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Figure 1: Comparison of visual quality and inference speed across various categories of VSR
methods. Stream-DiffVSR achieves superior perceptual quality (lower LPIPS) and maintains
comparable runtime to CNN- and Transformer-based online models, while also demonstrating
significantly reduced inference latency compared to existing offline approaches. Best and second-best
results are marked in red and

ABSTRACT

Diffusion-based video super-resolution (VSR) methods have recently demonstrated
remarkable perceptual quality; however, their reliance on future-frame information
and computationally expensive iterative denoising has restricted their application
in latency-sensitive contexts. We present Stream-DiffVSR, a causally conditioned
diffusion VSR framework designed for efficient online inference. Our method
operates strictly with past frames and integrates three key components: a four-step
distilled denoiser, an auto-regressive temporal guidance (ARTG) module that in-
jects motion-aligned temporal cues into the denoising process, and a lightweight
temporal-aware decoder with temporal processor module (TPM) that enhances
spatial detail and temporal consistency. Stream-Diff VSR processes 720p frames
in just 0.328 seconds on an RTX 4090 GPU, significantly outperforming previous
diffusion-based methods. Compared with state-of-the-art online methods such as
TMP (Zhang et al.l 2024b), Stream-Diff VSR achieves a substantial improvement
in perceptual quality (LPIPS improved by 0.095) while reducing inference latency
by more than 130X relative to previous diffusion-based VSR approaches. These
results demonstrate the potential of diffusion models for practical deployment
in time-sensitive rendering pipelines and real world video super-resolution sys-
tems. Notably, Stream-DiffVSR achieves the lowest latency ever reported among
diffusion-based VSR methods, reducing the initial delay from over 4600 seconds
to just 0.328 seconds. This makes it the first diffusion-based solution viable for
real-time online deployment.

1 INTRODUCTION

Video super-resolution (VSR) aims to reconstruct high resolution (HR) videos from low resolution
(LR) inputs and plays a critical role in applications such as surveillance, live broadcasting, video
conferencing, autonomous driving, drone imaging, and increasingly, low latency rendering workflows,
such as neural rendering and resolution upscaling in game engines and AR/VR systems where
latency-aware processing is crucial for visual continuity.
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Table 1: Comparison of diffusion-based VSR methods. We report online capability, inference
steps, runtime (FPS on 720p, RTX 4090), maximum end-to-end latency (sec), and whether each
method uses distillation, temporal modeling, or offline future frames. OOM denotes out-of-memory,
and - indicates missing public inference results. Notably, Stream-Diff VSR is the only diffusion-based
method that runs in a strictly online, past-only setting with the lowest latency.

# of FPS Max Temporal Temporal
Method Online Steps @720p latency Distill Input Decoder
StableVSR (Rota et al.|[2024) X 50 0.02 4620 X Future/Bi-dir X
MGLD-VSR (Yang et al.|[2024) X 50 0.02 218 X Future/Bi-dir v
Upscale-A-Video (Zhou et al.|[2024a) X 30 OOM - X Future/Bi-dir v
Diff VSR (Li et al.}[2025) X - - X Future/Bi-dir v
VEnhancer (He et al.||2024) X 15 OOM X Future/Bi-dir v
Stream-DiffVSR (ours) v 4 3.05 0.328 v Past-only v

Specifically, latency-sensitive processing involves two key aspects: per-frame inference time (through-
put) and end-to-end system latency (delay between receiving an input frame and producing its output).
Existing VSR methods often struggle with this trade-off. While CNN- and Transformer-based models
offer a balance between efficiency and quality, they fall short in perceptual detail. Diffusion-based
models excel in perceptual quality due to strong generative priors, but suffer from high computational
cost and reliance on future frames, making them impractical for time-sensitive video applications.

In this paper, we propose Stream-Diff VSR, a diffusion-based method specifically tailored to online
video super-resolution, effectively bridging the gap between high-quality but slow diffusion methods
and fast but lower quality CNN- or Transformer-based methods. Unlike previous diffusion-based
VSR approaches (e.g., StableVSR (Rota et al., |2024) and MGLD-VSR (Yang et al., 2024)) that
typically require 50 or more denoising steps and bidirectional temporal information, our method
leverages diffusion model distillation to significantly accelerate inference by reducing denoising steps
to just four. Additionally, we introduce an Auto-regressive Temporal Guidance mechanism and an
Auto-regressive Temporal-aware Decoder to effectively exploit temporal information from previous
frames, significantly enhancing temporal consistency and perceptual fidelity.

Fig. [I) illustrates the core advantage of our approach by comparing visual quality and runtime
across various categories of video super-resolution methods. Our Stream-Diff VSR achieves superior
perceptual quality (measured by LPIPS (Zhang et al.| [2018))) and temporal consistency, outperforming
existing unidirectional CNN- and Transformer-based methods (e.g., MIA-VSR (Zhou et al.| 2024b)),
RealViformer (Zhang & Yaol 2024), TMP (Zhang et al., 2024b))). Notably, Stream-DiffVSR offers
significantly faster per-frame inference than prior diffusion-based approaches (e.g., StableVSR (Rota
et al.;2024), MGLD-VSR (Yang et al.,|2024)), attributed to our use of a distilled 4-step denoising
process and a lightweight temporal-aware decoder.

In addition, existing diffusion-based methods, such as StableVSR (Rota et al., | 2024) typically rely
on bidirectional or future-frame information, resulting in prohibitively high processing latency that
is not suitable for online scenarios. Specifically, for a 100-frame video, StableVSR (46.2 s/frame)
would incur an initial latency exceeding 4600 seconds on an RTX 4090 GPU, as it requires processing
the entire sequence before generating even the first output frame. In contrast, our Stream-Diff VSR
operates in a strictly causal, autoregressive manner, conditioning only on the immediately preceding
frame. Consequently, the initial frame latency of Stream-Diff VSR corresponds to a single frame’s
inference time (0.328 s/frame), reducing the latency by more than three orders of magnitude compared
to StableVSR. This significant latency reduction demonstrates that Stream-DiffVSR effectively
unlocks the potential of diffusion models for practical, low-latency online video super-resolution.

To summarize, the main contributions of this paper are:

* We introduce the first diffusion-based framework explicitly designed for online, low-latency video
super-resolution, achieving efficient inference through distillation from 50 denoising steps down to
4 steps.

* We propose a novel Auto-regressive Temporal Guidance mechanism and a Temporal-aware De-
coder to effectively leverage temporal information only from past frames, significantly enhancing
perceptual quality and temporal consistency.

» Extensive experiments demonstrate that our approach outperforms existing methods across key
perceptual and temporal consistency metrics while achieving practical inference speeds, thereby
making diffusion-based VSR applicable for real-world online scenarios.
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To contextualize our contributions, Table E] compares recent diffusion-based VSR methods in terms
of online inference capability, runtime efficiency, and temporal modeling. Our method uniquely
achieves online low-latency inference while preserving high visual quality and temporal stability.
This substantial latency reduction of over three orders of magnitude compared to prior diffusion-based
VSR models demonstrates that Stream-Diff VSR is uniquely suited for low-latency online applications
such as video conferencing and AR/VR.

