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Abstract

Flow matching has emerged as a powerful generative modeling approach with flexible source
distribution choices. While Gaussian distributions are commonly used, the potential for
better alternatives in high-dimensional data generation remains largely unexplored. In this
paper, we propose a novel 2D simulation that captures high-dimensional geometric properties
under the interpretable 2D setting, enabling us to analyze the learning dynamics of flow
matching during training. Based on this analysis, we derive several key insights about
flow matching behavior: (1) density approximation paradoxically degrades performance
due to mode discrepancy, (2) directional alignment suffers from path entanglement when
overly concentrated, (3) Gaussian’s omnidirectional coverage ensures robust learning, and
(4) norm misalignment incurs substantial learning costs. Building on these insights, we
propose a practical framework that combines norm-aligned training with directionally-pruned
sampling. This approach maintains robust omnidirectional supervision essential for stable flow
learning, while eliminating data sparse-region initializations during inference. Importantly,
our pruning strategy can be applied to any flow matching model trained with a Gaussian
source, providing immediate performance gains without the need for retraining. Empirical
evaluations demonstrate consistent improvements in both generation quality and sampling
efficiency. Our findings provide practical insight and guidelines for source distribution design
and introduce a readily applicable technique for improving existing flow matching models.

1 Introduction

Flow Matching (FM) (Lipman et al., |2023; |Liu et al.| 2023b; |Albergo et al., |2023) is a recently introduced
approach for generative modeling that bridges ideas from Continuous Normalizing Flows (CNF) (Chen et al.,
2018; |Grathwohl et al., |2018) and diffusion models (Sohl-Dickstein et al. |2015; [Song & Ermon, 2019; Ho
et al. 2020; [Nichol & Dhariwal, |2021; [Song et al., [2021b)). The core idea involves training a vector field
so that trajectories, following an ordinary differential equation (ODE), transport samples from a simple
base distribution to a complex target distribution, offering advantages in stable training, fast inference, and
explicit likelihood estimation. Unlike diffusion models, which typically involve a fixed stochastic process that
gradually adds Gaussian noise to data and requires learning a reverse denoising trajectory, flow matching
offers complete freedom in defining the interpolation path between distributions. This flexibility not only
enables the design of more efficient and straighter trajectories but also removes any constraint on the choice
of source distribution.

This flexibility has motivated extensive research in enhancing FM performance through improved source-target
pairing strategies (Tong et al., [2024; [Pooladian et al., [2023; |Davtyan et al., [2025)) and developing straighter
probability paths (Xing et al.l 2023; [Lee et al., |2023; [Liu et al.| |2023b) to reduce trajectory curvature and
minimize function evaluations. Recent advances have leveraged prior knowledge of target distributions to
construct better-aligned source distributions (Stark et al.| [2023; |Jing et al., |2024; |Kollovieh et al., [2025),
demonstrating substantial improvements through partial target information incorporation. For multimodal
generation, recent works have exploited this source flexibility by using text embeddings directly as source
distributions (Liu et al.; 2024; He et al.} [2025).
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Figure 1: 2D simulations of flow matching. The first two are examples of naive low-dimensional flow
matching illustrations of (a) Gaussian to Gaussian and (b) 8 Gaussians to moons. Our proposed 2D simulation
for flow matching is demonstrated in (¢). Dots represent source (black), target data (blue), and generated
samples (red). Blue dashed lines show successful ODE trajectories from source to generated samples, while
red dashed lines indicate failed trajectories.

However, most existing target-aware source designs are still limited to relatively simple or low-dimensional
datasets, such as time series (Kollovieh et al., 2025 or protein-ligand interactions (Stark et al., 2023). To the
best of our knowledge, there has been little to no prior work applying them to complex, high-dimensional data
like natural images—Ilikely due to the challenging nature of such applications. Moreover, naively replacing
the standard Gaussian source with distributions from other modalities (e.g., text embeddings) often fails
to achieve stable target mappings, requiring extensive engineering as shown by prior work (Liu et al., [2024;
He et al., 2025). This raises a fundamental question: What makes deviating the source from the Gaussian
distribution so difficult, and what properties are required for a source to be advantageous in flow matching?
To answer this, we begin with an intuitive hypothesis: source distributions that more closely approximate the
density or geometric characteristics of the target distribution would lead to improved performance and faster
convergence.

Since learning behaviors in high-dimensional datasets are difficult to interpret and visualize, we begin with
low-dimensional experiment that enable clear visual analysis of the underlying learning dynamics. Several
prior works have used naive low-dimensional experiments to demonstrate their effectiveness, e.g., 2D Gaussian
to 2D Gaussian in Fig. [[(a) or 8 Gaussians to moons in Fig. [[(b). However, we discover that merely
using a low-dimensionality does not reflect the intricate but essential learning dynamics that emerge only
in high-dimensional cases, and thus lessons learned from such a naive low-dimensional toy experiment do
not fully transfer to the actual applications we are interested in, usually treating high-dimensional data.
To address this, we redesign the low-dimensional experiments in Section [3to better reflect the geometric
properties by decomposing high-dimensional data through direction and norm components, as illustrated in
Fig. c). This 2D simulation allows us to more realistically analyze the learning dynamics of flow matching,
preserving the essential characteristics of high-dimensional applications while enabling clear visualization of
vector field behaviors in 2D.

Using this novel experiment framework, we examine in Section [4 how different source distribution strategies
interact with various pairing methods (independent wvs. in-batch optimal transport). This allows us to
test our intuitive hypothesis that source distributions more closely approximating the density or geometric
characteristics of the target distribution should improve performance. Specifically, we propose three ideas to
redesign the source distribution: progressively approximating the density of the target distribution (density
approzimation), designing sources based on directional information of the target distribution (directional
alignment), and aligning the expected norms of the source and target distributions (norm alignment).

