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Abstract

We propose a framework to combine strong
non-linear expressiveness with strict SO(3)-
equivariance in prediction of the electronic-
structure Hamiltonian, by exploring the math-
ematical relationships between SO(3)-invariant
and SO(3)-equivariant quantities and their rep-
resentations. The proposed framework, called
TraceGrad, first constructs theoretical SO(3)-
invariant trace quantities derived from the
Hamiltonian targets, and use these invariant
quantities as supervisory labels to guide the
learning of high-quality SO(3)-invariant features.
Given that SO(3)-invariance is preserved under
non-linear operations, the learning of invariant
features can extensively utilize non-linear map-
pings, thereby fully capturing the non-linear pat-
terns inherent in physical systems. Building
on this, we propose a gradient-based mech-
anism to induce SO(3)-equivariant encodings
of various degrees from the learned SO(3)-
invariant features. This mechanism can incorpo-
rate powerful non-linear expressive capabilities
into SO(3)-equivariant features with correspon-
dence of physical dimensions to the regression
targets, while theoretically preserving equivari-
ant properties, establishing a strong foundation
for predicting electronic-structure Hamiltonian.
Experimental results on eight challenging bench-
mark databases demonstrate that our method
achieves state-of-the-art performance in Hamil-
tonian prediction.
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1. Introduction
“Symmetry dictates interaction” —— C. N. Yang

Electronic structure calculations provide crucial insights
into the behavior of electrons in condensed matter, form-
ing the foundation for predicting material properties such
as conductivity, magnetism, optical response, and chem-
ical reactivity, playing a key role in applications ranging
from semiconductors to renewable energy and catalysis, ul-
timately helping to reshape our lives. The core of elec-
tronic structure calculations lies in solving the Hamilto-
nian matrices, from which critical physical quantities such
as orbital energy, band structure and electronic wavefunc-
tion are induced. However, traditional Density Functional
Theory (DFT) methods (Hohenberg & Kohn, 1964; Kohn
& Sham, 1965) suffer from the extremely time-consuming
self-consistent field (SCF) algorithms used to obtain the
Hamiltonians. These algorithms involve the exhaustive it-
erative diagonalization of large matrices, with each diag-
onalization scaling with a high computational complexity
of O(N3), where N is the number of atoms in the system.
With advantages in computational complexity and gener-
alization capabilities, the deep learning paradigm has sig-
nificantly advanced physics research (Zhang et al., 2023).
In the task of predicting the Hamiltonians, deep learning
approaches (Unke et al., 2021; Yu et al., 2023b; Gong
et al., 2023; Zhang et al., 2024; Wang et al., 2024c) by-
pass the SCF process, dramatically reducing the computa-
tional complexity of solving Hamiltonians, opening up new
possibilities for analyzing extremely large atomic systems,
enabling efficient materials simulation and design that was
previously unimaginable. See Appendix B for more details.

To align with fundamental physical laws, deep learning
methods for Hamiltonian prediction must strictly adhere to
equivariance under 3D rotational transformations, i.e., el-
ements from the SO(3) group. However, it remains chal-
lenging for deep learning methods to simultaneously en-
sure strict SO(3)-equivariance and high numerical accuracy
on predicting Hamiltonians. The root cause of this prob-
lem lies in the conflict between SO(3)-equivariance and
non-linear expressiveness: specifically, directly applying
non-linear activation functions on SO(3)-equivariant fea-
tures (with degree l ≥ 1) may lead to the loss of equiv-
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ariance, while bypassing non-linear mappings severely re-
stricts the network’s expressive capabilities and thereby
lowering down the achievable accuracy. This issue is com-
monly encountered in physics-oriented machine learning
tasks that require both strict equivariance and fine-grained
generalization performance, as discussed by Zitnick et al.
(2022). Several recent methods, such as the gated mech-
anism (Weiler et al., 2018), spherical channel-based ap-
proaches (Zitnick et al., 2022; Liao et al., 2024; Wang
et al., 2024c), local coordinate strategies (Li et al., 2022),
and hybrid regression methods (Yin et al., 2024), have
been proposed to address this challenge. However, com-
bining strong non-linear expressiveness with strict SO(3)-
equivariance remains challenging for the Hamiltonian pre-
diction task, as analyzed in detail in Section 2.

To address the equivariance-expressiveness dilemma, we
make theoretical and methodological explorations on uni-
fying strict SO(3)-equivariance with strong non-linear ex-
pressiveness within the realm of deep representation learn-
ing for electronic-structure Hamiltonian prediction. We are
inspired by the insight that invariant quantities in trans-
formation (Resnick, 1991) often reflect the mathematical
nature of physical laws and can induce other quantities
with equivariant properties, and aim to extend the rela-
tionship between invariance and equivariance from spe-
cific physical quantities to hidden representations of neu-
ral networks. From the perspective of deep represen-
tation learning, the attribute that invariance is preserved
under non-linear operations is a significant advantage,
given its compatibility with non-linear expressive capabil-
ities. Built upon these insights, we propose a solution
to the equivariance-expressiveness dilemma by intensively
exploring and making use of the intrinsic relationships
between SO(3)-invariant and SO(3)-equivariant quantities
and representations: we first dedicate efforts to supervis-
ing high-quality SO(3)-invariant features with ample non-
linear expressiveness, and subsequently, we derive SO(3)-
equivariant non-linear representations and the target quan-
tities from these SO(3)-invariant ones. Specifically:

First, we propose a theoretical construct of SO(3)-invariant
quantities, namely tr(H · H†), where tr(·) signifies the
trace operation, † denotes the conjugate transpose opera-
tion, and H denotes the SO(3)-equivariant regression tar-
gets, i.e., the block of Hamiltonian matrix. A significant
advantage of these SO(3)-invariant quantities lies in the fact
that they are directly derived from the SO(3)-equivariant
target labels and can serve as unique supervision labels for
the effective learning of informative SO(3)-invariant fea-
tures that capture the intrinsic symmetry properties of the
mathematical structure of H without requiring additional
labeling resources.

Second, we propose a gradient-based mechanism to induce

SO(3)-equivariant representations for predicting the regres-
sion target H in the inference phase from high-quality non-
linear SO(3)-invariant features learned under the supervi-
sion of tr(H · H†) in the training phase. Taking SO(3)-
invariant features as a bridge, this mechanism can incorpo-
rate powerful non-linear expressive capabilities into SO(3)-
equivariant representations while preserving their equivari-
ant properties, as we prove. Compared to the gated mech-
anism (Weiler et al., 2018), the proposed mechanism nat-
urally follows the correspondence of physical dimensions
between the SO(3)-equivariant Hamiltonian and the SO(3)-
invariant trace quantity, laying a solid foundation for re-
gressing Hamiltonian with the help of supervision signals
from the trace quantity.

Experimental results demonstrate that, our TraceGrad
framework significantly improves the state-of-the-art per-
formance in Hamiltonian prediction on eight databases
from the well-known DeepH and QH9 benchmark series
(Li et al., 2022; Gong et al., 2023; Yu et al., 2023a). It
demonstrates excellent generalization performance to both
crystalline and molecular systems, covering challenging
scenarios such as thermal motions, bilayer twists, scale
variations, and new trajectories. Furthermore, as observed
from the experiments on the QH9 benchmark series, our
approach also substantially enhances the prediction accu-
racy of downstream physical quantities of Hamiltonian in-
cluding occupied orbital energy and electronic wavefunc-
tion. Moreover, our method also demonstrates superior
performance in accelerating the convergence of classical
DFT by providing predicted Hamiltonians as initializa-
tion matrices. Our leading performance comprehensively
demonstrates that our method, while satisfying SO(3)-
equivariance, possesses excellent expressive power and
generalization performance, providing an effective deep
learning tool for efficient and accurate electronic-structure
calculations of atomic systems.

2. Related Work
The SO(3)-equivariant representation learning paradigm
(Thomas et al., 2018; Geiger & Smidt, 2022) typically
developed group theory-based tensor operators, such as
linear scaling, element-wise sum, direct products, di-
rect sums, Clebsch-Gordan decomposition, and equivari-
ant normalization, to encode equivariant features. These
operators have been used to construct graph neural net-
work architectures for tasks in 3D point cloud analysis
(Fuchs et al., 2020), energy and force prediction (Liao &
Smidt, 2023), as well as Hamiltonian prediction (Schütt
et al., 2019; Unke et al., 2021; Gong et al., 2023; Zhong
et al., 2023). However, as non-linear activation func-
tions may result in the loss of equivariance, they are re-
stricted when applied to SO(3)-equivariant features with
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degree l ≥ 1. This restriction severely limits the net-
work’s capability to model complex non-linear mappings.
To alleviate this issue, Hamiltonian prediction methods
like DeepH-E3 (Gong et al., 2023) and QHNet (Yu et al.,
2023b) introduced a gated activation mechanism (Weiler
et al., 2018) that fed SO(3)-invariant features (l = 0)
into non-linear activation functions and used these features
as linear gating coefficients for SO(3)-equivariant features
(l ≥ 1), aiming to enhance their expressive power while
maintaining strict equivariance. However, these methods
only indirectly supervised the learning of SO(3)-invariant
features through SO(3)-equivariant Hamiltonians taking
SO(3)-equivariant representations as a bridge, and the lack
of direct SO(3)-invariant supervision signals may result in
insufficient learning of SO(3)-invariant features, limiting
their expressiveness to assist SO(3)-equivariant features.
Furthermore, the gated mechanism, which directly multi-
plies SO(3)-equivariant features with SO(3)-invariant fea-
tures to yield new SO(3)-equivariant features, lacks con-
sideration of the physical dimensional relationship between
the actual SO(3)-equivariant and SO(3)-invariant physical
quantities, making it difficult to achieve a perfect coupling
of their representations. See Remark 4.3 for a more com-
prehensive analysis.

In order to improve non-linear expressiveness, Zitnick et al.
(2022) proposed spherical channel methods, which decom-
posed SO(3)-equivariant features into SO(3)-invariant co-
efficients of spherical harmonic basis functions. These
SO(3)-invariant coefficients were processed by non-linear
neural networks to enhance expressiveness, with equivari-
ance regained by recombining the updated coefficients with
the basis functions. In subsequent developments (Passaro
& Zitnick, 2023; Liao et al., 2024; Wang et al., 2024b;c; Li
et al., 2025), this approach has demonstrated a remarkable
capacity to fit complex functions. However, as pointed out
by existing literature (Zhang et al., 2023), this approach
degenerates from continuous to discrete rotational equiv-
ariance, losing strict equivariance to continuous rotational
transformations due to the decomposition based on inner-
product operations with discrete basis functions; Li et al.
(2022) proposed a local coordinate strategy, projecting ro-
tating global coordinates onto SO(3)-invariant local ones
for the non-linear neural network to encode. However, this
strategy is effective only for global rigid rotations and fails
to maintain symmetry under non-rigid perturbations like
thermal fluctuations or bilayer twists, as it lacks a neu-
ral mechanism to enforce equivariance; Yin et al. (2024)
proposed a hybrid regression framework, where the non-
linear mechanisms showed remarkable capability at learn-
ing SO(3)-equivariance from the data with the help of the
theoretically SO(3)-equivariant mechanisms, and released
powerful non-linear expressive capabilities to achieve more
numerical accuracy. However, the equivariance achieved

through data-driven methods does not have strict theoreti-
cal guarantee, even with rotational data augmentation. In
many applications of electronic structure calculations, the
demands for symmetry are extremely high. Even minor de-
viations from perfect SO(3)-equivariance can result in in-
correct physical results. In this paper, we seek for com-
bining strict SO(3)-equivariance with the powerful non-
linear neural expressiveness to resolve the equivariance-
expressiveness dilemma for electronic-structure Hamilto-
nian prediction.