2 RELATED WORK

Video Super-resolution. VSR methods reconstruct high-resolution videos from low-resolution inputs
through CNN-based approaches (Xue et al.,[2019;|Tian et al., 2020; [Wang et al.,|2019;|Chan et al.,
2021;2022a)), deformable convolutions (Tian et al.,[2020; [Dai et al., 2017 Zhu et al.,2019), online
processing (Zhang et al., 2024b)), recurrent architectures (Sajjadi et al., 2018} [Fuoli et al.; 2019 Isobe
et al.| [2020; Y1 et al., 2019} |Li et al.| 2020)), flow-guided methods (Youk et al.} 2024} Guo et al.| 2024)),
and Transformer-based models (Vaswani et al., 2017} |Liang et al.| 2022bga; [Shi et al., |2022; Zhou
et al.| 2024b). Despite advances, low-latency online processing remains challenging.

Real-world Video Super-resolution. Real-world VSR addresses unknown degradations (Yang et al.|
2021} |Chan et al.| [2022b) through pre-cleaning modules (Chan et al., |2022b; |Goodfellow et al.,
2020; [Wang et al., [2021)), online approaches (Zhang & Yao, 2024), kernel estimation (Pan et al.|
20215 J1 et al.} [2020), synthetic degradations (Jeelani et al., 2023} Song et al., [2024; [Zhang et al.,
2023)), new benchmarks (Zhao et al.| 2025; |Conde et al.,|2024), real-time systems (Cao et al., 2021,
advanced GANSs (Chen et al.| [2024)), and Transformer restorers (Zamir et al.,[2022; Liang et al., 2021}
Blau & Michaelil 2018). Warp error-aware consistency (Lei et al.,[2020) emphasizes temporal error
regularisation.

Diffusion-based Image and Video Restoration. Diffusion models provide powerful generative
priors (Rombach et al., 2021} [Esser et al., 2021)) for single-image SR (Saharia et al., 2022; |Li et al.,
2022), inpainting (Lugmayr et al.| 2022} Weng et al., [2024)), and quality enhancement (Ho et al.|
2022} |Gao et al.| [2023; [Wang et al., [2024c). Video diffusion methods include StableVSR (Rota
et al., [2024), MGLD-VSR (Yang et al., [2024), DC-VSR (Han et al.| 2025), DOVE (Chen et al.,
2025)), UltraVSR (Liu et al., [2025)), Upscale-A-Video (Zhou et al.,|2024a)), Diff VSR (Li et al., [2025)),
VideoGigaGAN (Xu et al.,[2024), VEnhancer (He et al., 2024)), temporal coherence (Wang et al.,
2025)), and AVID (Zhang et al.,|2024c). Auto-regressive approaches (Sun et al.,|2025bj [Xie et al.,
2025; Liu et al.| [2024)) show promise. Acceleration techniques include consistency models (Luo et
al.,[2023}; |Geng et al.| 2024), advanced solvers (Lu et al., 2022} [Lu et al.| 2025; Zheng et al., [2023)),
flow-based methods (Liu et al., 2023} Jin et al.| [2024), distillation (Salimans & Ho, 2022;[Meng et al.,
2023 Zhou et al., 2024c} [Xie et al.,[2024), and theoretical advances (Wang et al.| 2024ajb)). Recent
image/offline distillation methods (Sun et al.| 2025a; Zhang et al., [2024a; |Wu et al.,[2024ab)) exist,
but our Stream-DiffVSR uniquely applies distillation in strict online settings with causal temporal
modeling for real-time VSR.

3 METHOD

We propose Stream-Diff VSR, a streamable auto-regressive diffusion framework for efficient video
super-resolution (VSR). The key innovation is its auto-regressive design, which explicitly enhances
temporal consistency and inference speed. Our method comprises: (1) a distilled few-step U-Net
for accelerated diffusion inference, (2) Auto-regressive Temporal Guidance that conditions latent
denoising on previously warped high-quality frames, and (3) an Auto-regressive Temporal-aware
Decoder explicitly incorporating temporal information. Together, these components enable Stream-
Diff VSR to generate stable and perceptually coherent videos.

3.1 DIFFUSION MODELS PRELIMINARIES

Diffusion Models (Ho et al., [2020) transform complex data distributions into simpler Gaussian
distributions via a forward diffusion process and reconstruct the original data using a learned re-
verse denoising process. The forward process gradually adds Gaussian noise to the initial data z,
forming a Markov chain: g(z; | x¢—1) = J\/(:rt; V91— 08 a1, ﬂtl) fort = 1,...,T, where 3
denotes a predefined noise schedule. At timestep ¢, the noised data x; can be directly sampled

from the clean data z¢ as: x; = /&y o + /1 — ay €, where e ~ N(0, 1) and oy = szl(l - Bi),

t . .
where oy = [[;_;(1 — ;). The reverse process progressively removes noise from x7, recon-
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Figure 2: Overview of Auto-regressive Temporal-aware Decoder. Given the denoised latent
and warped previous frame, our decoder enhances temporal consistency using temporal processor
modules. These module aligns and fuses these features via interpolation, convolution, and weighted
fusion, effectively stabilizing detail reconstruction when decoding into the final RGB frame.

structing the original data x( through a learned denoising operation modeled as a Markov chain,
ie, po(zo,...,or—1 | Tp) = Hthl po(xi—1 | o). Each individual step is parameterized by a
neural network-based denoising function pg(z;_1 | 7;) = N (xt,l; o (e, t), Do (t)] ) Typically,
the network predicts the noise component ey(x¢,t), from which the denoising mean is estimated
as pg(xs,t) = — (xt — oo eg(:ct,t)). Latent Diffusion Models (LDMs) (Rombach et al.}

en 1—o
2022b)) further reduce computational complexity by projecting data into a lower-dimensional latent

space using Variational Autoencoders (VAEs), significantly accelerating inference without sacrificing
generative quality.

3.2 U-NET ROLLOUT DISTILLATION

We distill a pre-trained Stable Diffusion (SD) x4 Upscaler (Rombach et al.| |2022b;a)), originally
designed for 50-step inference, into a 4-step variant balancing speed and perceptual quality. To close
the training—inference gap of timestep-sampling distillation, we adopt rollout distillation, where the
U-Net performs the full 4-step denoising each iteration until a clean latent is obtained. Detailed
algorithms and implementation are provided in the supplementary material due to page constraints.

Unlike conventional distillation that supervises random intermediate timesteps, our method applies
loss only on the final denoised latent, ensuring the training trajectory mirrors inference and improving
stability and alignment.

Our distillation requires no architectural changes. We train the U-Net by optimizing latent reconstruc-
tion with a loss that balances spatial accuracy, perceptual fidelity, and realism:

Laistill = ||Zden — Zgt]|5 + ALpips - LPIPS (D(2gen), Xgt) + AGaN - £6AN (D(Zden)) » )

where Zge, and zg are the denoised and ground-truth latent representations. The decoder D(-) maps
latent features back to RGB space for perceptual (LPIPS) and adversarial (GAN) loss calculations,
encouraging visually realistic outputs.

3.3 AUTO-REGRESSIVE TEMPORAL GUIDANCE

Leveraging temporal information is crucial for capturing dynamics and ensuring frame continuity in
video super-resolution. However, extensive use of temporal cues often introduces substantial com-
putational overhead, resulting in increased per-frame inference time and system latency. Therefore,
designing efficient online VSR systems requires a careful balance between temporal information
utilization and computational efficiency to support low-latency processing.

