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Abstract

Decision Trees are widely used in machine learning and data mining tasks, mainly
because they can be easily interpreted; due to their popularity, Decision Trees were
adapted for settings with streams of data, commonly in the form of Hoeffding Trees.
While these methods are fast and incremental, they are also greedy in the sense that
they optimise multiple local criteria (generally based on Entropy or Gini impurity)
which makes them prone to suboptimality with respect to a global objective metric.
On the other hand, Reinforcement Learning (RL) aims at maximizing a long term
objective, and as such, it is a good candidate for alleviating this suboptimality
problem of the standard Decision Tree methods. In this work, we show that looking
for the most accurate Decision Tree with the lowest depth is equivalent to solving
an RL problem, then we implement Deep RL algorithms DQN, Double DQN
and Advantage Actor-Critic to seek the optimal Decision Tree, this choice being
motivated by the scalability of these methods to problems with large state spaces
unlike Q-Learning. We compare these methods with Hoeffding Trees on real-world
data sets and show that DQN and Double DQN perform best in general.

1 Introduction

Decision trees (DTs) are useful tools for classification problems, their main strength resides in being
easy to interpret. Indeed, a fitted DT extracts simple rules that partition the input space and provides
the importance of each attribute for the classification problem at hand. The problem of constructing
a shallow optimal DT is NP-complete Laurent and Rivest (1976), thus, the classic algorithms, in
the batch setting, like C4.5 Quinlan (2014) and CART Breiman et al. (1984), use a heuristic that
constructs a DT in a top-down fashion by greedily maximizing a gain criterion, using Entropy or Gini
impurity, at each node to select the best split, unfortunately this approach presents no guarantee of
optimality with respect to some global objective metric and is thus likely to yield suboptimal tree
structures.

Inspired by these batch algorithms, DTs were adapted to the Data Stream Learning setting, where
data arrives incrementally over time; such frameworks are increasingly relevant in modern appli-
cations, hence Hoeffding Trees were developed and investigated in dozens of research papers, e.g.,
in Domingos and Hulten (2000); Bifet Figuerol and Gavaldà Mestre (2009); Manapragada et al.
(2018). However, these methods inherit the suboptimality issue of the batch methods, as such, they are
invariably deployed in large ensembles constantly renewing trees across the stream; usually proving
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costly and inefficient Read (2018). In addition, by using ensembles, we lose the easy interpretability
of DTs.

Reinforcement Learning (RL) Sutton and Barto (2018) on the other hand aims at maximising a
long-term objective in the form of an expected cumulative reward, hence, carefully modelling the
online DT construction problem within an RL framework would allow us to seek the optimal DT with
respect to a global objective function which would alleviate the suboptimality issue; furthermore, RL
is naturally well suited for online learning. A first work on this topic was carried out by Garlapati
et al. (2015), the authors formulated an interesting Markov Decision Process (MDP), however, the
link between solving this MDP and optimising some global objective over the space of DTs was not
clearly stated, in addition, the authors only used Q-Learning, which fails to scale to large state spaces
due to its tabular nature. In this work, we consider the MDP introduced by Garlapati et al. (2015) and
show that it can be reduced to a simpler MDP with less degrees of freedom, i.e less hyperparameters,
for which the optimal policy corresponds to the optimal DT with respect to a penalised accuracy
metric, where the depth of the DT is penalised. We implement Deep RL algorithms DQN, Double
DQN and Advantage Actor-Critic (AAC) to address large state spaces, and we discuss the benefits
and drawbacks of these methods. In the experimental section, we demonstrate empirically the efficacy
of both DQN and Double DQN while also showing the failure of AAC in solving the MDP.