3. Preliminary
In order to better understand our theory and methods,
we recommend that the readers first refer to the prelimi-
nary in Appendices: Appendix A provides the definitions
of foundational concepts relevant to the research topic;
Appendix B describes the application tasks, specifically
the electronic-structure Hamiltonian prediction task; Ap-
pendix C formalizes Hamiltonian prediction as an SO(3)-
equivariant non-linear representation learning problem.

4. Theory
Theorem 4.1. The quantity T = tr(H · H†) is SO(3)-
invariant, where H is the simplified representation (with-
out superscripts) of the basic block Hlip⊗ljq of Hamiltonian
matrix defined in Appendix B, and † denotes the conjugate
transpose operation, tr(·) is the trace operation.

Theorem 4.2. The non-linear neural mapping gnonlin(·)
defined as the following is SO(3)-equivariant:

v = gnonlin(f) =
∂z

∂f
,

subject to z = snonlin(u), u = CGDecomp(f ⊗ f , 0)
(1)

where f is an input SO(3)-equivariant feature with degree
l in the direct-sum state, ⊗ denotes the direct-product op-
eration of tensors, CGDecomp(·, 0) refers to performing a
Clebsch-Gordan decomposition of the tensor and return-
ing the SO(3)-invariant component corresponding to de-
gree 0, snonlin(·) represents arbitrary differentiable non-
linear neural modules, u and z are SO(3)-invariant features,
and v is the outputted feature encoded by gnonlin(·).

The proofs of the two theorems above are presented in Ap-
pendix D.
Remark 4.3. In physics, dimensions describe the funda-
mental properties of physical quantities. The seven base
dimensions are mass [M ], time [T ], length [L], elec-
tric current [I], temperature [Θ], amount of substance
[N ], and luminous intensity [J ]. Other physical quanti-
ties can be derived from these base dimensions. For in-
stance, the dimension of energy E is given by dimE =
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ML2T−2. The quantities H and T presented in Theo-
rem 4.1 correspond to the physical dimensions of dimE
and dimE2, respectively, where their units can be taken as
meV and (meV)2. These two physical dimensions are re-
lated through: dimH = dimE = dimE2

dimE = dimT
dimH . As we

developed in Section 5, in the feature space, the SO(3)-
invariant feature z is used to regress T, and the SO(3)-
equivariant features f and v are used to regress H. Our
gradient-based mechanism v = ∂z

∂f in Theorem 4.2 nat-
urally preserves the dimensional correspondence between
H and T. On the other hand, the existing gated activa-
tion function (Weiler et al., 2018), which can be expressed
as v = z · f , does not enforce such a dimensional cor-
respondence and could not offer a strong guarantee of a
balanced coupling between the SO(3)-invariant and SO(3)-
equivariant representations. In contrast, our approach, with
adherence to the dimensional correspondence between H
and T, ensures that the learned features are more physi-
cally grounded and expressive, effectively capturing the un-
derlying relationships between SO(3)-invariant and SO(3)-
equivariant quantities. See Appendix H for an empirical
study comparing between the gradient-based mechanism
and the gated mechanism.

5. Method
As shown in Fig. 1, taking z in Eq. (1) serving as the
bridge between Theorem 4.1 and Theorem 4.2, we propose
a method for learning expressive non-linear representations
that satisfy the SO(3)-equivariance property outlined in Eq.
(10). The core of our method can be abstractly referred
to as TraceGrad. At the label level, it incorporates the
SO(3)-invariant trace quantity tr(H · H†) introduced in
Theorem 4.1 as a supervisory signal for learning z, i.e., the
SO(3)-invariant internal representations of gnonlin(·) in The-
orem 4.2. Given the attribute that invariance is preserved
under non-linear operations, z is encoded by snonlin(·)
to obtain non-linear expressive capabilities. At the repre-
sentation level, by taking the gradient of z with respect
to f , the non-linear expressiveness of z is transferred to
the equivariant feature v, while maintaining strict SO(3)-
equivariance as we prove. Subsequently, merging v and f ,
and applying gnonlin(·) in a stacked manner can yield rich
SO(3)-equivariant non-linear representations for inferring
the SO(3)-equivariant electronic-structure Hamiltonians.

5.1. Encoding and Decoding Framework

Our encoding framework corresponds to a total of K en-
coding modules, which are sequentially connected to form
a deep encoding framework. For the k-th module (1 ≤
k ≤ K), it first introduces an SO(3)-equivariant back-
bone encoder, e.g., the encoders from DeepH-E3 (Gong
et al., 2023) or QHNet (Yu et al., 2023b) which is com-

posed of recently developed equivariant operators (Thomas
et al., 2018; Geiger & Smidt, 2022) like linear scaling,
direct products, direct sums, Clebsch-Gordan decomposi-
tion, gated activation, equivariant normalization, and etc.,
to encode the physical system’s initial representations, such
as spherical harmonics (Schrodinger, 1926), or represen-
tations passed from the previous neural layers, as equiv-
ariant feature f(k) in the current hidden layer. Next, we
construct the feature v(k) = gnonlin(f(k)), to achieve suffi-
cient non-linear expressiveness while maintaining SO(3)-
equivariance, where gnonlin(·), snonlin(·) are the non-linear
functions defined in Eq. (1). The function snonlin(·) can
be implemented as any differentiable non-linear neural net-
work module, such as feed-forward layers with non-linear
activation functions like SiLU and normalization opera-
tions like Layernorm.

For an expressive representation of a complex physical
system, f(k) is usually not a feature of single degree
but a direct-sum concatenation of series of components
{f(k)l1 , f(k)l2 , f(k)l3 , ...} at multiple degrees, i.e., L(k) =
{l1, l2, l3, ...}, where some components share the same de-
gree while others differ. In this case, it becomes necessary
to extend the decomposition operator, i.e., CGDecomp(·)
in Eq. (1), to accommodate various components of de-
grees. Moreover, in the context of neural networks, intro-
ducing learnable parameters W and more feature channels
C may improve the model capacity. Based on these con-
siderations, when constructing the encoding module, the
CGDecomp(·) operation in Eq. (1) can be expanded as
CGDecompext(·), and its outputs can be expanded as u(k),
as shown in Eq. (2):

u(k) = [u
(k)
1 , ..., u(k)c , ..., u

(k)
C ],

u(k)c = CGDecompext(f
(k) ⊗ f(k), 0,W )

=
∑

li,lj∈L(k),li=lj

W c
ij · CGDecomp(f(k)li ⊗ f(k)lj , 0)

(2)
where W c

ij represents learnable parameters, u(k)c is the c th
channel of u(k). CGDecompext(·) adds learnable parame-
ters to CGDecomp(·) and expands its output from a single
channel to multiple channels. To further enhance the model
capacity, we also expand the output of snonlin(·) to multi-
ple channels as follows: z(k) = [z

(k)
1 , . . . , z

(k)
c , . . . , z

(k)
C ].

We define v
(k)
c =

∂z(k)
c

∂f (k) , and construct the new features

v(k) by v(k) =
∑

c v
(k)
c . It is evident that these exten-

sions maintain the SO(3)-invariance of u(k) and z(k), as
well as the SO(3)-equivariance of v(k). For different fea-
ture components, such as f(k)li and f(k)lj in Eq. (2), as long
as they share the same degree (li = lj), they can be used to
construct SO(3)-invariant and SO(3)-equivariant features
through the aforementioned operations, even if their mag-
nitudes and directions differ. These operations ultimately

4



TraceGrad

Input Physical System

Backbone 
SO(3)-

equivariant
Feature  Encoder

Initial 
Features

Direct-Product & 
 Clebsch-Gordan 
Decomposition

Non-linear 
Neural Modules

SO(3)-invariant
Features (      ) 
with Non-linear 
Expressiveness

( ) ( ) ( )k k k o f v

The k th  Encoding Module

SO(3)-
equivariant 

Decoder

SO(3)-
invariant
 Decoder

…

…

…
SO(3)-equivariant  
Regression Target

H

SO(3)-invariant 
Quantity

Supervised 
Training

SO(3)-equivariant 
Features ( )kf

Returning Components with
Zero Degree & Combining 

with Multi-channels 
Learnable Parameters 

Supervised 
Training

K

( )kz

SO(3)-invariant
Features ( )ku

SO(3)-equivariant
Features (       )  
with Non-linear 
Expressiveness

( )kv

( )
( )

( )

k
k c

k
c

z


v
f

†( )tr T H H

Figure 1: The proposed framework for learning SO(3)-equivariant representations with strong non-linear expressiveness to
regress the SO(3)-equivariant electronic-structure Hamiltonian.

enable the encoding of new features with flexible directions
and magnitudes, thereby enhancing the expressive power of
the resulting representations. v(k) is combined with f (k) in
a residual manner like o(k) = f(k) + v(k) as the output of
the k th encoding module.

We follow previous literature (Gong et al., 2023; Yu et al.,
2023b) to send the features from the last layer of the
encoder, i.e., o(K) in our framework, into the SO(3)-
equivariant decoder to regress the predictions of H. For
this, we can directly utilize the mature design of the SO(3)-
equivariant decoders in DeepH-E3 or QHNet. The new
part in the decoding phase introduced by our method is the
SO(3)-invariant decoder, consisting of feed-forward layers
taking z = [z(1), . . . , z(k), . . . , z(K)] as the input to predict
T.

5.2. Training

The training loss function is shown as the following:

min
θ

loss = lossH + µ(lossH , lossT ) · lossT ,

lossH = Error(Ĥ,H∗), lossT = Error(T̂,T∗)

(3)

where θ denotes all of the learnable parameters of our
framework, Ĥ, T̂ and H∗, T∗ respectively denote the pre-
dictions and labels of H and T. In order to prevent the nu-
merical disparity between the two loss terms and stabilize
the training for both of the SO(3)-equivariant and SO(3)-
invariant branches, we apply µ(lossH , lossT ), i.e., a coef-

ficient to regularize the relative scale of the two loss terms:

µ(lossH , lossT ) = λ ·No Grad( lossH
lossT

) (4)

where No Grad(·) denotes gradient discarding when cal-
culating such coefficient, as this coefficient is only used for
adjusting the relative scale between the two loss terms and
should not itself be a source of training gradients, other-
wise it would counteract the gradients from lossT in Eq.
(3). All of the encoding and decoding modules are trained
jointly by Eq. (3).

6. Experiments
6.1. Experimental Conditions

We apply our theory and method to the electronic-structure
Hamiltonian prediction task, and collect results on eight
benchmark databases, i.e., Monolayer Graphene (MG),
Monolayer MoS2 (MM ), Bilayer Graphene (BG), Bi-
layer Bismuthene (BB), Bilayer Bi2Te3 (BT ), Bilayer
Bi2Se3 (BS), QH9-stable (QS), and QH9-dynamic (QD).
The first six databases, consisting of periodic crystalline
systems with elements like C, Mo, S, Bi, Te and Se, are
from the DeepH benchmark series (Li et al., 2022; Gong
et al., 2023). The last two databases are from the QH9
benchmark series (Yu et al., 2023a), composed of molec-
ular systems with elements like C, H, O, N and F. These
databases present diverse and complex challenges to a re-
gression model. Regarding MG, MM , and QD, as their
samples are prepared from an temperature environment at
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Table 1: Experimental results measured by the MAEH
all, MAEH

cha s and MAEH
cha b metrics (meV) on the Monolayer

Graphene (MG), Monolayer MoS2 (MM ), Bilayer Graphene (BG), Bilayer Bismuthene (BB), Bilayer Bi2Te3 (BT )
and Bilayer Bi2Se3 (BS) databases, where the superscripts nt and t respectively denote the non-twisted and twisted
subsets.

