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Abstract

Visual Question Answering (VQA) often001
requires complex multi-hop reasoning encom-002
passing both vision and language. Despite the003
remarkable performance of Large Multimodal004
Models (LMMs) in vision-language tasks,005
they encounter difficulties when faced with006
challenging scenarios that require complex007
reasoning and may be susceptible to object008
hallucination. This paper introduces a novel009
framework named Spatial-aware Visual010
Program Reasoning (SVPR). The primary011
goal of SVPR is to enhance the alignment012
between vision and language within LMMs,013
fostering their multi-hop reasoning abilities014
and ultimately strengthening their capacity to015
address complex visual reasoning tasks. We016
first utilize the strong visual understanding017
abilities of LMMs to generate scene graphs,018
facilitating coordination between vision019
and language at semantic levels. Then, we020
leverage the in-context learning ability of021
LMMs to generate visual programs, which022
guide the question decomposition process.023
Finally, we employ a program solver to024
execute the programs and derive the final025
answer. This process makes our approach026
both explanatory and robust, providing clear027
explanations of its reasoning process while028
ensuring the faithfulness of the answer to the029
visual input. We evaluate our framework on030
two challenging multi-hop multimodal VQA031
datasets and show its effectiveness under032
zero-shot settings. Our code is available:033
https://anonymous.4open.science/r/SVPR-034
5BBA035

1 Introduction036

Large Multimodal Models (LMMs) like GPT-4V037

(Achiam et al., 2023) and Gemini (Team et al.,038

2023) have demonstrated remarkable zero-shot039

capabilities in handling various visual-language040

tasks. Nevertheless, despite their significant ad-041

vancements, LMMs demonstrate limited perfor-042

Question: On which side of the walkway leading to the San Francisco Civic
Center can the American flag be found?

Ground Truth: The flag is located on the left side.

GPT-4V: The American flag is located on the right side of the walkway lead-
ing to the San Francisco Civic Center in the image provided.

GPT-4V+SVPR: The American flag [0.25, 0.3, 0.26, 0.35] is located on
the left side of the walkway leading to the San Francisco Civic Center
[0.3, 0.25, 0.7, 0.75] .

Table 1: An example of SVPR in answering a visual
question that requires spatial reasoning, with correct tex-
tual reasoning illustrated in green and incorrect textual
reasoning illustrated in red. Additionally, SVPR pro-
vides bounding boxes (highlighted in blue ) as visual
evidence to provide grounding.

mance in answering complex questions that require 043

multi-hop reasoning across various levels of visual 044

information (Yang et al., 2023c; Ossowski et al., 045

2024; Wu and Xie, 2023). For instance, consider 046

the image depicted in Table 1. A straightforward 047

question such as “What color is the building?” re- 048

quires only one-hop (one-step) reasoning to deter- 049

mine the color of the building in the image. In 050

contrast, a more complex question like “On which 051

side of the walkway leading to the San Francisco 052

Civic Center can the American flag be found?” re- 053

quires multi-hop reasoning: (i) visually detecting 054

the walkway leading to the building, (ii) visually 055

locating the American flag, and (iii) determining 056

the spatial relationship between the walkway and 057
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the flag, which involves spatial reasoning.058

