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Abstract

The application of deep reinforcement learning (RL) to graph learning and meta-
learning admits challenges from both topics. We consider the task of one-shot,
partially observed graph navigation, acknowledging and addressing the difficulties
of partially observed graph environments. In this work, we present a framework for
graph meta-learning, and we propose an agent equipped with external memory and
local action priors adapted to the underlying graphs. We demonstrate the efficacy of
our framework through partially-observed navigation on synthetic graphs, as well
as application to partially-observed navigation on 3D meshes, showing substantially
improvement in one-shot performance over baseline agents.

1 Introduction

Learning a general exploration strategy is a fundamental problem in AI, which requires the frame-
work of Reinforcement Learning (RL) [29, 24, 12]. In this paper, we focus on coverage as a graph
exploration problem, such that given a possibly unseen graph environment, our goal is to efficiently
visit (i.e., cover) as many new states (i.e., vertices) as possible within a time budget. We formulate the
state-coverage problem as a meta-learning task [31], where the goal is to learn a policy from a distribu-
tion of input environments that can efficiently explore and generalize to unseen environments. There
has been much work on meta reinforcement learning [10, 8], as well as using memory for partially
observed tasks [23, 11, 6], but learning on graph environments requires specific considerations.

The enormous success of Graph Neural Networks (GNN) [26, 3, 17, 7] in learning node embeddings
can be attributed in part to their explicit permutation invariance. However, we observe that navigation
objectives on graphs with indistinguishable nodes cannot necessarily be optimally solved. Including
canonical node labels guarantees that the nodes are distinct, but with canonical labels GNNs no longer
guarantee permutation invariance [22]. Furthermore, although there exist networks with multiscale
dependence on the graph structure [4], partial observability enforces a bound on the GNN spatial
width and stymies direct dependence on non-local features. To address these issues, we summarize
the main contributions:

• We propose memory-augmented meta-RL for navigation on unseen graphs.
• We introduce an external memory adapted to the graph environment, which enables a recur-

rent model with greater representational power for the task of meta-RL graph navigation.
• We introduce a local entropy prior for more efficient exploration on graphs during training.
• We perform extensive experiments and an ablation study on synthetic and real-world graph

datasets demonstrating the efficacy of our proposed model.

2 Related Work

Reinforcement Learning over Graphs. Reinforcement learning on graph environments has re-
ceived more attention recently, particularly in the setting of combinatorial optimization [2, 21].
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Recent works in this setting span numerous computational challenging problems including Traveling
Salesman [14], MAXCUT [1, 35], and community detection [33] among others. Our setting departs
from most combinatorial optimization problems in the assumptions of partial observability and locally
determined action space. Most similar to our work is a study of transferable graph exploration [6],
although their work mainly concerns learning with an action space independent of the graph structure,
and therefore the memory of a regular LSTM model suffices in their environments.

Memory-Augmented Neural Networks. The incorporation of deep learning with an external
memory has been well-studied [11]. In reinforcement learning, recurrent parameterizations are
well-suited for partially observed MDPs [13]. Our work considers two separate notions of memory,
namely spatially adapted memory for reinforcement [23], and memory empowering graph neural
networks [15]. Our proposed memory generalizes both notions, defining a time-dependent embedding
over arbitrarily structured graphs.

3 Proposed Framework

3.1 Graph Reinforcement Environment

Our setting concerns meta-learning a policy to effectively explore/navigate unseen graphs, where the
full structure of the graph is not observed and rather needs to be explored by the agent. Formally, we
define the POMDP as follows: for a given graph G = (V,E), the state space and action spare are
given by S = A = V , with deterministic dynamics that only allow for transitions between adjacent
vertices. The reward function introduces partial observability into the problem, with positive reward
for visiting a node for the first time in an episode, and small negative reward for each timestep. For
our experiments we use +1 and −0.1, respectively.