2 Related Work

In their seminal work, Domingos and Hulten (2000) developed the VFDT algorithm that constructs
HTs. This approach estimates a gain criterion (typically Entropy or Gini index) for each attribute as
the data samples arrive and a statistical test, based on Hoeffding’s inequality, is used to decide when
to split each leaf and what attribute to use for the split. Because of their simplicity and ease of use,
HTs are very popular among the data stream learning community Bifet Figuerol and Gavaldà Mestre
(2009); Manapragada et al. (2018), however, as Rutkowski et al. (2012) show, Hoeffding’s inequality
is inadequate in this context since the gain criterion is not a sum of independent random variables, on
the other hand, it satisfies the assumptions of McDiarmid’s inequality, and Rutkowski et al. (2012)
derived a new McDiarmid based statistical test. Although theoretically sound, The drawback of this
method is its dependence on a loose concentration inequality, making the splitting process slow as it
requires a large number of samples to make a confident decision. Hence, other tests were considered;
Jin and Agrawal (2003) and Rutkowski et al. (2013) use a Normal approximation based with the
Multivariate Delta method, which not only reduces the required number of samples, but also aims to
optimise the true Entropy (or Gini index) unlike the previous methods that sought to optimise the
expectation of the empirical Entropy (or Gini) without considering that this estimator is biased.

Although useful in some cases, the methods described above present no guarantee of optimality,
in addition, as data samples arrive, the induced DTs can keep growing seeking purer leaves, and
becoming more prone to overfitting; the standard evaluation metrics, such as prequential accuracy,
fail to raise this issue. In this context, RL Sutton and Barto (2018), is a promising framework
because of its sequential decision making nature that aims at maximising a long term objective (the
expected cumulative reward). RL requires the definition of a Markov Decision Process (MDP),
which is a tuple (S,A, p, γ, r) where S is the state space,A the action space, p (s′|s, a) the transition
probability from state s to state s′ when performing action a in state s, r (s, a) the reward induced
by action a in state s, and 0 ≤ γ ≤ 1 is the discount factor. An agent interacts with its environment
starting from an initial state by using a policy π : S 7→ A and transitioning from a state to another
according to p (s′|s, a) until it reaches a final state at a time T . The objective is to find the policy
π maximising the value function Vπ (s) = E

[∑T
t=0 γ

tr (St, π (St)) |S0 = s;π
]

at all states; since
Vπ (s) satisfies the Bellman equation, it is usually more convenient to work with the Q-function
Qπ (s, a) = r (s, a) + γ

∑
s′∈S p (s′|s, a)Vπ (s′). Then, the optimal policy π∗ is just the greedy

policy with respect to the optimal Q-function Q∗, i.e ∀s ∈ S : π∗ (s) = argmaxaQ∗ (s, a). There
have been few attempts at using RL in the context of online DTs, Preda (2007) considered the batch
setting with a fixed training set E, and defined the state space S as the space of all possible partitions
of E. However, S can be very large since |S|= 2|E|, in which case, tabular Q-Learning Watkins and
Dayan (1992) cannot be used. Instead, Preda (2007) uses a linear approximation with handcrafted
attributes containing different measures of the quality of the split Rokach and Maimon (2005) e.g
Information gain, Gini index gain, and the discriminant power function. Unfortunately, it is not trivial
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to extend this formulation to an online setting, the state space strongly depends on E and changes
completely by adding or removing a data point. Garlapati et al. (2015) formulated a simple MDP that
is naturally suited for data streams, and Blake and Ntoutsi (2018) built upon it to address concept
drift. This MDP models DTs in an indirect way where a policy can be thought of as a DT. However,
the link between solving the MDP and optimising some global metric, such as accuracy, was not
clearly stated. We will rework this MDP, and show that solving it is equivalent to looking for the DT
maximising a penalised accuracy metric with penalty of the DT depth.

3 Problem Formulation

We consider an Online Supervised Multi-class Classification problem with incrementally observed
data from a stream. Each data point consists of an input X = (X1, . . . , Xd) of d ≥ 1 attributes and a
predicted class Y ∈ {1, . . . , l} with l ≥ 2. In this section, we formulate the MDP of Garlapati et al.
(2015) and explain how each policy π is related to a DT Tπ. Then we derive the value function Vπ

and explain how it can be written as an evaluation metric of Tπ under certain assumptions.