To facilitate Large Language Models (LLMs)059

and Large Multimodal models (LMMs) in break-060

ing down the input question into multiple reasoning061

steps, several techniques have been proposed, such062

as Chain-of-Thought (Wei et al., 2022), Self-Ask063

(Press et al., 2023), Least-to-most prompting (Zhou064

et al., 2022), ReAct (Yao et al., 2022), and others.065

While these models excel in handling single-hop066

questions, they encounter challenges when con-067

fronted with multimodal multi-hop questions. In068

such scenarios, the formulation of subsequent ques-069

tions is influenced by the answers to preceding070

sub-questions. Moreover, these techniques often071

do not explicitly facilitate coordination between072

vision and language and lack spatial awareness.073

Consequently, there is a discrepancy in semantic074

granularity between visual and textual information.075

Unlike textual sentences where each word is dis-076

tinctly separated, identities within an image lack077

clear boundaries and aren’t isolated in the same078

explicit manner.079

In this paper, we introduce Spatial-aware Visual080

Program Reasoning (SVPR), a novel framework081

designed to foster language-vision coordination082

and enhance the complex reasoning capabilities083

of LMMs in answering complex visual questions.084

Specifically, our framework consists of three stages:085

(1) Scene graph generation prompts LMMs to cre-086

ate a structured representation of the image known087

as a scene graph. This graph encapsulates detailed088

semantics by explicitly modeling objects, their at-089

tributes, and the relationships between pairs of ob-090

jects; (2) Visual program generation decomposes091

the input question into simpler sub-questions by092

generating a visual reasoning program. This pro-093

gram is essentially a sequence of sub-tasks aimed094

at simplifying the overall reasoning process; (3)095

Program solver first answers the formulated sub-096

questions based on the image using a validator.097

These sub-questions and their corresponding sub-098

answers collectively act as rationales for the final099

reasoning step. Then, LMMs perform reasoning100

aggregation over the scene graph and rationales to101

derive the final answer and give justification for102

their reasoning process.103

We evaluate our proposed framework on two104

challenging datasets that require complex reason-105

ing abilities: WebQA (Chang et al., 2022) and GQA106

(Hudson and Manning, 2019). Our experiment re-107

sults demonstrate that SVPR can effectively answer108

complex questions while providing clear explana- 109

tions of its reasoning process. 110

In summary, our contributions are: 111

1. We introduce a new framework to enhance 112

LMMs’ vision-language coordination and 113

multi-hop reasoning ability to answer com- 114

plex visual questions. 115

2. Our framework is designed in a way that each 116

step is transparent and consistent, thus provid- 117

ing both explainable and robust answers. 118

3. We comprehensively evaluate the effective- 119

ness of our method, and the large improve- 120

ments demonstrate its great potential in com- 121

plex visual reasoning. 122

2 Background 123

Multi-modal Multi-hop Question Answering. 124

Multimodal Multi-hop Question Answering 125

(MMQA) (Chang et al., 2022; Reddy et al., 126

2022; Talmor et al., 2021) requires answering 127

a question by reasoning over multiple input 128

sources from different modalities. This task often 129

involves multi-step reasoning, wherein one or 130

more intermediate conclusions must be reached 131

before arriving at the final answer (Mavi et al., 132

2022; Wang et al., 2024). Each intermediate 133

conclusion acts as a necessary premise for the 134

subsequent one. This progression of intermediate 135

and final conclusions is called a reasoning chain. 136

While previous approaches (Chang et al., 2022; 137

Chen et al., 2022; Li et al., 2022; Reddy et al., 138

2022; Talmor et al., 2021; Yang et al., 2023b) 139

utilizing supervised learning have demonstrated 140

promising outcomes, current attention has pivoted 141

towards MMQA under the zero-shot settings. 142

To solve the zero-shot compositional VQA task, 143

VISPROG (Gupta and Kembhavi, 2023) uses a 144

neural-symbolic approach to perform multi-step 145

reasoning using language models. (Rajabzadeh 146

et al., 2023) utilize a tool-interacting divide-and- 147

conquer approach, empowering large language 148

models (LLMs) to address intricate multimodal 149

multi-hop inquiries. More recently, II-MMR 150

(Kil et al., 2024) employs two distinct prompting 151

techniques to determine a reasoning path leading 152

to its solution. Like the prior approaches, our 153

framework also adopts a decomposition strategy 154

for executing multi-step reasoning. However, 155

our emphasis lies in cultivating visual-language 156
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coordination and prioritizing visual cues.157