Methods
MG MM

MAE (↓)
MAEH

all MAEH
cha s MAEH

cha b MAEH
all MAEH

cha s MAEH
cha b

DeepH-E3 (Baseline) 0.251 0.357 0.362 0.406 0.574 1.103
DeepH-E3+TraceGrad 0.175 0.257 0.228 0.285 0.412 0.808

Methods BGnt BGt

DeepH-E3 (Baseline) 0.389 0.453 0.644 0.264 0.429 0.609
DeepH-E3+TraceGrad 0.291 0.323 0.430 0.198 0.372 0.406

Methods BBnt BBt

DeepH-E3 (Baseline) 0.274 0.304 1.042 0.468 0.602 2.399
DeepH-E3+TraceGrad 0.226 0.256 0.740 0.384 0.503 1.284

Methods BTnt BT t

DeepH-E3 (Baseline) 0.447 0.480 1.387 0.831 0.850 4.572
DeepH-E3+TraceGrad 0.295 0.312 0.718 0.735 0.755 4.418

Methods BSnt BSt

DeepH-E3 (Baseline) 0.397 0.424 0.867 0.370 0.390 0.875
DeepH-E3+TraceGrad 0.300 0.332 0.644 0.291 0.302 0.674

three-hundred Kelvin, the thermal motions lead to complex
non-rigid deformations, increasing the difficulty of Hamil-
tonian prediction. For BG, BB, BT , and BS, the twisted
structures, with an interplay of SO(3)-equivariant effects
and van der Waals (vdW) force variations bring signifi-
cant generalization challenges, which are further exacer-
bated by the absence of any twisted samples in the training
sets. Besides, BB, BT , and BS exhibit strong spin-orbit
coupling (SOC) effects, which further increase the com-
plexity of Hamiltonian modeling. For the QS database, the
‘ood’ strategy from the official settings is used to split the
training, validation, and testing sets, ensuring that the atom
number of samples do not overlap across the three subsets.
For the QD database, the ‘mol’ strategy provided by Yu
et al. (2023a) is applied to split the training, validation,
and testing sets, ensuring that there are no thermal motion
samples from the same temporal trajectory across the three
subsets. The ‘mol’ and ‘ood’ strategies aim to assess the
regression model’s extrapolation capability with respect to
the number of atoms and the temporal trajectories, respec-
tively. Detailed statistic information of these databases can
be found in the Appendix E.

Implementation details of our method for experiments on
these databases are presented in Appendix F.

We use a comprehensive set of metrics to deeply evalu-
ate the accuracy performance of deep learning electronic-
structure Hamiltonian prediction models. On the databases
from the DeepH benchmark series (Li et al., 2022; Gong
et al., 2023), we follow Yin et al. (2024) to adopt a
set of Mean Absolute Error (MAE) metrics between pre-
dicted and ground truth Hamiltonians, including MAEH

all

for measuring average MAE of all samples and matrix
elements, MAEH

cha s for measuring the MAE of chal-
lenging samples where the baseline model performs the
worst, MAEH

block for measuring the MAE of different ba-
sic blocks in the Hamiltonian matrix, and MAEH

cha b for
measuring the MAE on the most challenging Hamiltonian
block where the baseline model shows the poorest perfor-
mance (with the largest MAEH

block). These metrics com-
prehensively reflect the accuracy performance, covering
not only the average accuracy but also the accuracy on
difficult samples and challenging blocks of the Hamilto-
nian matrices. On the two databases from the QH9 bench-
mark series, we adopt the metrics introduced by their orig-
inal paper (Yu et al., 2023a), including MAE of Hamilto-
nian matrices, which are further subdivided into MAEH

all

for measuring average MAE, MAEH
diag for measuring

MAE of Hamiltonian matrix formed by an atom with it-
self, and MAEH

non diag for measuring MAE of Hamilto-
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Table 2: Experimental results measured by the MAEH
all, MAEH

diag , MAEH
non diag , MAEϵ, and Sim(ψ) metrics on the

QH9-stable (QS) and QH9-dynamic (QD) databases respectively using ‘ood’ and ‘mol’ split strategies (Yu et al., 2023a).
↓ means lower values correspond to better accuracy, while ↑ means higher values correspond to better performance. The
units of MAE metrics are meV, while Sim(ψ) is the cosine similarity which is dimensionless.

Methods
QS

MAE (↓)
Sim(ψ) (↑)

MAEH
all MAEH

diag MAEH
non diag MAEϵ

QHNet (Baseline) 1.962 3.040 1.902 17.528 0.937
QHNet+TraceGrad 1.191 2.125 1.139 8.579 0.948

Methods QD

QHNet (Baseline) 4.733 11.347 4.182 264.483 0.792
QHNet+TraceGrad 2.819 6.844 2.497 63.375 0.927

nian matrices formed by different atoms; as well as the
MAE (MAEϵ) of occupied orbital energies ϵ induced by
the predicted Hamiltonians and compared to the ground
truth ones, and the cosine similarity (Sim(ψ)) between the
electronic wavefunctions ψ induced by the predicted and
ground truth Hamiltonians. ϵ and ψ are crucial downstream
physical quantities for determining multiple properties of
the atomic systems as well as their dynamics, highly re-
flecting the application values of the Hamiltonian regres-
sion model.

6.2. Results and Analysis

We compare experimental results from two setups: the
first one is the experimental results of the baseline SO(3)-
equivariant regression model (Gong et al., 2023; Yu et al.,
2023b) for Hamiltonian prediction, and the second one
is the experimental results of extending the architecture
and pipeline of the baseline model through the proposed
TraceGrad method, which incorporates non-linear expres-
siveness into the SO(3)-equivariant features of the base-
line model with the gradient operations of SO(3)-invariant
non-linear features learned under the supervision of the
trace targets. We choose DeepH-E3 (Gong et al., 2023) as
the baseline model for databases from the DeepH bench-
mark series (Li et al., 2022; Gong et al., 2023); and we
choose QHNet (Yu et al., 2023b) as the baseline model
for databases from the QH9 benchmark series (Yu et al.,
2023a). They are the respective state-of-the-art (SOTA)
methods with strict SO(3)-equivariance on the correspond-
ing databases.

We list the results of DeepH-E3 and DeepH-E3+TraceGrad
in Table 1 for databases from the DeepH benchmark se-
ries, reporting the values of MAEH

all, MAEH
cha s, and

MAEH
cha b. The results of DeepH-E3 to be compared are

copied from Yin et al. (2024). The results of DeepH-
E3+TraceGrad are the average from 10 independent re-

peated experiments. Regarding the metric of MAEH
block

for every Hamiltonian block, due to its large data volume,
we just present its values for all databases from the DeepH
series in Appendix G. We use the same fixed random seed
as adopted by DeepH-E3 for all random processes in exper-
iments on these six databases. As a result, for each Hamil-
tonian MAE result presented in Table 1, the standard de-
viation across independent repeated experiments does not
exceed 0.007 meV and is negligible.

From results presented in Tables 1, we could find that
the proposed TraceGrad method dramatically enhances the
accuracy performance of the baseline method DeepH-E3,
both on average and for challenging samples and blocks,
both on the non-twisted samples and the twisted sam-
ples. Specifically, on the corresponding datasets, Trace-
Grad lowers down the MAEH

all and MAEH
cha of DeepH-

E3 with relative ratios of up to 34% and 35%, respectively.
Furthermore, from the results included in Appendix G,
TraceGrad significantly improves the performance for the
vast majority of basic blocks. Particularly, for the blocks
where DeepH-E3 perform the worst, TraceGrad reduces
the MAE (MAEH

cha b) by a maximum of 48%. The lead-
ing performance on the MG and MM databases prepared
at three-hundred Kelvin temperature demonstrates the ro-
bustness of our method against thermal motion. The high
accuracy on the BB, BT , and BS databases, which have
strong SOC effects, indicates our method’s strong capabil-
ity to model such effects. The excellent performance on the
BGt,BBt,BT t, andBSt subsets showcases the method’s
superior generalization to twisted structures, which are not
present in the training data. The outstanding performance
on such samples highlights the good potential for study-
ing twist-related phenomena, a hot research topic that may
bring new electrical and transport properties (Cao et al.,
2018; Wang et al., 2024a; He et al., 2024). Additionally,
theBGt,BBt,BT t, andBSt subsets contain significantly
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larger unit cells compared to the training set (see Appendix
E for statistics of their sizes), yet our method still excels on
these subsets as measured by the multiple MAE metrics,
demonstrating its good scalability on the sizes of atomic
systems it handles.

In Table 2, we present the results of QHNet and QH-
Net+TraceGrad under the metrics of MAEH

all, MAEH
diag ,

MAEH
non diag , MAEϵ, and Sim(ψ) for the QS and QD

databases. The results of QHNet to be compared are taken
from their original paper (Yu et al., 2023a), and for the
unification of MAE units, we convert the units of MAE
from 10−6 Hartree (Eh) in the original paper to meV
(1Eh = 27211.4 meV). The results of QHNet+TraceGrad
are the average from 10 independent repeated experiments.
To ensure reproducibility, we use the same fixed random
seeds as employed in QHNet for all random processes in
the experiments on the QS and QD databases. As a re-
sult, for each Hamiltonian MAE result presented in Table
2, the standard deviation across repeated experiments is no
greater than 0.009 meV and is also negligible.

The results presented in Table 2 demonstrate that the pro-
posed TraceGrad method significantly enhances the accu-
racy of the baseline QHNet model across all metrics on the
QS and QD databases. Specifically, TraceGrad reduces
MAEH

all, MAEH
non diag , MAEH

diag , MAEϵ, and Sim(ψ)
of QHNet with relative reductions by a maximum of 40%,
39%, 40%, 76%, and 17%, respectively, on the correspond-
ing databases. The significant accuracy improvements on
the QS database, partitioned using the ‘ood’ split strat-
egy (Yu et al., 2023a) without scale overlapping among
the training, validation, and testing sets, once again demon-
strate the method’s strong generalization capabilities across
different scales of atomic systems. Meanwhile, perfor-
mance on the QD database under the ‘mol’ strategy (Yu
et al., 2023a), which partitions the training, validation, and
testing sets with samples from completely different ther-
mal motion trajectories, highlight our method’s robustness
in generalizing to new thermal motion sequences. Further-
more, the substantial improvement in the prediction accu-
racy of ϵ, i.e., occupied orbital energies crucial for deter-
mining electronic properties such as optical characteristics
and conductivity in atomic systems, and ψ, i.e., the elec-
tronic wavefunctions essential for understanding electron
distribution and interactions, underscores the potential val-
ues of our method for applications like material design,
molecular pharmacology, and quantum computing.

We also evaluate the acceleration performance of our
method for DFT computations and report the results in Ap-
pendix K . Experimental results show that while combining
TraceGrad introduces only a slight increase from the infer-
ence time of QHNet, it delivers significant improvements
in accelerating the convergence of DFT methods.

7. Summary of Appendices
Due to the page limit of the main manuscript, we have to
provide some important contents in the Appendices, sum-
marized as follows:

• Appendix A provides the definitions of foundational
concepts relevant to the problem addressed in this pa-
per.

• Appendix B describes the application task in this pa-
per, i.e., the electronic-structure Hamiltonian predic-
tion task.

• Appendix C formalizes Hamiltonian prediction as an
SO(3)-equivariant non-linear representation learning
problem.

• Appendix D provides the proofs for all of the proposed
theorems.

• Appendix E presents the detailed information of the
experimental databases.

• Appendix F presents the implementation details of the
experiments.

• Appendix G compares the block-level MAE statis-
tics (MAEH

block and MAEH
cha b) for DeepH-E3 and

DeepH-E3+TraceGrad.

• Appendix H reports the results of ablation study
for each individual mechanism of our framework
and the quantitative comparison between the pro-
posed gradient-based mechanism (Grad) with the ex-
isting gated activation mechanism (Gate). Experi-
mental results indicate that each individual mecha-
nism of our method can contribute individually to
the performance. Moreover, their combination pro-
vides even better performance. Experimental results
also demonstrate better accuracy performance of the
proposed gradient-based mechanism compared to the
gated mechanism.

• Appendix I provides a theoretical analysis of the com-
putational complexity advantage of our method over
traditional DFT calculations.

