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Abstract

Riemannian space forms, such as the Euclidean space, sphere and hyperbolic space,
are popular and powerful representation spaces in machine learning. For instance,
hyperbolic geometry is appropriate to represent graphs without cycles and has been
used to extend Graph Neural Networks. Recently, some pseudo-Riemannian space
forms that generalize both hyperbolic and spherical geometries have been exploited
to learn a specific type of nonparametric embedding called ultrahyperbolic. The
lack of geodesic between every pair of ultrahyperbolic points makes the task of
learning parametric models (e.g., neural networks) difficult. This paper introduces
a method to learn parametric models in ultrahyperbolic space. We experimentally
show the relevance of our approach in the tasks of graph and node classification.

1 Introduction

Riemannian manifolds of constant curvature are the most common representation spaces in machine
learning. They include the Euclidean space (of constant zero curvature), the d-sphere (of constant
positive curvature) and the hyperbolic space (of constant negative curvature). The choice of a
geometry to represent data mainly depends on the kind of relationship that needs to be described. For
instance, Gromov [10] showed the relevance of hyperbolic geometry to represent trees (i.e., graphs
without cycles). Since many hierarchies can be described as trees, hyperbolic representations have
been used to represent hierarchical relationships (e.g., hypernymy between words [19]). Nonetheless,
in many domains (e.g., social networks or protein structures), hierarchical graphs contain cycles.

In hyperbolic geometry, the considered manifold is not a vector space and is not equipped with the
standard dot product. Therefore, most hyperbolic neural networks [5, 8, 18, 27] represent the weights
of their last layer in the tangent space of some reference point. That tangent space is equipped with a
positive definite metric tensor and the learned model can then be optimized with Riemannian gradient
descent [1, 4]. In particular, since there exists a geodesic between any pair of points, the parameters
are often optimized by using parallel transport (also called parallel translation) or the logarithm map.
The Riemannian gradients are then parallel translated to the reference tangent space in which the
model parameters lie. We refer the reader to [23] for a recent survey on hyperbolic neural networks.

Recently, Law & Stam [15] proposed ultrahyperbolic embeddings. They are a type of embedding that
lies on a pseudo-Riemannian manifold of constant nonzero curvature [2, 21, 30]. Pseudo-Riemannian
manifolds (also called semi-Riemannian manifolds) are generalizations of Riemannian manifolds
where the nondegenerate metric tensor is not constrained to be positive definite [16]. In particular,
when the metric tensor is not positive definite (e.g., when it is indefinite), the negative of the (pseudo-
Riemannian) gradient is not a descent direction [9]. Law & Stam [15] proposed an efficient method
to calculate a descent direction and learn ultrahyperbolic (nonparametric) embeddings. The main
motivation of representing data on an ultrahyperbolic manifold is that it contains hyperbolic and
spherical parts (see Fig. 1 and supp. material for details). It can then describe relationships specific
to hyperbolic and spherical geometries (e.g., to represent parts of a graph that are trees or cycles) and
is more flexible. Ultrahyperbolic embeddings were experimentally shown to be more appropriate
than hyperbolic embeddings to represent hierarchical graphs with cycles on several datasets [15].
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Figure 1: Geodesics of the pseudo-Riemannian quotient manifold
P1,1
1 = S1,11 / ± 1 embedded in R2,1. The point [x] of P1,1

1 is
the pair {x,−x}. Any pair of points of P1,1

1 can be joined by a
geodesic of P1,1

1 . On the other hand, x and −z cannot be joined
by an (unbroken) geodesic of S1,11 . The length of the minimizing
geodesic ofP1,1

1 joining [x] and [y] is the length of the minimizing
geodesic of S1,11 joining x and −y (in blue). The length of the
geodesic of P1,1

1 joining [x] and [z] is the length of the geodesic
of S1,11 joining x and z (in red). See details in the supp. material.

However, since there exist pairs of points on the ultrahyperbolic manifold considered in [15] that
cannot be joined by an (unbroken) geodesic, gradients might not be parallel translated via a geodesic
and the logarithm map joining two given points might not be defined. Directly extending hyperbolic
neural networks [5, 8, 18, 27] to ultrahyperbolic space is then problematic.

In this paper, we propose a method to learn ultrahyperbolic representations with neural networks.
Unlike [15], we consider the pseudo-Riemannian quotient manifold defined such that every point
x = (x0, . . . , xd)

> is equivalent to its antipodal point −x = (−x0, . . . ,−xd)>. In this way, for any
other point y, there always exists at least one geodesic joining (x,y) or (−x,y). We provide sufficient
conditions to minimize a function defined on our quotient manifold. Since tangent vectors (hence
gradients) of quotient manifolds are abstract objects, we explain how the function can be optimized
with the horizontal lift operator. Our optimization framework is general, so we also introduce an
extension to Graph Neural Networks (GNNs) [18] such that the activation representations at each
layer of our GNN lie in ultrahyperbolic space. We then obtain a deep ultrahyperbolic model to
represent graphs given as input. We evaluate our approach in different graph classification tasks.