To this end, we propose Auto-regressive Temporal Guidance (ARTG), which enforces temporal
coherence during latent denoising. At each timestep ¢, the U-Net takes both the current noised latent
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Figure 3: Training pipeline of Stream-Diff VSR. The training process consists of three sequential
stages: (1) Distilling the denoising U-Net to reduce diffusion steps while maintaining perceptual
quality with training objective (I)); (2) Training the Temporal Processor Module (TPM) within
the decoder to enhance temporal consistency at the RGB level with training objective (3); (3)
Training the Auto-Regressive Temporal Guidance (ARTG) module to leverage previously restored
high-quality frames for improved temporal coherence with training objective (6). Each module is
trained separately before integrating them into the final framework.
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Figure 4: Overview of our pipeline. Given a low-quality (LQ) input frame, we first initialize its latent
representation and employ an autoregressive diffusion model composed of a distilled denoising U-Net,
autoregressive temporal Guidance, and an autoregressive temporal Decoder. Temporal guidance
utilizes flow-warped high-quality (HQ) results from the previous frame to condition the current
frame’s latent denoising and decoding processes, significantly improving perceptual quality and
temporal consistency in an efficient, online manner.

2, and the warped RGB frame from the previous output, £} ] = Warp(2R;, fret—1), where fre ;1
is the optical flow from frame ¢—1 to ¢t. The denoising prediction is then formulated as:

é9 = UNet(z, t, 2,°T), )
where the warped image Z; ] serves as temporal conditioning input to guide the denoising process.
We train the ARTG module independently using consecutive pairs of low-quality and high-quality
frames. The denoising U-Net and decoder are kept fixed during this stage, and the training objective
focuses on reconstructing the target latent representation while preserving perceptual quality and
visual realism. The total loss function is defined as:

LARTG = ||Zden — Zgtl|5 + ALpips - LPIPS(D(Zgen ), Xet) + AGAN * LGAN (D (Zgen)), 3)

where zg., denotes the denoised latent from DDIM updates with predicted noise €g, and zg is the
ground-truth latent. The decoder D(-) maps latents to RGB, yielding D(z4e,) for comparison with
the ground-truth image X, The latent {5 loss enforces pixel-wise alignment, the perceptual loss
ensures visual fidelity, and the adversarial loss promotes realism. This design leverages only past
frames to propagate temporal context, improving consistency without extra latency.

3.4 AUTO-REGRESSIVE TEMPORAL-AWARE DECODER

Although the Auto-regressive Temporal Guidance (ARTG) enhances temporal consistency in the
latent space, the features generated by the Stable Diffusion x4 Upscaler reside at one-quarter of the
target resolution. This resolution gap may lead to decoding artifacts or misalignment in dynamic
scenes.
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Table 2: Quantitative comparison against bidirectional/offline methods on the REDS4 dataset.
We compare CNN-, Transformer-, and diffusion-based methods on REDS4. Stream-DiffVSR achieves
superior perceptual and temporal quality with high stability across sequences. 1 indicates higher
is better; | indicates lower is better. Dir. denotes temporal direction: B for bidirectional/offline, U
for unidirectional/online. Runtime is measured per 720p frame on an RTX 4090. Latency-max
denotes the maximum end-to-end latency measured over 100-frame video sequences, providing a fair
comparison with offline methods whose initial delay scales with sequence length. tLP and tOF are
scaled by 100x and 10x. Best and second-best results are marked in red and blue.

Dir. Method PSNR? SSIMt LPIPS| DISTS| MUSIQ? NIQE, NRQM? BRISQUE| t(LP| tOF| Runtime(s)| latency-max (s)
CNN-based Methods
- Bicubic 25501  0.712  0.460 0.187 27362 7.360 3.459 60.256 21.603 4.241 -
B BasicVSR++ 32.386  0.907 0.132 0.069 67.002 3.850 6.363 38.641 9.017  2.490 0.098 9.8
B RealBasicVSR  27.042  0.778  0.134 0.065 67.033 2530 6.769 18.046 6422  4.759 0.064 6.4
Transformer-based Methods
B RVRT 32701 0911 0.130 0.067 67.251 3.793 6.366 38.038 9.133 2421 0.498 249
B MIA-VSR 32790 0912 0.123 0.064 68.140 3742 6.451 37.099 8.870 2354 0.768 76.8
Diffusion-based Methods
B StableVSR 27928 0.793 0.102 0.047 67.058 2713 6.960 16.249 5755 2.742 46.2 4620
B MGLD-VSR 2653 0749  0.151 0.065 66.081 2.972 6.701 15.291 18.139 5910 43.6 218
U Ours 27.256  0.766 0.099 0.062 65.595 3.114 7.055 17.717 4.198  3.638 0.328 0.328

Table 3: Quantitative comparison against unidirectional/online methods on the REDS4 dataset.

Dir. Method PSNRT SSIMt LPIPS| DISTS| MUSIQT NIQE, NRQM? BRISQUE| (LP| tOF| Runtime (s)} latency-max (s)|
CNN-based Methods
- Bicubic 25501  0.712  0.460 0.187 27362 7.360 3.459 60.256 21.603 4.241 - -
U TMP 30.672  0.871 0.194 0.090 63.818 4.378 5.796 43.394 10.424  2.480 0.041 0.041
Transformer-based Methods
U RealViformer 26.763  0.761 0.129 0.065 64.585 2.731 7.028 17.272 11.261 4.037 0.099 9.9
Diffusion-based Methods
U  StableVSR*  27.174 0.763  0.111 0.051 66.428  2.572 6.944 15.805 11.107  3.925 46.2 4620
8] Ours 27.256  0.766 0.099 0.062 65.595 3.114 7.055 17.117 4.198  3.638 0.328 0.328

To address this issue, we propose an Auto-regressive Temporal-aware Decoder that incorporates
temporal context into decoding to enhance spatial fidelity and temporal consistency. At timestep ¢,
the decoder takes the denoised latent z{" and the aligned feature f,_1 derived from the previous
super-resolved frame. Specifically, we compute:

)A(‘tyfrlp = Warp(xfgla fthfl)v ftfl = Enc(}z:vfrlp)v (4’)
where x?R; is the previously generated RGB output, f;. ;1 is the optical flow from frame ¢ — 1 to ¢,
and Enc(+) is a frozen encoder that projects the warped image into the latent feature space.

The decoder then synthesizes the current frame using:
xR = Decodelr(zgen7 f.1). 5)

We adopt a multi-scale fusion strategy inside the decoder to combine current spatial information and
prior temporal features across multiple resolution levels, as illustrated in Fig.[2] This design helps
reinforce temporal coherence while recovering fine spatial details.

Temporal Processor Module (TPM). We integrate TPM after each spatial convolutional layer in the
decoder to explicitly inject temporal coherence, enhancing stability and continuity of reconstructed
frames. These modules utilize latent features from the current frame and warped features from the
previous frame, optimizing temporal consistency independently from spatial reconstruction. Our
training objective for the TPM is defined as:

e 2
Lo = Lreo (35, %) + Aow || OF(, x4 ) — OF (x¢T, x§T DIl + AcanLoan(x5°) + ALppsLPIPS (), 1) (6)

where xPR € R¥*>W i the predicted frame at time ¢, and x%7 is the ground-truth frame. The

reconstruction loss L. = SmoothL1(x}*, X?T) enforces spatial fidelity, the adversarial loss Lgan
improves realism, and the optical-flow term OF(, -) reduces temporal discrepancies, yielding consis-
tent and perceptually faithful outputs.
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Table 4: Quantitative comparison against bidirectional/offline methods on the Vimeo-90K-T
dataset. Our Stream-Diff VSR consistently outperforms other unidirectional methods in perceptual
quality and temporal consistency, while also demonstrating substantially lower runtime. Runtime
denotes the average per-frame inference time (in seconds) on 448x256 resolution videos using a single
NVIDIA RTX 4090 GPU. Best and second-best results are highlighted in red and blue, respectively.