From our simulation results and analysis in Sections [dland [5] we derive several critical insights that reshape our
understanding of source distribution design in flow matching: (1) Source distributions closely approximating
the target density can paradoxically degrade performance, with stronger approximations leading to worse
outcomes—a phenomenon we attribute to mode discrepancy where approximate sources omit low-density data
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modes. (2) Directional alignment strategies, while theoretically appealing, often suffer from path entanglement
due to insufficient source support and imperfect pairing, both of which hinder optimal performance. (3)
The standard Gaussian source with independent pairing demonstrates unexpected robustness through
omnidirectional coverage, while in-batch optimal transport pairing, despite its efficiency, sacrifices this crucial
omnidirectional learning. (4) Regions with sparse or missing data consistently lead to generation failures
due to insufficient supervision of the vector field during training. (5) A significant discrepancy between the
norm distributions of the source and target incurs a substantial learning cost to resolve. These patterns
hold consistently across both our controlled 2D simulations and real-world high-dimensional image datasets,
demonstrating that our framework captures fundamental dynamics of flow matching.

Our key findings suggest that an effective source distribution design should leverage specific advantages while
mitigating known weaknesses. Accordingly, we propose a new hybrid framework that combines training on a
Gaussian source with “Norm Alignment” and employing “Pruned Sampling” during inference. This approach
preserves the benefits of robust, omnidirectional learning from the Gaussian source (Finding 3) while resolving
the learning inefficiency caused by norm mismatch (Finding 5). Furthermore, Pruned Sampling directly
tackles the issue of passing through regions where the vector field is inaccurately learned (Finding 4) by
excluding sampling from data-sparse regions, thus improving the quality of the final output. Notably, Pruned
Sampling can be applied post-hoc to improve the performance of existing, pre-trained models without any
need for retraining. This provides a practical pathway to immediately upgrade a wide range of flow matching
models.

To summarize, we first propose a novel set of 2D simulation experiments designed to reveal and interpret the
complex learning dynamics of flow matching in high-dimensional settings. Through these experiments, we
derive critical findings that lead to a set of practical guidelines for source distribution design. Finally, we
propose a readily applicable pruned sampling technique that can significantly improve existing flow matching
models without the need for retraining. We believe these contributions not only advance the understanding
of the flow matching field but also suggest new directions for developing more efficient and robust generative
models.

2 Background and Related work

2.1 Flow Matching

Continuous normalizing flows (CNFs) define an ODE dx = uy(x)dt with a time-varying velocity field
u: [0,1] x RY — R? that transports an initial distribution o to a target distribution ¢; over ¢ € [0, 1]. This
ODE induces a path of densities p;(z) satisfying the continuity equation d;p;(z) + V - (pi(x) u(z)) = 0. Flow
Matching (FM) (Albergo et al.| [2023; Lipman et al.| |2023; [Liu et al., [2023b) is a simulation-free approach for
training CNFs that avoids trajectory simulation by regressing the model’s vector field to a known probability
flow. Instead of maximizing log-likelihood, FM assumes a prescribed probability path p;(z) that smoothly
interpolates from py = qo to p1 = ¢1, along with its corresponding velocity field u;(xz). The neural ODE
vg(x,t) is trained to match u.(x) via

L03(8) = Eonafo ) 0pi @) ||00(@:8) = wi(@)]|*]. (1)

FM is compatible with any interpolation path (e.g., linear or Gaussian) and enables scaling CNFs to high-
dimensional data while maintaining stable optimization. However, this objective is often intractable due to
the need to evaluate the marginal p;(z) and vector field u:(z). Conditional Flow Matching (CFM) addresses
this by introducing a latent condition z to index a family of probability paths. Instead of a single fixed
pt, CEM considers a conditional density p:(z | z) with associated vector field u(x|z). The overall path is
recovered as py(r) = E.q(2)[p:(z|2)]. The CFM objective is given by

Lerm(0) = Epq[0,1],2~q(2),0mops (2] ) [Hve(% t) — Ut(ﬂ?\z)HQ] (2)

As it satisfies VoLorm(0) = VoLrm(0) under mild conditions, optimizing Lorpy learns the correct global
flow while sampling only from simpler conditional distributions. The key practical insight of CFM is to define
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the latent variable z using the data samples themselves. In the standard independent coupling scheme, one
sets z = (zg, x1), where 2o ~ po(x) is a sample from the source distribution and z ~ p1(z) is a sample from
the target. The conditional path p:(z | o, 21) thus becomes a simple “bridge” between a single source point
and a single target point, making its path and vector field trivial to compute. Consequently, the training
process only requires the ability to sample from pg(x) and p;(x), removing any need to evaluate its probability
density (or log-density). This provides immense flexibility in the choice of py.

With this simple framework, FM is able to generate more flexible probability paths (Chen & Lipman, 2024;
Gat et al., [2024; [Stark et al., 2024; |Cheng et al., 2025; [Kapusniak et al., |2024) than diffusion models (Song
et al} 2021a; |Song & Ermon, [2019; [Song et al., |2021b; [Rombach et al.| [2022; [Dhariwal & Nichol, 2021). FM
also has been extended to various domains, including image(Esser et al.| [2024; Dao et al.| |2023; [Ren et al.,
2024)), audio (Guan et al., |2024; Liu et al.| |2023a; |Prajwal et al., |2024), video (Jin et al.,|2025; |Polyak et al.,
2024)), molecule (Dunn & Koes| [2024; [Song et al., |2023), and text generation (Hu et al.| [2024).

2.2 Optimal Transport CFM (OT-CFM)

When trained with a globally optimal coupling, the flow map learned by FM aligns with the W, geodesic
between the source and target distributions. However, in practice, CEFM typically adopts a simpler independent
coupling gind (2o, 1) = po(xo) p1(x1), which pairs each source sample g ~ pg with a randomly chosen target
sample 1 ~ p; (I-CFM). Given any coupling ¢ € II(pg, p1), where II(pg, p1) denotes the set of all valid joint
distributions with marginals py and p;, the transport cost and the optimal transport plan 7 are defined as:

C(q0) = E(zg,21)~q [||:c1 - mo||2} , 7 = argmin C(q). (3)
q€(po,p1)

The independent coupling ¢ing = po(zo)p1(z1) generally incurs a suboptimal transport cost. In this paper,
we define the excessive cost relative to the optimal transport plan 7 as the Wasserstein coupling gap:

Aw = C(qind) — C(7T) > 0. (4)

This gap quantifies the degree of misalignment between the randomly paired paths and the true geodesic
paths. A large gap forces the learned flow to exhibit unnecessary curvature, deviating from the straightest
possible transport map, which can in turn increase gradient variance and hinder training efficiency. To
mitigate this issue, mini-batch optimal transport (BatchOT or OT-CFM) (Pooladian et al., |2023; Tong et al.,
2024) selects, at each training step, the permutation that best matches the B source samples to the B target
samples, yielding a locally optimal Wasserstein coupling. Because this permutation is recomputed for each
mini-batch, the alignment does not persist across iterations, which can limit long-term convergence benefits.