2 Pseudo-sphere and Quotient Manifold

We extend the ultrahyperbolic manifold described in [15] (denoted by Sp,qr ) to a quotient manifold
denoted by Pp,qr where (p, q) is the metric signature (see page 343 of [16]) of the pseudo-Riemannian
manifold and 1/r2 is its curvature. The motivation is that any pair of points of Pp,qr can be joined
by at least one geodesic, which allows us to optimize parametric models. We consider three pseudo-
Riemannian manifoldsPp,qr ⊂ Sp,qr ⊂ Rp+1,q that we define below. We explain howPp,qr generalizes
elliptic and hyperbolic geometries in the special cases where q = 0 and p = 0, respectively.

Notation. We denote points on a smooth manifoldM [16] by boldface Roman characters x ∈M.
[x] := {x,−x} is a pair of antipodal points. TxM is the tangent space ofM at x and we write
tangent vectors ξ ∈ TxM in boldface Greek fonts. Rd is the d-dimensional Euclidean space equipped
with the (positive definite) dot product 〈·, ·〉 defined as 〈x,y〉 := x>y. I is the identity matrix. The
inverse function of the cosine (resp. hyperbolic cosine) is denoted by cos−1 (resp. cosh−1).

Ambient space Rp+1,q . Our ambient space Rp+1,q is a vector space of dimensionality d + 1 =
p+ q + 1 ∈ N called pseudo-Euclidean space [21]. It is equipped with the following scalar product
(i.e., nondegenerate symmetric bilinear form) of signature (p+ 1, q):

∀x = (x0, . . . , xd)
>
, y = (y0, . . . , yd)

>
, 〈x,y〉q :=

p∑
i=0

xiyi −
d∑

j=p+1

xjyj = x>Gy, (1)

where the signature matrix G = G−1 = Ip+1,q is the (d+ 1)× (d+ 1) diagonal matrix with the first
p + 1 diagonal elements equal to 1 and the remaining q equal to −1. Following general relativity
literature and spacetime terminology [7], Rp+1,q has p+ 1 space dimensions and q time dimensions.
Since it is a vector space, we can identify its tangent space to the space itself by means of the natural
isomorphism TxRp+1,q ≈ Rp+1,q. Finally, the Euclidean space Rd+1 is the special case of Rd+1,0

which contains zero time dimension, and where G = Id+1,0 = I.

Total space Sp,qr . Our total space Sp,qr is a pseudo-sphere of radius r > 0 embedded in Rp+1,q . It is
the following hypersurface:

Sp,qr :=
{
x ∈ Rp+1,q : 〈x,x〉q = r2

}
, (2)
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It is equivalent to work with the pseudo-hyperboloid Qq,pr := {x ∈ Rq,p+1 : 〈x,x〉p+1 = −r2} and
the pseudo-sphere Sp,qr as they are anti-isometric to each other (see supp. material). Moreover, the
radius r > 0 plays a role of scaling factor so we consider it to be 1 although it can be learned [5, 14].
Finally, both x ∈ Sp,qr and its antipodal point −x lie on Sp,qr since 〈x,x〉q = 〈−x,−x〉q .
Quotient manifold Pp,qr . We consider as equivalence relation the two-element group {±1} consist-
ing of the identity map x 7→ x and the antipodal map x 7→ −x. This means that two points x ∈ Sp,qr
and y ∈ Sp,qr are equivalent iff y = x or y = −x. We define the following projective space:

Pp,qr := Sp,qr /± 1 = Sp,qr /± I = {{x,−x} : x ∈ Sp,qr } . (3)
Every point of Pp,qr is an unordered pair that we denote by [x] := {x,−x}. Since Pp,qr is a projective
space, every point [x] ∈ Pp,qr can be interpreted as the intersection of the pseudo-sphere Sp,qr with a
line passing through the origin of Rp+1,q . In some cases, it might be easier to interpret points of Pp,qr
as lines through the origin, and to study their properties when they intersect the pseudo-sphere. Each
point [x] ∈ Pp,qr is also a submanifold of Sp,qr and a discrete space.

In the following, we explain how Pp,qr extends spherical geometry to elliptic geometry (i.e., when
q = 0), or naturally describes the hyperboloid model of hyperbolic geometry (i.e., when p = 0).

Elliptic geometry (q = 0). In spherical geometry, points lie on the unit d-sphere Sd := Sd,01 =
{x ∈ Rd+1 : 〈x,x〉 = 1}. The geometry of the projective d-space Pd := Sd/± 1 is called elliptic
geometry [24, 30]. Geodesic distances of Pd naturally account for the fact that they compare sets. Let
dγ : Sd × Sd → R be the geodesic distance of Sd (i.e., spherical distance). The geodesic distance
between [x] ∈ Pd and [y] ∈ Pd is dγ([x], [y]) = mina∈[x],b∈[y] dγ(a,b). We then have:

dγ([x], [y]) := min{dγ(x,y), dγ(−x,y)} = cos−1(|〈x,y〉|) = cos−1(|〈x,y〉q|), (4)
which is a distance metric. The fact that the spherical geometry is antipodally symmetric (i.e., every
point can be inverted w.r.t. the origin) leads to a duplication of geometric information [24]. Identifying
each pair of antipodal points to one point eliminates the antipodal duplication in spherical geometry.