3.1 MDP Formulation

State space: Given X = (X1, . . . , Xd), a state s ∈ S is a vector of size d where each entry i, is
either the value of Xi or describes that Xi is unobserved. For example, let X = (1, 3, 0, 2, 5), let
NaN denote an unobserved attribute and consider the state s = (NaN, 3, 0,NaN,NaN). s describes
that X2 and X3 are observed and their respective values are 3 and 0 while attributes X1, X4, X5

are, on the other hand, unobserved. The empty state consists of NaNs only and is always the initial
state of an episode, it describes the fact that we have not yet observed any attribute of X . If each Xi

is categorical with ki possible values, then |S|=
∏d

i=1 (1 + ki), and in the presence of numerical
attributes, S is infinite.
Action space: In a state s, we can either query the value of an unobserved attribute or directly label
the data point, these two types of actions are called query actions and report actions respectively.
The action space is then defined as A = {1, . . . d, d+ 1, . . . , d+ l} where {1, . . . , d} are the query
actions and {d+ 1, . . . , d+ l} the report actions.
Transitions: When taking action a in a state s:

• If a is a report action, the episode ends and the data point is classified according to a.
• If a is a query action, the next state observes all the already observed attributes at s in

addition to the queried attribute. For example, let X = (1, 0, 2, 0, 3) be a data point,
s = (NaN, 0, 2,NaN, 3) the current state and a the query action of the 4th attribute, the next
state is then s′ = (NaN, 0, 2, 0, 3) by observing the 4th attribute of X .

Reward: The agent is rewarded positively when it reports the right class and negatively otherwise.
For the policy to use a fewer number of attributes, a query action is rewarded negatively. We denote
R+ the positive reward of a right report action, R− the negative reward of a wrong report action and
λ the negative reward of any query action.
Episode: An episode starts upon the arrival of a new data point, the initial state is then initialized to
the empty state and the agent’s policy is run until a report action is taken.

3.2 Linking policies to DTs

Upon the arrival of a new data point X , the agent starts an episode from the empty state, then
according to its policy π, it makes a sequence of query actions followed by a report action ending the
episode. This process can be viewed as a descent down a DT Tπ where each node represents a state
and each query action represents a split of a node with respect to an attribute, the leaves of Tπ are
states where π takes a report action, we define the prediction of Tπ at a leaf l as the report action
taken by π at state (leaf) l. By construction, the mapping π 7→ Tπ is bijective between the set of
policies and the set of DTs. See Figure 1 for an illustration of the correspondence between π and Tπ .

The following result provides an expression of Vπ (∅) in terms of the hyperparameters γ, λ,R+, R−,
where ∅ is the empty state and γ the discount factor.
Theorem 3.1. For the MDP defined in section 3.1 we have:

Vπ (∅) = A (γ, λ) +B (γ,R+) + C (γ,R−)
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Figure 1: Agent’s policy interpreted as a DT.

Where:

A (γ, λ) = λ
∑
l

p (l)

|l|−1∑
j=0

γj

B (γ,R+) = R+

∑
l

γ|l|P [X ∈ l]P [Tπ (X) = Y |X ∈ l]

C (γ,R−) = R−
∑
l

γ|l|P [X ∈ l]P [Tπ (X) ̸= Y |X ∈ l]

|l| denotes the depth of leaf l with the root having depth 0.

Proof. Given an input X , let lπ (X) denote the leaf in Tπ such that X ∈ lπ (X), then we can write
Vπ (∅) as follows:

Vπ (∅) = E

[ |lπ(X)|−1∑
j=0

γjλ+ γ|lπ(X)|R+1{Tπ (X) = Y }+ γ|lπ(X)|R−1{Tπ (X) ̸= Y }

]

Let’s denote A (γ, λ) = E
[∑|lπ(X)|−1

j=0 γjλ
]
, B (γ,R+) = E

[
γ|lπ(X)|R+1{Tπ (X) = Y }

]
,

C (γ,R−) = E
[
γ|lπ(X)|R−1{Tπ (X) ̸= Y }

]
.