158

Spatial-Aware Prompting Methods. While159

LMMs have demonstrated remarkable visual160

reasoning capabilities, they remain vulnerable to161

hallucination issues, including object, attribute,162

or relation hallucination. Previous research has163

indicated that this issue could largely stem from a164

lack of visual-language coordination or a robust165

language prior, causing the model to overlook166

crucial visual cues. To address these challenges,167

several visual prompting techniques have been168

proposed to enhance the visual perception of169

LMMs. For example, RedCircle (Shtedritski170

et al., 2023) utilized a circle marker to direct171

the model’s attention toward specific regions for172

fine-grained classification. Meanwhile, FGVP173

(Yang et al., 2024), SCAFFOLD (Lei et al.,174

2024), and SOM (Yang et al., 2023a) investigated175

prompts for spatial reasoning using dot matrices176

or pre-trained models. Furthermore, (Wu et al.,177

2024) introduced a prompting paradigm and178

toolkit aimed at unlocking the zero-shot object179

detection capability of LMMs. In contrast, given180

that multi-hop questions often require a clear181

comprehension of semantic relationships between182

objects, we leverage scene graphs (Zhu et al.,183

2022) to enhance vision-language coordination.184

185

Symbolic-Guided Reasoning. While approaches186

like Chain-of-Thought (Wei et al., 2022), Self-Ask187

(Press et al., 2023), and ReAct (Yao et al., 2022)188

can elicit LLM’s step-by-step reasoning capabili-189

ties, they perform reasoning directly over natural190

language, where the intrinsic complexity and am-191

biguity of natural language could bring undesired192

issues such as unfaithful reasoning and hallucina-193

tions. To address these challenges, several neural-194

symbolic approaches (Pan et al., 2023b,a; Wang195

and Shu, 2023; Gupta and Kembhavi, 2023) have196

been proposed to integrate LLMs with symbolic197

logic. Our work aligns with the symbolic-guided198

reasoning paradigm. However, unlike previous199

studies, we explicitly incorporate scene graph in-200

formation into the textual prompt to offer visual201

grounding for LMMs’ reasoning processes. The202

inclusion of structural semantic information in the203

scene graphs enhances our framework’s ability to204

excel in visual reasoning tasks and provide visual205

evidence with bounding boxes.206

207

3 Method 208

As depicted in Figure 1, our model takes a natural 209

language question Q and one or multiple images I 210

linked to the question as inputs. Subsequently, our 211

framework conducts spatial-aware visual reasoning 212

through three distinct stages. In the scene graph 213

generation stage, we prompt an LMM to identify 214

the objects using bounding boxes as evidence, as 215

well as to discern the attributes of these objects 216

and the relationships between them. In the visual 217

program-guided reasoning stage, we instruct the 218

LMMs with a set of in-context examples to trans- 219

late the question into a symbolic visual program. 220

Subsequently, a program interpreter is employed 221

to convert the visual program into a set of sub- 222

questions. Finally, in the program-solving stage, 223

a validator answers the sub-questions, and these, 224

along with their corresponding sub-answers, col- 225

lectively form rationales. We then aggregate the 226

scene graph and the rationales to conclude the fi- 227

nal answer and provide explanations to justify the 228

decision process. 229

3.1 Scene Graph Generation 230

Scene Graph (Zhu et al., 2022) is a structural repre- 231

sentation that captures detailed semantics. A scene 232

graph comprises relationship triplets represented 233

as <subject, relation, object> or <object, is, at- 234

tribute>, which encapsulate the modeling of ob- 235

jects, attributes of objects, and the relationships 236

between paired objects. Given that multi-hop ques- 237

tions usually revolve around attributes and relation- 238

ships between objects, the first step involves ex- 239

tracting the scene graph to represent the structural 240

information derived from the input images. In light 241

of the strong visual understanding ability and rich 242

world knowledge of LMMs, we prompt an LMM to 243

fulfill this task. First, we overlay the images with a 244

grid and provide a labeling system to assist LMMs 245

in identifying and referring to specific points within 246

the images. Then, we prompt an LMM to generate 247

the scene graph and provide bounding boxes for ob- 248

jects. Specifically, each bounding boxes are repre- 249

sented as a tuple [xmin, ymin, xmax, ymax], where 250

xmin and ymin are coordinates of the top-left cor- 251

ner of the bounding box; xmax and ymax are coor- 252

dinates of the bottom-right corner of the bounding 253

box. The prompt for scene graph generation is 254

listed in Section A in the appendix. 255
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def program():
    object_1 = Locate(“Manchester 
Giant Store”)
    object_2 = Locate(“Primark”)
    result = Question(“How many 
times does Primark appear on the 
store?”) In front 

of

How many times does 
Primark appear on the 

Manchester Giant store?

Visual Program Generation

Q: Is there Manchester Giant Store 
in the image?

Q: Are there Primark in the image?

Q: How many times does Primark 
appear on the store? 

Program Solver

A: Yes. There is a building in 
the image

A: Yes. The large sign on 
the front of the building says 
Primark … …

A: Twice.

Answer: 2
Explanation: The sign 
above the entrance to the 
store says “Primark” and 
there is a large banner 
that …

Program 
Interpreter

Validator

Scene Graph Generation
Object:{ Building: [0.25, 0, 0.75, 1]
Sign: [0.3, 0.25, 0.7, 0.75] …}

Attribute: {Building: [tall, white], Sign: 
[black, vertical], …}

Relationship: {on top of: <sign, building>, 
in front of: [people, building], …}

Figure 1: Overview of our SVPR framework, which consists of three stages: (i) SVPR generates a scene graph
and uses it to provide LMMs with structural semantic information of the input images; (ii) SVPR then generates
symbolic visual programs to represent the multi-step reasoning process and a program interpreter translates the
function calls in the program into a set of sub-questions; and (iii) SVPR uses a validator to provide answers to the
sub-questions and aggregates the reasoning chain to derive the final answer and generate explanations.