2.3 Alternative Source Distributions

Target-Approximating Source Distribution. TSFlow (Kollovieh et al., [2025) extends target-
approximating source distributions to time series forecasting, integrating Gaussian Process priors within CFM
to align source distribution with temporal target data structure. HarmonicFlow (Stark et al.| 2023)) employs
physics-based priors for protein-ligand docking through 3D geometric constraints, utilizing protein backbone
torsion-angle distributions to preserve SE(3)-equivariant properties. AlphaFlow (Jing et al., 2024) learns
directly from PDB structural databases, replacing Gaussian noise with experimentally observed distributions
to model biomolecular conformational variability. While promising, these approaches remain limited to simple
domain-specific distributions and low-dimensional spaces.

Non-Gaussian Source in Cross-Modal Generation. CrossFlow (Liu et al. [2024) enables direct
mapping from text to image embeddings using discrete language spaces as source distributions, overcoming
traditional Gaussian space constraints. FlowTok (He et al., [2025) constructs a shared text-image token
space by transforming Vision Transformer patch tokens into quantized discrete spaces, redefining image
generation as 1D token sequence generation. However, these approaches require substantial engineering for
source-target alignment, suggesting naive replacements may create more problems than solutions in complex
high-dimensional data.
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2.4 Von Mises-Fisher (vMF) Distribution

The von Mises-Fisher (vMF) distribution (Fisher, [1953), denoted as vMF(u, k), provides a mathematically
principled framework for this directional concentration, defining a probability distribution on the unit
hypersphere with mean direction p and concentration parameter k. As k increases, the distribution becomes
more sharply concentrated around the mean direction u. When s = 0, the distribution reduces to a uniform
distribution over the unit sphere. This makes the vMF distribution particularly suitable for modeling
directional data or sampling unit vectors with controlled angular concentration, which is useful in flow
matching tasks where aligning the directionality of source and target samples is crucial.

3 Reuvisiting Gaussian Source Distributions for Flow Matching

The choice of the source distribution pg is a fundamental element in flow matching (Lipman et al., [2023; [Liu
et al., [2023b} [Tong et al., [2024). While the standard isotropic Gaussian distribution A/ (0, I') is widely adopted
for its simplicity and favorable mathematical properties, its optimality for complex image generation tasks
remains as an open question. In this section, we point out geometric properties of Gaussian distributions,
propose a functionally equivalent directional sampling paradigm, and derive key insights for designing effective
source distributions with 2D simulations.

3.1 High-Dimensional Geometry and Directional Decomposition

The standard Gaussian xg ~ N(0,1) € R? serves as a conventional choice for the source distribution in
generative models. In high-dimensional spaces, vast majority of independent and identically distributed
(ii.d.) Gaussian samples reside on a thin hyperspherical shell. Specifically, the Euclidean norm of z¢ follows
x-distribution: ||zg||2 ~ x(d), whose mean and variance are approximately y/d — 1/2 and 1/2, respectively.
This indicates that for a sufficiently large d, most samples lie on a hypersphere whose radius is sharply
concentrated in narrow band around y/d — 1/2. Motivated by this property, we propose the y-Sphere
decomposition, a directional decomposition scheme defined as:

rg R rsg, with 7~ x(d), sg ~U(SY™T), (5)

where U(S™ 1) denotes the uniform distribution on the unit sphere. Our x-Sphere decomposition preserves
all Gaussian statistics while explicitly factorizing each sample into an independent radius and a directional
unit vector (see the derivation in Appendix . To verify that this theoretical equivalence holds in practice,
we further measure the FID scores of generated images using different combinations of training and inference
source distributions. The result in Table [I| indicates that the samples from y-Sphere and standard Gaussian
distributions are interchangeable during both training and inference, without showing significant performance
difference. Consequently, we regard these two sampling methods as functionally equivalent throughout this

paper.

In practice, normalized data—typically shifted to zero mean and scaled to lie within [—1, 1]-tend to concentrate
within a bounded norm region, forming a thick hyperspherical shell. This enables a similar decomposition of
data point 1 = 1151 € R%, where s; € R? is the unit vector representing its direction and r; € R is the norm
of the data sample. Under this formulation, we can reasonably measure the “angular similarity” between a
sample from Gaussian and a data point using the cosine similarity, sg - s1. Viewing the data distribution
through this directional perspective reveals it as a subset of directions of a full hypersphere, a viewpoint we
explore further in Section

Table 1: FID scores under different combinations of training and inference source distributions.

Training \ Inference ‘ Gaussian  y-Sphere

Gaussian 4.40 4.29
x-Sphere 4.45 4.42
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3.2 Proposed Simulation for High-Dimensional Flow Analysis

While previous works have visualized flow matching between simple 2D distributions, there has been little
attention to understanding the learning dynamics of flow models in high-dimensional settings. [Davtyan et al.
(2025), for example, illustrates 2D Gaussian to 2D Gaussian, shown in Fig. (a). Tong et al. (2024), illustrated
in Fig. |I(b)7 visualizes the transport paths from the 8 Gaussians to moons. These settings, however, fail
to reflect the geometric properties of source and target samples and do not capture the behavior of flow
matching in high-dimensional settings. To address this gap and analyze the behavior of flow matching models
in high-dimensional settings, we propose a novel flow simulation setup that is more suitable for capturing the
geometric properties uniquely observed in high-dimensional distributions.

Specifically, we simulate high-dimensional geometric structure in 2D by sampling random directions 6 € [0, 27]
and scaling with norms from y(d) distributions (e Source) following the x-Sphere decomposition, as illustrated
in Fig. c). When analyzing flow matching with the proposed density-approximated sources and directional
sources introduced in Section [I, we normalize their mean norms to match the x-Sphere radius. This
normalization allows us to observe transport path patterns comparable to the xy-Sphere while ensuring similar
geometric properties across all source types. For the target data (e Data), we sample points along three
clusters with varying densities, reflecting the common scenario where real high-dimensional datasets scaled
to [-1,1] (e.g., CIFAR-10 with norm 27.2) typically have smaller norms than their corresponding Gaussian
sources (55.4) and reside inside the concentration shell. We train flow matching models on these geometrically
designed distributions and visualize their transport trajectories. Blue dashed lines (- - ODE trajectory) show
successful paths from source (e Source) to generated samples (e Generated), while red dashed lines (- - Bad
ODE trajectory) indicate failures. Here, we define success/failure based on whether the L2 distance from
generated samples to the nearest data point is within one unit.