The hyperboloid model of hyperbolic geometry is similar to the geometry of P0,q
1 (p = 0). The

q-dimensional manifold S0,q1 ⊂ R1,q contains two separate sheets (i.e., two connected components)
and is anti-isometric to the hyperboloid of two sheetsQq,01 . Pairs of antipodal points lying on different
sheets of S0,q1 are considered as a single point of P0,q

1 . Let x ∈ S0,q1 and z ∈ S0,q1 be two points
lying on the same sheet of S0,q1 , there exists no geodesic joining x and −z. Their geodesic distance
with respect to S0,q1 can then be considered to be dγ(x,−z) = +∞, and we have:

dγ([x], [z]) := min{dγ(x, z),+∞} = dγ(x, z) = cosh−1(〈x, z〉q) = cosh−1(|〈x, z〉q|), (5)
which is similar to the hyperbolic distance metric of the hyperboloid model studied in [20].

Ultrahyperbolic geometry (or indefinite elliptic geometry). In this paper, we propose a parametric
model that learns representations lying on the quotient manifold Pp,qr . When both p and q are positive,
the metric tensor of Pp,qr is nondegenerate (see page 343 of [16]) and indefinite. This means that the
manifold is pseudo-Riemannian but not Riemannian due to the lack of positive definiteness of the
metric tensor. Pp,qr is also called an indefinite elliptic space [30] in the literature. We refer the reader
to Chapters 11 and 12 of [30] or Chapter 7 of [21] for details. As an example, Fig. 1 illustrates the
manifold P1,1

1 . Our main motivation for considering Pp,qr is that it is more flexible than hyperbolic
and elliptic geometries since it contains hyperbolic and elliptic parts (i.e., time-like and space-like
geodesics in Fig. 1). This flexibility allows us to better represent graphs that are not entirely trees or
cycles, but that contain tree-like or cycle subgraphs. We experimentally verify our intuition.

3 Optimization on Ultrahyperbolic Quotient Manifolds

Our ultrahyperbolic representations lie on the quotient manifold Pp,qr . In this section, we provide
differential geometry tools to optimize some differentiable function f : Pp,qr → R. To this end, we
need the formulation of geodesics of Pp,qr . In Section 3.1, we explain how to formulate tangent
vectors of Pp,qr as a function of tangent vectors of Sp,qr via the horizontal lift operator. This operator
allows us to formulate geodesics of Pp,qr as a function of geodesics of Sp,qr in Section 3.2. In
Section 3.3, we state the properties that the function f has to satisfy due to the quotient nature of
Pp,qr . In Section 3.4, we illustrate how to optimize a standard neural network. Our deep GNN that
maps activation representations in ultrahyperbolic space at each layer is introduced in Section 4.
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3.1 Representing tangent vectors of Pp,qr only by horizontal tangent vectors of Sp,qr

It can be difficult to work numerically with the tangent space T[x]Pp,qr of Pp,qr at [x] since [x] =
{x,−x} is an equivalence class. We now present some differential geometry tools to define tangent
vectors of Sp,qr as a function of tangent vectors of Pp,qr , and vice versa. Their general definitions can
be found in Chapter 7 of [21]. We also refer the reader to [4] for details on optimization on quotient
manifolds. Our contribution in this subsection is that we give their formulation for Pp,qr . We first
give the formulation of tangent spaces of Sp,qr and then provide tools to identify tangent vectors of
Pp,qr . These tools will be essential to construct geodesics of Pp,qr and represent them via Sp,qr .

The tangent space TxSp,qr of Sp,qr at x can be defined as: TxSp,qr := {ξ ∈ Rp+1,q : 〈ξ,x〉q = 0}.
The canonical map (or natural map [21]) π : Sp,qr → Pp,qr is defined as: ∀x ∈ Sp,qr , π(x) :=
[x] = {x,−x}. Its differential at x is denoted by dπx : TxSp,qr → T[x]Pp,qr .

The horizontal space Hx and the vertical space Vx at x ∈ Sp,qr are subspaces of TxSp,qr defined
such that TxSp,qr = Hx ⊕ Vx is a direct sum of linear spaces, and Vx is the following kernel:
Vx := ker(dπx). From Proposition 5.38 of [16], we find ker(dπx) = Tx([x]) = 0 because [x] is a
discrete space so [x] and its tangent spaces are 0-dimensional. We then haveHx = TxSp,qr . Elements
ofHx are called horizontal vectors, and all the tangent vectors of Sp,qr are horizontal.

The horizontal lift (see §29 of [29]) at x ∈ Sp,qr of the tangent vector ξ ∈ T[x]Pp,qr is the unique
horizontal vector denoted by ξx = liftx(ξ) ∈ Hx such that dπx(ξx) = ξ. Since Hx = TxSp,qr ,
the liftx operator is bijective so tangent vectors in T[x]Pp,qr can be equivalently represented by
horizontal vectors inHx. During optimization, we will exploit this bijection and consider only some
specific horizontal space to represent and update the weights of our neural network. The fact that
Hx = TxSp,qr is convenient since it implies that any tangent vector in TxSp,qr can be represented in
T[x]Pp,qr . We can then construct a geodesic of Pp,qr from any geodesic of Sp,qr as discussed below.

3.2 Geodesic of Pp,qr , exponential map and parallel transport

To optimize over Sp,qr andQq,pr , Gao et al. [9] and Law & Stam [15] define tools such as the geodesic,
parallel transport, exponential map, logarithm map and the geodesic distance dγ : Sp,qr × Sp,qr → R
(see formulations in the supp. material). Our contribution in this subsection is that we extend all of
the above differential geometry tools to Pp,qr . Their details can be found in the supp. material.