3.2 Visual Program-Guided Reasoning256

This stage follows a program generation and exe-257

cution paradigm to translate the natural language258

question into a symbolic reasoning program.259

260

Program Generation. Given the question and the261

input images, a planner P generates a reasoning262

program P = [S1, ..., Sn] for it, which consists263

of n sequentially ordered reasoning steps Si.264

Each reasoning step Si ∈ P is an instruction265

in controlled natural language that directs Si266

to a function that represents a reasoning step.267

Specifically, we define two functions that the268

program can invoke during program generation.269

The Locate() function determines the location270

of objects in the images using bounding boxes,271

while the Question() function poses inquiries272

regarding the attributes and relationships of objects.273

274

Program Interpreter. The role of the program275

interpreter is to parse the generated visual pro-276

grams into a set of sub-questions in natural lan-277

guage. Specifically, each Locate() function is278

translated into “Is there object in the image? If279

so, please provide its bounding boxes.. Once we280

have obtained the list of sub-questions, a program 281

validator to answer the sub-questions, utilizing the 282

scene graph as visual grounding. 283

3.3 Program Solver 284

During this stage, SVPR consolidates the visual 285

cues provided by the scene graph along with the 286

rationales generated by the program validator, to 287

derive the final answer. 288

289

Program Validator. The goal of the program 290

validator is to answer the sub-questions generated 291

by the visual programs. For object-level questions 292

generated by the Locate() functions, we employ 293

a pre-trained VQA model (Li et al., 2023a) to 294

answer the question. When compared to LMMs, 295

VQA models typically produce shorter answers 296

with fewer hallucinations, making them a prag- 297

matic option. For attribute-level and relation-level 298

queries generated by the Question() functions, 299

we leverage LMMs to provide answers due to their 300

strong visual comprehension capabilities. 301

302

Answer Prediction. Guided by the scene graph, 303

along with the sub-questions and their correspond- 304

ing sub-answers, we employ LMMs as reasoning 305
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agents to deduce the final answer. To enhance ex-306