Dir. Method PSNRT SSIMt LPIPS| DISTS| MUSIQf NIQE|, NRQMt BRISQUE| t(LP, tOF| Runtime(s)| latency-max (s)}
CNN-based Methods
- Bicubic 29.282  0.864 0.297 0.209 23433 8.735 3.588 61.714 11.606  2.49 - -
B BasicVSR++ 37.479  0.956 0.098 0.117 51.940 7.077 5.509 47792 4.691 1.57 0.012 0.084
B RealBasicVSR ~ 29.388  0.857 0.156 0.149 56.986 5.069 7413 23.822 10.947  3.46 0.008 0.056
Transformer-based Methods
B RVRT 37.815 0955 0.093 0.105 49.937 7.205 5.393 48.352 4.873 1429 0.061 0.305
B MIA-VSR 37.598 0.957 0.086 0.101 51.402 7.116 5.569 47.865 4.696  1.419 0.096 0.672
Diffusion-based Methods
B StableVSR 31.823 0878 0.095 0.111 54.582 4.745 7.265 20.039 26.224  3.108 5.749 40.243
B MGLD-VSR 29.651  0.865 0.151 0.137 57.788 5.340 7.217 20.761 12.550  4.661 5.426 27.130
U Ours 32593 0.900 0.056 0.105 52755 4.403 7.672 29.297 4307 2.689 0.041 0.041

Table 5: Quantitative comparison against unidirectional/online methods on the Vimeo-90K-T
dataset.

Dir.  Method PSNRT SSIMtT LPIPS| DISTS| MUSIQt NIQE|, NRQM? BRISQUE| tLP| tOF| Runtime(s)| latency-max (s)|
CNN-based Methods
- Bicubic 29.282  0.864 0.297 0.209 23.433 8.735 3.588 61.714 11.606  2.49 - -
u TMP 36.482 0.946 0.109 0.118 48.374 7.368 5.096 49.192 4.870 1.603 0.006 0.006
Transformer-based Methods
U RealViformer  30.291  0.877 0.130 0.140 53.107 5.515 6.711 24.628 8232 2769 0.013 0.091
Diffusion-based Methods
U StableVSR* 31729  0.875 0.072 0.113 54.447 4.698 7.280 19.836 30.858 3.144 5.749 40.243
U Ours 32,593 0.900 0.056 0.105 52.755 4.403 7.672 29.297 4307 2.689 0.041 0.041

3.5 TRAINING AND INFERENCE STAGES

Our training pipeline consists of three independent stages (Fig. [3), while our inference process and the
Auto-Regressive Diffusion-based VSR algorithm are illustrated in Fig. ] and detailed in the appendix
due to page constraints, respectively.

Distilling the Denoising U-Net. We first distill the denoising U-Net using pairs of low-quality (LQ)
and high-quality (HQ) frames to optimize per-frame super-resolution and latent-space consistency.

Training the Temporal Processor Module (TPM). In parallel, we train the Temporal Processor Mod-
ule (TPM) in the decoder using ground-truth frames, keeping all other weights fixed. This enhances
the decoder’s capability to incorporate temporal information into the final RGB reconstruction.

Training Auto-regressive Temporal Guidance. After training and freezing the U-Net and decoder,
we train the ARTG, which leverages flow-aligned previous outputs to enhance temporal coherence
without degrading spatial quality. This staged training strategy progressively refines spatial fidelity,
latent consistency, and temporal smoothness in a decoupled manner.

Inference. Given a sequence of low-quality (LQ) frames, our method auto-regressively generates
high-quality (HQ) outputs. For each frame ¢, the denoising process is conditioned on the previous
frame H(Q);_1, warped using optical flow to capture temporal motion. To balance quality and
efficiency, we adopt a 4-step DDIM denoising scheme with a distilled U-Net. By leveraging motion
alignment and fewer denoising steps, our inference framework achieves stable temporal consistency
efficiently.

4 EXPERIMENT

Due to space limitations, we provide the experimental setup in the appendix.

4.1 QUANTITATIVE EVALUATION

We quantitatively evaluate Stream-Diff VSR against state-of-the-art VSR methods on benchmark
datasets (REDS4, Vimeo-90K-T, VideoLQ, Vid4), covering diverse content and motion complexities.
Tables [2| and E] summarize the results categorized by CNN-, Transformer-, and Diffusion-based
methods, as well as bidirectional (offline) and unidirectional (online) approaches. On REDS4 (Ta-
ble[2), Stream-Diff VSR achieves superior perceptual quality (LPIPS=0.099) compared to CNN (Ba-
sicVSR++, RealBasicVSR), Transformer (RVRT), and diffusion-based methods (StableVSR, MGLD-
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Figure 5: Qualitative comparison on REDS4 and Vimeo-90K-T datasets. Our method demon-
strates superior visual quality with sharper details compared to unidirectional methods (TMP (Zhang|

2024b), Real Viformer 2024)) and competitive performance against bidirectional
methods (StableVSR 2024), MGLD-VSR 2024), RVRT (Liang et al.,[2022b),
BasicVSR++(Chan et al., 2022al), RealBasicVSR(Chan et al., |2022b))). Improvements include re-
duced artifacts and enhanced temporal stability (see zoomed patches).

Figure 6: Ablation study on denoising step gio\ e 7: Ablation study on Rollout Training.
count within Stream-Diff VSR. We evaluate 50, comparison of random timestep distillation vs.
10, 1, and 4 steps. Our 4-step design achieves a - ro[lout strategy across fidelity (PSNR, SSIM)
favolrable balance between perceptual quality and , 4 perceptual metrics (LPIPS, DISTS, MUSIQ).
runtime. Training time in GPU hours on 4x A6000 GPUs.

Denoising Step(s) LPIPS| DISTS| MUSIQT NIQE| NRQM? BRISQUE| (LP| tOF| Runtime (s)}
50 0.102 0068 66.061 2804 7.026 9925 18.7983.826  3.460

Distillation Methods PSNR7 SSIM* LPIPS| DISTS] MUSIQ? GPU Hours (h)]

10 0.122 0.072  64.900 2.869 6.917 12461 9.990 3.625  0.718 Random Timestep Selection 26.27 0.743 0.099 0.071 65.981 60.5
1 0.138 0.076 63915 3.843 6.984 29.552  9.899 3.882  0.106 Rollout Distillation 2636 0.753 0.095 0.075 66.391 21
4 (Ours) 0.099 0.062 65586 3.111 7.056 17.667  4.265 3.620 0.328

VSR). It also performs competitively on temporal consistency metrics (tLP=4.198, tOF=3.638),
significantly outperforming existing unidirectional approaches. Importantly, Stream-DiffVSR at-
tains these results with a much faster inference speed (0.328s/frame), compared to diffusion-based
baselines (StableVSR: 46.2s/frame, MGLD-VSR: 43.6s/frame). Similarly, on Vimeo-90K-T (Ta-
ble [5), Stream-DiffVSR excels in perceptual metrics (LPIPS=0.056, DISTS=0.105), surpassing
recent unidirectional methods (MIA-VSR, RealViformer). Our method also substantially improves
temporal consistency (tLP=5.307, tOF=2.689) with a competitive runtime (0.041s/frame), confirming
its practicality for online applications. We additionally evaluate on VideoLQ and Vid4 to assess
robustness. Stream-DiffVSR maintains strong perceptual and temporal performance across both
datasets, demonstrating good generalization to real-world and classic benchmarks.