• Appendix J makes a joint discussion on GPU time
costs and performance gains brought by our Trace-
Grad method. It underscores the superiority of the
TraceGrad method in improving accuracy perfor-
mance while maintaining time efficiency.

• Appendix K reports the acceleration performance of
our method for traditional DFT algorithms.
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• Appendix L corresponds to the synergy of our method
with an approximately SO(3)-equivariant methodol-
ogy (Yin et al., 2024).

• Appendix M reports the experimental results of ap-
plying the proposed TraceGrad method to energy and
force field prediction tasks. The results show that our
approach improves the prediction accuracy for both
quantities, demonstrating its generality.

The codes of this work are available in this link 1.

8. Conclusion
We propose a theoretical and methodological framework
to tackle the issue of reconciling powerful non-linear
expressiveness with SO(3)-equivariance in deep learning
paradigm for electronic-structure Hamiltonian prediction,
through deeply investigating the mathematical connections
between SO(3)-invariant and SO(3)-equivariant quantities,
as well as their representations. We first constructs SO(3)-
invariant quantities from SO(3)-equivariant regression tar-
gets, using them to train informative SO(3)-invariant non-
linear representations. From these, SO(3)-equivariant
features are derived with gradient operations, achieving
non-linear expressiveness while maintaining strict SO(3)-
equivariance and physical dimensional correspondence to
the target labels. Experimental results on eight benchmark
databases covering multiple types of systems and challeng-
ing scenarios show substantial improvements on the state-
of-the-art prediction accuracy of deep learning paradigm on
electronic-structure Hamiltonian prediction. Our method
also significantly promotes the acceleration performance
for the convergence of traditional DFT methods.

Acknowledgements
This work was supported by the the Strategic Priority Re-
search Program of Chinese Academy of Sciences (Grant
Number XDB0500201) and the National Natural Science
Foundation of China (Grant Number 12134012).

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning driven by physics research. We recog-
nize that, although our research field has not shown direct
negative social or ethical consequences, there are several
important issues that require our vigilance and attention.
Currently, although our method yields accurate predictions,
the decision-making processes of deep learning systems of-

1https://drive.google.com/file/d/
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Appendices
A. Definition of Concepts

This section provides definitions of foundational concepts relevant to the problem addressed in this paper. For additional
background, please refer to the book by Dresselhaus et al. (2007).

Definition .1. Group. A set G, denoted as G = {. . . , g, . . . }, equipped with a binary operation ·, is called a group if it
satisfies the following four axioms:

1. Closure: For any f, g ∈ G, the result of their operation f · g is also an element of G: f · g ∈ G.

2. Associativity: For all f, g, h ∈ G, the operation satisfies (f · g) · h = f · (g · h).

3. Identity Element: There exists a unique element e ∈ G (called the identity) such that for all f ∈ G, e ·f = f · e = f .

4. Inverse Element: For each f ∈ G, there exists a unique element f−1 ∈ G (called the inverse) such that f · f−1 =
f−1 · f = e.

Definition .2. SO(3) Group. The special orthogonal group SO(3) is the group of all 3 × 3 orthogonal matrices with
determinant 1. Formally, it is defined as:

SO(3) = {R ∈ R3×3 | RTR = I, det(R) = 1},

where RT denotes the transpose of R, and I is the 3 × 3 identity matrix. The elements of SO(3) represent rotations in
three-dimensional Euclidean space.

Definition .3. Group Representation. A representation of a group G on a tensor space T (V ) is a homomorphism ρ
from G to the general linear group GL(T (V )), the group of all invertible linear transformations on T (V ). Here, T (V )
represents the tensor space associated with the vector space V , encompassing all tensors that can be formed from elements
of V . Formally, the homomorphism ρ is defined as:

ρ : G→ GL(T (V ))

such that for all g1, g2 ∈ G,
ρ(g1g2) = ρ(g1)ρ(g2),

and ρ(e) = I , where e is the identity element of G, and I is the identity transformation on T (V ).

Definition .4. Irreducible Representation. A representation ρ : G → GL(V ) of a group G on a vector space V is said
to be irreducible if there is no proper subspace W ⊂ V such that ρ(g)W ⊂ W for all g ∈ G. In other words, the only
invariant subspaces under the group action are the trivial subspaces {0} and V itself. If such a nontrivial invariant subspace
exists, the representation is said to be reducible.

Definition .5. SO(3) Group Representation. A representation of the special orthogonal group SO(3) on a vector space
V is a homomorphism

ρ : SO(3) → GL(V ),

where GL(V ) denotes the group of all invertible linear transformations on V . The irreducible representation of SO(3),
each labeled by a degree l, often corresponds to the quantum number for angular momentum in quantum physics.

Definition .6. Wigner-D Matrices. One of the irreducible representations of the rotation group SO(3) is given by the
Wigner-D matrices Dl(R), where l is the degree of the representation, typically associated with angular momentum quan-
tum number in quantum mechanics.

The Wigner-D matrices are defined as:
Dl

m′m(R) = ⟨l,m′|R|l,m⟩,
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where |l,m⟩ are the eigenstates of the angular momentum operator L̂2 and its z-component L̂z , with m and m′ being
the magnetic quantum numbers corresponding to the eigenvalue of L̂z . The Wigner-D matrices Dl(R) encode how the
angular momentum states |l,m⟩ transform under the action of a rotation.

Definition .7. Equivariance with Respect to a Group. Let G be a group, and let ρT (V ) : G → GL(T (V )) and ρT (W ) :
G → GL(T (W )) be representations of G on tensor spaces T (V ) and T (W ), respectively. A map f : T (V ) → T (W ) is
said to be equivariant with respect to the group G if the following condition holds:

f(ρT (V )(g) ◦ v) = ρT (W )(g) ◦ f(v) for all v ∈ T (V ) and g ∈ G.

where ◦ generally denotes the operation defined on the tensor space.

Definition .8. Invariance with Respect to a Group. Let G be a group, and let ρT (V ) : G→ GL(T (V )) be a representa-
tion of G on a tensor space T (V ). A function f : T (V ) → T (W ) is said to be invariant under the group G if the following
condition holds:

f(ρT (V )(g) ◦ v) = f(v) for all v ∈ T (V ) and g ∈ G.

This definition indicates that the function f remains unchanged under the action of the group G.

Definition .9. Direct-Product State. Let V1 and V2 be two vector spaces, and let |v1⟩ ∈ V1 and |v2⟩ ∈ V2 be arbitrary
elements of these spaces. The direct-product state of |v1⟩ and |v2⟩ is defined as the element |v1⟩⊗|v2⟩ in the direct-product
space V1⊗V2. The direct-product state represents all possible combinations of the elements of V1 and V2, and forms a new
vector space that captures the joint state of two systems. The action of a group on the direct-product state is defined by the
direct product of the individual actions on |v1⟩ and |v2⟩, i.e., the effect of the group action on the direct-product space is
the direct product of the actions on each individual space:

g · (|v1⟩ ⊗ |v2⟩) = (g · |v1⟩)⊗ (g · |v2⟩), ∀g ∈ G.

Definition .10. Physical Quantity Formed by the Direct-Product of Two Degrees. In quantum mechanics, direct-
product spaces are used to describe the combined states of systems with distinct degrees of freedom, such as angular
momentum. The combined state captures both the independent action of each degree and their joint transformation under
rotations governed by the SO(3) group.

Let degrees lp and lq represent the angular momentum quantum numbers of two systems. A direct-product state Qlp⊗lq ∈
R(2lp+1)×(2lq+1) combines these degrees and transforms under the SO(3) group according to:

Q(R)lp⊗lq = Dlp(R) ·Qlp⊗lq · (Dlq (R))†,

where Dlp(R) ∈ R(2lp+1)×(2lp+1) and Dlq (R) ∈ R(2lq+1)×(2lq+1) are the Wigner-D matrices for the degrees lp and lq ,
respectively, and † denotes the conjugate transpose, ensuring unitary transformations.

Definition .11. Direct-Sum State. Let V1 and V2 be two vector spaces, and let |v1⟩ ∈ V1 and |v2⟩ ∈ V2 be arbitrary
elements of these spaces. The direct-sum state of |v1⟩ and |v2⟩ is defined as the element |v1⟩⊕ |v2⟩ in the direct-sum space
V1 ⊕ V2.

The direct-sum space V1 ⊕ V2 consists of ordered pairs of elements, where each element is drawn from one of the original
spaces. The operations of vector addition and scalar multiplication in V1 ⊕ V2 are defined component-wise:

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2), c · (a1, a2) = (c · a1, c · a2),

for (a1, a2), (b1, b2) ∈ V1 ⊕ V2 and c ∈ F, where F is a field, typically either the real numbers R or the complex numbers
C.

The direct-sum state |v1⟩ ⊕ |v2⟩ represents a combination where the components remain in their respective vector spaces
and do not interact with each other. The action of a group G on the direct-sum state is defined by its independent action on
each component:

g · (|v1⟩ ⊕ |v2⟩) = (g · |v1⟩)⊕ (g · |v2⟩), ∀g ∈ G.
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Figure 2: Illustration of atomic pairwise Hamiltonian matrices partitioned from the complete Hamiltonian matrix of the
whole system. Each Hamiltonian matrix contains multiple basic blocks, denoted as Hlip⊗ljq .

Definition .12. Clebsch-Gordan Decomposition for SO(3) Group.

In quantum mechanics, the Clebsch-Gordan decomposition is used to describe the coupling and decoupling of two angular
momentum systems. For two angular momentum quantum numbers lp and lq , their combined state can be decomposed into
series components in the direct-sum state. Taking Qlp⊗lq defined in Definition .10 as an example, it can be decomposed as
follows:

CGDecomp(Qlp⊗lq ) =

lp+lq⊕
l=|lp−lq|

ql, qlm =
∑

mp,mq

Cl,lp,lq
m,mp,mq

Qlp⊗lq
mp,mq

where CGDecomp(·) denotes the Clebsch-Gordan decomposition operator, Qlp⊗lq
mp,mq are the elements of the quantity

Qlp⊗lq in the direct-product state, Cl,lp,lq
m,mp,mq are the Clebsch-Gordan coefficients, and ql denotes the decomposed results,

with qlm representing the component under quantum numbers l and m.

B. Application Task Description: Electronic-structure Hamiltonian Calculation

Density Functional Theory (DFT) (Hohenberg & Kohn, 1964; Kohn & Sham, 1965) has become a cornerstone of modern
electronic structure theory, playing a pivotal role in condensed matter physics, quantum chemistry, and materials science.
Introduced in the 1960s through the foundational work of Hohenberg, Kohn, and Sham, DFT provides a framework for
studying many-electron systems by replacing the computationally expensive many-body wavefunction with the electron
density ρ(r) as the fundamental variable. This reformulation significantly reduces computational complexity while preserv-
ing essential quantum mechanical effects, enabling researchers to investigate systems of practical interest with manageable
computational resources. Over the decades, DFT has proven to be instrumental in calculating orbital energies and band
structures, optimizing structural geometries, and exploring a wide range of material properties, underscoring its versatility
and importance across diverse scientific disciplines.
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At the heart of DFT lies the Kohn-Sham equation (Kohn & Sham, 1965), which simplifies the many-body problem into a
set of single-particle equations. These equations are expressed as:

Ĥψi(r) = ϵiψi(r), subject to Ĥ = − ℏ2

2m
∇2 + Vext(r) + VHXC[ρ](r) (5)

where Ĥ is the Hamiltonian operator, the Hartree-exchange-correlation potential VHXC[ρ](r) = VH[ρ](r) + VXC[ρ](r) is a
functional of the electron density ρ(r). The electron density is obtained from the Kohn-Sham orbitals ψi(r) as:

ρ(r) =

M∑
i=1

|ψi(r)|2,

where M represents the total number of electrons.