This setup characterizes the graph environment for a single graph, while our ultimate
goal is to train an agent that can effectively one-shot navigate an unseen graph. For-
mally, for an input distribution of graph environments G, we are interested in the objective
maxπ EG∼G,τ∼π,PG

[∑T
i=0RG(si, ai, si+1)

]
where RG and PG denote the reward function and

dynamics of G, and we use τ ∼ π, PG to indicate the dependence of the trajectory on the policy and
the dynamics of the sampled graph. This objective doesn’t assume “rapid learning" as in MAML [10],
but only that the learned policy will be run on unseen test graphs without further conditioning.

3.2 External Graph Memory

Neural Network Architecture. We first characterize the memoryless neural network that parameter-
izes our policy π and value function V . For compactness, we assume bias terms are subsumed in the
respective weight matrix. Consider a graph environment given by G with n = |V | vertices. By abuse
of notation, we will also use s to denote the initial state embedding given by s ∈ Rn×k where each
node possesses k features (one of which indicates the agent’s current location). Then the intermediate
embedding is defined through a graph neural network (GNN): φ(s) = GNN

(
A,GNN(A, s)

)
.

We point out this embedding is also a matrix of node embeddings, namely φ(s) ∈ Rn×h1 , where
h1 is a hidden dimension. The graph neural network architecture is given by a multi-headed graph
attention network [30] with skip connections from the input. Given this shared embedding, we further
choose weights W1 ∈ Rh2×h1 , w2 ∈ Rh2 , W3 ∈ Rh3×h1 , W4 ∈ Rh4×h3 , w5 ∈ Rh4 . Now, for
an activation function σ and self-attention pooling operator POOL [19] over node embeddings, we
define,

log π(·|s) = wT2 σ
(
W1 φπ(s)

T
)
, V (s) = wT5 σ

(
W4 σ

(
POOL(W3 φV (s)

T )
))

(1)

where for this model φπ = φV = φ. Furthermore, for simplicity we explicitly enforce that
π(·|s) is only supported on the set N(s), as all other actions do not move the agent. With these
parameterizations, we train using the PPO algorithm [28].

2



We now characterize the model using external graph memory. The recurrent model conditions the
state embedding φ on an external memory embedding M ∈ Rn×hM . Therefore φ now depends on
the entire trajectory: we characterize the time-dependent update as M0 = 0 and

r = GNN
(
A,GNN(A, [Mt|s])

)
M̃t+1 = GRU(r,Mt)

(Mt+1)v =

{
(Mt)v If v /∈ {s ∪N(s)}
(M̃t+1)v If v ∈ {s ∪N(s)}

ψ(s,Mt) = [φ(s)|Mt+1] (2)

In other words, after reading global information into a matrix r, we apply a Gated Recurrent Unit [5]
to locally update our memory embedding, i.e. we only update the rows of Mt+1 corresponding to
vertices in a 1-hop neighborhood of s. For simplicity the GRU cells above share weights. We also
mention that for the recurrent model we choose φπ = ψ but keep φV = φ, as we observed more
instability when the value function was allowed to depend on the memory embeddings. The principle
of using an external and shaped memory was explored in the work of [23]. However, their method
was restricted to 2D and 3D grids, requiring a notion of global coordinates which isn’t present for
experimental settings, and isn’t present for graphs in general.

Entropy Regularization. In order to ensure adequate exploration during training, the PPO objective
is typically augmented with an entropy regularizer. We incorporate this term by learning a stochastic
policy π and adding−λEτ∼π,s∼τ [H(π(·|s))] to our loss, whereH(p) = −

∑n
i=1 pi log pi. However,

if our graph has bounded maximum degree, then the set of legal actions at any state will be significantly
smaller than the set of all actions.

We address this mismatch by instead minimizing the KL divergence between π(·|s) and an appropriate
prior distribution Qs. Of course, for the choice Qs(a) ∝ δa∈N(s) where N(s) is the neighborhood of
s, this objective is equivalent to maximizing entropy up to a constant term, but we may consider other
priors which encourage more efficient exploration of the environment.