4.2 QUALITATIVE COMPARISONS

We provide qualitative comparisons in Fig. [5] showing that Stream-Diff VSR produces sharper details
and fewer artifacts than prior methods. Temporal consistency and flow coherence are visualized in
Fig.[T7)and Fig.[T8] where Stream-DiffVSR yields smoother transitions and reduced flickering. We
also include a qualitative comparison with Upscale-A-Video (UAV) (Zhou et al), 2024a)) in appendix.

4.3 ABLATION STUDY

To analyze the contributions of individual components in Stream-Diff VSR, we conduct ablation
studies to validate the effectiveness of each component and training strategy, including denoising step
reduction, ARTG, TPM, the variation of timepstep selections and stage combination in training. All
ablations are performed on the REDS4 benchmark to ensure consistent evaluation across perceptual
quality and temporal stability.

We perform ablation studies on training strategies in Fig. [7] and Fig. [0} For stage-wise training,
partial or joint training yields inferior results, while our separate stage-wise scheme achieves the
best trade-off across fidelity, perceptual, and temporal metrics. For distillation, rollout training
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Figure 8: Ablation study of temporal modules
in Stream-DiffVSR.

Figure 9: Ablation study on training strategy.

Component LPIPS] DISTS| MUSIQT NIQE| NRQM1 BRISQUE| tLP| tOF| WarpErr|

Per-frame 0.099 0.071 65981 3249 6969  21.655 7.261 4201 25.668
w/o ARTG 0.117  0.070 63.347 3.194 6.980 19.027  6.132 3.910 16.598
w/o TPM 0.116  0.078 67.110 3.197 7.007  20.279 12.8474.639 21.990
TPM (unwarped) 0.122  0.082 63.849 3.201 7.159 14,063 12.8465.689 17.143
Ours 0.099 0.062 65586 3.111 7.256 17.667  4.265 3.620 14.909

Stage PSNR{ SSIM{ LPIPS| DISTS| MUSIQ? (LP tOF WarpErr|

stage 1 and 2 25442 0.702 0.156 0.100 67.528 21.781 6.37 27.307
stage 1 and 3 26.307 0.753 0.121 0.077 64.902 13.094 4.09 21.689
stage 2 and 3 26.906 0.758 0.132 0.077 64.751 10.5104.225 15.726
All stage jointly 26.135 0.736 0.124 0.073 6735 17.8164.596 24.298

Sperate (Ours) 27.256 0.766 0.099 0.062 65.586 4.265 3.620 14.909

W/O warping Per-frame

W/ warping

Figure 10: Ablation study on the Temporal
Processor Module (TPM). Evaluating the im-
pact of TPM on temporal consistency. Integrat-
ing TPM effectively improves motion stability
and reduces temporal artifacts by leveraging
warped previous-frame features, highlighting its
importance for coherent video super-resolution.

1step 4-steps 10-steps

o of

Figure 11: Ablation study on inference steps.
The 4-step model achieves an optimal quality-
efficiency trade-off compared to 1-, 10-, and 50-
step variants, validating our distillation strategy.

Low resolution input 50-steps

. .,‘“ o4 nw ~\|u
Immﬂ mh_«ﬁ ﬁ LT

With ART
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Figure 12: Ablation study on Auto-regressive
Temporal Guidance (ARTG). ARTG enhances
temporal consistency and perceptual quality by
leveraging warped previous frames, reducing
flickering, and improving structural coherence.

outperforms random timestep selection in both quality and efficiency, reducing training cost from
60.5 to 21 GPU hours on 4xA6000 GPUs.

To evaluate the trade-off between runtime and reconstruction quality, we vary the number of DDIM
inference steps in our full Stream-DiffVSR pipeline while keeping all model weights fixed. As
shown in Fig. [6|and Fig. [TT} using fewer steps (e.g., 1) significantly improves efficiency but degrades
perceptual quality, while more steps (e.g., 10 or 50) enhance visual fidelity at the cost of latency.
Our 4-step configuration achieves the best balance, maintaining high perceptual quality under strong
efficiency constraints.

Fig.[8|and Fig. [I2]demonstrate the effectiveness of ARTG and TPM. The per-frame baseline refers to
inference using only the distilled U-Net, with both ARTG and the TPM disabled. In the ablation labels,
w/o indicates that the corresponding module is disabled entirely. For example, TPM (unwarp) denotes
a variant where TPM receives the previous HR frame without flow-based warping, thus removing
motion alignment from its temporal input. ARTG improves perceptual quality (LPIPS from 0.117
to 0.099) and temporal consistency (tLP100 from 6.132 to 4.265). TPM further enhances temporal
coherence through temporal feature warping and fusion, as reflected in additional improvements
in tLP100. These results highlight the complementary roles of latent-space temporal guidance and
decoder-side temporal modeling.

5 CONCLUSION

We propose Stream-Diff VSR, an efficient online video super-resolution framework using diffusion
models. By integrating a distilled U-Net, Auto-Regressive Temporal Guidance, and Temporal-aware
Decoder, Stream-DiffVSR achieves superior perceptual quality, temporal consistency, and practical
inference speed for low-latency applications.

Limitations. Stream-Diff VSR remains computationally heavier than CNN or Transformer methods.
Optical flow reliance may introduce artifacts in fast-motion scenes, suggesting alternative motion
models. Its auto-regressive design yields lower quality initial frames, indicating a need for better
initialization (visual results are provided in the appendix). Improving generalization to real-world
degradations also warrants further study.
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6 ETHICS STATEMENT

This work on video super-resolution raises several ethical considerations. While intended for ben-
eficial applications like improving video accessibility and conferencing quality, we acknowledge
that the technology could potentially be misused for deceptive content creation or surveillance
enhancement. Our training requires significant computational resources (1.26M iterations on 4x
A6000 GPUs), which has environmental implications; we will release pre-trained models to prevent
redundant training. The training datasets (REDS, Vimeo-90K, YouHQ) may contain geographic and
demographic biases that could affect performance across different groups. We transparently disclose
our method’s limitations, including first-frame quality degradation and fidelity trade-offs, to ensure
informed deployment decisions. We have no conflicts of interest to declare.

7 REPRODUCIBILITY STATEMENT

We provide complete implementation details for reproducibility. Sec.[3.5|and Appendix A.3 detail all
training hyperparameters: learning rate (5e-5), batch size (16), optimizer (AdamW, 5; = 0.9, 52 =
0.999), iterations per stage (600K/600K/60K), and loss weights. Algorithms 1 and 2 in the Appendix
provide explicit pseudocode. Our architecture modifications to StableVSR and AutoEncoderTiny are
described in Sec. and the Appendix A.2. We use publicly available datasets with standard splits
(Appendix A.1), RAFT for optical flow, and 512x512 training patches. Evaluation uses standard
metric implementations. We commit to releasing all code, trained models, and evaluation scripts upon
acceptance. Training requires 4x A6000 GPUs. Inference runs on RTX 4090 with 24GB memory for
720p video.
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A APPENDIX
A.1 EXPERIMENTAL SETUP

Training and Evaluation Setup. Stream-DiffVSR is trained in three sequential stages to ensure
stable optimization and modular control over temporal components. All evaluation experiments are
conducted on an NVIDIA RTX 4090 GPU with TensorRT acceleration. Details of the stage-wise
training procedure and configurations are provided in the appendix.

Datasets. We evaluate our method using widely-recognized benchmarks: REDS (Nah et al., 2019b),
Vimeo-90K (Xue et al., [2019), and YouHQ (Zhou et al., 2024a). REDS consists of 300 video
sequences (1280x 720 resolution, 100 frames each); sequences 000, 011, 015, and 020 (REDS4) are
used for testing. Vimeo-90K-T contains 91,701 clips (448 X256 resolution), with 64,612 for training
and 7,824 (Vimeo-90K) for evaluation. YouHQ provides 38,576 videos high-resolution YouTube
clips (up to 1080p) for training, offering diverse real-world content for training.