The geodesic γx→ξx : R→ Sp,qr of Sp,qr is the curve defined such that its initial point is γx→ξx(0) =

x ∈ Sp,qr , its initial velocity is γ′
x→ξx

(0) = ξx ∈ TxSp,qr and its acceleration is zero. When the
initial conditions are clear from the context, we denote the geodesic by γ and ignore its indices.
Since every geodesic γ of Sp,qr satisfies ∀t, γ′(t) ∈ Hγ(t), it is called horizontal and γ := π ◦ γ :
R→ Pp,qr is a geodesic of Pp,qr . By the chain rule, we have ∀t, γ′(t) = dπγ(t)(γ′(t)), which implies
∀t, liftγ(t)(γ′(t)) = γ′(t). We then have ∀t ∈ R, γ[x]→ξ(t) = {γx→ξx(t), γ−x→ξ−x

(t)}, and we

find ξx = −ξ−x to preserve the equivalence between antipodal points: γx→ξx(t) = −γ−x→ξ−x
(t).

Exponential and logarithm map. The exponential map of Pp,qr at [x] is the differentiable mapping
exp[x] : T[x]Pp,qr → Pp,qr defined such that exp[x](ξ) := γ[x]→ξ(1) = {γx→ξx(1), γ−x→ξ−x

(1)}.

We denote the exponential map of Sp,qr at x by expx : TxSp,qr → Sp,qr . It is defined as expx(ξx) :=
γx→ξx(1), and we have exp[x](ξ) = [expx(ξx)]. In practice, we select some reference point x
and only work with the exponential map expx. The logarithm map is the inverse function of the
exponential map (i.e., log[x] := exp−1[x] ). Their exact formulation can be found in the supp. material.

Parallel transport on Sp,qr . Given the minimizing (unbroken) geodesic γ (i.e., minimizing the
arc length) from x = γ(0) to y = γ(1), the parallel transport P γxyy : TxSp,qr → TySp,qr is a
linear isometry such that ∀ξx, ζx, 〈ξx, ζx〉q = 〈P γxyy(ξx), P γxyy(ζx)〉q (see page 66 of [21]). The
parallel transport along γ from x to y (where x and y satisfy 〈x,y〉q > −r2) is:

P γxyy(ξx) := ξx −
〈y, ξx〉q
〈x,y〉q + r2

(y + x) (6)
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Minimizing geodesic of Pp,qr . Our parallel transport on Pp,qr depends on a minimizing geodesic γ
whose arc length (that we call geodesic distance dγ) from [x] = γ(0) to [y] = γ(1) is:

∀[x] ∈ Pp,qr , [y] ∈ Pp,qr , dγ([x], [y]) =

{
r cosh−1(| 〈x,y〉qr2 |) if | 〈x,y〉qr2 | ≥ 1

r cos−1 (| 〈x,y〉qr2 |) otherwise.
(7)

and we have dγ(x,y) < dγ(−x,y) iff 〈x,y〉q > 0. See details in the supp. material.

The parallel transport P γ[x]y[y] on Pp,qr can be horizontally lifted onHy as discussed above:

∀ξ ∈ T[x]Pp,qr , lifty(P γ[x]y[y](ξ)) =

{
P γxyy(ξx) if 〈x,y〉q > 0

P γ−xyy(ξ−x) if 〈x,y〉q < 0.
(8)

If 〈x,y〉q = 0, we have dγ(x,y) = dγ(−x,y) and there exist two minimizing geodesics joining [x]
and [y]. In practice, we arbitrarily choose one of these two geodesics when 〈x,y〉q = 0.

3.3 Optimized function f : Pp,qr → R

Our goal is to minimize some differentiable function f : Pp,qr → R. We now describe the two
properties that f has to satisfy. We first recall that every [x] ∈ Pp,qr is a set of equivalent elements
that should preserve invariance. To simplify explanations, we consider the function f : Sp,qr → R
defined such that f := f ◦ π. We then have ∀x ∈ Sp,qr , f(x) = f([x]).

Property 1. Since x and −x are equivalent, the first property that f has to satisfy is f(x) = f(−x).

Property 2. Let ∇f(x) := (∂f(x)/∂x0, . . . , ∂f(x)/∂xd)
> be the Euclidean gradient of f at x =

(x0, . . . , xd)
>. The pseudo-Riemannian gradient of f at x ∈ Sp,qr is Df(x) := Πx(G−1∇f(x)) =

Πx(G∇f(x)) ∈ TxSp,qr where Πx(z) := z− 〈z,x〉q〈x,x〉q x is the orthogonal projection of z onto TxSp,qr .

Let Df([x]) ∈ T[x]Pp,qr be the pseudo-Riemannian gradient of f at [x] ∈ Pp,qr . By applying the
chain rule, the second property that f has to satisfy is liftx(Df([x])) = Df(x) = −Df(−x).