For example, in continuous domains, the work in [20] uses an Ornstein-Uhlenbeck process to
encourage exploration with a consistent direction over time. As a simple analogue on graphs, we
consider the prior Qs(a) ∝ δa∈N(s) + αδa=s̃, where s̃ is the state immediately previous in the
current trajectory and α is a hyperparameter. Choosing negative α induces a prior that discourages
backtracking, which will naturally encourage faster mixing.

4 Experiments

Synthetic Datset. Our experiments seek to understand the impact of our contributions and the
various choices in the proposed model, namely an external graph memory and a local relative entropy
prior. We include node level features indicating the agent’s current node, the nodes visited during the
episode, and a normalized timestep.

We will nevertheless refer to the model equipped with these features, but without the graph-adapted
memory parameterization as “memoryless", as it only possesses an unlearned, binary representation
of the past visitations. The modeling choices of memory and entropy prior yield four possible models,
all of which we train and test under the same meta-learning conditions. Our implementation of PPO is
based on the code given in [18]. We generate synthetic graphs using different random graph families
(Watts-Strogatz, Erdos Renyi, Tree graphs), see Appendix A for details of the experimental setup and
the synthetic graph generation.

ModelNet Dataset. For real-world applications, the coverage reward function may be too simplistic,
since it assigns equal value to visiting each node. In practice, the value of a node may depend on its
underlying features. To that end, we consider a real-world dataset (ModelNet10) equipped with a
reward function (given explicitly in the appendix) that provides an explicit incentive to the agent to
prioritize visiting nodes near several so-called “anchors" points rather than all nodes uniformly. For
our experiments we sample three anchor points.
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Figure 1: Mean test reward over 100 held-out graphs over the four synthetics graph families. The
rewards are calculated over 5 independent runs, with confidence intervals given by normalized
standard deviation.

(a) Mean test reward over 100 held-
out graphs sampled from the ModelNet
dataset.

(b) Visualization of a ModelNet mesh
and performance of the two most ex-
treme models, memoryless and regu-
lar entropy (fourth column) vs. graph-
adapted memory and the local relative
entropy prior (fifth column).

We train on 100 graphs from ModelNet, decorated with features using a process given in the Appendix,
and test on 100 unseen graphs from the same distribution, with the episode length capped at 100
steps. The results are plotted in Figure 2a. In Figure 2b we visualize the feature-aware reward: anchor
points are white, densities are red, unvisited nodes are black, and visited nodes are yellow.

5 Conclusion

In this work, we empirically demonstrated the merit of graph-adapted memory and non-uniform
entropy priors for the task of meta-graph navigation. Our work offers a first step in understanding
the impact of RL and meta-RL in the context of graph environments, under the implicit constraints
induced by using GNNs for parameterization.

For future work, the question of how to scale RL based on graph trajectories to substantially larger
graphs remains challenging, as backpropagating through memory over the entire trajectory becomes
increasingly difficult with increased length. Additionally, there may exist more diverse choices of
local relative prior beyond controlling the degree of backtracking, which may improve performance
further.
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A Appendix

A.1 Experiment Discussion

Discussion. For the synthetic graphs, the results divide according to the sparsity of the underlying
graphs. For the sparse Watts-Strogatz and tree graphs, the model with both proposed methods
perform best, with a marked difference between the models with graph-adapted memory versus
the memoryless models. Notably, the introduction of the relative entropy prior that biases against
backtracking stabilizes the performance across different random initializations. As corroborated by
the median reward in Table 2, the recurrent model with regular entropy is capable of performing
similarly to the recurrent model with relative entropy. But the random trajectories encouraged by
a uniform action prior can result in instability and poor performance, dramatically increasing the
normalized standard deviation of the former model.

For the dense Watts-Strogatz model and the Erdos-Renyi model, we observe that the choice of
entropy prior has significantly less impact on the performance. This is unsurprising, as increasing
the graph density implies higher average degree, and the distributional distance between the uniform
action prior and the action prior biased against backtracking decreases as the support of the action
distribution increases. However, the inclusion of graph-adapted memory still benefits the model
significantly, indicating that even in the denser regime, saving memory of the past trajectory is crucial
for efficient exploration.