A (γ, λ) = λE

|lπ(X)|−1∑
j=0

γj


= λE

∑
l

|l|−1∑
j=0

γj
1{X ∈ l}


= λ

∑
l

p (l)

|l|−1∑
j=0

γj

B (γ,R+) = R+E
[
γ|lπ(X)|

1{Tπ (X) = Y }
]

= R+E

[∑
l

γ|l|
1{Tπ (X) = Y }1{X ∈ l}

]
= R+

∑
l

γ|l|E [1{X ∈ l}E [1{Tπ (X) = Y }|X]]

= R+

∑
l

γ|l|E [1{X ∈ l}E [1{Tπ (l) = Y }|X]]

= R+

∑
l

γ|l|P [X ∈ l]P [Tπ (X) = Y |X ∈ l]

C (γ,R−) = R−
∑
l

γ|l|P [X ∈ l]P [Tπ (X) ̸= Y |X ∈ l]
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Tπ (X) is the same for all X in the same leaf, hence why we used the notation Tπ (l) for Tπ (X)
when X ∈ l. To derive C (γ,R−), we followed the same steps as for B (γ,R+).

Recall that 0 ≤ γ ≤ 1, λ ≤ 0, R− ≤ 0, R+ ≥ 0, and notice that if R− < 0, the term C (γ,R−) can
penalise low depth DTs more than higher depth ones due to the terms γ|l| being larger for smaller
depths |l|. We seek accurate DTs with the lowest depths possible because of their interpretability
and lower risk of overfitting, thus we choose R− = 0. Since the MDP is episodic, we can set γ = 1
without worrying about the divergence of the cumulative reward, then by also setting R+ = 1 we
derive the following corollary that reduces the MDP to one hyperparameter only λ instead of the four
γ,R+, R−, λ, this result is also important because it links π and Tπ by stating that Vπ (∅) is equal to
a penalised accuracy metric of Tπ , which renders solving the MDP equivalent to finding the optimal
DT with respect to a global objective.

Corollary 3.2 (Linking π and Tπ). Consider the MDP defined in section 3.1 such that γ = 1, R− =
0, R+ = 1, then we have:

Vπ (∅) = P [Tπ (X) = Y ]− λ
∑

l∈L(Tπ)

p (l) |l| (1)

Where L (Tπ) is the set of leaves of Tπ and p (l) = P [X ∈ l].

Since we seek accurate and interpretable DTs, we want solutions of low depth, more specifically, we
want DTs where the most likely leaves l (with high p (l)) have low depth |l|. As such, it is natural
to define the complexity of a DT Tπ as its expected depth E [|lπ (X) |], and seek the most accurate
Tπ with lowest complexity. Then, according to Corollary 3.2, solving the MDP can be viewed as
a constrained optimisation problem over the space of DTs where the complexity defined above is
penalised since

∑
l∈L(Tπ) p (l) |l|= E [|lπ (X) |]. If we are only interested in the accuracy of the DTs

with no regard for their complexities, we choose λ = 0, which renders Vπ (∅) = P [Tπ (X) = Y ].

4 Solving the MDP

As the number of attributes and their categories (for the categorical ones) increases, the state space
becomes quickly too large for Q-Learning to be practical, and this issue is even worse in the presence
of numerical attributes since the state space becomes infinite. Therefore, we turn to Approximate RL
algorithms as they are scalable. In this work, we implement DQN Mnih et al. (2013), Double DQN
(DDQN) Van Hasselt et al. (2016) and Advantage Actor-Critic (AAC) Konda and Tsitsiklis (2000) to
solve the RL problem. We discuss the benefits and drawback of these methods in our context and
compare them empirically to the Hoeffding Trees (HTs) spanned by the VFDT algorithm.