plainability, we instruct the LMMs to offer justifica-307

tions for their decisions. Additionally, we prompt308

them to append bounding boxes directly after ex-309

pressions referencing objects. This approach fa-310

cilitates the correspondence between entities men-311

tioned in the responses and object instances in the312

image, thereby providing convenient access to ver-313

ify the reliability of the output. The prompt for ag-314

gregation is included in Section A in the appendix.315

316

4 Experiments317

We compare SVPR against three baselines on two318

challenges: Multi-hop Multimodal QA (MMQA)319

and Compositional QA (CQA). Our experiment320

settings are described in Section 4.1, 4.2 & 4.3 and321

we discuss our main results in Section 4.4.322

4.1 Dataset323

To demonstrate the effectiveness of SVPR for324

MMQA and CQA, we conduct experiments on325

WebQA and GQA datasets respectively.326

327

WebQA (Chang et al., 2022) is a challenging328

benchmark for multi-hop multimodal question-329

answering (MMQA) tasks. This dataset contains330

questions that are knowledge-seeking and resemble331

real-world use cases, each question has one or332

more images as positive evidence associated with it.333

Each question falls into one of the four categories:334

color, shape, number (i.e., “how many”), yes/no,335

and other. To reduce the GPT4-V API costs, we336

use stratified sampling to select a total of 250337

entries from each question category.338

339

GQA (Hudson and Manning, 2019) is a dataset340

featuring compositional questions over real-world341

images. Many of the GQA questions involve mul-342

tiple reasoning skills, spatial understanding, and343

multi-step inference. We choose the balanced val-344

idation set, where the answer distribution for dif-345

ferent groups of questions is tightly controlled, in346

order to prevent educated guess using language347

and world priors. For the same cost restriction rea-348

sons, we sampled 250 entries from the balanced349

validation set.350

4.2 Baselines351

We compare our proposed framework against the352

following three baselines:353

354

Direct This baseline directly prompts LMMs to 355

answer the question based on the input images, 356

establishing a straightforward baseline without any 357

prompt optimization. 358

359

Chain-of-Thought (Wei et al., 2022) is a popular 360

approach that guides LMMs to perform step-by- 361

step reasoning before outputting the final answer. 362

This prompting method poses a question to the 363

model and has the model to output a chain of 364

thought before outputting its final answer. The 365

prompt text “Let’s think step-by-step” is prepended 366

to the task description. 367

368

SCAFFOLD (Lei et al., 2024) is a visual prompt- 369

ing scheme that promotes vision-language coordi- 370

nation in LMMs. Specifically, SCAFFOLD first 371

overlays a dot matrix within the image as visual in- 372

formation anchors and leverages multi-dimensional 373

coordinates as textual positional references. This 374

baseline establishes a scaffold for enhancing vision- 375

language coordination in LMMs and has demon- 376

strated superior performance in spatial and compo- 377

sitional reasoning benchmarks. 378

4.3 Experiment Settings 379

LMMs. Our pipeline is training-free and com- 380

prises an LMM and a pre-trained VQA model 381

as the validator to answer the sub-questions. 382

Specifically, we choose the following three 383

LMMs, InstructBlip (Dai et al., 2024) is an 384

open-source instruction-tuned LMM that achieves 385

state-of-the-art performance on a wide variety of 386

vision tasks. Specifically, we use the InstructBlip- 387

Vicuna-13B model. We also choose two much 388

larger closed-source LMMs: GPT4-V (Achiam 389

et al., 2023) and Gemini (Team et al., 2023). We 390

utilize Blip2-FlanT5-XXL as the VQA model to 391

answer the sub-questions conditioned on the input 392

image. 393

394

Evaluation. Since the answers generated by 395

LMMs are open-ended, traditional metrics such 396

as SQuAD (Rajpurkar et al., 2016) style Exact- 397

Match and F1 do not measure the performance 398

to its fullest. For instance, LLMs excel in gener- 399

ating diverse and contextually relevant responses, 400

which might not always align with exact matches to 401

gold standard answers. Instead, they often provide 402

paraphrases or alternative expressions that convey 403
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WebQA GQA
Direct CoT SCAFFOLD SVPR Direct CoT SCAFFOLD SVPR

InstructBlip 46.8 45.4 43.6 52.2 51.6 50.2 51.4 55.2
Gemini 55.2 58.4 61.2 69.6 52.4 54.4 56.4 62.8
GPT4-V 61.8 62.2 68.4 71.6 47.2 51.2 55.4 65.2

Table 2: Accuracy of Direct, Chain-of-Thought (CoT), Scaffold, and our method SVPR on two challenging visual
question answering datasets, WebQA and GQA. We use three unique LMMs for our experiments. The best results
within each dataset are highlighted.