3.4 Optimization of parametric models

We now explain how to minimize some function f : Pp,qr → R that takes as input the ultrahyperbolic
representation returned by some parametric model ϕθ (e.g., a neural network with parameters θ)
that we want to learn. We exploit the fact that, due to the properties of the (affine) Levi-Civita
connection [6, 17] of Pp,qr , the metric of the manifold Pp,qr is preserved when we work with its
tangent spaces via the exponential map (see page 61 of [21]).

Forward pass. Let us consider the positive pole p = (r, 0, . . . , 0)> ∈ Sp,qr defined such that
only its first element r > 0 is nonzero. The horizontal space of p can be defined as the following
vector space Hp = TpSp,qr = {0} × Rp,q. The mapping ϕθ : X → Hp maps any input data
x ∈ X to Hp and the resulting horizontal vector is mapped to Sp,qr with the exponential map as
follows: x := expp (ϕθ(x)) ∈ Sp,qr . As mentioned above, working with the vector spaceHp greatly
simplifies computations and preserves the metric thanks to the Levi-Civita connection of Pp,qr .

Note that for standard neural networks that map to Rd, the tangent space is identified to the space
itself by the natural isomorphism TxRd ≈ Rd so the network weights also implicitly lie in the tangent
space. Our approach extends Euclidean neural networks to Pp,qr .

Backward pass. We assume that the function f : Sp,qr → R satisfies the properties mentioned in
Section 3.3. By exploiting Eq. (8), the horizontal lift of the parallel translate of the gradient Df([x])
can be formulated as follows:

λ[x],p := liftp
(
P γ[x]y[p](Df([x]))

)
=

{
P γxyp(Df(x)) if 〈x,p〉q ≥ 0

P γ−xyp(−Df(x)) otherwise.
(9)

Descent direction. When the metric tensor of the manifold is not positive definite, the manifold
is not Riemannian and the negative of λ[x],p is not a descent direction [9]. We show in the supp.
material that the negative of Gλ[x],p ∈ Hp is a descent direction that can be used to optimize the
parameters of ϕθ with standard descent algorithms. We illustrate one such example in Section 5.1.
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Complexity. Our optimizer exploits efficient closed-form expressions on Sp,qr by considering x
or its antipodal point −x depending on its “geodesic distance” with the positive pole p. This
geodesic distance depends only on the sign of 〈x,p〉q, which is also the sign of the first element of
x = (x0, . . . , xd)

> (i.e., , dγ(x,p) < dγ(−x,p) ⇐⇒ 〈x,p〉q > 0 ⇐⇒ x0 > 0). Our operators
generalize tools used in hyperbolic space and are then as efficient as hyperbolic approaches.

4 Ultrahyperbolic Graph Convolutional Network (GCN)

We now extend the hyperbolic graph neural networks introduced in [18] to Pp,qr .

Graph Neural Networks. We first provide some background on Graph Neural Networks (GNNs)
which can be interpreted as parametric models performing message passing between nodes of a graph.
We recall the formulation of Graph Convolutional Networks (GCNs) [13] and rewrite them in our
formalism with quotient manifolds. Let G = (V,E) be a undirected graph containing n = |V | nodes
and m = |E| edges. Its adjacency matrix is denoted by A ∈ Rn×n. To account for self-loops, Liu
et al. [18] consider the matrix Ã = D−1/2(A + I)D−1/2 where D is the diagonal degree matrix
defined such that Dii =

∑
j(Aij + Iij). The vector representation of node v at step k is denoted

by hkv ∈ Rd, and h0
v is given. Wk is a matrix whose elements are the trainable parameters of the

k-th layer. The information in the Euclidean GCN propagates as: hk+1
u = σ

(∑
v∈I(u) ÃuvW

khkv

)
where I(u) is the set of in-neighbors of u ∈ V (i.e., u and v are joined by an edge) and σ is a
nonlinear activation function such as the element-wise Rectified Linear Unit (ReLU) or its variants.

Ultrahyperbolic GNN. Let us now consider that ∀v, k,hkv ∈ Pp,qr . Since Pp,qr is not a vector space,
the operation Wkhkv is not defined, and the activation function σ has to be adapted. As in Section 3.4,
we exploit properties of the Levi-Civita connection to work with the tangent spaces of Pp,qr via the
exponential map and its inverse (i.e., logarithm map). The propagation is then extended to Pp,qr by:

hk+1
u := σ

expp

( ∑
v∈I(u)

ÃuvW
k liftp

(
log[p](h

k
v)
)) ∈ Pp,qr , (10)

where p = (r, 0, . . . , 0)> is the positive pole and we exploit the logarithm map to map points of Pp,qr
to a single tangent space. As explained in Section 3, in practice, we use the horizontal lift operator so
that the exponential and logarithm maps only consider the horizontal spaceHp during optimization
(see supp. material for details). The hyperbolic GNN [18] corresponds to the special case where
Pp,qr = P0,q

1 (i.e., p = 0). We now give the formulation of the activation function σ.

Activation function via stereographic projection. For simplicity of exposition, we now consider
that the radius of Sp,qr is r = 1. To enforce nonlinearity between the different layers of the
hyperbolic graph neural network, Liu et al. [18] formulate their activation function as the result of a
steoreographic projection onto the negative pole −p from the hyperboloid model to the Poincaré ball,
followed by a ReLU activation (in the Poincaré ball) and an inverse steoreographic projection from
the Poincaré ball to the hyperboloid. We explain below how to generalize σ to pseudo-spheres.

