — Upy) + 7llwt+1 — |

1 1 (13)
= ZHAW* —Aw; + YA, —u|* - gllAw* —Aw g + YA — i |)?

1 2 M A2
- 2—||sz+1 —Aw; + Uy —ue||” + —|lwes — |
Y 2

Notice that we defined i, = A" (c — Bs;11) = A" (Aw; + u; —u,,1), andif ATA = pul and y < u/M,
then

M 0 M 2 1 2
— w1 =W ]|° < —|Aws1 — Awy + Ui — ue||” < —|Awpsr — Awy + uppq — ug|”.
2 2u 2y

This means the last line of (I3) is nonpositive, and thus

L(Wii1,Se41, Ax) = L(Wy, S5, As)

1 1 (14)
= gllAw* —Aw, + YAy —u,|)? - EllAw* — AW + YA — U |

Taking the summation of with ¢ = 1,..., T, omit the negative terms on the right-hand-side, and
replace each L(wy, s¢, A,) with their min on the left-hand-side, gives us . O

The proof clearly explains why the linearization is taken at @, = A'(c — Bs;4): the Lipschitz-
smoothness property introduces a nonnegative term (M /2)||w,,1 — t,||* that needs to be eliminated
in order to guarantee convergence, and the last line of provides the choice of w; to achieve
this. Numerically, this result hints that one could precondition the matrix A for better numerical
performance (and a larger range of choice for y). We find that orthogonizing the columns of A
works really well in practice; since the update of w involves solving a least squares problem, a linear
transformation of w is not going to change the complexity of its update. The proof also suggests
that the linearization step should be done first (or, equivalently, immediately after the dual update),
not the other way around, otherwise convergence may not be guaranteed. We obtained a sublinear
convergence rate of 1/T without assuming strong convexity, which is similar to proximal gradient
descent. If we assume f to be strongly convex, one may expect to achieve a faster linear convergence
rate with ease, but that is beyond the scope of this work.
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Remark. Throughout the proof, convexity of f and g are only invoked to form the linear lower-
bounds (9) and (TT)); moreover, one of the points is always at the optimum s, or w. This observation
hints that even if, say, f is not convex, as long as the iterates of L-ADMM generates w; that satisfies
(TT), then global optimality can still be guaranteed. This is going to be the main focus when applying
L-ADMM to nonconvex problems.

3 L-ADMM FOR VOLUME OPTIMIZATION-BASED LATENT COMPONENT
ANALYSES

Before applying L-ADMM, we first reformulate (1) by introducing auxiliary variable § = WX as

1
minimize — = logdetWW" + g(§
W 7 °8 §(8) (15)
subjectto § =WX.

This formulation has two separate terms for W and S coupled by a linear constraint § = WX, which
is a form that L-ADMM can easily be applied. Its exact form has been presented in (2).

3.1 IMPLEMENTATION DETAILS

The updates of S and U follows exactly from the definition of L-ADMM in (3). The update of
W requires a bit more explanation. First of all, the gradient of we know the gradient of the log-
determinant objective is —(W )" and since it is evaluated at S, X, we have that

V - log det($, X ") (S, X)" = —(8,X")"" = -s{"x",

where the last equality uses the fact that (AB)" = (A"AB)"(ABBT)" (Petersen et al., 2008), which
further equals to BTAT if A has full column rank and B has full row rank. The update of W, is
explicitly defined as

1
W1 = argmin ~Trw'S X" + 7, IS - WX + U
Y

Setting its gradient equals zero gives the W update in (2).

As for the proximal operators for various g, it has been studied extensively, so we simply list some of
them here without derivations:

ien(S;i), |Sii|> 1,
BCA:  Prox,¢(S);j {Slgn( i) 1Sil >

Sijs otherwise.

SCA:  Prox,¢(8);;

sign(S;;) (1Sl = v),  ISijl > v,
0, otherwise.

NCA: Proxyg(S),-j =[Sij - }’]+
ACA:  Proxyg(s;) =[s; —wvil],

Simplex projection for ACA is taken column-wise of § and each v; is a scalar to satisfy that
I'[s; — viI], = 1; there exist several methods that keep the complexity linear, such as bisection
(Parikh & Boyd, 2014) or divide-and-conquer (Duchi et al., 2008).

3.2 GLOBAL CONVERGENCE

We now present the main contribution of this work, namely to show that Algorithm (2 converges to a
global optimum of (T) under some mild conditions. As formulation (T]) is mostly used for identifiable
latent component analyses such as BCA or SCA, we focus on the case when X is generated from
X = A;Sy, where A, and S, are the true latent factors, and Sy satisfies one of the sufficiently scattered
conditions described in @ therefore any solution to (IJ) must be a row permutation and sign flip (if
BCA or SCA) of Sy,
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Denote f(W) = —log det WW™. Proof of Theoremindicates that convexity of f is only invoked
when forming a linear lowerbound (TT)) at S; X T= St(Ath)"' and W, = Ag, ie.,
1 I 1 i
— log det(A;Ah‘T > - log det(S;(A;Sy) " (4,8, 7S]) - TrXSI(A; -8,:xM.