To complement our primary visual analysis, we report the Normalized Wasserstein [Balaji et al.| (2019),
averaged over 10 runs, as an auxiliary measure. This metric captures how closely the generated samples
resemble the true data distribution, even when the data contains multiple modes with imbalanced proportions.
Unlike Wasserstein distance, the Normalized Wasserstein is robust to differences in mode proportions and
focuses on the structural similarity between distributions. Lower values indicate better alignment with the
true distribution. Since our setup is a controlled simulation, this metric should not be interpreted in absolute
terms. Instead, it is most meaningful when used for relative comparison within the same group of source
distributions. Additional metrics and implementation details are provided in Appendix [B!

4 Understanding Learning Dynamics of FM: Insights from 2D Simulations

Using the simulation approach proposed in Section [3.2] we conduct comprehensive experiments to verify the
source distribution strategies proposed in Section [I. Although simplified, these experiments preserve the
key geometric structures and transport dynamics of high-dimensional settings. They allow us to empirically
probe the core mechanisms behind flow matching, offering insights into what drives its success or failure
across different conditions.

4.1 Density Approximation Strategy

Recent studies (Pooladian et al., 2023; Tong et al., [2024) have shown that improving the pairing between
source and target distributions produce straighter probability flow trajectories, fewer sampling steps at
inference, and expedited training. These improvements are largely attributed to reduced transport costs
through better alignment. Motivated by these findings, we hypothesize that shaping the source distribution
to closely resemble the target distribution—while preserving the improved pairing—might further reduce
transport cost and improve generation performance.

To test our hypothesis, we first train a flow matching model, which we refer to as the density approzimator,
to transport samples from the yx-Sphere Gaussian distribution toward the target data distribution. The
density approximator is trained for different number of iterations (specifically, 200, 6k, and 10k) to achieve
progressively stronger approximations of the target distribution, and at each stage, we use the samples
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Figure 2: Visualization of flow matching with density-approximated source. (a) OT-CFM with
Approximated Source (iter 200), (b) OT-CFM with Approximated Source (iter 6000), (¢) OT-CFM with
Approximated Source (iter 10000). “Norm. W” denotes normalized Wasserstein, where a lower value indicates
better generation performance.

generated by the partially trained model as the new approximated source distribution, denoted by pg. This
approach allows us to observe how the progressively approximated source distribution pg acts as a new source
distribution for flow matching.

Contrary to our initial hypothesis that a source distribution resembling the target would improve generation
performance, we observe in Fig. [2| that more samples fall outside the data modes as the source approximates
the target data. Also, higher Normalized Wasserstein is observed when the source distribution becomes
increasingly similar to the target distribution. This indicates that the performance degrades in spite of
a better density approximation between the source and the target, implying that a more similar source
distribution might hinder accurate mode coverage and generation quality. This counterintuitive outcome
challenges our hypothesis about source distribution design in flow matching and necessitates careful analysis
of the underlying mechanism.

Mode Discrepancy. Taking a deeper look, as the source density approximator gradually learns to match
the target distribution, the approximated source py concentrate samples around each data mode (e Data).
Subsequently, the distribution is adjusted to spread outward (e Source), aligning its norm with that of the
x-Sphere source, as discussed in Section Comparing Fig. 2(a), (b) and (c), the density approximator
reflects the two dominant data modes while gradually departing from the general spherical shell structure of
the y-Sphere. However, py fails to capture the lower-left mode in sparse density regions even after 10,000
training iterations. This 2D simulation results reveal a fundamental problem that occurs in practice: any
approximated distribution py inevitably suffers from information loss, particularly in low-density regions
where several modes may be underrepresented or omitted. This inaccurate approximation creates a pairing
mismatch where certain target data points x; from underrepresented or omitted modes cannot be effectively
paired with appropriate source samples xy from the approximated source pg. We term this phenomenon
mode discrepancy. Consequently, even optimal transport pairing is forced to learn inefficient and complex
trajectories, potentially increasing the learning difficulty instead of reducing it. This analysis reveals that
mode discrepancy poses a fundamental limitation to density approximation strategies for flow matching
source distributions.

4.2 Directional Alignment Strategy

Recognizing the critical importance of preserving all data modes during approximation, we shift our focus
toward a different approach that sacrifices the norm information to better approximate data mode directions.
Specifically, we leverage x-Sphere decomposition and focus on the cosine similarity between the source unit
vector sg and the target unit vector s;. In an ideal scenario where we know all data mode directions, we
can incorporate this knowledge into our source modeling. For each data point belonging to a specific mode
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Figure 3: Visualization of flow matching with ideally aligned directional source. (a) OT-CFM with
directional source, (b) OT-CFM with tight directional source, (c) global OT Pairing with directional source.
‘Norm. W’ denotes normalized Wasserstein.

direction, we construct a y-Sphere source that maintains a cosine similarity above a threshold v with the
data (i.e., sg - s1 > 7). This approach allows us to avoid the mode discrepancy problem encountered earlier.
This directional alignment approach is visualized under our experimental setting in Fig. [3| where the source
successfully reflects all data mode directions. Combined with the improved pairing strategy, we expect this
configuration to yield optimal results.

Imperfect Pairing. However, even when using a source distribution that covers all data modes through
directional alignment and employing mini-batch OT pairing method, the configuration fails to achieve the
expected optimal performance. As shown in Fig. [B(a) and (b), we observe that points are not generated
perfectly within each data cluster—some red points scatter outside the blue target clusters. This suboptimal
behavior contrasts with the global OT-paired directional alignment source in Fig. c), where all generated
points successfully converge to their respective data clusters. These findings highlight the limitation of
mini-batch OT strategy that still falls significantly short of perfect global OT pairing.