4.1 DQN

DQN approximates Q∗ with a neural network Qθ, where θ ∈ Rp. We use a multi-layer percep-
tron (MLP) for Qθ along with a target network Qθ′

, of similar architecture, for more consistent
target values over time, this has the benefit of stabilising training. Given a batch of transitions1

(si, ai, ri, s
′
i)

N
i=1, the loss function of Qθ is:

L (θ) = 1

N

N∑
i=1

(
r + γmax

a′∈A
Qθ′

(s′, a′)−Qθ (s, a)

)2

For a more stable training, DDQN decouples the evaluation and selection process of actions in the
loss definition:

L (θ) = 1

N

N∑
i=1

[
r + γQθ′

(
s′, argmax

a′∈A
Qθ (s′, a′)

)
−Qθ (s, a)

]2

1A transition refers to a 4-tuple (state, action, reward, next state)
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Algorithm 1 DQN for Online Classification with DTs
1: K the number of episodes, N the batch size, 0 < γ < 1 the discount factor
2: Initialize replay buffers memory_queries and memory_reports by filling them in a pre-training

phase
3: Initialize Qθ, Qθ′

as per Glorot and Bengio (2010)
4: τ = 0
5: for k = 1 to K do
6: Data point x arrives with its label y
7: Initialize s to the empty state.
8: while s has an unobserved attribute do
9: τ ← τ + 1

10: Randomly sample a report action a
11: Take action a and receive reward r
12: Store (s, a, r, s) in memory_reports
13: Sample query action a with an ϵ-greedy policy
14: Take action a, receive reward r and next state s′

15: Store (s, a, r, s′) in memory_queries
16: Sample {(si, ai, ri, s′i)} from memory_queries
17: Compute the loss on this batch of size N/2

1

n

n∑
i=1

(
ri + γmax

a′∈A
Qθ′

(s′i, a
′)−Qθ (si, ai)

)2

18: Backpropagate the loss to update θ
19: Sample {(si, ai, ri, s′i)} from memory_reports
20: Compute the loss on this batch of size N/2

1

n

n∑
i=1

(
ri −Qθ (si, ai)

)2
21: Backpropagate the loss to update θ
22: end while
23: Sample a from the report actions
24: Take action a and receive reward r (end of episode)
25: Store (s, a, r, s) in memory_reports
26: if τ = τmax then
27: θ′ ← θ
28: τ ← 0
29: end if
30: end for

In our context, it is interesting to compare both algorithms empirically to see if there is any merit to
using Double DQN instead of standard DQN.

We sample the transitions (si, ai, ri, s
′
i)

N
i=1 from a replay buffer that is pre-filled in a pretraining

phase. However, since an episode ends when taking a report action, a naive ϵ-greedy policy makes
states with many observed attributes (which correspond to deeper nodes in a DT Tπ) less likely to
be visited; this runs the risk of prematurely ending episodes and leading the agent to be stuck in
a suboptimal subspace of parameter θ. This problem has been addressed in Garlapati et al. (2015)
with a strategy called truncated exploration. In DQN, we combine this idea with the replay buffer
as follows, we explore the environment by only taking query actions (according to an ϵ-greedy
policy) until all attributes are observed, then at each state of this sampled trajectory of transitions, we
evaluate a random report action, and we store the induced transitions with query actions in a memory
buffer memory_queries, and transitions with report actions in another buffer memory_reports,
then, during the learning phase, we sample half of the batch (s, a, r, s′)

N
i=1 from memory_queries

and the remaining half from memory_reports. This sampling strategy, along with relatively big
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batch sizes, 512 transitions, has the benefit of sampling diversified transitions which in turn estimates
the gradient more accurately for backpropagation, see Algorithm 1.

In all of our experiments, for both Qθ and Qθ′
, we use a shallow MLP with two fully connected

hidden layers of 32 nodes with a ReLU activation function and an output layer with the size of the
action space d+ l (see section 3 for the notation). We encode the input states with One-Hot encoding
where, each categorical attribute Xi, with ki possible values, is encoded with a dummy variable of
dimension ki + 1 in which each entry 1 ≤ j ≤ ki is the indicator variable 1{Xi = j} and the entry
ki + 1 is the indicator variable indicating whether Xi is observed or not.