Discussion. On ModelNet, even after downsampling the mesh graphs retain high density and low
diameter. Nevertheless, we see different behavior than on the dense synthetic families as a result of the
feature-dependent reward function. The choice of non-backtracking prior still improves performance,
but the distinction between memoryless and recurrent model becomes smaller. We attribute this
change to the nature of the reward function; once the agent enters the support of a truncated Gaussian,
it may greedily choose actions that most increase the density for that feature to locate the anchor
point, and therefore the region of highest reward.

In Figure 2b, we compare the visited nodes under the memoryless, uniform entropy prior model
against our proposed model. Indicated by the yellow highlighted points, the former (fourth column)
locates and effectively covers the two lower anchor points but struggles to sufficiently explore and
cover the third before the time budget is exhausted. Meanwhile, the latter (fifth column) effectively
covers all the anchors, as well as most of the graph vertices, which will possess a small positive
reward if inside the support of one of the truncated Gaussians. The agent neglects to visit nodes in
the top left which have zero density and therefore zero positive reward.

A.2 Experimental Details

(a) Random Policy
(b) Memory-less with Uni-
form Entropy

(c) Memory-based with lo-
cal entropy prior

Figure 3: Visualization of vertex coverage after a 100-step episode on a sparse Watts-Strogatz graph,
using the policy models, (a) uniformly random actions, (b) memory-less and regular entropy, and (c)
graph-adapted memory with local entropy prior. The green color indicates the starting node, the gray
indicates unvisited nodes, and the visited nodes are colored red proportional to their total number of
visits (darker red color→ more visits).
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Synthetic Graphs Experimental Setup. To test our proposed framework, we consider several
random graph families from which we sample training and test sets. Specifically, we consider 50
vertex graphs drawn from the following families:

• Sparse Watts-Strogatz graphs (Sparse WS) [32] graphs conditioned on connectedness.
• Dense Watts-Strogatz graphs (Dense WS) [32] graphs conditioned on connectedness.
• Uniformly random tree graphs [25].
• Erdos-Renyi graphs conditioned on connectedness [9].

The Watts-Strogatz graph distribution is characterized by two parameters [32], the average node
degree k and rewiring probability p, where the former primarily controls graph density and diameter.
For the sparse family we choose k = 2, p = 1 and for the dense family we choose k = 4, p = 0.1.
For the Erdos-Renyi graph we sample each edge with a uniform probability p = 0.1. Average
statistics of the four graph families, indicating their level of density, are given in Table 1. Further
characterization of this synthetic experiment, and other details of the experimental setup are given in
the supplementary materials.

Table 1: Statistics of the four synthetic graph families, averaged over 500 graphs of 50 vertices in
each graph.

Graph Family Edge Density Average Diameter
Sparse WS Graph 0.0408 17.44

Dense WS Graph 0.0816 8.15

Tree Graph 0.0400 18.87

Erdos-Renyi Graph 0.1011 5.13

Table 2: Final median test reward on four synthetic graph families, for all choices using memory &
local prior.

Graph Family Memory? Local Prior? Reward

Sparse WS Graph

7 7 24.48
7 3 25.70
3 7 36.46
3 3 38.41

Dense WS Graph

7 7 40.80
7 3 40.72
3 7 42.75
3 3 42.61

Tree Graph

7 7 22.61
7 3 22.20
3 7 36.20
3 3 38.44

Erdos-Renyi Graph

7 7 41.39
7 3 41.99
3 7 42.41
3 3 42.58

For each graph family, we sample 500 training graphs and 100 testing graphs, using the coverage
reward function as stated above, with the number of steps per episode capped at 100. The results of
the synthetic experiment over the four chosen graph families are given in Figure 1. We plot how the
test mean reward evolves during training, and test median reward for the graph families are given in
Table 2.

ModelNet Graph Experimental Setup. The ModelNet10 dataset [34] consists of meshes in 3D
space from 10 categories, equipped a simplex structure of vertices, edges, and faces. In order to
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render meshes as graph environments, we apply decimation [27] to downsample while preserving
overall shape, until the underlying graph has between 50 and 100 vertices.