Atomic orbitals offer a computationally efficient basis for electronic structure calculations because they require fewer basis
functions compared to other types of basis sets (Lin et al., 2023). Additionally, their inherently localized nature makes
them particularly advantageous for large systems. When expressed in an atomic orbital basis set, the Kohn-Sham equations
can be formulated into as a generalized eigenvalue problem:

HC = ϵSC, (6)

where H is the Hamiltonian matrix incorporating the contributions from Vext and VHXC, S is the overlap matrix, C contains
the orbital coefficients, and ϵ represents the eigenvalues of the system.

The atomic orbitals used as the basis functions typically take the form:

ϕµ(r) = Rµ(r)Ylµmµ(θ, ϕ),

where Rµ(r) is the radial part of the wavefunction, and Ylµmµ(θ, ϕ) are the spherical harmonics describing the angular
dependence. These orbitals are localized around their respective atomic centers, decay rapidly as r increases, and are
truncated to zero beyond a cutoff radius rc.

The matrix elements of the Hamiltonian and overlap matrices, Hµν and Sµν , are defined as:

Hµν =

∫
ϕ∗µ(r)Ĥϕν(r) dr, Sµν =

∫
ϕ∗µ(r)ϕν(r) dr.

The localized nature of atomic orbitals ensures that matrix elements are non-zero only when the orbitals ϕµ and ϕν overlap
according to their cutoff radius. Beyond this range, the corresponding matrix elements are treated as zero, leading to
sparsity in the Hamiltonian and overlap matrices. This sparsity significantly reduces computational effort and memory
usage, especially for large systems.

SolvingHµν involves an iterative self-consistent process: starting with an initial guess for ρ(1)(r), the potentials VHXC[ρ](r)
are updated, and the equations are solved repeatedly until ρ(r) converges. This process can be illustrated as ρ(1)(r) →
V

(1)
HXC[ρ](r) → H

(1)
µν → ψ

(1)
µ (r) → ρ(2)(r) → . . . → ρ(T )(r), until the charge density ρ(r) converges. At that point, the

Hamiltonian matrix is outputted by ρ(T )(r) → H
(T )
µν , from which downstream physical properties such as orbital energies

and band structures are induced, determining the electronic, magnetic, and transport characteristics of the electron system.

Despite the remarkable success of Kohn-Sham DFT in advancing fields such as materials science, energy, and biomedicine
over recent decades (Nagy, 1998; Jones, 2015), the challenge of high computational complexity remains unresolved. The
main computational bottleneck lies in iterative solving the Kohn-Sham equation, especially in the matrix diagonalization
of Eq. (6), which has a complexity of O(N3), where N is the number of atoms in the system. To address this challenge,
recent approaches (Li et al., 2022; Yu et al., 2023b; Gong et al., 2023) have applied the deep graph learning paradigm to
predict the self-consistent Hamiltonian. These methods use the Hamiltonian matrix H(T ), calculated from traditional DFT
methods, as labels. This matrix can be partitioned into a series of atomic pairwise Hamiltonian matrices {Hij | j ∈ Ω(i)},
as shown in Fig. 2, where i and j represent two atoms in the system. Assuming that the angular momentum quantum
numbers of the orbitals of atom i are lip ∈ {li1, li2, ..., liP }, and those of atom j are ljq ∈ {lj1, l

j
2, ..., l

j
Q}, the basic block of

Hij can be expressed as Hlip⊗ljq , which is formed by the direct product between the lip and ljq .
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These methods train an efficient graph neural network to directly predict each Hij from the 3D structure of the atomic
system, thereby circumventing the extremely time-consuming self-consistent iterations. During the inference phase, these
methods successfully reduced the computational complexity of calculating the Hamiltonian matrices to O(N), while show-
ing good potential in generalizing to larger atomic systems, even though the training set, constrained by the expensive DFT
labels, only includes smaller systems. Once the Hamiltonian matrices are obtained, many downstream physical properties
can be efficiently calculated with O(N) complexity. A detailed analysis of the computational complexity is provided in Ap-
pendix I. This paper aims to tackle the challenge of predicting electronic Hamiltonians with high accuracy and reliability,
while rigorously maintaining SO(3)-equivariance.

C. Formulation of Hamiltonian Prediction as an SO(3)-Equivariant Non-linear Representation Learning Problem

As shown in Fig. 2, a basic block of Hamiltonian can be denoted as Hlip⊗ljq , which is formed by the direct product between
degrees lip and ljq . It obeys the following SO(3)-equivariant law:

H(R)l
i
p⊗ljq = Dlip(R) ·Hlip⊗ljq · (Dljq (R))† (7)

where † denotes the conjugate transpose operation. R ∈ R3×3 is the rotational matrix, Dlip(R) ∈ R(2lip+1)×(2lip+1) and
Dljq (R) ∈ R(2ljq+1)×(2ljq+1) are the Wigner-D matrices of degrees lip and ljq , respectively; H(R)l

i
p⊗ljq ∈ R(2lip+1)×(2ljq+1)

denotes the transformed results of Hlip⊗ljq ∈ R(2lip+1)×(2ljq+1) through the rotational operation by R.

Hlip⊗ljq in the direct-product state can be further decomposed into a series of direct-sum state components, i.e., hl(|lip−ljq| ≤
l ≤ lip + ljq), which follows SO(3)-equivariant law mathematically equivalent to Eq. (7) but with a simpler form:

h(R)l = Dl(R) · hl, |lip − ljq| ≤ l ≤ lip + ljq (8)

where hl ∈ R2l+1 and h(R)l ∈ R2l+1 respectively denote the components with degree l before and after the rotational
operation by R.

For ease of processing, the internal representations of SO(3)-equivariant neural networks (Gong et al., 2023; Liao & Smidt,
2023) are typically in the direct-sum form. To obey the equivariant law of Eq. (8) for regressing Hamiltonian, these hidden
representations must also satisfy the same form of equivariance:

f(R)(k)l = Dl(R) · f (k)l (9)

where f (k)l ∈ R2l+1 and f(R)(k)l ∈ R2l+1 respectively denote one channel of hidden representations with degree l before
and after the rotational operation by R, at the k th hidden layer.

Due to the intrinsic complexity and non-linearity of Hamiltonians, the regression neural networks are supposed to equip
with powerful non-linear mappings as feature encoders to fully capture the intrinsic patterns of the Hamiltonians, which is
crucial for precise and generalizable prediction performance. Meanwhile, the non-linear mappings, denoted as gnonlin(·),
must also preserve SO(3)-equivariance, which is expressed as:

f(R)(k+1)l = Dl(R) · f (k+1)l, subject to f (k+1)l = gnonlin(f
(k)l) (10)

However, directly implementing gnonlin(·) as neural network module with non-linear activation functions, such as
Sigmoid, Softmax and SiLU , may result in the destruction of strict equivariance. How to make gnonlin(·) both the-
oretically SO(3)-equivariant and capable of powerful non-linear expressiveness, and effectively apply it to the prediction
of SO(3)-equivariant complex physical quantities, i.e., electronic-structure Hamiltonians in this context, is the core problem
this paper aims at solving.

D. Proofs of Theorems

Proof of Theorem 1. Under an SO(3) rotation represented by the rotational matrix R, H = Hlip⊗ljq is transformed as
H(R):

H(R) = Dlip(R) ·H ·Dljq (R)†,
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where Dlip(R) and Dljq (R) are the Wigner-D matrices for the degrees of lip and ljq , respectively, corresponding to the
rotation R.

The conjugate transpose of the transformed quantity is:

H(R)† = Dljq (R) ·H† ·Dlip(R)†.

Using the cyclic property of the trace, which states that the trace of a product of matrices remains unchanged under cyclic
permutations (i.e., tr(ABC) = tr(BCA) = tr(CAB)), and combining the properties that Dlip(R) · Dlip(R)† = I and
Dljq (R) ·Dljq (R)† = I, we can rearrange the terms inside the trace as follows:

T(R) = tr(H(R) ·H(R)†) = tr((Dlip(R) ·H ·Dljq (R)†) · (Dljq (R) ·H† ·Dlip(R)†))

= tr(Dlip(R) ·H ·H† ·Dlip(R)†) = tr(H ·H† ·Dlip(R)† ·Dlip(R)) = tr(H ·H†) = T.

Therefore, T = tr(H ·H†) is invariant under SO(3) transformations, its SO(3)-invariance is proved.

Proof of Theorem 2. Under the given condition, the input feature f in direct-sum state is SO(3)-equivariant, meaning that
under an SO(3) rotation represented by R, it transforms as follows:

f(R) = Dl(R) · f

where Dl(R) is the Wigner-D matrix corresponding to degree l.

First, according to group theory, u = CGDecomp(f ⊗ f , 0) is an SO(3)-invariant scalar as the degree-zero component
from the Clebsch-Gordan decomposition is invariant under rotations. Since applying a non-linear operation to an SO(3)-
invariant quantity does not change its invariance, z = snonlin(u) is also SO(3)-invariant, independent to the specific form of
snonlin(·). It formally holds that:

z(R) = z (11)

Next, we apply the chain rule in Jacobian form. Considering f(R) is in the form of a column vector, to facilitate the
application of the chain rule in vector form, we first transpose it into a row vector f(R)T , then differentiate:

∂z(R)

∂fT (R)
=

∂z

∂fT (R)
=

∂z

∂fT
∂fT

∂f(R)T
=

∂z

∂fT
·Dl(R)−1 =

∂z

∂fT
·Dl(R)T (12)

Here we utilize the property that Dl(R)−1 = Dl(R)T 2. Since the representations of neural networks are generally real
numbers, the corresponding Wigner-D matrix is also real unitary.

Finally, we transpose the result back to a column vector:

v(R) = gnonlin(f(R)) = (
∂z(R)

∂fT (R)
)T = (

∂z

∂fT
·Dl(R)T )T = Dl(R) · ∂z

∂f
= Dl(R) · v (13)

This proves that gnonlin(·) is an SO(3)-equivariant non-linear operator: when applying its non-linearity to a SO(3)-
equivariant feature f , the output feature v remains SO(3)-equivariant.

E. Information of Experimental Databases

In this part, we provide detailed information about the experimental databases, including the statistical information of the
six databases from the DeepH benchmark series (Li et al., 2022; Gong et al., 2023) and the two databases from the QH9
benchmark series (Yu et al., 2023a), listed in Table 3 and Table 4, respectively. Additionally, we visualize two types of
challenging testing samples: samples with non-rigid deformation from thermal motions, as well as the bilayer samples
with interlayer twists, which are shown in Fig. 3 and Fig. 4, respectively.

2In Theorem 1 and Theorem 2, the Wigner-D matrices are in the complex and real fields, respectively, since the target quantity
may be complex, whereas the internal representations of neural networks are typically in the real field. Nonetheless, neural network
representations in the real field can still predict complex-valued targets with SO(3)-equivariance. Previous literature (Gong et al., 2023)
has provided mechanisms for converting the network outputs in the real field into regression targets with real and imaginary parts.
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F. Implementation Details

The hardware environment for our experiments is a server cluster equipped with Nvidia RTX A6000 GPUs, each with
48 GiB of memory. Other experimental details may differ across the DeepH and QH9 benchmark series, which we will
describe separately.