Path Entanglement. In addition, interestingly, we observe that using a more tightly-aligned directional
source by increasing v in the directional source alignment actually leads to performance degradation, as
shown in Fig. E(b) From a geometric similarity perspective, as v approaches 1, Fig. E(b) shows that the
source distribution becomes increasingly concentrated, spreading only as much as the data itself. However,
we find that this reduction in source support adversely affects the overall performance. The underlying
cause of this phenomenon can be accounted in Fig. E(b), where paths from each source to target cluster
become heavily entangled in localized regions during generation. This excessive entanglement leads to highly
inconsistent vector field directions within local areas, making the vector field difficult to learn and instable
during optimization.

To better understand the cause of this entanglement, we provide a mathematical analysis of how the geometry
of source-target pairings changes under increased concentration of the source distribution. Consider two
target points x1, ) within the same mode cluster, with their associated source points xg, z(, drawn from the
corresponding directional source cluster. Their linearly interpolated paths are given by z; = (1 — t)zg + ta1
and z; = (1 — t)x(, + ta), respectively, with separation: d(t) = 2 — 2} = (1 — t)(xg — ) + t(x1 — ;). This
separation obeys mingejo 1||d(t)|| < [lzo — x| = O((1 — 7)'/2). Therefore, large values of vy cause the
trajectories to be nearly coincident at initialization, which in turn leads to a sharp increase in the required
local Lipschitz constant:

sin 0

2 o =1+ 0 —)7) )

Llocal

(21— o) " ( )

,  where 6 = arccos ( y ;
[z1 = mol| ||z} — g

As a result, Ljoca1 becomes larger, making the optimization increasingly unstable and slow. More detailed
derivation is provided in Appendix [C!
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Figure 4: Visualization of flow matching with different methods. (a) I-CFM with Gaussian source (b)
OT-CFM with Gaussian source (¢) I-CFM with pruned source.

These findings demonstrate that without oracle-level pairing, learning becomes significantly more difficult due
to inconsistent vector fields induced by trajectory interference. To avoid this, the source distribution must
retain the angular support sufficiently. The limitations observed here also extend to the density approximation
discussed in Section where increased approximation leads to reduced support, and imperfect pairing
continues to pose challenges.

In conclusion, contrary to our initial expectation that combining mini-batch OT with improved source approx-
imation (density or direction) would yield optimal results, our simulation reveal that increased approximation
actually leads to diminished performance due to mode discrepancy, imperfect pairing mechanisms, and
path entanglement. This counterintuitive finding underscores the delicate balance required between source
distribution design and coupling strategies in flow matching approaches.

4.3 Pairing Method Analysis

To understand how different pairing methods affect the learning dynamics of flow models, we further analyze
the generation trajectories and learning patterns of each approach.

Independent Pairing (I-CFM). The generation trajectory of I-CFM with x-Sphere Gaussian source in
Fig. a) reveals patterns that can be interpreted as a conceptually two-stage transport process. In the initial
stage, samples from the source move coarsely toward data-dense regions where the data modes are located.
After this rough transport, fine-grained adjustments are performed in the second stage, where the paths
are converged from all directions towards each mode. This occurs because the x-Sphere source distribution
provides uniform coverage across all directions. When paired independently with the target data, each data
sample receives supervision from sources distributed omnidirectionally, enabling comprehensive vector field
learning around each mode. This is clearly observed in Fig. E(a), which shows the density of trajectories
actually learned during training with independent pairing. The same principle applies to high-dimensional
Gaussians, which also provide uniform directional coverage.

Improved Pairing (OT-CFM) In contrast, the OT-CFM trajectory heatmap in Fig. b) shows a markedly

different pattern. OT-CFM uses a batch-level optimal transport pairing strategy that minimizes the transport

cost within each batch. This in-batch optimal pairing creates a more localized pairing where most source

samples are matched with the nearby target cluster. Consequently, the model learns denser and more linear

trajectories between optimally paired source and target samples. This can be seen in Fig. b)7 where many
A(

source samples follow straighter paths compared to the more curved trajectories in Fig. [4(a) produced by
I-CFM.

However, this improved path efficiency comes with a drawback. Because OT-CFM consistently pairs samples
with nearby targets, the model learns the vector field primarily along narrow, cone-shaped directions centered
around each data mode. As a result, it fails to learn the omnidirectional vector fields near the modes,



Under review as submission to TMLR

High

(a)

Figure 5: Visualization of flow trajectory heatmap. These heatmaps show the distribution of paths
learned by each model. Color intensity corresponds to trajectory density, where brighter regions indicate
higher concentrations of paths. (a) I-CFM and (b) OT-CFM.

which I-CFM captures better. This leads to insufficient learning of vector fields in broad angular directions,
especially from the origin to the data modes, as shown in the trajectory heatmap in Fig. b).

If all pairings were perfect, this focused learning approach would be both efficient and effective, as the
model could learn the vector field accurately and consistently along these specific trajectories. In practice,
however, the pairing is inevitably imperfect. When samples need to traverse these undertrained regions due
to suboptimal pairings, they lack proper vector field guidance. Consequently, these samples often stall or veer
off course, failing to reach the target data. This failure is clearly illustrated in Fig. Ekb), where multiple red
points appear stranded midway, outside the data modes. This reveals a fundamental trade-off in OT-CFM:
improved path efficiency comes at the expense of the robustness provided by omnidirectional coverage.

Low density Directions. A common observation in both Fig. [4(a) and (b) is that when samples are
initialized in low-density directions—directions where data is absent and have large angular separation from
data modes—they often fail to reach the data manifold during generation. These failed trajectories appear
as clusters of red dashed lines (- - ) near this direction. This issue arises because, interpolation paths from
directions with sparse or absent data are sampled relatively less frequently during training, leading to lower
training frequency for these regions. This is clearly visible in Fig. [5| where darker regions (such as the left and
lower left areas) indicate lower training frequency compared to other parts of the heatmap. The rarity of path
traversal during training results in insufficient supervision for the velocity field in these regions. Consequently,
the vector field in such areas becomes inaccurately learned, increasing the likelihood of generation failures
from samples initialized in low-density directions.