4.2 Advantage Actor-Critic (AAC)

Unlike DQN, AAC is an on-policy algorithm, which means that it can only learn from samples
simulated by the current policy. This characteristic is interesting because, in concept drift situations
where the joint distribution of X,Y changes with time, sampling transitions from the replay buffer
may reflect old distributions, which is obviously unwanted. AAC is an Actor-Critic algorithm Konda
and Tsitsiklis (2000), it uses two estimators, the Actor for the policy πθ (s) and the Critic for the value
Vπθ (s), where s is a state. AAC updates the Actor parameters θ with the policy gradient theorem
Sutton et al. (2000), and the critic parameters are updated by using a return estimate sampled with the
current policy.

Being on-policy comes with the challenge of poor exploration resulting in noisy gradient estimates
that can hinder training. Indeed, truncated exploration cannot be performed in this case, and the
absence of a replay buffer severely limits the variety of the transitions we learn from. To help with
exploration, an additional entropy loss is generally considered in the literature, its purpose being to
prevent the stochastic policy πθ from becoming too concentrated. However, this is not in general
enough to solve the noisy gradients problem and we will show how the algorithm’s performance
suffers from this poor exploration in the experiments section.

In practice, we use one neural network with parameter θ ∈ Rp with two output heads, the Actor
πθ (.|s) and the Critic Vθ (s). Similarly to DQN, we consider a shallow MLP with two fully connected
hidden layers of 32 nodes and ReLU activation function. The Actor output layer is of size d+ l and
the critic output layer is of size 1.

5 Experiments

In this section, we carry experiments on real-world datasets taken from the UCI repository. We first
describe the experimental setup, then we present and discuss our results.

5.1 Experimental setup

We evaluate DQN, Double DQN (DDQN), AAC and Hoeffding Trees with a prequential accuracy,
i.e with the arrival of a new training data point (x, y), we evaluate the prediction of our current
model on (x, y) (before learning from it) and we keep a moving average of the accuracy on the
last 1000 data points seen. We consider the following datasets: Adult, Nursery, Mushroom, Skin,
Poker from the UCI repository. These datasets are frequently used in the literature of data stream
learning and they have different types of attributes; Mushroom, Poker and Nursery datasets have
only categorical attributes while the Skin dataset has numerical attributes and The Adult dataset has
mixed categorical-numerical attributes; in fact, even though the Skin dataset has numerical attributes,
since these take integer values from 0 to 255, we will also carry an alternative experiment where
these attributes are considered categorical and states are encoded as such (resulting in very high
dimensional input vectors for our neural networks). When dealing with numerical attributes, we first
preprocess the data by centering it and normalizing it as this helps in stabilizing training, indeed some
attributes of the Adult dataset for example, take very high values and can induce high magnitude
gradients that could overshoot the optimal parameter θ. Without this preprocessing, we have noticed
large spikes in the loss function of all our RL methods when applied to the Adult dataset, these spikes
signal points of no return in training where the agent’s performance can no longer recover because the
parameter θ likely ended up in a flat surface of Rp with respect to the loss, which leads to a stagnation
and suboptimal convergence.
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Algorithm 2 AAC for Online Classification with DTs
1: K the number of episodes.
2: λ ∈ [0, 1] the exploration hyperparameter
3: n_step the number of iterations between two updates
4: Initialize the Actor-Critic network with two output heads, one for πθ with a dimension equal to

the number of actions and the other is uni-dimensional for Vθ

5: for k = 1 to K do
6: Data point x arrives with its label y.
7: t← 1
8: tstart ← t
9: Initialize st to the empty state.

10: while episode is unfinished do
11: Perform action at ∼ πθ (.|st) and receive reward rt and next state st+1

12: t← t+ 1
13: if t− tstart = n_step or st is terminal then
14: R← 0 if st is terminal and Vθ (st+1) otherwise.
15: for i ∈ {t− 1, . . . , tstart} do
16: A(i) (θ)← ri + γR− Vθ (si)

17: L(i)
critic (θ)←

1
2

(
A(i) (θ)

)2
18: L(i)

actor (θ)← − log πθ (ai|si)A(i) (θ′)

19: L(i)
entropy (θ)←

∑
a πθ (a|si) log πθ (a|si)