This simplifies to
log | detsts;'| < Trsts;' — k. (16)

We should be reminded that does not always hold, but if it was true for all S;, then it suffices
to guarantee that L-ADMM converges to Sy. In fact, since any row permutation and sign flip (for
BCA and SCA) of Sy is also optimal for @D, we can replace Sy in (I6) with ITDS; where IT is a
permutation matrix and D is a diagonal matrix with +1 on the diagonal (for NCA and ACA we would
have D = I, but we include this term for completeness), then global convergence can be guaranteed.

To gain some insights about what implies, obviously the inequality holds for positive definite
matrices. However, S, S/ is not positive definite. While the left-hand-side is related to the log-
determinant of is Gram matrix, the right-hand-side only depends on its diagonal values. Therefore,

intuitively, @]) would hold if § tS; is “diagonally dominant”, to some extent. Indeed, if S; is optimal,

then S; S;' = I, which is the most diagonally dominant matrix. To put it differently, (T6) holds when
S [S; is relatively close to I; it does not have to be extremely close like many nonconvex algorithmic
analysis requires, just close enough that (T6) holds suffices. In other words, (T6) defines the “basin of
attraction” for the nonconvex problem (13).

Theorem 3.1. Let X = AySy where Ay and Sy, are the true latent factors, and Sy satisfies one of the
sufficiently scattered conditions described in Suppose the L-ADMM algorithm @) is initialized
with Sy that satisfies

log | det $oS!| < max Tr IDS,S! — k,
] I,D ]

where II is a permutation matrix and D is a diagonal matrix with +1 on the diagonal, then we have

. 1 /(1
tzr?,mT LW, S, k) — LWy, 8y, Ay) < T (Z”(WOX - Hsu +Up - YA*HZ .

Proof sketch. The proof largely follows that of Theorem [2.1} except that in this case f is not convex.
However, we will show that as long as the initialization S satisfies

log | det $oS! | < max Tr ITDS,S! — k,
f I,D f

then (TT)) is satisfied throughout the iterations. All we need is to prove the following lemma. O

Lemma 3.2. When running the L-ADMM iterations, if S; satisfies
log | detStSE| <Tr m)stsg —k,

for some permutation matrix Il and diagonal matrix D with +1 on the diagonal, then S;+1 also
satisfies
log | dets,+ls;'| <Tr HDsms;' —k,

The proof is relegated to the supplementary.

4 EXPERIMENTS

We now provide some numerical experiments to showcase the effectiveness of the proposed L-ADMM
for solving some special cases of (I)), in particular BCA, SCA, NCA, and ACA. All the experiments
are conducted in MATLAB on an iMac. We synthetically generate random problems. For k = 20
and n = 1000, we randomly generate the groundtruth factor matrices 8% € R¥*" and A% € R¥*¥ and
construct the data matrix X = A%S®. Elements of Ay, are independently drawn from a standard normal
distribution, while those of Sy are generated as follows:



Under review as a conference paper at ICLR 2026

10
2000 000 000 000 10000 12000 0 s 10 0 20 20 300 a0 40 450
‘‘‘‘‘‘‘‘

(a) Bounded component analysis (b) Sparse component analysis

%0 1000 1500 2000 2500

(c) Nonnegative component analysis  (d) Admixture component analysis

Figure 2: Convergence of L-ADMM in (2) for various latent component analyses models on 100
random trials.

* BCA: each S;; has 50% chance to be +1 and 50% chance uniform in [-1, 1].

* SCA: each §;; has 50% chance to be 0 and 50% chance standard normal; then each row is rescaled
to have unit ¢; norm.

* NCA: each S;; has 50% chance to be 0 and 50% chance exponential; then each row is rescaled to
sum to one.

* ACA: each §;; has 50% chance to be 0 and 50% chance exponential; then each column is rescaled
to sum to one.

Prior works have shown that each of these generative models is identifiable with very high probability,
despite n being not that big compared to the number of atoms k. Matrix X is used as input to
the L-ADMM algorithm as described in (2). Although Problem (I3) is nonconvex, as long as it is
identifiable, we know the global optimum is attained at W, == A;. As aresult, (1/2) logdet A;Ah is

the optimal value for Problem (I3)) as long as the model is identifiable, and we shall see whether the
proposed algorithm is able to attain that optimal value. Inspired by the above convergence analysis,
we check the optimality gap of the Lagrangian function values using the optimal dual variable A

—(1/2) logdetW W + Tr(S; — W,;X) A, — (1/2) log detAEAh.

Furthermore, it is easy to show that an optimal A is S;. In this simulation with known groundtruth

factors, we will use this to measure the optimality gap. The convergence behavior of 100 random
trials of the L-ADMM are shown in Figure[2} Indeed, even though we are trying to solve a nonconvex
problem (T, L-ADMM always converges to global optimum in our experiment. Each execution takes
no more than a few seconds.

5 CONCLUSION

A general framework of volume optimization-based latent component analyses problems are studied,
which includes many well-known unsupervised learning models such as dictionary learning, nonneg-
ative matrix factorization, topic modeling, etc. An algorithm based on linearized ADMM (L-ADMM)
is proposed, which admits simple update rules that are easy to implement in practice. Even though the
problem is NP-hard, we show both in theory and in practice that the proposed algorithm is extremely
effective at finding a global optimum.
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