Building upon these insights, we experiment with a simple strategy that reflects the flow learning dynamics
observed in our simulation. By comparing the two pairing methods, we found that learning an omnidirectional
vector field around each data mode leads to a more robust velocity field. We also observed that, across all
pairing strategies, source samples from low-density directions tend to produce poor generations. Combining
these findings, we train I-CFM using the full x-Sphere source to to encourage robust and omnidirectional
learning. Then, during sampling, we prune source samples from low-density directions to avoid poorly trained
regions. This hybrid strategy, which is visualized in Fig. [d] resulted in significantly fewer failed trajectories
and improved performance by maintaining comprehensive training coverage while guiding sampling toward
more reliable paths during generation. Through this approach, we gained valuable insights that could help
identify better source distributions for flow matching models.

5 Empirical Validation on High-Dimensional Image Datasets

In this section, we extend our analysis to high-dimensional image datasets through parallel experiments
that validate the hypotheses and findings from Section 4. We investigate whether the insights from our
low-dimensional simulations transfer to real-world image generation tasks.

10
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Table 2: Comparison of Approximated Target Distribution. Unconditional generation results on
CIFARI10 using different source distributions. All models are trained with OT-CFM (Tong et al., [2024]).

| Gaussian | DCT | GMM-1 GMM-2 GMM-10 | CNF
FID | | 440 | 4.20 | 1175 12.49 1211 | 17.18

5.1 Density Approximation Strategy

In Section [4.1] we examined the intuitive hypothesis that using source distributions that better approximate
the target distribution’s density would improve the efficiency and performance of flow matching through
our 2D simulations. Our findings revealed that density-approximated sources introduce mode discrepancy
issues that hinder effective training and yield inferior performance compared to baseline. To evaluate whether
this conclusion in 2D simulation can be generalized to high-dimensional real-world datasets, we investigate
three progressively expressive approximations to the target distribution and assess their impact on flow
matching performance and training dynamics. To evaluate progressively stronger approximations to the
target distribution, we employ the following density approximation methods:

« Discrete Cosine Transform (DCT) (Ahmed et all [1974; Strang, [1999), commonly used in image
compression (e.g., JPEG (Wallace, |1992)), separates spatial frequencies of the image, discarding high
frequency components that are less perceptible to humans (Wang et al., [2004). Inspired by this, we apply
DCT filtering to Gaussian source to remove less prominent high-frequency components of the target
distribution. See Appendix [D]for more details.

e Gaussian Mixture Model (GMM) (Reynolds et al.l |2009) approximates a complex distribution
by fitting multiple Gaussians. We train GMMs with 1, 2, and 10 components using the Expectation-
Maximization (EM) algorithm (Moon| [1996), and use these as alternative source distributions.

o Continuous Normalizing Flow (CNF) (Grathwohl et al.| [2018; |Chen et al., 2018 constructs flexible
distributions by continuously transforming a simple base density through a series of invertible mappings
parameterized by neural ODEs. Although its invertibility constraint might limit expressiveness, CNF can
still serve as a sophisticated approximation of the data distribution. We train FFJORD (Grathwohl et al.,
2018)), a popular CNF model, and use its output as the source distributions for flow matching.

As shown in Table [2, while DCT-based mild refinement improves performance compared to the Gaussian
baseline, stronger approximations to the target distribution progressively degrade performance (DCT > GMM
> CNF in terms of quality). This finding aligns with our simulation results from Section |4} where we observed
similar performance degradation with stronger density approximations.

Although high-dimensional settings make it difficult to analyze the specific underlying mechanisms, the
consistent trend across both simulations and real experiments suggests a fundamental issue with density-based
approximation strategies. Drawing from our 2D analysis, a key insight is that approximating the target
distribution inevitably leads to information loss, particularly in low-density regions. These regions tend
to be underrepresented or omitted in the support of the approximate source py. As demonstrated in our
2D simulation (Fig. E(b)), when no source sample xg ~ Pg is directionally aligned with a given target
sample z1 ~ p; (such as samples from sparse modes), even OT-based coupling produces inefficient, entangled
trajectories that increase training complexity and hurt generative performance.

5.2 Directional Alignment Strategy

In our previous analysis, we identified a fundamental limitation: approximating the target distribution’s
density inevitably leads to information loss, and using such approximations as source distributions results in
mode discrepancy, where certain data modes lack corresponding suitable samples, hindering effective training.
To address this challenge, we propose a directional alignment strategy that focuses on comprehensive mode
coverage, paralleling our 2D simulations in Section

11
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Table 3: Directional Alignment Performance. FID scores on CIFAR10 using Euler integration for 100
NFE, comparing standard Gaussian source with directionally-aligned alternatives.

. Oracle-vMF Kmeans-vMF Gaussian
Algorithm
k=00 Kk=3000 k=1500 k=1500 k=900 k=300 ~=100 k=50 (k=0)
OT-CFM 0.74 1.98 2.86 7.11 5.86 4.64 4.22 4.15 4.40

We find that the FID between normalized and original data is only 0.29, demonstrating that directional
information is the key factor for generation quality. Based on this insight, rather than attempting to
match the complete target density—which suffers from information loss in sparse regions—we focus on
preserving directions where target data exists while removing directions without data. This approach
prioritizes directional information of data modes while ignoring norm information, thereby avoiding the mode
discrepancy problems inherent in density approximation strategies.

To obtain a distribution aligned with target directions, we leverage the y-Sphere decomposition introduced in
Section [3.I] and vMF distribution. This allows us to approximate directional pairing by generating source
samples o that are directionally aligned with each target sample x1. The specific sampling strategy follows:

xo = 10, with 7~ x(d), so ~ VMF(p(z1), k(1)), (7)

where the vMF’s mean direction p(x;) aligns the direction of xy with 1, while the probabilistic radius r
and concentration parameter k(1) enable probabilistic rather than deterministic pairing, providing robust
alignment through controlled variability.

5.2.1 Oracle Approach

To investigate the potential performance when sampling is focused on directions where data actually exists, we
design an oracle pairing experiment. In this oracle scenario, the vMF mean direction is set to each normalized
data point, and varying  values control the tightness of pairing between source and target samples. This
experimental setting closely corresponds to the ideal scenario illustrated in our 2D simulation (Fig. E(c))
When k approaches infinity, zg and x; become directionally identical, reducing the task to simple norm
matching. Conversely, when xk = 0, the distribution becomes equivalent to Gaussian according to Section

As shown in Table 3, while x approaching infinity yields FID scores near zero, this result is trivial since it
merely reproduces the training data with norm scaling. More importantly, at reasonable x values (1500,
3000), we observe that multiple generations from the same vMF (uy, k) distribution produce images that are
structurally similar yet vary in fine details. This demonstrates that the model learns to generate diverse
samples around each data point rather than simply memorizing individual training examples (see Fig. |z
in appendix). Even under oracle conditions, the model generates novel images not present in the original
distribution, confirming the potential of directional alignment strategies.