20: R← ri + γR
21: end for
22: Construct the global loss:

L (θ) = 1

t− tstart

t−1∑
i=tstart

(
L(i)

critic + L
(i)
actor + λL(i)

entropy

)
23: Update θ ← θ − α∇θL (θ)
24: end if
25: tstart ← t
26: end while
27: end for

5.2 Results

Figure 2 and table 1 present our experimental results. We first notice that DQN and DDQN do not
yield a poor performance in any experiment unlike AAC and HT, especially on the Poker dataset,
where AAC and HT result in surprisingly low accuracies. This success of DQN and double DQN
is likely due to their stable training induced by the replay buffer and the adaptation of truncated
exploration in the learning phase, this stability is depicted in figure 3 by a steady decrease in the
losses, notice that for the Poker dataset, DDQN yields a better decrease in the loss compared to DQN,
and this translates directly into a superior performance (see table 1). However, other than the Poker
dataset, DDQN does not seem to provide a significant benefit over standard DQN, thus we would
recommend to use DDQN only in a situation where an unstable DQN training is noticed.

AAC is the worst performing method in our experiments. This is mainly due to a poor exploration
coming from a lack of variety in the transitions used to estimate the Actor and Critic gradients as is
explained in section 4. Unlike DQN and DDQN, AAC has a very unstable training, which is clearly
observed in Figure 4, the evolution of its loss is either very noisy or gets prematurely stuck in a local
optimum. In order to help AAC explore states with many observed attributes, which are rarely seen
since we cannot implement Truncated Exploration with an on-policy method, we tried to constrain
the agent to perform a minimum number of query actions before being able to take a report action,
this heuristic sets a minimum episode length. However, despite using this strategy, the agent still
poorly explores high depth states as it only took a maximum of one or two query actions before
taking a report action. This poor exploration is a severe limitation of AAC in particular and on-policy
methods in general.
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Figure 2: Prequential accuracy of each algorithm on the different datasets described above

Figure 3: Evolution of the loss for DQN and Double DQN during training.

The only experiment where HT outperformed the RL algorithms is the one carried on the Skin
dataset with its attributes considered categorical. Notice however, that this version of the dataset
hurts the performance of our algorithms, this is mainly due to the high dimension of the encoded
input states that may require larger neural network structures. Another interesting result regarding
the performance of HT is its very poor accuracy on the Poker dataset compared to DQN and Double
DQN, this depicts how these greedy methods can get stuck in locally optimal tree structures unlike
the alternative RL methods.
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Figure 4: Evolution of the loss for AAC during training.

Table 1: Accuracy of the final model of each algorithm on the different datasets.

DQN DDQN2 AAC HT
Adult 84.4% 83.7% 78/1% 82.7%

Nursery 95.7% 92.1% 84.4% 79.1%
Mushroom 98.6% 98.6% 98.6% 98.2%

Skin 97.7% 98.2% 99.9% 99.5%
Skin Categorical 96.4% 96.3% 98.7% 99.5%

Poker 86.7% 94.4% 41.8% 51%

6 Conclusion and Future Work

We formulated the problem of finding the most accurate DT, in an online setting, as solving an MDP,
and we implemented Deep RL methods DQN, Double DQN and Advantage Actor-Critic (AAC),
then we tested our methods empirically on real world data sets and compared them with the VFDT
algorithm by evaluating their prequential accuracies, these experiments showcased that DQN and
Double DQN outperform AAC and HT and we justified this result by the coupling of the replay buffer
with truncated exploration, allowing for more accurate gradient estimates; AAC on the other hand
suffers greatly from this issue, the impossibility of coupling it with truncated exploration drives the
agent algorithm down the path of premature suboptimal convergence.

In a future work, we aim to use prioritised experience replay Schaul et al. (2015) with DQN as a
way of addressing the issue of concept drift; and for AAC, a promising idea would be to use the
off-policy policy gradient theorem Degris et al. (2012) with a handcrafted exploratory policy along
with deterministic Actor policies as it was shown to be successful in many applications Silver et al.
(2014), Lillicrap et al. (2015).
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