In order to place meaningful features on our induced graphs, we consider the following process on
each graph:

• We sample several distinct “anchor" points from among the vertices.
• We define a truncated, isotropic Gaussian in coordinate space after normalizing the pairwise

distances, centered on each anchor point.
• For each vertex, we take as features the density under the respective Gaussian distributions.
• We further restrict the initial distribution to be uniform over all vertices except the “anchor"

points.

Assume this process induces a feature vector xv for each v ∈ V . Then we can define the feature-aware
reward function as,

R(sn, an, sn+1|τ) =
{
−0.1 sn+1 ∈ τ
−0.1 + 1Txsn+1 otherwise

(3)

The ModelNet meshes are explicitly processed as follows:

• Discard meshes with over 1000 points

• Apply a decimation algorithm [27] to reduce to approximately 100 vertices, discarding
meshes with vertex counts outside the range [50, 100]

• Extract the graph induced by the largest connected component of the decimated mesh

• On three random, distinct vertices, define a standard Gaussian distribution on normalized
3D coordinates centered at each sampled point

• Define features on all vertices, given by their densities under the three Gaussians, clipping
densities below 10−3 to 0

Architecture and Hyperparameters. We characterize the critic, policy, and memory networks.
Given the parameterization in Section 3, we choose the attention networks in the GAT operator and
the attention POOL operator to be two layer networks, with 4 attention heads for the former. All
activations are chosen as ReLUs, and all hidden sizes are 32, excluding h1 = 64 and hM = 3.

For training, we optimize with the Adam optimizer [16], using an initial learning rate of 7 ∗ 10−4 for
the synthetic experiments and 2 ∗ 10−4 for the ModelNet experiments. The PPO clipping parameter
is 0.2, and gradients are scaled to bound their norms by 0.5. The batch size is 400, with 4 gradient
updates on each batch. Finally, α is chosen as −2.0 for the relative entropy prior model.

A.3 Additional Experiments

Comparison to Single Vector Memory Embedding. In order to compare against a simpler choice
of recurrent model, we also consider a reinforcement learning agent with a memory embedding given
as a single vector. The policy and value function are parameterized as before, but the recurrent update
utilizes a single memory embedding mt as follows:

r = GNN
(
A,GNN(A, [1mT

t |s])
)

mt+1 =
∑

v∈N(s)

GRU(rv,mt)

ψ(s,mt) = [φ(s)|mt+1] (4)

In other words, the single memory embedding is appended to every node embedding before applying
the graph convolutions, and the new memory vector is pooled from its neighbors after an update
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through a GRU. We demonstrate that this simpler implementation of memory is outperformed by the
graph-adapted memory in Figure 4.

The comparison to the single memory embedding baseline in Figure 4 on the sparser graph families
indicates the specific need for structurally determined memory. The performance of the single vector
memory model is comparable to the memoryless model, suggesting that in the absence of meaningful
features to distinguish vertices, the past trajectory cannot be effectively captured by a single vector.

Figure 4: Mean test reward over 100 held-out graphs on synthetic graph families over 5 independent
runs, comparing the proposed graph-augmented memory against a single (vector) memory embedding.
The recurrent plot is shared with Figure 1.

Additional Visualizations. We include another visualization of the ModelNet mesh visitations,
further separating the base model from our proposed model as shown in Figure 5. We also include a
visualization of the performance of several considered models in the synthetic experiment setting in
Figure 3. We characterize not just the visitation of each node but the total number of visits, noting
that repeatedly visiting a node suggests dithering behavior of the agent. We observe that dithering is
indeed a component of the random and memoryless models, leading to suboptimal navigation, while
our proposed model effectively covers nearly the entire graph.
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Figure 5: Visualization of a ModelNet mesh from the “desk" category, and the performance of the two
most extreme models, memoryless and regular entropy (fourth column) vs. graph-adapted memory
and the local relative entropy prior (fifth column).
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