However, this approach has a critical limitation: it requires storing the entire training dataset to generate
corresponding direction-aligned source samples, making it impractical for large-scale applications.

5.2.2 Clustering-based Approach

The oracle pairing method, while effective, is impractical due to its massive storage requirements. To address
this, we propose a more scalable alternative: clustering-based pairing. This method approximates the oracle
setup by grouping similar data points and assigning them a shared source distribution, drastically reducing
the computational and storage overhead.

The process is straightforward. First, we partition the normalized target data into K groups using spherical
K-means clustering (MacQueen, [1967). For each of the K clusters, we then construct a vMF distribution
as vVMF(c;/||c; |, ), where ¢; is the centroid of cluster j, and sample source points following Eq. (7). Each
target sample x; is then paired with a source sample zy drawn from the vMF corresponding to its assigned
cluster. While this pairing is suboptimal compared to the oracle pairing, it offers a practical compromise
between random Gaussian pairing and perfect directional alignment with proper K and k.

12
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In Table [3, we benchmark the performance across a range of concentrations x, fixing K = 3 found by an
elbow study with silhouette scores. As the concentration parameter x decreases, each distribution covers a
broader angular range. When k = 0, the distribution becomes nearly identical to Gaussian, and generation
performance is correspondingly same. For moderately concentrated ranges of x € {50,100}, we observe
notable performance improvements. At high concentrations (k > 300), however, performance drops below
that of the the Gaussian baseline. This degradation, similar to what we observed in Fig. b), stems from path
entanglement due to support deficiency as discussed in Section When the source distribution becomes
too concentrated, trajectories from nearby source points become entangled, making the vector field difficult
to learn and causing training instability.

This finding highlights a fundamental trade-off: while directional alignment offers advantages, the source
distribution must retain sufficient angular support to avoid trajectory interference. Without oracle-level
pairing that guarantees consistent and perfect alignment, overly concentrated distributions create more
problems than they solve, confirming that robust flow learning requires balanced coverage rather than extreme
concentration.

6 Proposed Method

In this section, we introduce two complementary strategies based on previous findings. We first propose
“Pruned Sampling”, which creates a more efficient source distribution by identifying and removing directions
that are directionally irrelevant to the target data. We then introduce “Norm Alignment” to resolve the scale
mismatch between the source and target distributions. By creating a data-informed source, these methods
improve the performance and stability of flow matching models without requiring architectural changes or
retraining.

6.1 Pruned Sampling

Our previous experiments showed that we need to maintain sufficient support, but it is difficult to determine
how much support is needed. Instead of attempting to find this amount, we propose the opposite strategy:
pruning the Gaussian. The core idea is to start with a Gaussian source that covers all directions, then identify
and prune away regions that are directionally irrelevant to the target data. By removing directions where
data is absent, we can adjust the source distribution to better align with the target manifold.

While several approaches can be employed to identify directions where data is absent or sparse, we utilize
Principal Component Analysis (PCA) (Pearson, 1901) for simplicity. Specifically, given a dataset D =
{z;}¥, € R%, we first Ly-normalize each sample by #; = z;/||z;||2 and compute an orthonormal basis
V = [v1,...,vq] € R¥? via PCA, where the basis vectors are ordered by their corresponding eigenvalues
in descending order. To account for directional symmetry, we construct an extended basis by including the
opposite directions:

V;&xt = [vlw"vvdavd+17"'7v2d] € RdX2d7 (8)

where vi_g = —v for k = d+1,...,2d. For every basis vector vy € Viy, we measure the largest cosine
similarity v = max;(vg, &;) for k =1, ..., 2d. Directions with a low 7 indicate that they are remote from the
data distribution. We denote a set of such basis vectors R = {v € Voxt : 1+ < 7}, where 7 is a hyperparameter
indicating the threshold. We then apply rejection sampling; that is, we sample x¢ ~ A (0, I) and retain it and
only if maxven@, xo/ ||:c0||2> < 7, where 7. >7 provides a more conservative margin to prevent potential
support deficiency in critical directions. Detailed experimental settings can be found in Appendix [E]

Based on this approach, we compare three strategic approaches: (i) Gaussian—Gaussian, where the model is
trained and sampled from the complete Gaussian distribution; (ii) Pruned—Pruned, which involves training
and sampling exclusively from directions that meet the pruning criteria; and (iii) Gaussian—Pruned where
the model is trained on the complete Gaussian distribution but sampled only from its pruned subset.

Empirical results in Table E reveal unexpected patterns. The fully pruned method (ii) yields inconsistent
performance compared to the Gaussian baseline (i). While it offers marginal improvements at a high number
of function evaluations (NFE), it has minimal impact on I-CFM at low NFE and negatively affects the
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Table 4: Pruned Sampling. Comparison of FID scores for ICFM and OTCFM under different training and
inference source configurations on CIFAR10. Best scores are indicated in bold.

Method ‘ Train Source Inference Source ‘ FID (NFE=5) FID (NFE=100)

Gaussian Gaussian 34.74 4.36
I-CFM Pruned Pruned 34.71 4.17
Gaussian Pruned 28.99 3.95
Gaussian Gaussian 18.55 4.40
OT-CFM | Pruned Pruned 20.47 4.18
Gaussian Pruned 17.29 4.10

Table 5: FID scores on ImageNet64 using Euler integration for OT-CFM w/wo source Pruned.

NFE
Model Source 5 10 20 100

Gaussian  53.95 18.84 10.62 9.10

OT-CFM Pruned 49.56 16.70 9.54 8.78

performance of OT-CFM. In contrast, the hybrid method (iii) consistently outperforms the other methods
across all evaluated configurations.

Although this observation may seem counterintuitive, it aligns with our 2D simulation findings in Section [4.3
The effectiveness of the hybrid “Gaussian—Pruned” strategy stems from the distinct requirements of the
training and inference phases.