Let us note ε ∈ {−1, 1}. The pole εp = (ε, 0, . . . , 0)> is positive if ε = 1, and negative if ε = −1.
Let us consider a point x = (x0, x1, . . . , xd)

> ∈ Sp,q1 with x0 > 0 (i.e., lying on the positive
hemisphere). The stereographic projection of x onto εp is a = ωε(x) := 1

1−εx0
(x1, x2, . . . , xd)

>. If
x0 < 0, we equivalently consider that a = ωε(−x) = −ω−ε(x) instead of ωε(x) due to the quotient
nature of Pp,qr and to account for the fact that [x] is projected onto the pole of different hemisphere if
ε = −1, or same hemisphere if ε = 1. The inverse projection of a = (a1, . . . , ad)

> ∈ Rp,q is:

ω−1ε (a) :=
1

1 + 〈a,a〉q

(
ε(〈a,a〉q − 1)

2a

)
∈ Sp,q1 where 〈a,a〉q :=

p∑
i=1

a2i −
d∑

j=p+1

a2j . (11)

We formulate σ([x]) := [ω−1ε (ReLU(ωε(x)))] if x0 ≥ 0, and σ([x]) := [ω−1ε (ReLU(ωε(−x)))]
otherwise, where ReLU (or one of its variants such as LeakyRelu) is applied element-wise only on
the q time dimensions of the input vector, which avoids having a zero denominator in Eq. (11). As
in [18], we consider ε = −1. It is worth noting that Liu et al. [18] work with the upper sheet of the
hyperboloid Qq,01 which is anti-isometric to S0,q1 . Their stereographic projection then contains only
space dimensions. Their space dimensions correspond to our time dimensions due to anti-isometry.
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Figure 2: (left) Loss values of Eq. (12) as a function of the number of iterations for different values
of p when Pp,qr is 4-dimensional. (right) Stereographic projection onto−p of representations lying on
P1,1
1 and learned from Zachary’s karate club. Node colors define the faction joined by the members.

Table 1: Evaluation scores for the different learned representations (mean ± standard deviation)
Evaluation metric R4 P0,4

1 P1,3
1 P2,2

1 P3,1
1 P4,0

1
(Euclidean) (Hyperbolic) (Elliptic)

Rank of first leader 4.6± 1.0 2.5± 0.7 1.2± 0.4 1.3± 0.7 1.2± 0.4 2.5± 0.8
Rank of second leader 6.9± 0.7 3.8± 1.0 2.7± 0.7 3.1± 1.0 4.4± 3.0 3.6± 0.7
top 5 Spearman’s ρ 0.06± 0.45 0.36± 0.22 0.62± 0.23 0.61± 0.28 0.63± 0.35 0.46± 0.29
top 10 Spearman’s ρ 0.04± 0.19 0.38± 0.18 0.73± 0.12 0.72± 0.07 0.63± 0.16 0.38± 0.26
Training time (seconds) 340± 4 424± 1 429± 1 430± 2 429± 1 402± 1

5 Experiments

We now evaluate our approach on different classification tasks on graphs. We first show that
our optimization framework introduced in Section 3.4 learns meaningful representations on a toy
hierarchical graph with cycles. We then apply our framework in standard classification tasks.

5.1 Last layer optimization on a toy dataset

We evaluate our optimization framework by training a multi-layer perceptron (MLP) ϕθ : X → Hp

whose set of parameters is called θ. As in [15], we test our approach on Zachary’s karate club
dataset [33]. However, instead of learning embeddings, we train a parametric model.

Zachary’s dataset is a social network graph that represents a karate club split in two factions due
to a conflict between two leaders (the instructor and the administrator). It is an undirected graph
G = (V,E) which has node-set V = {vi}ni=1 and edge-set E = {ek}mk=1 where n = 34 and
m = 78. Each node vi represents a karate member and an edge joins two nodes if the two members
are friends. The two leaders are v1 and v34. We consider that each node vi is represented as a distinct
n-dimensional one-hot vector xi ∈ X .

Problem. Following [15], our goal is to learn representations of nodes such that pairs of nodes
joined by an edge (i.e., in E) have smaller distance than pairs of nodes that are not joined by an edge
(i.e., not in E). Our problem is then to find the set of parameters θ that minimizes the problem:

min
θ

∑
(vi,vj)∈E

− log
e−d(%θ(xi),%θ(xj))/τ∑

(va,vb)∈ Wij

e−d(%θ(xa),%θ(xb))/τ
where %θ(xi) := [expp (ϕθ(xi))] (12)

and whereWij := {(vi, vj)}∪{(va, vb) /∈ E}, τ = 10−2 is a fixed temperature value, and d denotes
the geodesic distance of the manifold (e.g., Eq. (7) for Pp,qr ). The geodesic distance satisfies the two
properties defined in Section 3.3 with respect to each input and can then be used for optimization.

Model. Our MLP ϕθ : X → Hp contains three hidden layers of 104 hidden units each, with standard
ReLU as nonlinear activation function. In this toy experiment, our MLP is standard, with the only
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exception that its last layer maps to the horizontal space Hp = {0} × Rp,q of the positive pole p.
The output representation is then mapped with the exponential map as explained in Section 3.4.