For testing under real-world degradation, we also evaluate on two additional benchmarks: Vide-
oLQ (Zhang et al}[2021), a no-reference video quality dataset curated from real Internet content, and
Vid4 (Liu & Sunl[2013)), a classical benchmark with 4 videos commonly used for VSR evaluation.
The evaluation results are provided in appendix.

Evaluation metrics. We assess the effectiveness of our approach using a comprehensive set of
perceptual and temporal metrics across multiple aspects. Reference-based Perceptual Quality:
LPIPS (Zhang et al., [2018)) and DISTS (Ding et al., [2020). No-reference Perceptual Quality:
MUSIQ (Ke et al., 2021), NIQE (Saad & Bovikl |[2012), CLIP-IQA (Wang et al.,2023), NRQM (Ma
et al.,[2017), BRISQUE (Mittal et al.,[2012). Temporal Consistency: Temporal Learned Perceptual
Similarity (tLP), and Temporal Optical Flow difference (tOF). Inference Speed: Per-frame runtime
measured on an NVIDIA RTX 4090 GPU to evaluate low-latency applicability. Note that while
we report PSNR and SSIM results (REDS4: 27.256 / 0.768) for completeness, we do not rely on
these distortion-based metrics in our main analysis, as they often fail to reflect perceptual quality
and temporal coherence, especially in generative VSR settings. This has also been observed in prior
work (Zhang et al.l |2018). Our qualitative results demonstrate superior perceptual and temporal
quality, as we prioritize low-latency stability and consistency over overfitting to any single metric.

Baseline methods. We evaluate our method against leading CNN-based, Transformer-based,
and Diffusion-based models. Specifically, we include bidirectional (offline) methods such as Ba-
sicVSR++(Chan et al., 2022a), RealBasicVSR(Chan et al., [2022b), RVRT (Liang et al.| [2022b),
StableVSR (Rota et al., [2024), MGLD-VSR (Yang et al.,|2024), and unidirectional (online) methods
including MIA-VSR (Zhou et al.}[2024b), TMP (Zhang et al., 2024b), Real Viformer (Zhang & Yao,
2024), and StableVSR* (Rota et al., 2024)), comprehensively comparing runtime, perceptual quality,
and temporal consistency.

A.2 ADDITIONAL IMPLEMENTATION DETAILS

Implementation Details.Our UNet backbone is initialized from the StableVSR (Rota et al., [2024)
released UNet checkpoint, which is trained for image-based super-resolution from Stable Diffusion
(SD) x4 Upscaler (Rombach et al.l[2022bza)). We then perform 4-step distillation to adapt this UNet for
efficient video SR. ARTG, in contrast, is built upon our distilled UNet encoder and computes temporal
residuals from previous high-resolution outputs using convolutional and transformer blocks. These
residuals are injected into the decoder during upsampling, enhancing temporal consistency without
modifying the encoder or increasing diffusion steps. Our decoder is initialized from AutoEncoderTiny
and extended with a Temporal Processor Module (TPM) to incorporate multi-scale temporal fusion
during final reconstruction.

A.3 ADDITIONAL TRAINING DETIALS

Stage 1: U-Net Distillation. We initialize the denoising U-Net from the 50-step diffusion model re-
leased by StableVSR (Rota et al.,|2024)), which was trained on REDS (Nah et al.,[2019a) dataset. To ac-

9*StableVSR (Rota et al., 2024) is originally a bidirectional model. We implement a unidirectional variant
(StableVSR™) that only uses forward optical flow for fair comparison under the online setting.
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celerate inference, we distill the 50-step U-Net into a 4-step variant using a deterministic DDIM (Song
et al.||2020) scheduler. During training, our rollout distillation always starts from the noisiest latent at
timestep 999 and executes the full sequence of four denoising steps {999, 749, 499, 249}. Supervi-
sion is applied only to the final denoised latent at ¢ = 0, ensuring that training strictly mirrors the
inference trajectory and reducing the gap between training and inference. We use a batch size of 16,
learning rate of 5e-5 with constant, and AdamW optimizer (51 = 0.9, 82 = 0.999, weight decay
0.01). Training is conducted for 600K iterations with a patch size of 512 x 512.The distillation loss
consists of MSE loss in latent space, LPIPS (Zhang et al., 2018]) loss, and adversarial loss using
a PatchGAN discriminator (Isola et al., 2017) in pixel level, with weights of 1.0, 0.5, and 0.025
respectively. Adversarial loss are envolved after 20k iteration for training stabilization.

Stage 2: Temporal-aware Decoder Training. The decoder receives both the encoded ground
truth latent features and temporally aligned context features (via flow-warped previous frames). The
encoder used to extract temporal features is frozen.We use a batch size of 16, learning rate of 5e-5 with
constant, and AdamW optimizer (51 = 0.9, 52 = 0.999, weight decay 0.01). Training is conducted
for 600K iterations with a patch size of 512 x 512. Loss consists of smooth L1 reconstruction loss,
LPIPS (Zhang et al.| 2018) loss, flow loss using RAFT (Teed & Deng| [2020) and adversarial loss
using a PatchGAN discriminator (Isola et al.,2017) in pixel level for training, with weights of 1.0,
0.3, 0.1 and 0.025 respectively. Flow loss and adversarial loss are envolved after 20k iteration for
training stabilization.

Stage 3: Auto-regressive Temporal Guidance. We train the ARTG module while freezing both
the U-Net and decoder. Optical flow is computed between adjacent frames using RAFT (Teed &
Dengl 2020), and the warped previous super-resolved frame is injected into the denoising U-Net and
decoder. The loss formulation is identical to Stage 1, conducted with 60K iterations. This guides
ARTG to enhance temporal coherence while maintaining alignment with the original perceptual
objectives.

Algorithm 1: Training procedure for U-Net rollout distillation.

Input: Dataset D = {(I, I)}; pre-trained VAE; 4-step noise scheduler; student U-Net with parameters 6;
discriminator D(-).
for epoch = 1to N do
for each batch (I,1) € D do
zo < VAE.encode([);
Sample € ~ N (0, I);
zZr — arzo ++1—are; // Add noise at maximum timestep T
// —— Rollout 4-step denoising —-—
ZT [ZT7 [],
for steps=1T,...,1do
€ + U—Net(zs, s);
L Zs—1 < Scheduler.step(é, s, Zs);

I+ VAE.decode(zo);

Lio  |[T—1I|I3;

Lypips + LPIPS(I,1);
LaaN softplus(—D(f));

L < Ap2 Lr2 + Avpips LLpips + Agan LGAN;
Update parameters: 6 <— 0 — nVoL;

A.4 ADDITIONAL QUANTITATIVE COMPARISON.

We provide extended quantitative results across multiple datasets and settings. Specifically, we report
both bidirectional and unidirectional performance with mean and standard deviation on REDS4
(Tables[6]and[7) and Vimeo-90K (Tables [§]and [09), while additional bidirectional results are provided
on VideoLQ (Tables[T0]and [TT])) and Vid4 (Tables[I2]and[I3). These supplementary results further
validate the robustness of our approach under diverse benchmarks and temporal settings.
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Algorithm 2: Auto-Regressive Diffusion VSR.