the same underlying meaning. This highlights the404

need for more nuanced evaluation strategies that405

account for semantic equivalence rather than strict406

verbatim matches. Therefore following (Lin et al.,407

2022; Li et al., 2023b; Sun et al., 2024; Wang et al.,408

2023), we use GPT-4 as a judge to check whether409

the generated answer has the same meaning as the410

gold answer. The evaluation prompt is included in411

Section A in the appendix.412

4.4 Main Results413

We report the overall results of SVPR in Table414

2. SVPR achieves the best performance on both415

datasets, demonstrating its effectiveness. Based416

on the experiment results, we have the following417

major observations:418

419

Scene graphs improve visual reasoning. On420

the WebQA dataset, SVPR showcases superior421

performance over Direct, CoT, and Scaffold422

by margins of 15.86%, 15.11%, and 4.68% on423

GPT-4V, respectively. This highlights SVPR’s424

effectiveness in answering multi-modal, multi-hop425

visual questions. Among the baselines, Scaffold426

proves to be more effective than Direct and CoT.427

This implies that integrating dot matrices as visual428

anchors enhances LLMs’ spatial reasoning capabil-429

ities. However, since many questions demand not430

only visual comprehension and vision anchors but431

also a profound semantic understanding of object432

attributes and relationships within the scene, scene433

graphs play a crucial role in providing LLMs with434

deeper semantic visual understanding. They aid435

LLMs in achieving more comprehensive compre-436

hension. Similar observations are made on the437

GQA dataset, suggesting that SVPR performs well438

not only on multi-hop reasoning tasks but also on439

compositional visual reasoning tasks. In addition440

to our primary findings, our analysis also highlights441

discernible performance variations among various442

LMMs. Notably, our investigation reveals that443

GPT-4V and Gemini consistently outperform 444

the smaller-scale InstructBlip model, which 445

relies on Vicuna-13B as its backbone LLM. This 446

observation underscores the significant impact of 447

model architecture and size on overall performance 448

metrics. Furthermore, our comparative analysis 449

demonstrates a slight but consistent advantage held 450

by GPT-4V over Gemini across both datasets eval- 451

uated. These findings emphasize the importance of 452

considering model selection criteria tailored to spe- 453

cific task requirements and performance objectives. 454

455

Symbolic-guided reasoning can decompose the 456

reasoning chain better. Our SVPR method, which 457

uses visual programs to guide the decomposition 458

reasoning approach outperforms CoT and SCAF- 459

FOLD baselines on both datasets. This suggests 460

that the visual programs help LMMs to better de- 461

compose questions, and result in more accurate 462

reasoning. On both WebQA and GQA, Scaffold 463

exhibits a significant performance boost. Both 464

datasets require intricate reasoning abilities to de- 465

construct the questions and employ a divide-and- 466

conquer approach to problem-solving. Since Scaf- 467

fold also actively promotes vision-language coordi- 468

nation, we can infer the performance comes from 469

SVPR’s better question decomposition strategy. 470

Overall, SVPR exhibits superior performance com- 471

pared to the Direct baseline across both datasets. 472

This observation indicates the critical role of ques- 473

tion decomposition in complex visual question an- 474

swering, as Direct does not decompose the ques- 475

tions. 476

Color Shape Number Yes/No Other

GPT-V 54.2 48.2 46.2 82.4 78.2
GPT-V+Scaffold 52.6 48.4 50.4 76.6 82.6
GPT-V+SVPR 66.4 56.2 64.4 86.2 84.6

Table 3: Ablation Study: Impact of Scene Graphs
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4.5 The Impacts of Scene Graphs477