F.1. IMPLEMENTATION DETAILS ON THE DEEPH BENCHMARK SERIES

The software environment used is Pytorch 2.0.1 for experiments on the six crystalline databases from the DeepH benchmark
series. When combining the proposed TraceGrad method with the DeepH-E3 architecture, the implementation of DeepH-
E3 is based on the project 3 provided by Gong et al. (2023), keeping the architecture and model hyperparameters consistent
with their setup. In our framework, we use the same number of encoding modules K as DeepH-E3, which is set to
3. In each encoding module, we apply the gnonlin(·) module proposed in Section 4 and 5 to each SO(3)-equivariant
edge feature, enabling non-linear expressiveness. We set the number of channels for the SO(3)-invariant feature u(k)

(1 ≤ k ≤ 3) to 1024. The neural network module snonlin(·) within gnonlin(·) is implemented as a three-layers fully-
connected module: the input size is set to 1024, consistent with u(k); the hidden layer size is also 1024, with SiLU as
the non-linear activation function and LayerNorm as the normalization mechanism; and the output layer size (i.e., the
dimensionality of z(k)) is set to be equal to the number of basic blocks for a Hamiltonian matrix, which is 25 for MG and
BG, 49 for MM , and 196 for BB, BT , and BS. It is worth noting that, while snonlin(·) can be implemented as any
differentiable neural network module, we here implement it as a simple fully-connected module. This decision is made
to avoid adding significant computational burden to the whole network. Meanwhile, as DeepH-E3 already incorporates
complex graph network mechanisms for information aggregation and message-passing, there is no need for snonlin(·) to
be overly complex. Its role is focusing on to filling in the gaps left by the existing equivariant mechanisms in DeepH-E3: to
introduce a non-linear mapping mechanism that maintains equivariance, thereby activating and unleashing the expressive
power of the overall network architecture through non-linearity. The SO(3)-equivariant decoder we adopt is the same as
that of DeepH-E3; The SO(3)-invariant decoder we adopt is a four-layers fully-connected module: the input size is 3 (K)
times of the dimensionality of zk, e.g., 75 for MG; the hidden layers have 1024 neurons with SiLU as the non-linear
activation function and LayerNorm as the normalization mechanism; the size of the output layer is the number of basic
blocks for an atomic pairwise Hamiltonian matrix. Since each basic block of the Hamiltonian matrix can compute a trace,
the total number of trace variables corresponds to the number of basic matrix blocks. Regarding the error metric in the
loss function Eq. (3), for the first term, we follow DeepH-E3 to use MSE (Mean Squared Error); for the second term, we
choose between MSE and MAE based on performance on the validation sets, ultimately selecting MAE. λ in the training
loss function is set according to parameter selection on the validation sets, searching from {0.1, 0.2, ..., 1.0}. Here, we aim
to obtain a more general parameter setting for λ on crystalline structures, and thus we determined λ based on the overall
performance on the validation sets of the six crystalline databases and the searched value is 0.3. To ensure the convergence
of the TraceGrad method, we set the maximum training epochs to 5, 000. Other hyper-parameters and configurations are
the same as DeepH-E3 (Gong et al., 2023): the initial learning rates for experiments on the MG, MM , BG, BB, BT ,
and BS databases are set to 0.003, 0.005, 0.003, 0.005, 0.004, and 0.005, respectively; the training batch size is set as 1;
the optimizer is chosen as Adam; the scheduler is configured as a slippery slope scheduler.

F.2. IMPLEMENTATION DETAILS ON THE QH9 BENCHMARK SERIES

The software environment used is Pytorch 1.11.0 for experiments on the two molecular databases from the QH9 benchmark
series. When combining the proposed TraceGrad method with the QHNet architecture, the implementation of QHNet is
based on the project 4 provided by Yu et al. (2023b), keeping the architecture and network configurations consistent
with their setup. In our framework, we use the same number of encoding modules as QHNet: 5 node feature encoding
modules and 2 edge feature encoding modules. We opt to apply the gnonlin(·) module proposed in Section 4 and 5 to
each SO(3)-equivariant edge feature. We set the number of channels for u(k) (1 ≤ k ≤ 2) as 1024. The neural network
module snonlin(·) within gnonlin(·) is implemented as a three-layers fully-connected module: the input size is set to 1024,
consistent with u(k), the hidden layer size is also 1024, with SiLU as the non-linear activation function and LayerNorm as
the normalization mechanism, and the output layer size (i.e., the dimensionality of z(k)) is set to be equal to the number of
basic blocks for a Hamiltonian matrix, which is 36 for QS and QD databases. The SO(3)-equivariant decoder we adopt is
the same as that of QHNet; the SO(3)-invariant decoder we adopt is a four-layers fully-connected module: the input size is

3https://github.com/Xiaoxun-Gong/DeepH-E3
4https://github.com/divelab/AIRS
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Table 3: Statistical information of the six benchmark databases, i.e., Monolayer Graphene (MG), Monolayer MoS2
(MM ), Bilayer Graphene (BG), Bilayer Bismuthene (BB), Bilayer Bi2Te3 (BT ), Bilayer Bi2Se3 (BS), from the DeepH
benchmark series (Li et al., 2022; Gong et al., 2023). SOC: effects of Spin-Orbit Coupling. m: number of samples in
the current dataset; amax: maximum number of atoms from a unit cell in the current dataset. amin: minimum number of
atoms from a unit cell in the current dataset. nt: non-twisted samples. t: twisted samples.

Statistic Types MG MM BG BB BT BS

Elements C Mo, S C Bi Bi, Te Bi, Se
SOC weak weak weak strong strong strong

Training (nt)
m 270 300 180 231 204 231
amax 72 75 64 36 90 90
amin 72 75 64 36 90 90

Validation (nt)
m 90 100 60 113 38 113
amax 72 75 64 36 90 90
amin 72 75 64 36 90 90

Testing (nt)
m 90 100 60 113 12 113
amax 72 75 64 36 90 90
amin 72 75 64 36 90 90

Testing (t)
m - - 9 4 2 2
amax - - 1084 244 130 190
amin - - 28 28 70 70

Monolayer GrapheneMonolayer MoS2

Figure 3: Visualization of testing samples exhibiting non-rigid deformations due to thermal motions

2 (K) times of the dimensionality of z(k), e.g., 72 for QS and QD; the hidden layers have 1024 neurons with SiLU as the
non-linear activation function and LayerNorm as the normalization mechanism; the size of the output layer is the number
of basic blocks for an atomic pairwise Hamiltonian matrix. Regarding the error metric in the loss function Eq. (3), for
the first term, we follow QHNet to use a combination of MSE and MAE; for the second term, we choose between MSE
and MAE based on performance on the validation sets, ultimately selecting MAE. λ in the training loss function is set
according to parameter selection on the validation sets, searching from {0.1, 0.2, ..., 1.0}. Here, we aim to obtain a more
general parameter setting for λ on molecular structures, and thus we determined λ based on the overall performance on the
validation sets of the two molecular databases and the searched value is 0.2. Other hyper-parameters and configurations
are the same as QHNet: the maximum training steps are set as 300, 000 for QS and 260, 000 for QD, the initial learning
rates for all experiments are set as 5 × 10−4, the training batch size is set as 32, the optimizer is set as AdamW, and a
learning rate scheduler is implemented: the scheduler gradually increases the learning rate from 0 to a maximum value of
5 × 10−4 over the first 1, 000 warm-up steps. Subsequently, the scheduler linearly reduces the learning rate, ensuring it
reaches 1× 10−7 by the final step.

G. Visualization of Block-level MAE Statistics

As shown in Fig. 2, each Hamiltonian matrix consists of numerous basic blocks, with each basic block representing
the direct product of two degrees. Here, we follow (Yin et al., 2024) to measure the MAE performance of deep models
on each basic block, denoted as MAEH

block. The values of MAEH
block for the two setups, i.e., DeepH-E3 and DeepH-

E3+TraceGrad, on different blocks of the Hamiltonian matrix for six databases from the DeepH benchmark series are
illustrated in Fig. 5 and 6. Fig. 5 presents the results for monolayer structures, while Fig. 6 focuses on bilayer structures.
From these figures, it can be observed that our method, TraceGrad, brings significant accuracy improvements over the
baseline method, DeepH-E3, across the vast majority of blocks of the Hamiltonian matrices, particularly on blocks where
DeepH-E3 struggles with lower accuracy.
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Table 4: Statistical information of the two benchmark databases, QH9-stable (QS) and QH9-dynamic (QD), from the
QH9 benchmark series (Yu et al., 2023a). The QS database is split using the ‘ood’ strategy, while the QD database is split
using the ‘mol’ strategy. m: number of samples in the current dataset. amax: maximum number of atoms for a sample in
the current dataset. amin: minimum number of atoms for a sample in the current dataset.

Statistic Types QS QD

Elements C, H, O, N, F C, H, O, N, F

Training
m 104,001 79,900
amax 20 19
amin 3 10

Validation
m 17,495 9,900
amax 22 19
amin 21 10

Testing
m 9,335 10,100
amax 29 19
amin 23 10

Twisted Bilayer GrapheneTwisted Bilayer Bi2Se3

Twisted Bilayer Bismuthene

Figure 4: Visualization of testing samples with interlayer twists.

H. Ablation Study and Comparison between the Proposed Gradient-based Mechanism with the Gated Activation
Mechanism

We conduct fine-grained ablation study on the six databases from DeepH benchmark series, comparing results from the
four setups:

• DeepH-E3 (Gong et al., 2023): the baseline model.

• DeepH-E3+Trace: this experimental setup, an ablation term, only implements half part of our method. Specifically, it
extends the architecture of DeepH-E3 by adding our SO(3)-invariant encoding and decoding branches and using the trace
quantity T = tr(H · H†) = tr(Hlip⊗ljq · (Hlip⊗ljq )†) to train them. As for ablation study, this setup does not include the
gradient-based mechanism delivering non-linear expressiveness from SO(3)-invariant features to encode SO(3)-equivariant
features; instead, it directly uses the SO(3)-equivariant features outputted by the SO(3)-equivariant encoders of DeepH-
E3 for Hamiltonian regression. In this configuration, the SO(3)-invariant branches only contribute indirectly during the
training phase by backpropagating the supervision signals from the trace quantity to the earlier layers.

• DeepH-E3+Grad: this setup is also an ablation term and implements the other half part of our method in contrast to the
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previous ablation term. Specifically, it incorporates our SO(3)-invariant encoder branch as well as the gradient-induced
operator to deliver non-linear expressiveness from SO(3)-invariant features to encode SO(3)-equivariant features. As for
ablation study, this setup continues to use the single-task training pipeline of DeepH-E3, supervised only with the Hamil-
tonian label without joint supervised training through the trace of Hamiltonian.

• DeepH-E3+TraceGrad: this is a complete implementation of our framework extending beyond of the architecture and
training pipeline of DeepH-E3, at the label level, we introduce the trace quantity to guide the learning of SO(3)-invariant
features; Meanwhile, at the representation level, we leverage the gradient operator to yield SO(3)-equivariant non-linear
features for Hamiltonian prediction.

Table 5: MAE results (meV) of multiple experimental settings on the Monolayer Graphene (MG) and Monolayer MoS2
(MM ) databases. ↓ means lower values of the metrics correspond to better accuracy.

Methods
MG MM

MAE (↓)
MAEH

all MAEH
cha s MAEH

cha b MAEH
all MAEH

cha s MAEH
cha b

DeepH-E3 (Baseline) 0.251 0.357 0.362 0.406 0.574 1.103
DeepH-E3+Trace 0.230 0.344 0.348 0.378 0.537 1.091
DeepH-E3+Gate 0.232 0.340 0.351 0.364 0.527 1.086
DeepH-E3+Grad 0.185 0.269 0.258 0.308 0.453 0.924

DeepH-E3+TraceGate 0.203 0.295 0.305 0.346 0.491 0.912
DeepH-E3+TraceGrad 0.175 0.257 0.228 0.285 0.412 0.808

Furthermore, to compare our proposed gradient-based mechanism with the gated activation mechanism (Weiler et al.,
2018) which is widely used in SO(3)-equivariant neural networks (Gong et al., 2023; Liao & Smidt, 2023), the following
experimental setups are also included:

• DeepH-E3+Gate: This variant modifies the experimental setup from DeepH-E3+Grad by replacing the gradient mech-
anism, which constructs equivariant features as v = ∂z

∂f , with the gated activation mechanism, constructing equivariant
features as v = z · f . All other aspects remain the same.