Notation: {I;}: Input LR frames, {;}: Enhanced frames, FlowWarp: Warping w.r.t. flow, VAE:
Auto-regressive VAE, UNet: Distilled diffusion U-Net, ARTG: Auto-Regressive Temporal guidance,
PrepareLatents: Create latent input, timesteps: {¢1,...,ta}

Input: {I;}¥ ., flows {f;_1}Y,, VAE, UNet, ARTG.

Output: {I;}Y,.

for i = 1to N do

LQ, «+ I
z; + PrepareLatents(LQ,, t)
if i > 1 then

f,zu,l — FlowWarp([AZ',l, fifl)

E;_ 1 + VAE.encode(I} )
for t € timesteps do

if ¢ > 1 then

zi «— ARTG(z;, I},)

€+ UNet(zi, t)

z; < DiffusionUpdate(é, ¢, z;)
if i > 1 then

I; + VAE.Decode(z, E;_1)
else

I + VAE.Decode(z)

return {I;}

A.5 ADDITIONAL VISUAL RESULT

Figure Figs. [I3] to[I5] presents qualitative results on challenging real-world sequences. Compared
with CNN-based (TMP, BasicVSR++) and Transformer-based (Real ViFromer) approaches, as well
as diffusion-based MGLD-VSR, our method produces sharper structures and more faithful textures
while reducing temporal flickering. These visual comparisons further demonstrate the effectiveness
of our design in maintaining perceptual quality and temporal consistency across diverse scenes.

A.6 FAILURE CASES

Figure Fig.[T9]illustrates a limitation of our approach on the first frame of a video sequence. Since
no past frames are available for temporal guidance, the model may produce blurrier details or less
stable structures compared to subsequent frames. This issue is inherent to all online VSR settings,
where temporal information cannot be exploited at the sequence start. As shown in later frames, once
temporal context becomes available, our method quickly stabilizes and reconstructs high-fidelity
details.

Table 6: Quantitative comparison against bidirectional/offline methods on the REDS4 dataset.
We compare CNN-, Transformer-, and diffusion-based methods on REDS4. Stream-Diff VSR achieves
superior perceptual and temporal quality with high stability across sequences. All values are mean
+ std over 4 videos. 1 indicates higher is better; | indicates lower is better. Dir. denotes temporal
direction: B for bidirectional/offline, U for unidirectional/online. Runtime is measured per 720p
frame on an RTX 4090.Latency-first measures first frame latency); Latency-avg is the average
per-frame latency across the entire sequence. tLP and tOF are scaled by 100x and 10x. Best and
second-best results are marked in red and blue.

Dir. Method PSNRY SSIM{ LPIPS| DISTS, MUSIQ? NIQE, NRQM? BRISQUE/, P, (OF| Runtime (s))  latency-first (s)| latency-avg (s)|
CNN-based Methods
- Bicubic 25501 £ 1,516 0712£0062 0.460+0.042 01870013 27362£2239 7.360£0.120 3459£0.177 60256+ 1828 216035817 42415765 - - -
B BasicVSR++ 323862415 0907+0029 0.132£0023 0.069%0.012 67.002+4291 385040439 63630330 3864145224 901744384 249024440  0.098 9.8 49
B RealBasicVSR 27.042% 1.865 0.778+0059 0.134+0016 0.060%0.006 67.033+4283 253040452 67690242 1804644185 642244726 475927722 0064 64 32
‘Transformer-based Methods
B RVRT 32701 £2487 0911£0027 0.130£0022 0.067%0.011 67.251£4372 37930463 6.366+0.339 38038+5779 9.133+4408 242124316 0498 4938 249
B MIA-VSR 327902535 09120028 0123+0022 0.064%0011 681403964 3742+0472 64510304 37.099£5668 88704606 23544026 0768 0.768 0.768
Diffusion-based Methods
B SwbleVSR  27.928£2411 0.793+0063 0.102£0015 0.047%0.006 67.058+3797 271340456 69600211 1624944133 5755+4.618 2742 £4.741 462 4620 2310
B MGLD-VSR 26531939 0749+0062 0.151+0.019 00650006 66.081%4027 29720386 6.701£0202 15291 +4.463 18.139£8.772 59106888 436 218 109

U Ours 27256£2.134 0766 +0.062 0.099+0.013 0.062%0.007 655953982 3.114£0.186 705540257 17.117£1.836 4.198+3795 3.638£4.855 0.328 0328 0328
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Table 7: Quantitative comparison against unidirectional/online methods on the REDS4 dataset.

Dir.  Method PSNRT SSIM?T LPIPS| DISTS | MUSIQT NIQEL NRQMt BRISQUE} (P 1OF|. Runtime (s)}  latency-first (s)| latency-avg (s)|
CNN-based Methods
- Bicubic 25501£1516 0.712+0.062 04600042 0.187£0.013 27.362£2239 7360+0.120 3459£0.177 60256+ 1.828 21.603+5817 4.241£5765 - - -
U T™MP 3067242317 0871+0.039 0.194£0.039 009020010 63.818+4.129 43780333 5796+0312 4339424442 10424 £5654 2480 £ 3852 0.041 0.041 0.041
“Transformer-based Methods
U RealViformer 267631898 0.761+0.062 0.129£0.062 0.065%0.004 64.5855.117 2731+£0.454 6356+0079 172724546 11.261£5.613 11.782+3.762 0.099 9.9 495
Diffusion-based Methods
U StableVSR*  27.174 £2.449 0.763£0.069 0.111+0.017 0.051 £0.006 66428 +4.040 257240356 6.944+0.211 15805+4.626 11.107+8293 3.925 +4.561 462 4620 2310
U Ours 27256 £2.134 0766 +0.062 0.099+0.013 0.062%0.007 65.595+3.982 3.114£0.186 705540257 17.117£1.836 4.198+3.795 3.638£4.855 0.328 0328 0328

BasicVSR++ MGLD-VSR

Video frame RealViFromer

BasicVSR++ MGLD-VSR

Video frame RealViFromer Ours GT

Figure 13: Additional visual results.
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BasicVSR++ MGLD-VSR

RealViFromer Ours

Video frame RealViFromer Ours

BasicVSR++ MGLD VSR

Figure 14: Additional visual results.

BasicVSR++ MGLD-VSR

RealViFromer Ours

' BaS|cVSR++ 'MGLD-VSR

g A - g
Video frame RealViFromer Ours

Figure 15: Additional visual results.
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& V) | AL : v
Figure 16: Qualitative comparison with Upscale-A-Video (UAV) Zhou et al.|(2024a). Due to GPU
memory limitations (OOM on an RTX 4090), we use UAV results extracted from its official project
video for qualitative comparison. Despite this constraint, our Stream-Diff VSR exhibits superior
visual fidelity and temporal consistency across frames.

Bicubic

MIA-VSR
MGLDVSR

Real ViFormer

Time
Time

[ X4Upicaler

Figure 17: Temporal consistency comparison. Qualitative comparison of temporal consistency
across consecutive frames. Our proposed Stream-Diff VSR effectively mitigates flickering artifacts
and maintains stable texture reconstruction, demonstrating superior temporal coherence compared to
existing VSR methods.

A.7 USE OF LARGE LANGUAGE MODELS.

Large language models (LLMs) were used solely as writing assistants, for example, to improve
grammiar, clarity of exposition, and formatting. No part of the research idea, experimental design,
implementation, or analysis was generated by LLMs. The authors take full responsibility for all
scientific content of this paper.