To deepen our understanding of the role of scene478

graphs in the decision-making process of LLMs,479

we conduct an ablation study on the WebQA480

dataset using GPT4-V. This study involves com-481

paring the performance of Direct, SCAFFOLD,482

and SVPR approaches. The Direct approach lacks483

any visual understanding information and solely484

represents the raw visual understanding capabili-485

ties of LMMs. In contrast, SCAFFOLD overlays486

dot matrices onto the original image and incorpo-487

rates textual prompts to actively guide LMMs. By488

utilizing coordinates as vision anchors and refer-489

ence points, SCAFFOLD promotes coordination490

between vision and language. In contrast, our491

SVPR not only incorporates vision anchor points492

but also integrates deep semantic information from493

scene graphs. This enables LMMs to engage in494

structured visual understanding, enhancing their495

comprehension capabilities. To comprehend the496

reasoning challenges where scene graphs play the497

most significant role, we present the performance498

based on the question category. Table 3 shows the499

experimental results, indicating that SVPR outper-500

forms both baselines, highlighting its effectiveness.501

Additionally, we notice that questions categorized502

as more complex, involving reasoning over relation-503

ships between objects such as Yes/No and others,504

exhibit superior performance on SVPR compared505

to SCAFFOLD. This underscores the utility of in-506

corporating structured semantic information like507

scene graphs, particularly in addressing questions508

necessitating structured reasoning.509

4.6 The Impacts of Validators510

As discussed in Section 4.4, program-guided rea-511

soning demonstrates superior decomposition of512

questions compared to CoT-like prompt techniques.513

However, it’s crucial to note that to reach the fi-514

nal correct answer, we must first answer the sub-515

questions correctly. To evaluate the potential im-516

pact of using different validators on the overall per-517

formance of SVPR, we conduct the following abla-518

tion study. We utilize Gemini to generate the visual519

programs and employ the following four models520

Blip2 InstructBlip Gemini GPT-V
WebQA 48.4 52.8 69.6 70.4

GQA 52.4 54.6 62.8 64.2

Table 4: Ablation Study: Impact of Validators

as validators. In addition to employing LMMs, we 521

hypothesize that pre-trained VQA models such as 522

(Li et al., 2023a) can mitigate the risk of object hal- 523

lucination. This refers to the phenomenon where 524

models may generate text describing objects that 525

are not actually present in the image. Given that 526

VQA models typically generate shorter answers 527

compared to LMMs, albeit with fewer instances 528

of hallucinations, they can indeed be considered a 529

viable option for addressing this issue. As shown 530

in Table 4, our experiment results reveal that de- 531

spite our assumption that pre-trained VQA mod- 532

els like Blip2 would exhibit superior performance 533

and hallucinate less, they do not perform nearly 534

as well as the larger models. This phenomenon 535

can be attributed to two main factors. Firstly, we 536

observe a significant number of questions that pos- 537

sess inherent ambiguity, leading to misunderstand- 538

ings by Blip2. Secondly, certain questions neces- 539

sitate a profound visual understanding of the im- 540

ages. These questions inquire about specific details 541

within the images, demanding a heightened visual 542

comprehension to accurately recognize such details. 543

Furthermore, we notice that Blip2 tends to perform 544

better on the GQA dataset, where the sub-questions 545

are generally more straightforward to answer. 546

4.7 Taxonomy of Reasons for Failures 547

As shown in Table 5, upon examining GPT-V’s 548

explanations, we identify four primary categories 549

of failure reasons: 550

Recognition errors occur when the model’s visual 551

component misinterprets images, resulting in diffi- 552

culties in identifying vital details within them. For 553

instance, in subfigure (a), when prompted about 554

the number of distinct railings on the stairs de- 555

picted, Gemini failed to detect any railings in the 556

images. Beyond the limited visual comprehension 557

of LMMs regarding image particulars, this could 558

also stem from image-related problems, such as 559

low image quality such as blurriness, or incom- 560

pleteness, which impairs the model’s accuracy in 561

recognizing content. 562

Reasoning errors emerge when the model misin- 563

terprets images due to diverse factors, including 564

unnatural distortions, uncommon perspectives, or 565

logical inaccuracies. For instance, in subfigure (b), 566

the model identifies there is a cross on one of the 567

domes of Saint Peter’s Basilica. However, it fails 568

to realize the question asks whether there is a cross 569

on every dome of Saint Peter’s Basilica. 570
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(a) Recognition Error (b) Reasoning Error (c) Incorrect Rationales (d) Conflict Rationales

Question: How many dif-
ferent railings are on the
stairs at the TAMU Psy-
chology Building?

Question: Are there
crosses on top of every
dome of Saint Peter’s
Basilica?

Question: How many
points does each star on
the obverse of the 1856
double eagle have?

Question: How many
flags fly outside the Madi-
son Square Garden?

Answer: Three different
railings are on the stairs
at the TAMU Psychology
Building.

Answer: No, there are
not crosses on top of ev-
ery dome on top of Saint
Peter’s Basilica.

Answer: On the obverse
of the 1856 double eagle,
each star has six points.

Answer: One flag flies
outside the Madison
Square Garden.

Gemini+SVPR: The
Scene Graph does not list
any railings associated
with the stairs or building.
... Despite the third
rationale mentioning four
railings, this is not sup-
ported by the Scene Graph
or the other Rationals, so
we conclude no railings.

Gemini+SVPR: Based on
the scene graph, there is a
dome on top of Saint Pe-
ter’s Basilica, and the ra-
tionales confirm that there
is a cross on top of
the dome. Additionally
... Therefore, there are
crosses on top of every
dome.

Gemini+SVPR: Based
on the rationale provided,
there is an obverse of the
1856 double eagle in the
image and it is stated that
each star has five points.
... Therefore, we can
conclude that each star on
the obverse of the coin has
five points.

Gemini+SVPR: The
Scene Graph does not
mention any flags outside
Madison Square Garden,
and the Rationals provide
conflicting answers. ...
We can conclude that
there are no flags flying
outside Madison Square
Garden.

Table 5: Examples demonstrate why GPT4-V fails to answer the questions. We identify four failure reasons:
recognition error, reasoning error, incorrect rationales, and conflict rationales.