Optimizer. We use the optimizer introduced in Section 3.4 to update θ. By using the descent direction
−Gλ[xi],p for each sample [xi] = %θ(xi), all the parameters of our standard MLP lie in some space
equipped with a positive definite metric tensor. Standard backpropagation is then used to optimize
the parameters. As an illustration, we consider the 4-dimensional manifold Pp,q1 (i.e., p+ q = 4) and
show in Fig. 2 (left) the loss values of Eq. (12) as a function of the number of iterations for different
values of p ∈ {0, . . . , 4}. The figure shows that the optimization framework in Section 3.4 decreases
the loss value. Moreover, it is worth noting that the algorithm does not converge if −λ[xi],p is used
as a search direction (instead of −Gλ[xi],p) when the metric tensor is not positive definite since
−λ[xi],p is not a descent direction [9]. More details can be found in the supp. material.

Hierarchy extraction. We now evaluate the quality of the learned representations in the task of
predicting the high-level nodes of the graph. Our evaluation protocol is similar to [15], the only
difference is that we train a neural network. We run 10 random initializations for each considered
4-dimensional manifold and report in Table 1 the mean and standard deviation of the different
evaluation metrics.

As in [15], following the idea that hyperbolic distances grow exponentially, we take the sum of
distances δi =

∑n
j=1 d([xi], [xj ]) of a node vi with all the other nodes as an indicator of importance.

We sort the different δ1, . . . , δn in ascending order and report the rank of the two leaders (instructor
and administrator, in no particular order) in the first two rows of Table 1. The leaders tend to have
smaller δi score than low-level nodes with ultrahyperbolic distances, which means that high-level
nodes tend to be closer to the rest of the nodes in ultrahyperbolic space.

We also measure the Spearman’s rank correlation coefficient [28] between the 5 (or 10) most important
nodes in the hierarchy and their corresponding δi score. Once again, the order of the δi scores is more
correlated with the hierarchy level in ultrahyperbolic space. Our experimental results are comparable
with [15] although our nodes are represented on a quotient manifold and we learn a parametric model.
Fig. 2 (right) illustrates our learned representations when the manifold is P1,1

1 .

Products of Riemannian space forms. In Table 1, we compare the performance of models mapping
representations to pseudo-Riemannian space forms (i.e., manifolds of constant curvature [21, 30]).
Nonetheless, it was already noticed in the machine learning literature that products of Riemannian
space forms (called mixed-curvature representations) could outperform Riemannian space forms
when the structure of the dataset is not tree-like [3, 11]. It is worth noting that products of space
forms are in general not space forms (except if they are all flat). For this reason, we do not compare
them to our manifold in the main article as we could similarly consider products of pseudo-spheres
Pp1,q1r1 × Pp2,q2r2 or even Pp1,q1r1 × Rp2,q2 for evaluation.

Nonetheless, since our space form Pp,qr contains hyperbolic and elliptic parts, we provide a detailed
comparison with products of hyperbolic and spherical spaces in the supp. material. Such product
manifolds perform better than hyperbolic and spherical spaces but slightly worse than the pseudo-
Riemannian space form Pp,qr .

Training times. We report in Table 1 the training times of our Pytorch [22] implementation to train
25,000 iterations on a machine equipped with a 6-core Intel i7-7800X CPU and NVIDIA GeForce
RTX 3090 GPU. All the representations lying on a non-flat manifold have comparable training
times. Nonetheless, they are 25% slower than the Euclidean approach because they compute the
pseudo-Riemannian gradient (which requires an orthogonal projection) and parallel transport.

5.2 Classification with ultrahyperbolic graph convolutional networks

The previous subsection analyzed our framework. We now evaluate it in standard classification tasks.

Node classification. We now evaluate the generalization performance of our GCN in the semi-
supervised node classification task on three citation network datasets: Citeseer, Cora and Pubmed [26].
They contain sparse bag-of-words feature vectors for each document and a list of citation links between
documents. Each document is a node and has a class label. Each citation link is an undirected edge.
Dataset statistics are reported in Table 2. During training, all the nodes and edges are preserved, but
only 20 nodes per class are labeled, and 500 nodes are used for validation in total, the rest for test.
We follow the experimental protocol of Appendix A of [18] and learn a GCN with 2 hidden layers.
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Table 2: Statistics of the citation network datasets.
Name # Nodes # Edges # Classes # Features # training nodes per category

Citeseer 3,327 4,732 6 3,703 20
Cora 2,708 5,429 7 1,433 20
Pubmed 19,717 44,338 3 500 20

Table 3: Test node classification accuracy with 4-dimensional manifolds
Dataset R4 P0,4

1 P1,3
1 P2,2

1 P3,1
1 P4,0

1

(standard GCN) (Hyperbolic) (Elliptic)

Citeseer 44.5± 5.9 46.7± 1.8 51.8± 2.6 50.3± 2.1 51.4± 3.2 47.2± 2.6
Cora 53.5± 4.3 56.2± 3.1 63.2± 3.3 63.9± 3.1 64.7± 5.3 61.4± 1.5
Pubmed 66.9± 2.3 71.5± 2.9 73.1± 0.6 72.8± 2.7 71.2± 2.7 71.0± 2.7

Table 4: Statistics of the graph datasets used for the classification task
Name # graphs # classes Avg. # nodes Avg. # edges Type of dataset

