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ABSTRACT

Reinforcement learning with a high replay ratio, where the agent’s network pa-
rameters are updated multiple times per environment interaction, is an emerging
way to improve sample efficiency. However, this paradigm remains underexplored
in multiagent reinforcement learning (MARL). In this paper, we investigate how
to efficiently train MARL at high replay ratios to accelerate learning. Surprisingly,
we found that simply increasing the replay ratio leads to severe dormant neurons
in the centralized global Q-value network, where neurons become inactive thereby
undermining network expressivity and hindering the learning of MARL. To tackle
this challenge, we propose Ensemble Reset (EnSet) to boost MARL at high replay
ratios from two aspects. First and for the first time, EnSet utilizes an ensemble of
global Q-value networks with parameter reset to reduce dormant neurons when
updated at a high frequency. Second, EnSet diversifies the replay experience us-
ing a multiagent translation invariance prior of the global Q-function to prevent
overfitting. Extensive experiments in SMAC, MPE, and SMACv2 show that En-
Set substantially speeds up various MARL algorithms at high replay ratios.

1 INTRODUCTION

In recent years, multiagent reinforcement learning (MARL) has achieved significant advances in
diverse domains that rely on collective intelligence, where multiple agents interact to solve complex
sequential decision-making problems. Notable successes include real-time strategy games (Berner
et al., 2019; Vinyals et al., 2019), distributed energy management (Yang et al., 2019; Novati et al.,
2021), urban traffic signal control (Wu et al., 2020; Ma et al., 2024), etc. When applying MARL
to real-world tasks, a major drawback of existing approaches is their low sample efficiency, which
requires a huge amount of environmental interactions to learn satisfactory policies.

Although sample-efficient MARL algorithms are critical when deployed in the real world, where in-
teraction with the environment is often limited, improving sample efficiency in the field of MARL re-
mains a longstanding challenge without achieving a substantive breakthrough. Most existing works
leverage the multiagent permutation prior to improve sample efficiency. For example, Ye et al.
(2022) generate additional data by applying a permutation transform to homogeneous agents, ex-
ploiting the permutation invariance. In addition, Yu et al. (2023) utilize the global system symmetry
to augment data, where rotating the global state induces a permutation of the optimal joint policy.
Later, Hao et al. (2023) incorporate both permutation invariance and permutation equivariance in-
ductive biases into agent network design to boost MARL. Orthogonal to the above works, another
line of research starts to increase the replay ratio in MARL to improve sample efficiency. The replay
ratio is defined as the number of updates of agent network parameters per environment interaction,
and increasing it is an appealing strategy for improving sample efficiency by performing more up-
dates within a fixed interaction budget (Chen et al., 2021; D’Oro et al., 2023). Recently, Yang et al.
(2024) and Xu et al. (2024) found that increasing the replay ratio is efficient to accelerate the learn-
ing of MARL. Notably, Yang et al. (2024) periodically reset networks to mitigate the plasticity loss
(Nikishin et al., 2022; Lyle et al., 2023) when training MARL at high replay ratios.

In this paper, we delve into boosting MARL with a high replay ratio to further push the boundary of
sample efficiency from a novel angle centered on the global Q-network. Accordingly, we develop a
novel method named Ensemble Reset (EnSet) to improve MARL sample efficiency by two innova-
tions: (1) global Q-network ensemble reset and (2) global Q-value translation invariance. First and
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for the first time, we reveal that the centralized global Q-network of MARL suffers from a severe
dormant neuron issue at high replay ratios, where a large portion of network neurons become inactive
to undermine network expressivity. Fortunately, this issue is effectively mitigated by the network
ensemble. Based on this finding, EnSet employs an ensemble of global Q-networks combined with
periodic parameter reset to reduce dormant neurons for stabilizing training. Second, EnSet diversi-
fies the replay experience to prevent overfitting in the high-replay-ratio setting using global Q-value
translation invariance, where a system-level coordinate translation of units results in the same global
Q-values. Extensive experiments on a total of 14 tasks in SMAC, MPE, and SMACv2 environments
demonstrate that EnSet significantly accelerates multiple MARL algorithms at high replay ratios
with far fewer environment interactions, while beating various network reset baselines.