Incorrect rationales represent a critical challenge571

for models like SVPR, as they can significantly572

impact the accuracy and reliability of the final pre-573

dictions. Subfigure (c) illustrates this phenomenon,574

showcasing how a cascade error during the aggrega-575

tion reasoning phase leads the model to acquire an576

incorrect rationale—specifically, in this case, each577

star possesses five points. This erroneous rationale,578

in turn, undermines the model’s ability to generate579

the correct prediction, highlighting the detrimen-580

tal effects of error propagation within the SVPR581

pipeline.582

Conflicting rationales present a significant chal-583

lenge for models like SVPR, particularly when584

they encounter contradictory factual information585

from multiple rationales. This phenomenon un-586

derscores the complexity inherent in aggregating587

diverse streams of data and reasoning to arrive at a588

coherent conclusion. Subfigure (d) illustrates how589

SVPR grapples with this challenge, highlighting590

its struggle to determine the ultimate answer when591

faced with competing lines of reasoning. There-592

fore, improving the accuracy of the validators is a593

focus of our future work.594

5 Conclusion 595

In this paper, we propose a novel approach to an- 596

swer complex visual questions using LLMs by elic- 597

iting vision-language coordination and symbolic 598

guided reasoning. We introduce SVPR, a visual 599

reasoning method that enhances LMMs’ vision- 600

language coordination and multi-hop reasoning 601

ability to answer complex questions. By explicitly 602

incorporating scene graphs with bounding boxes 603

into the textual prompts, SVPR actively integrates 604

visual cues during reasoning and includes visual 605

evidence as part of its explanations. The visual 606

programs are shown to be effective in decompos- 607

ing complex visual questions into a series of sub- 608

questions. Our experiment results show that SVPR 609

demonstrates promising performance on two chal- 610

lenging datasets without any additional training. 611

Additionally, we investigate the impact of visual 612

awareness and program-guided reasoning on the 613

performance of SVPR. The results indicate that 614

SVPR can make accurate predictions and generate 615

explanations while providing visual evidence. The 616

limitations and future work are discussed in the 617

subsequent section. 618

8



6 Limitations619

We identify two main limitations of SVPR. First,620

SVPR depends on in-context learning coupled with621

self-refinement to convert a natural language ques-622

tion into a visual program representation. While623

this method has proven to be effective, it may face624

difficulties when dealing with questions with in-625

tricate grammar structures and logical structures.626

This arises from the difficulty in conveying com-627

plex grammatical rules to the language model628

through a limited number of demonstrations within629

a constrained context size. Second, our aggregation630

method purely relies on LMMs themselves, which631

could introduce potential hallucination problems.632

On the other hand, by using a more robust logic633

solver could help with the hallucination issues, but634

there would be a tradeoff between the applicability635

and the robustness of the model.636

7 Ethical Statement637

Biases. We acknowledge the possibility of biases638

existing within the data used for training the lan-639

guage models, as well as in certain factuality as-640

sessments. Unfortunately, these factors are beyond641

our control.642

Intended Use and Misuse Potential. Our models643

have the potential to answer complex visual ques-644

tions. However, it is essential to recognize that they645

may also be susceptible to misuse by malicious in-646

dividuals. Therefore, we strongly urge researchers647

to approach their utilization with caution and pru-648

dence.649

Environmental Impact. We want to highlight650

the environmental impact of using large language651

models, which demand substantial computational652

costs and rely on GPUs/TPUs for training, which653

contributes to global warming. However, it is worth654

noting that our approach does not train such models655

from scratch. Instead, we use few-shot in-context656

learning. Nevertheless, the large language models657

we used in this paper are likely running on GPU(s).658
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A Prompts860

Listing 1: Scene Graph Generation Prompt
861

This labeling system is designed to assist you in identifying and referring to specific points within each image.862
The image is overlaid with a grid matrix to help you with the task.863
The bounding boxes, indicating the position of objects in the image, which are represented as [x_min, y_min, x_max, y_max]864

with floating numbers ranging from 0 to 1.865
Coordinates of a bounding box are encoded with four values in pixels: [x_min, y_min, x_max, y_max]. x_min and y_min are866

coordinates of the top-left corner of the bounding box.867
x_max and y_max are coordinates of bottom-right corner of the bounding box.868

869
Given the image, please generate the scene graph in the following format:870
First identify the objects and provide the bounding boxes in the form of {object: [x1, y1, x2, y2]}.871
Then, identify the attributes of the objects in the form of {object: [attribute, attribute]}.872
Then, identify the realtionship triplet in the form of {Relationship: <object, object>}.873
Here is an example.874

875
Object: {object: [x1, y1, x2, y2], object: [x1, y1, x2, y2], ...}876
Attribute: {object: [attribute, attribute], object: [attribute, attribute], ...}877
Relationship: {Relationship: <object, object>, Relationship: <object, object>, ...}878879

Listing 2: Visual Program Generation Prompt
880

Given a question, first generate a python-like program that describes the reasoning steps required to answer the question step881
-by-step.882

You can call two functions in the program: 1. Question() to answer the question; 2. Locate() to locate an object in the image883
with bounding boxes;884

Here are some example.885
886

Question: On which side of the walkway leading to the San Francisco Civic Center can the American Flag be found?887
def program():888

object = Locate("Walkway leading to the San Francisco Civic Center")889
object = Locate("American Flag")890
result = Question("Which side of the walkway can the American Flag be found?")891

892
Question: Is the surface of the egg next to the handrail at the Big Egg Hunt in Covent Garden London shiny or dull?893
def program():894

object = Locate("Handrail at the Big Egg Hunt in Covent Garden London")895
object = Locate("The egg next to the handrail")896
result = Question("Is the surface of the egg shiny or dull?")897

898
Question: %s899900

Listing 3: Aggregation Prompt
901

This labeling system is designed to assist you in identifying and referring to specific points within each image.902
The bounding boxes, indicating the position of objects in the image, which are represented as [x1, y1, x2, y2] with floating903

numbers ranging from 0 to 1.904
These values correspond to the bottom left x1, top left y1, bottom right x2, and top right y2.905

906
Your goal is to answer the question based on the following inputs:907
(1) Question: this is the question you need to answer.908
(2) Scene Graph: this represents the structural information of the image.909
(3) Rationals: this is a set of QAs that assist you conclude the final answer.910

911
Please first answer the question based on the inputs, and then provide your explanation.912

913
Question: %s914
Scene Graph: %s915
Rationals: %s916
Your Answer:917918

Listing 4: Evaluation Prompt
919

Given a question and a correct answers. Is the following answer correct? Only reply YES or NO.920
Question: %s921
Correct Answer: %s922
Answer you should evaluate: %s923924
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