• DeepH-E3+TraceGate: This variant modifies the experimental setup from DeepH-E3+TraceGrad by replacing the gradi-
ent mechanism (v = ∂z

∂f ) with the gated activation mechanism (v = z · f ). All other aspects remain the same.

Experimental results for all of the six setups are listed in Table 5 and 6. Table 5 presents the results for monolayer structures,
while Table 6 focuses on bilayer structures. We have the following observations:

First, by comparing among the results of DeepH-E3, DeepH-E3+Trace, DeepH-E3+Grad, and DeepH-E3+TraceGrad, we

Figure 5: Visualization of MAEH
block on each basic block of the Hamiltonian matrices for the Monolayer Graphene (MG)

and Monolayer MoS2 (MM ) databases.
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Figure 6: Visualization of MAEH
block on each basic block of the Hamiltonian matrices for the non-twisted (marked with

superscripts nt) and twisted (marked with superscripts t) testing subsets of the Bilayer Graphene (BG), Bilayer Bismuthene
(BB), Bilayer Bi2Te3 (BT ), and Bilayer Bi2Se3 (BS) databases.
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Table 6: MAE results (meV) of multiple experimental settings on the Bilayer Graphene (BG), Bilayer Bismuthene (BB),
Bilayer Bi2Te3 (BT ), and Bilayer Bi2Se3 (BS) databases. The superscripts nt and t respectively denote the non-twisted
and twisted subsets. ↓ means lower values of the metrics correspond to better accuracy.

Methods
BGnt BGt

MAE (↓)
MAEH

all MAEH
cha s MAEH

cha b MAEH
all MAEH

cha s MAEH
cha b

DeepH-E3 (Baseline) 0.389 0.453 0.644 0.264 0.429 0.609
DeepH-E3+Trace 0.362 0.417 0.593 0.251 0.401 0.480
DeepH-E3+Gate 0.368 0.441 0.626 0.241 0.405 0.602
DeepH-E3+Grad 0.320 0.356 0.511 0.222 0.389 0.446

DeepH-E3+TraceGate 0.354 0.403 0.580 0.239 0.388 0.464
DeepH-E3+TraceGrad 0.291 0.323 0.430 0.198 0.372 0.406

Methods BBnt BBt

MAEH
all MAEH

cha s MAEH
cha b MAEH

all MAEH
cha s MAEH

cha b

DeepH-E3 (Baseline) 0.274 0.304 1.042 0.468 0.602 2.399
DeepH-E3+Trace 0.259 0.285 0.928 0.429 0.570 1.782
DeepH-E3+Gate 0.268 0.301 0.991 0.450 0.593 2.276
DeepH-E3+Grad 0.243 0.272 0.824 0.406 0.542 1.431

DeepH-E3+TraceGate 0.252 0.279 0.908 0.417 0.561 1.740
DeepH-E3+TraceGrad 0.226 0.256 0.740 0.384 0.503 1.284

Methods BTnt BT t

MAEH
all MAEH

cha s MAEH
cha b MAEH

all MAEH
cha s MAEH

cha b

DeepH-E3 (Baseline) 0.447 0.480 1.387 0.831 0.850 4.572
DeepH-E3+Trace 0.406 0.462 1.239 0.784 0.812 4.520
DeepH-E3+Gate 0.423 0.469 1.196 0.813 0.829 4.494
DeepH-E3+Grad 0.342 0.365 0.750 0.742 0.786 4.463

DeepH-E3+TraceGate 0.368 0.377 0.982 0.778 0.783 4.489
DeepH-E3+TraceGrad 0.295 0.312 0.718 0.735 0.755 4.418

Methods BSnt BSt

MAEall MAEH
cha s MAEH

cha b MAEall MAEH
cha s MAEH

cha b

DeepH-E3 (Baseline) 0.397 0.424 0.867 0.370 0.390 0.875
DeepH-E3+Trace 0.382 0.397 0.843 0.351 0.367 0.838
DeepH-E3+Gate 0.385 0.401 0.852 0.369 0.373 0.820
DeepH-E3+Grad 0.343 0.365 0.696 0.324 0.339 0.746

DeepH-E3+TraceGate 0.364 0.386 0.765 0.337 0.348 0.798
DeepH-E3+TraceGrad 0.300 0.332 0.644 0.291 0.302 0.674

can conclude that the two core mechanisms of our method, i.e., the SO(3)-invariant trace supervision mechanism (Trace)
at the label level as well as the gradient-based induction mechanism (Grad) at the representation level, can contribute to
the performance individually. Moreover, their combination provides even better performance. This is because, on one
hand, with the gradient-based induction mechanism as a bridge, the non-linear expressiveness of SO(3)-invariant features
learned from the trace label can be transformed into the SO(3)-equivariant representations during inference; on the other
hand, with trace label, the SO(3)-invariant network branch has a strong supervisory signal, enabling it to learn the intrinsic
symmetry and complexity of the regression targets, enhancing the quality of SO(3)-invariant features and ultimately ben-
efits the encoding of SO(3)-equivariant features. The value of such complementarity has been fully demonstrated in the
experimental results.
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Second, it is evident that both DeepH-E3+Gate and DeepH-E3+TraceGate show improvement over the baseline DeepH-
E3, as these configurations introduce an additional neural network module snonlin(·) in learning the feature z, which
increases model capacity. Moreover, DeepH-E3+TraceGate also incorporates our proposed trace supervision signal,
which guides the learning of SO(3)-invariant features. However, their performance falls short of DeepH-E3+Grad and
DeepH-E3+TraceGrad, respectively, indicating that the gated activation mechanism may not fully capture the system’s
non-linearity patterns, whereas the proposed gradient-based mechanism demonstrates stronger generalization performance
on Hamiltonian prediction and may be a better choice in terms of expressive capability.

I. Theoretical Analysis on Computational Complexity

The total number of non-zero Hamiltonian matrix elements to be calculated is proportional to the number of local atomic
pairs in the system, with a complexity of O(NE), where N is the total number of atoms and E is the average number
of neighboring atoms within the cutoff radius per atom. Since the atomic orbital basis set has a finite range, the non-zero
matrix elements vanish beyond a certain distance for an given atom. In small systems, where all atoms lie within each
other’s cutoff radius, E scales with N , resulting in a total number of non-zero elements proportional to N2. However, in
sufficiently large systems, the finite range of the atomic orbitals ensures that E remains constant, independent of N . As a
result, for large atomic systems, the total number of non-zero elements simplifies to O(N).

The baseline models we select, whether DeepH-E3 or QHNet, are SO(3)-equivariant graph neural network models with
efficient information aggregation and message-passing mechanisms. These models cleverly balance the locality of Hamil-
tonian definitions with the long-range interactions present in the system. As a result, the computational complexity asymp-
totically scales as O(N) as N increases, which is consistent with the growth of the scales of non-zero Hamiltonian matrix
elements. The proposed TraceGrad method directly updates each SO(3)-equivariant feature of the baseline models, and the
computational amount is proportinal to the number of features of the baseline models. Therefore, combining TraceGrad,
the computational complexity also scales as O(N).

Traditional DFT methods require T iterations of diagonalizing N × N matrices, each with a time complexity of O(N3),
because all occupied states are needed to compute the charge density. As N increases, this cubic complexity leads to
significant computational overhead, making it challenging to simulate large atomic systems within a reasonable time frame.
In contrast, our deep learning framework enables the efficient and accurate prediction of the Hamiltonian for large atomic
systems with a linear time complexity of O(N), eliminating the need for self-consistent iterations. Moreover, since most
physical properties, such as transport, optical, and topological properties, depend only on the energy bands near the Fermi
level, it is unnecessary to solve for the eigenfunctions of all occupied states once the Hamiltonian is known. Since the
Hamiltonian matrix is sparse and only a limited number of bands near the Fermi level are needed, these eigenstates can
be efficiently computed using methods like the shift-invert approach available in the ARPACK package (Lehoucq et al.,
1998), with a computational complexity of O(N).

J. A Joint Discussion on GPU Time Costs and Performance Gains

We here provide a joint comparison of the GPU time cost and corresponding accuracy of different models across four
databases as representative: Monolayer Graphene (MG), Monolayer MoS2 (MM ), QH9-stable (QS), and QH9-dynamic
(QD). This comparison includes the average inference time per sample for each model, with the test batch size set as 1
and hardware environment set as Nvidia RTX A6000 GPU in single-task mode without computational sharing with other
processes.

For MG and MM , we compare among DeepH-E3, DeepH-E3+TraceGrad, and DeepH-E3×2, where DeepH-E3×2 refers
to a model obtained by doubling the number of encoding blocks in DeepH-E3 and training it from scratch until conver-
gence. For QS and QD, we compare among QHNet, QHNet+TraceGrad, and QHNet×2, where QHNet×2 refers to a
model obtained by doubling the number of encoding blocks in QHNet and training it from scratch until convergence. The
experimental results are documented in the Table 7.

From this Table, we find that adding the TraceGrad module results in only a slight increase in inference time compared
to the baseline models. Given the substantial accuracy improvements introduced by the TraceGrad method, we con-
sider this minor increase in computational time acceptable for practical applications. In contrast, simply increasing the
depth of DeepH-E3 or QHNet results in a significant rise in inference time but yields only limited accuracy improve-
ments. In contrast, DeepH-E3+TraceGrad demonstrates significantly better accuracy performance than DeepH-E3×2,
and similarly, QHNet+TraceGrad achieves notably higher accuracy than QHNet×2. Furthermore, the inference time of
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Table 7: Average inference time (denoted as Time, in seconds) and MAE performance (MAEH
all, in meV) for testing

samples from the Monolayer Graphene (MG), Monolayer MoS2 (MM ), QH9-stable (QS), and QH9-dynamic (QD)
databases. ↓ indicates that lower values of the metrics correspond to better accuracy. All models are tested individually on
a single Nvidia RTX A6000 in single-task mode.

Methods MG MM

Time (↓) MAEH
all (↓) Time (↓) MAEH

all (↓)
DeepH-E3 (Baseline) 0.247 0.251 0.256 0.406

DeepH-E3×2 0.483 0.244 0.510 0.387
DeepH-E3+TraceGrad 0.264 0.175 0.274 0.285

Methods QS QD

Time (↓) MAEH
all (↓) Time (↓) MAEH

all (↓)
QHNet (Baseline) 0.233 1.962 0.174 4.733

QHNet×2 0.497 1.845 0.385 4.532
QHNet+TraceGrad 0.248 1.191 0.187 2.819

DeepH-E3+TraceGrad and QHNet+TraceGrad are both lower than their respective DeepH-E3×2 and QHNet×2 counter-
parts. These results underscore the superiority of the TraceGrad method in enhancing expressive capability and improving
accuracy performance, while maintaining time efficiency.

K. Acceleration Performance for the Convergence of Traditional DFT Algorithms

Despite the increasing ability of deep learning models to independently handle more electronic-structure computation tasks,
there are still applications with extremely high numerical precision requirements and very low tolerance for error, where
traditional DFT algorithms must perform the final calculations. In such cases, the predictions from deep models can be used
as initial matrices to accelerate the convergence of traditional DFT algorithms. We evaluate the acceleration performance
brought by the proposed method for the convergence of classical DFT algorithms implemented by PySCF (Sun et al.,
2018). Specifically, we adopt the two groups of metrics on acceleration performance:

The first group of metrics are defined by Yu et al. (2023a), as follows:

• Achieved ratio. This metric calculates the number of DFT optimization steps taken when initializing with the Hamil-
tonian matrices predicted by the deep model compared to using initial guess methods like minao and 1e.

• Error-level ratio. This metric measures the number of DFT optimization steps required, starting from random initial-
ization, to reach the same error level as the deep model’s predictions, relative to the total number of steps in the DFT
process.