Table 8: Quantitative comparison on the Vimeo-90K-T dataset(bidirectional/offline). Our Stream-
DiffVSR consistently outperforms other unidirectional methods in perceptual quality and temporal
consistency, while also demonstrating substantially lower runtime. All results are reported as mean +
standard deviation across the Vimeo-90K-T dataset. Runtime denotes the average per-frame inference
time (in seconds) on 448x256 resolution videos using a single NVIDIA RTX 4090 GPU. Results
are measured using the official implementations where available. Best and second-best results are
highlighted in red and blue, respectively.

Dir. Method PSNRT SSIMT LPIPS| DISTS | MUSIQT NIQE| NRQM{ BRISQUE} P OF} Runtime (s)} latency-first (s)}. _latency-avg (s)}
CNN-based Methods

- Bicubic 29282+ 3.647 08640061 02970105 0209+0044 2343345633 873540397 3588£043 617144599 11606+ 7.674 249+ 1.645 - - -

B BusicVSR++ 374794724 095640033 0.098=0.04 01170024 5194046169 7.0774 1111 5509 £3514 47.792£ 12514 469145013 15740974 0.012 0.084 0.042
B RealBasicVSR  20.38842.692 0.857+0.059 0.156£0.113 0149006 56956+ 4418 506940464 74132066 2382241019 10947 +14292 346 +2.446 0.008 0056 0.028

‘Transformer-based Methods
B RVRT 1545019 095540033 0.093+£005 010520023 499376509 7.205+£1005 5393+0992 48352412147 4873£6486 1420+ 1.079 0.061 0427 0213
B MIA-VSR 37.598 4 4.724 0.957+0.032 00860039 01010025 5140246522 7116+ 1158 5.569+ 1.249  47.865+£13.17 469645874 1419 +0.997 0.096 0.096 0.096
Diffusion-based Methods

B StableVSR 31.82343.686 0.8578+£0.058 009540044 01110025 474540857 7.265+ 1427 20030+ 6.308  26.224+9.042  3.108 £ 2.794 5749 40.243 20.121
B MGLD-VSR  20.651+2354 086540057 0.151%0.076 0.137 £0.032 76 5340+£0798 72170814 2076148394 12550 £10.504 4661 £ 3.449 5426 27.130 13.560
U Ous 32.5934+3.82  0.900+0.060 0.056+0.035 0.105 +0.017 7 44034102 767241476 20297410007 4307 £4359  2.689 + 1.619 0.041 0.041 0.041
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Figure 18: Optical flow visualization comparison. Visualization of optical flow consistency across
different VSR methods. Our proposed Stream-DiffVSR produces smoother and more temporally
coherent flow fields, indicating improved motion consistency and reduced temporal artifacts compared
to competing approaches.

Ours

GT

Vide Frame Frame 1 Frame 2 Frame 3

Figure 19: Limitation on the first frame without temporal context. Our method may underperform
on the first frame of a video sequence due to the absence of prior temporal information. This limitation
is inherent to online VSR settings, where no past frames are available for guidance.

Table 9: Quantitative comparison on the Vimeo-90K-T dataset(unidirectional/online). Our
Stream-DiffVSR consistently outperforms other unidirectional methods in perceptual quality and
temporal consistency, while also demonstrating substantially lower runtime. All results are reported as
mean * standard deviation across the Vimeo-90K-T dataset. Runtime denotes the average per-frame
inference time (in seconds) on 448x256 resolution videos using a single NVIDIA RTX 4090 GPU.
Results are measured using the official implementations where available. Best and second-best results
are highlighted in red and blue, respectively.

Dir.  Method PSNR?T SSIMT LPIPS| DISTS | MUSIQT NIQE/ NRQM{ BRISQUE| [ OF | Runtime (s)].  latency-first ()|, latency-avg (s)L.
CNN-based Methods
- Bicubic 20282+ 3,647 0.864+0.061 0.207+0.105 020940044 23433 +£5633 87350397 35884043 61714+ 4599 249+ 1645 - - -
U T™P 36482 £ 4672 094640039 010940057 011840027 483744631 7.368+0.909 5.096+0.891 49.192 & 11.55 1.603 + 1.011 0.006 0.006 0.006
‘Transformer-based Methods
U RealViformer 30.291+2518 0.877+00556 0.130+0061 01404003 53.107+365 551520486 6.711£0880 20625+£7933 823246864 2769+ 1.909 0013 0.091 0.045
Diffusion-based Methods
U StableVSR®  3L720£3.698 0.875%0.061 0.095+0.049 01130026 50447+ 6008 4698+0853 7.280%+ 1444 10.836+6.131  30.858 %+ 13.166 3.144+£2.845 5749 40.243 20.121
U Ours 32593+ 352 0.900£0.060 0.056+0035 01050017 52755+£6.017 4403+102 767241476 29.207+10.007 43074359 2689+ 1.619 0.041 0041 0.041

Table 10: Quantitative comparison Table 11: Quantitative comparison against unidirec-
against bidirectional/offline methods on tional/online methods on the VideoLQ dataset.
the VideoLQ dataset. Dir. Method NIQE, NRQM{ BRISQUE/

Dir. Method NIQE NRQM BRISQUE
i Metho QFI NRQMT BRISQUEL CNN-based Methods
CNN-based Methods

B Bicubic 7945  3.151 57.944 - Bicubic 7.945 3.151 57.944
B BasicVSR++ 5909  3.745 56.800 U  TMP 6.751 3.511 59.841
B RealBasicVSR  3.973 6.095 30.158
Transformer-based Methods Transformer-based Methods
B RVRT 6.939  3.493 60.557 U RealViformer  4.070 6.066 28.266
B MIA-VSR 5.860 3.810 58.513
Diffusion-based Methods Diffusion-based Methods

B StableVSR 3.973 6.154 22973 *

B MGLD.VSR Ti6 574 50497 18] StableVSR 3.982 6.122 23.814
U  Ours 3929  6.140 23.176 U Ours 3.929 6.140 23.176
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Table 12: Quantitative comparison against bidirectional/offline methods on the Vid4 dataset.

Dir.  Method PSNRT SSIMT LPIPS| NRQMT BRISQUE| tLP| tOF| latency-max (s)J
CNN-based Methods

- Bicubic 21.719 0.582 0.512 3.429 58.680 27.819 1.145 -

B BasicVSR++ 26230  0.828 0.193 6.481 38.409 15.029 0.507 6.86
B RealBasicVSR ~ 21.963 0.597 0.210 7.122 21.804 6.630 0.9 4.48

Transformer-based Methods
B RVRT 26.377 0.826 0.229 6.006 44.667 17.146  0.507 1.743
B MIA-VSR 26.175 0.826 0.174 6.619 38.509 14.297  0.505 53.76
Diffusion-based Methods

B StableVSR 22.541 0.644 0.194 7.224 13.254 48.585 0.957 3234
B MGLD-VSR 21.983 0.605 0.243 7.129 16.525 31.744 3.152 152.6
U Ours 22.725 0.652 0.191 7.346 15.260 8.985 0.962 0.229

Table 13: Quantitative comparison against unidirectional/online methods on the Vid4 dataset.

Dir. Method PSNRT SSIMT LPIPS| NRQM?T BRISQUE| tLP| tOF|  latency-max (s))
CNN-based Methods
- Bicubic 21.719  0.582 0.512 3.429 58.680 27.819 1.145 -
U TMP 25579  0.797 0.256 5.698 46.257 14.199  0.566 0.029
Transformer-based Methods
U RealViformer  21.963 0.597 0.257 7.604 21.804 11.633  1.107 6.93
Diffusion-based Methods
U StableVSR* 22.213 0.623 0.203 7.233 11.966 59.594  1.036 3234
U Ours 22.725 0.652 0.191 7.346 15.260 8.985  0.962 0.229
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