During training, leveraging the full Gaussian source is advantageous. A high-dimensional Gaussian distribution
provides uniform angular coverage, ensuring the model learns the vector field omnidirectionally around data
modes. This comprehensive training is critical for building a robust model that can generalize across diverse
initialization conditions. Conversely, restricting training to only the pruned directions (&) limits the model’s
exposure. Without supervision from the excluded directions (S?~! \ S), the model’s ability to generalize to
unseen trajectories is compromised. This limitation is particularly detrimental at low NFEs, where the model
has fewer opportunities to correct for poor initializations.

During inference, however, certain regions of the Gaussian source are suboptimal for sampling. These include
areas devoid of data and singular points equidistant from multiple data modes. Source samples (x) from
these regions are surrounded by fewer interpolation paths, leading to less frequent updates during training
(see Fig. . Consequently, the vector field near these samples is learned less accurately, making them prone
to generating erroneous outputs. Pruning these directions from source distribution during inference effectively
guides the sampling process toward more reliable paths, enhancing generation quality.

In summary, the optimal strategy involves training on the complete Gaussian distribution to ensure the
model learns a comprehensive and generalizable vector field, while sampling exclusively from the pruned
subset to avoid regions where the learned field is likely to be inaccurate.

This finding has important practical implications. Pruned Sampling can be applied as a post-processing
to any pretrained flow matching model that uses a Gaussian source distribution, requiring no retraining or
architectural modifications. We demonstrate the effectiveness and scalability of our approach across multiple
settings. In Table [5| applying Pruned Sampling to a higher-dimensional ImageNet64 pretrained model yields
consistent performance improvements, confirming the scalability of our approach. Furthermore, Table [6
shows that Pruned Sampling consistently enhances performance for both OT-CFM and I-CFM, regardless
of the number of function evaluations (NFE). By simply filtering out initialization points from data-sparse
regions during inference, existing models can achieve immediate performance improvements with minimal
computational overhead.

14
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Table 6: FID scores on CIFARI10 using Euler integration for various numbers of function evaluations (NFE) for
OT-CFM and I-CFM, comparing the baseline (Gaussian source) with our proposed method that incorporates
Pruned and/or NormAlign. Our methods are indicated in dtalics.

NFE
Train Method Source 5 10 20 40 100
OT-CFM (Baseline) Gaussian 1855 10.50 7.14 548  4.40
OT-CFM Pruned 17.29 9.34 6.39 4.80 4.11

OT-CFM 4+ NormAlign  Gaussian 24.66 11.33 6.91 5.01 4.15
OT-CFM + NormAlign  Pruned 21.96 9.81 5.95 4.57 3.87

I-CFM (Baseline) Gaussian  34.74 13.22  7.67 555 4.36
I-CFM Pruned 28.99 10.44 6.38 483 3.95
I-CFM + NormAlign Gaussian  52.23 1878 812 485 3.82
I-CFM + NormAlign Pruned 48.44 16.82 7.10 4.56 3.64

6.2 Norm Alignment Strategy

In addition to the directional considerations, we identify another fundamental disparity in flow matching:
the significant difference in scale between the source and target distributions. Flow matching models
conventionally operate between a standard Gaussian source N (0, I) and the target data distributions, creating
a substantial norm disparity that impacts model performance. The standard Gaussian source samples typically
exhibit norms of approximately v/d, while target data samples (often normalized to [—1,1]%) possess norms
considerably smaller. This disparity necessitates significant computational resources—either in model capacity
or training iterations—to resolve, potentially diverting attention from more crucial aspects of distribution
estimation.

To address this disparity, we propose a Norm Alignment strategy. Specifically, we compute the expected norm
of the target distribution, Ey,~p, [||z1]|], and that of the source distribution, E~p,[||Zol|], which is E[x(d)]
when pg = N(0, ). We scale the target samples to x] = x1 - E[||zol|]/E[||z1]|]], placing the transformed target
distribution p} on a hypersphere with a radius matching the average norm of py. During inference, we reverse
this scaling by multiplying x1 by E[||z1||]]/E[||xol|], thus recovering the original scale of the target samples.

Aligning the average norms of source and target samples through the proportional scaling described above
yields substantial performance gains, as demonstrated in Table[6] This suggests that flow models face greater
difficulty than expected in learning to resolve norm mismatches, requiring significant computational resources
that could otherwise be devoted to more essential aspects of the generation task. However, at low numbers of
function evaluations (NFE), applying Norm Alignment can actually degrade performance. This is because,
when both source and target distributions lie on the same norm hypersphere, some transport trajectories
are restricted to move close to the surface of this hypersphere. As a result, the transport paths become
more curved, requiring a greater number of NFEs for the model to accurately follow these paths and achieve
effective transport. In contrast, without norm alignment, source samples can move more directly toward
lower-norm regions near the data manifold, resulting in straighter transport paths at low NFEs.

As a final remark, combining Norm Alignment and Pruned Sampling at NFE 100 on CIFAR10 datasets yields
substantial improvements: reducing FID by 0.67 for OT-CFM and 0.72 for I-CFM. These results highlight the
importance of addressing both directionality and norm alignment in the source distribution to fully unlock
the potential of flow matching models.

7 Conclusion

This work investigates whether alternative source distributions can outperform the standard Gaussian in
flow matching. To better understand how flow matching models learn, we propose a novel 2D simulation
designed to visualize and interpret high-dimensional behaviors in flow matching. Our simulations show strong
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agreement with actual high-dimensional results, highlighting the effectiveness of this approach for analyzing
and gaining insights into flow matching.

Our analysis reveals that intuitive strategies often fail. Density approximation approaches, using models
like GMMs or CNFs, suffer from mode discrepancy; by omitting low-density target modes, they force the
model to learn inefficient pathways. Similarly, directional alignment methods induce path entanglement when
the source becomes too concentrated, destabilizing optimization. We find that the success of the Gaussian
distribution lies in its omnidirectional coverage, which ensures robust vector field learning around all data
modes.

Building on these insights, we introduce a hybrid framework that combines Norm Alignment during training
with Pruned Sampling at inference. This preserves the robustness of Gaussian-based training while eliminating
problematic initializations from data-sparse regions. Crucially, Pruned Sampling can be applied to pre-trained
models without any retraining, offering a significant practical advantage. Our extensive experiments confirm
consistent improvements across multiple settings, demonstrating both the practical value of our insights and
the effectiveness of our readily applicable technique for advancing flow matching.
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