Experimental results on these metrics are recorded in Table 8, where the results for the compared method QHNet are taken
from Yu et al. (2023a), while the results of QHNet+TraceGrad, come from our experiments. In our experiments, the DFT
calculation settings follow those in Section 4 of Yu et al. (2023a) (the DFT parameters and the 50 testing samples) , except
for the CPU environment, where we use a single thread of an Intel(R) Xeon(R) Gold 6330 @ 2.00GHz CPU in single-task
mode. It is worth noting that this does not affect the fairness of the comparison, as the achieved ratio and error-level ratio
measure the ratio of iteration counts rather than runtime, and differences in CPU computation times are negligible in these
metrics. From Table 8, we could observe that the proposed TraceGrad method brings significant improvements to the
baseline model QHNet on the acceleration ratio of DFT calculation, notably reducing the achieved ratio and enhancing the
error-level ratio.

The second group of metrics measures the wall time savings that deep learning methods contribute to DFT calculations,
specifically quantifying the incremental time savings brought by our proposed TraceGrad method in accelerating DFT
calculations. For a fair comparison, we report the average wall time costs of testing samples (/s) across three metrics:

• t1: The wall time required for a DFT calculation initialized with a random guess initialization, such as 1e or minao.
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Table 8: The acceleration ratios of QHNet and QHNet+TraceGrad for DFT calculation. Both models are evaluated on
a set of 50 molecules chosen by (Yu et al., 2023a), with the mean and standard deviation of the metrics across these
samples reported. ↓ means lower values correspond to better accuracy, while ↑ means higher values correspond to better
performance.

Methods Training DFT Metric Ratiodatabases initialization

QHNet (Baseline)

QS
1e Achieved ratio ↓ 0.400± 0.030

Error-level ratio ↑ 0.620± 0.037

minao Achieved ratio ↓ 0.715± 0.033
Error-level ratio ↑ 0.406± 0.021

QD
1e Achieved ratio ↓ 0.512± 0.138

Error-level ratio ↑ 0.622± 0.048

minao Achieved ratio ↓ 0.882± 0.217
Error-level ratio ↑ 0.406± 0.066

QHNet+TraceGrad

QS
1e Achieved ratio ↓ 0.345 ± 0.038

Error-level ratio ↑ 0.685 ± 0.037

minao Achieved ratio ↓ 0.647 ± 0.061
Error-level ratio ↑ 0.466 ± 0.035

QD
1e Achieved ratio ↓ 0.440 ± 0.101

Error-level ratio ↑ 0.645 ± 0.046

minao Achieved ratio ↓ 0.761 ± 0.167
Error-level ratio ↑ 0.435 ± 0.052

• t2: The wall time for inference using deep learning methods (i.e., QHNet or QHNet+TraceGrad).

• t3: The total wall time for the combined process, including both deep learning inference and the subsequent DFT
calculation initialized with the deep model’s outputs. t3 here provides a more comprehensive evaluation of the actual
time savings achieved when incorporating deep learning methods.

Experimental results on these metrics are recorded in Table 9. Here all time-related measurements are conducted on a single
thread of an Intel(R) Xeon(R) Gold 6330 @ 2.00GHz CPU, including the experiments for QHNet, which are reproduced
under the same conditions to ensure fairness. Unlike the time measurements in Appendix J, which are performed on
GPUs, all deep learning models here are evaluated on the CPU thread to maintain consistency in the comparison with DFT
software. From the experimental results, we observe three key findings:

• Comparing t2 and t1, deep models are significantly faster than DFT calculations, achieving speeds tens of times
greater for the testing samples. It is worth noting that, given that the testing samples here are all small molecular
systems, deep models have already demonstrated a significant time efficiency advantage compared to DFT. Based
on the computational complexity analysis of deep learning methods compared to DFT methods in Appendix I, it is
reasonable to infer that for larger atomic systems, the disparity between t2 and t1 will expand rapidly.

• Comparing t2 values between QHNet and QHNet+TraceGrad, the additional runtime introduced by TraceGrad is
relatively minor on the CPU, consistent with the GPU-based results reported in Appendix J.

• Comparing t3 and t1, the total runtime of using a deep model to predict initial values and then running DFT cal-
culations is significantly lower than performing DFT calculations from a random guess initialization. Particularly,
comparing row 4 and row 16, row 7 and row 19, row 10 and row 22, as well as row 13 and row 25 in Table 9, it
can be observed that combing TraceGrad further reduces t3, demonstrating that the time saved by TraceGrad in DFT
calculations far exceeds the minimal additional time required for its inference.
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Table 9: Average wall time costs per sample (/s) for three experimental settings: t1 represents the wall time required for
DFT calculation with a random initial guess like 1e of minao; t2 denotes the wall time for inference of deep learning
methods (i.e., QHNet or QHNet+TraceGrad); t3 is the total time of the process including deep learning inference and the
DFT calculation that uses the outputs of deep learning methods as initialization. Both models are evaluated on a set of 50
molecules chosen by (Yu et al., 2023a), with the mean and standard deviation of the metrics across these samples reported.
↓ indicates that lower values correspond to better performance. In order to ensure fairness in comparison, all experimental
settings including DFT calculation and deep learning inference are measured on a single thread of an Intel(R) Xeon(R)
Gold 6330 @ 2.00GHz CPU in single-task mode.

Methods Training DFT Metric Timedatabases initialization

QHNet (Baseline)

QS

1e
t1 120.896± 9.134

t2 ↓ 1.724± 0.025
t3 ↓ 48.604± 7.741

minao
t1 63.193± 5.335

t2 ↓ 1.724± 0.025
t3 ↓ 48.604± 7.741

QD

1e
t1 87.161± 12.075

t2 ↓ 1.280± 0.019
t3 ↓ 44.146± 9.342

minao
t1 51.396± 5.870

t2 ↓ 1.280± 0.019
t3 ↓ 44.146± 9.342

QHNet+TraceGrad

QS

1e
t1 ↓ 120.896± 9.134
t2 ↓ 1.852± 0.020
t3 ↓ 41.941± 6.783

minao
t1 63.193± 5.335

t2 ↓ 1.852± 0.020
t3 ↓ 41.941± 6.783

QD

1e
t1 87.161± 12.075

t2 ↓ 1.361± 0.010
t3 ↓ 39.712± 9.076

minao
t1 51.396± 5.870

t2 ↓ 1.361± 0.010
t3 ↓ 39.712± 9.076
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Figure 7: Comparison on the MAEH
block metric for HarmoSE and HarmoSE+TraceGrad on the MM database.

Table 10: MAE results (meV) for DeepH-2, HarmoSE, and HarmoSE+TraceGrad on the MM database. ↓ means lower
values of the metrics correspond to better accuracy. The results of the compared methods are taken from the corresponding
literature (Wang et al., 2024b; Yin et al., 2024), where the empty items are due to the data not being provided in the original
paper.

Methods
MM

MAE (↓)
MAEH

all MAEH
cha s MAEH

cha b

DeepH-2 (Wang et al., 2024b) 0.21 - -
HarmoSE (Yin et al., 2024) 0.233 0.293 0.406

HarmoSE+TraceGrad 0.178 0.228 0.296

L. Empirical Study on Combining Our Method with Approximately SO(3)-equivariance Framework

While non-strict SO(3)-equivariance, which may limit the depth of theoretical exploration, is not the main focus of this
study aiming at bridging rigorous SO(3)-equivariance with the non-linear expressive capabilities of neural networks, con-
sidering that they remain of interest in a few numerical computation applications where precision is highlighted over strict
equivariance, we also conduct empirical study combining our method with approximately SO(3)-equivariant techniques.
Taking the Monolayer MoS2 (MM ) database as a case study, we evaluate the performance of combining our trace super-
vision and gradient induction method (TraceGrad) with the an approximately equivariant approach HarmoSE (Yin et al.,
2024). We here take HarmoSE as the backbone encoder, and yields features by TraceGrad to enrich its representations. The
experimental results in Table 10 and Fig. 7 demonstrate that TraceGrad significantly enhances the accuracy of HarmoSE,
surpassing DeepH-2 (Wang et al., 2024b) and achieving SOTA results. Both DeepH-2 and HarmoSE sacrificed strict
SO(3)-equivariance to fully release the expressive capabilities of graph Transformers, aiming for the ultimate in prediction
accuracy. Despite this, our method still manages to significantly exceed their accuracy, further confirming the superiority
of our method in learning expressive representations of physical systems for Hamiltonian prediction.

M. Extending Our Method to Energy and Force Prediction Task

In this section, we extend the application of our proposed framework, TraceGrad, beyond electronic-structure Hamilto-
nian prediction to address energy and force prediction task. This task is crucial for a variety of atomic system modeling
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Table 11: MAE results of Equiformer and Equiformer+TraceGrad methods on energy and force prediction, evaluated on
the MD17-Aspirin and MD17-Malonaldehyde datasets. lmax corresponds to the maximum degree of features used. MAE
of energy (E) and force (F) are in units of meV and meV/Å, respectively.

Method Aspirin Malonaldehyde
E F E F

Equiformer (lmax = 2) 5.3 7.2 3.3 5.8
Equiformer+TraceGrad (lmax = 2) 5.06 5.65 3.21 4.68

applications across chemistry, materials science, and biology.

In predictions of energy and force, the regression target E (energy) is an SO(3)-invariant quantity (l = 0), while F (force)
is an SO(3)-equivariant quantity (l = 1). The regression model typically learns SO(3)-equivariant features f , which are
then transformed into SO(3)-invariant features, from which E is regressed. Subsequently, the force field at a given position
is obtained by differentiating E with respect to the atomic coordinates: Fi = − ∂E

∂ri
, where ri is the position vector of

the i-th atom. This approach ensures energy conservation. Given the specificity of this task, we integrate the baseline
model, Equiformer (Liao & Smidt, 2023), with our proposed TraceGrad method, where the regression target shifts from
electronic-structure Hamiltonian prediction to energy and force prediction, as outlined below:

First, we use the SO(3)-equivariant features f encoded by the baseline model Equiformer as input, and construct SO(3)-
invariant non-linear features z according to our method (Sections 4 and 5 of our paper). We then use the trace quantity T
to supervise the learning of z. Given F as a column vector with l = 1, here T simplifies to T = FT · F. From z, we
induce the SO(3)-equivariant features v with more non-linearity, which are then fed back into the baseline model for the
subsequent encoding and decoding phases, where E is regressed and finally F is constructed from the gradients of E.

We conduct experiments on two datasets as representative, i.e., MD17-Aspirin and MD17-Malonaldehyde (Chmiela et al.,
2017; Schütt et al., 2017; Chmiela et al., 2018). We use the same training, validation and testing sets as Liao & Smidt
(2023). We train Equiformer+TraceGrad under the same training conditions as their open source codes 5. The optimizer
used is AdamW, and a cosine learning rate scheduler with linear warmup is employed, where the warmup epochs are set
as 10. The maximum learning rate is set to 5× 10−4, and the batch size is 8. The total number of training epochs is 1,500.
The weight decay parameter is set to 1 × 10−6. The weight for the energy loss is set to 1, while the weight for the force
loss is set to 80 for experiments on the Aspirin dataset and 100 for Malonaldehyde. The experimental results are listed in
Table 11, where the results for Equiformer are taken from the original paper.

The experimental results show that our TraceGrad method improves the prediction accuracy for both energy and force.
Particularly, the accuracy improvement for force, i.e., the SO(3)-equivariant regression target, is especially significant, as
the new supervision signal (T = FT · F) we introduced is designed targeting force. Nevertheless, it is very interesting
that even for the energy, i.e., the SO(3)-invariant quantity, TraceGrad also leads to an accuracy improvement. This is
because both energy and force predictions are based on the SO(3)-equivariant features of the network, and our approach
enhances the non-linear expressiveness of these SO(3)-equivariant features, thus improving the accuracy of the induced
physical quantities. These results show that our method can be effectively transferred to energy/force prediction, and its
effectiveness is not limited to the prediction of electronic-structure Hamiltonians and their downstream physical quantities.

5https://github.com/atomicarchitects/equiformer
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