2 BACKGROUND

2.1 MARKOV GAMES

We use Markov games as the basic setting, which are an extended multiagent version of Markov
Decision Processes (Littman, 1994). Markov games are described by a state transition function,
T : S × A1 × ... × AN → P (S), which defines the probability distribution over all possible next
states given the current global state s ∈ S and each agent i’s action ai ∈ Ai. The reward is given
based on the global state and actions of all agents Ri : S×A1× ...×AN → R. Meanwhile, Markov
games can be partially observable, where each agent i perceives the environment through a local
observation function oi = O(s, i) ∈ Oi, where Oi is agent i’s observation space. Consequently,
each agent learns a policy πi : Oi → P (Ai) that maps each agent’s observation to a probability
distribution over its action set, to maximize this agent’s expected discounted cumulative returns,
Ji(πi) = Ea1∼π1,...,aN∼πN ,s∼T [

∑∞
t=0 γ

tRi(st, a1,t, ..., aN,t)], where γ ∈ [0, 1) is the discounted
factor. If all agents share an identical reward function, i.e., R1 = ... = RN , Markov games are fully
cooperative (Matignon et al., 2012): a best-interest action of one agent is best-interest for others.

Many representative off-policy MARL algorithms, such as QMIX (Rashid et al., 2018) and MAD-
DPG (Lowe et al., 2017), adopt the centralized training with decentralized execution (CTDE)
paradigm to learn agent policies. CTDE allows agents to access global information during training
for better coordination and to act independently based on local observations only when deployed
for execution. In CTDE, there is usually a centralized global Q-value network to evaluate the joint
policy given the multiagent system state and provide gradients to update each agent’s decentralized
policy, ensuring agents learn cooperative behaviors. In this work, we follow the CTDE paradigm.

2.2 REPLAY RATIO

Replay ratio refers to the number of updates of an agent’s parameters for each environment inter-
action (Chen et al., 2021; D’Oro et al., 2023). As each interaction with the environment comes at
a cost, it is desirable to perform more updates with existing experiences before interacting with the
environment again. Therefore, increasing the replay ratio is an appealing strategy for improving the
sample efficiency of deep reinforcement learning (Chen et al., 2021; D’Oro et al., 2023; Schwarzer
et al., 2023; Nauman et al., 2025; Lee et al., 2025), which has received much attention nowadays.
Among them, Kim et al. (2023) utilize a sequential reset ensemble and adaptive agents composition
to mitigate performance collapses caused by resetting at high replay ratios in the domain of safe RL.

To quantify sample efficiency and clarify the critical role of the replay ratio, we adopt the definition
from Ye et al. (2022), which formalizes the expected number of times each experience in the replay
buffer is sampled for agent training as

E[Nsampled] =
NRR ·NB

V · TU
, (1)

where NRR is the number of replay ratios for updating, which is performed NRR times when inter-
acting with the environment once. NB is the batch size that there are NB data experiences sampled
into a batch for updating. The data acquisition speed V is the number of transition data experiences
that are collected at each time step of environment interaction. TU is the update interval where the
updating is conducted every TU time steps. Typically, works focusing on training reinforcement
learning agents at a high replay ratio (Chen et al., 2021) aim to increase NRR while keeping NB ,
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V , and TU unchanged. They seek to achieve higher sample efficiency through a higher E[Nsampled]
with different approaches, finally improving performance with the same number of environment in-
teractions, i.e., the same number of collected data experiences. This behavior is also termed replay
ratio scaling (D’Oro et al., 2023), which is much less studied in the MARL domain than single-agent
reinforcement learning. Until recently, Yang et al. (2024) and Xu et al. (2024) found that properly
increasing the replay ratio improves the sample efficiency of MARL algorithms.