Collab 5,000 3 74.49 2457.78 Scientific collaboration dataset [32]
D&D 1,178 2 284.32 715.66 Protein dataset [25]
Enzymes 600 6 32.63 62.14 Protein dataset [25]
Proteins 1,113 2 39.06 72.82 Protein dataset [25]
Reddit-multi-12K 11,929 11 391.41 456.89 Social network dataset [32]

Table 5: Graph classification accuracy in percents. d is the dimensionality of the manifold.
Method Collab (d = 64) D&D (d = 88) Enzymes (d = 256) Proteins (d = 100) Reddit (d = 100)

Euclidean (standard GCN) 81.88± 1.76 76.93± 7.21 43.83± 10.3 75.46± 3.88 45.65± 1.76
Poincaré (hyperbolic) 80.92± 1.99 75.89± 8.53 44.15± 8.43 73.64± 4.64 45.84± 1.42
Lorentz (hyperbolic) 81.32± 1.21 77.10± 6.65 44.83± 8.14 74.16± 3.25 45.39± 1.53
Ultrahyperbolic 82.26± 1.23 81.97± 3.41 50.50± 6.71 76.56± 2.09 47.08± 1.26

When the dimensionality of each layer is d = 600, all the Euclidean (i.e., standard), Hyperbolic and
Ultrahyperbolic GCNs reach the same test accuracy because the model is overparameterized and
quickly attains 100% accuracy on the training set. See details and scores in the supp. material.

Due to the problem mentioned above, we trained GCNs whose dimensionality of each layer is d = 4
with 100 random initializations. The results reported in Table 3 show the superiority of ultrahyperbolic
representations in low-dimensional space for node classification of hierarchical graphs with cycles.
We also report results for d = 10 in the supp. material. The conclusion is similar.

Graph classification. We also evaluate our approach on commonly used graph kernel benchmark
datasets [12] whose statistics are reported in Table 4. The evaluation is done via 10-fold cross
validation. We use the same protocol evaluation and splits as in Appendix E of [18] and evaluate our
approach in the same settings including same number of GNN layers, optimizers, learning rate, and
manifold dimensionality d reported in Table 5. The only difference is that the data is represented
on Pp,qr with p = 1 in our case. The comparative performances are reported in Table 5 and show
that ultrahyperbolic representations significantly improve performance on the D&D and Enzymes
datasets, which are protein datasets from [25]. The gain is less significant on the other datasets but our
approach is still competitive. It seems that the advantage of our approach over hyperbolic approaches
is more visible for protein structures than for social networks, at least in high-dimensional space.
More details can be found in the supp. material.

6 Conclusion, Limitations and Potential Societal Impacts

We have introduced neural networks that map data to a (quotient) pseudo-Riemannian manifold
of constant nonzero curvature. Our considered geometry generalizes both hyperbolic and elliptic
geometries. It is the first neural network that maps data to a non-Riemannian manifold to the best of
our knowledge. Our framework is general and can be applied to many parametric models and tasks.
We demonstrate this via graph convolutional networks and show improved performance compared to
Euclidean and hyperbolic approaches to represent hierarchical graphs in different tasks.
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Concurrently with this work, Xiong et al. [31] proposed an extension of graph convolutional net-
works to the pseudo-hyperboloid Qq,pr which is a pseudo-Riemannian manifold of constant nonzero
curvature anti-isometric to the pseudo-sphere Sp,qr . One main difference is that, since there exist pairs
of points of Qq,pr that cannot be joined by an unbroken geodesic, the optimization framework in [31]
does not exploit the intrinsic geometry of the manifold via its Levi-Civita connection. On the other
hand, our approach uses pseudo-Riemannian optimization tools that are intrinsic to Pp,qr . The ablation
study in [31] also suggests that graphs with more hierarchical structure are better represented when
the manifold becomes more hyperbolic, and graphs with cyclic relationships are better represented
when the manifold becomes more spherical.

Limitations. Our main contribution is a solid optimization framework that is well defined thanks to
the use of standard differential geometry tools (e.g., canonical map and horizontal bundle) that we
formulate for the quotient manifold Pp,qr . It only requires the properties of the optimized function
in Section 3.3 to be satisfied. This is for instance the case if points of Pp,qr are compared with the
geodesic distance in Eq. (7). We applied our framework on nine different datasets with (at least 10)
different runs to validate our results. Our work lacks a theoretical analysis similar to Gromov’s work
[10] in the case of graphs without cycles. However, the optimal geometry for graphs with cycles is
still an open problem, and hyperbolic geometry is used heuristically in this case. Our motivation is
that ultrahyperbolic manifolds are more general than hyperbolic and elliptic manifolds, they can then
combine the strengths of the two induced geometries. We experimentally validate our assumption in
different tasks and leave the theoretical analysis for future work.

Potential societal impacts. Our contributions are mainly methodological although we apply our
approach to hierarchical graphs that could represent social networks. Improving accuracy on these
datasets might facilitate the task of discovering leaders in social networks, which could have negative
impact if not monitored. Nonetheless, we also show improvement on protein structures, this could
have positive impacts on society and healthcare. We did not exploit any personally identifiable
information. We used datasets that have been publicly available to the machine learning community
for years. Our method to handle and process the data is standard in the graph community.
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