2.3 THE DORMANT NEURON PHENOMENON

Sokar et al. (2023) identify the dormant neuron phenomenon in deep reinforcement learning, where
an agent’s network suffers from an increasing number of inactive neurons during the training pro-
cess, thereby affecting network expressivity. The definition of the dormant neuron is given below.

Definition 1 (α-Dormant Neuron). Given an input distribution D, let ρlj(x) denote the activation of
neuron j in layer l under input x ∈ D and Nl be the number of neurons in layer l. The normalized
activation score dlj of a neuron j in layer l is defined as follows:

dlj =
Ex∈D|ρlj(x)|

1
Nl

∑Nl

k=1 Ex∈D|ρlk(x)|
. (2)

Then neuron j in layer l is defined as α-dormant if its activation score dlj ≤ α. In this paper,
following Qin et al. (2024) who study the dormant neurons in MARL algorithms, we set α at 0.1.
The dormant neuron rate for a neural network is defined as the proportion of the α-dormant neurons.

A few works have started to study the dormant neuron phenomenon in the domain of MARL. For
example, Xu et al. (2024) use the dormant neuron rate as an indicator of plasticity when training
MARL at high replay ratios. They found that the dormant neuron rate in the agent’s policy network
remains at a low level during training due to the agent’s RNN structure. However, they do not
consider the dormant neuron in the global Q-network, which is the core module in CTDE. More
recently, Qin et al. (2024) found that, in multiagent value factorization algorithms, dormant neurons
in the global Q-network increase as training proceeds with a standard replay ratio of 1. Accordingly,
they propose ReBorn, which transfers the weights from overactive neurons to dormant neurons to
help learning. However, they neglect to further study under a high replay ratio, leaving the effective
scaling of the replay ratio for better sample efficiency unexplored. Another recent work is MARR
(Yang et al., 2024), which investigates a closely related concept, plasticity loss (Lyle et al., 2023),
in MARL. MARR introduces a multiagent Shrink & Perturb strategy to periodically reset network
parameters to maintain the network plasticity. The multiagent Shrink & Perturb in MARR is defined
as

θit ← αrθ
i
t + (1− αr)θ

i
0, for i = 1, 2, ..., N, (3)

and
ϕt ← αrϕt + (1− αr)ϕ0, (4)

where θi0 is agent i’s initial policy or individual Q-value network parameters. ϕ0 is the initial global
Q-network parameters. θit and ϕt are the current agent and global Q-value network parameters,
respectively. The interpolation factor αr decides how much the current network parameters are kept.
However, none of these works explicitly investigates the connection between dormant neurons in the
global Q-network and high replay ratios, which is the key bottleneck to MARL sample efficiency.

3 BOOSTING MARL AT REPLAY RATIO VIA ENSEMBLE RESET

In this section, we introduce the proposed EnSet, which is illustrated in Figure 1. First, we found that
the dormant neuron phenomenon in the global Q-value network is exacerbated when improving the
training replay ratio in Section 3.1. Then, in Section 3.2, we show that the network ensemble, which
employs multiple global Q-networks, surprisingly mitigates the phenomenon of dormant neurons
and helps stabilize learning, especially when combined with the periodic network reset. Moreover,
we introduce the global Q-value translation invariance to augment the global state in Section 3.3.
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Figure 1: The illustration of the EnSet framework, which is trained under a high replay ratio of NRR.
The global Q-network ensemble with network reset tackles dormant neurons under high NRR. The
global state translation invariance is introduced to diversify the state s of the global Q-value function.

3.1 DORMANT NEURONS IN THE GLOBAL Q-NETWORK AT HIGH REPLAY RATIOS

First, we show how the dormant neuron in the global Q-network correlates with the replay ratios,
which have never been explicitly studied before to the best of our knowledge. We use QMIX (Rashid
et al., 2018), one of the most popular MARL algorithms, as the tested base algorithm. Following Qin
et al. (2024), we measure dormant neurons in the hypernetworks of QMIX’s global Q-network. In
the standard setting, the replay ratio is 1, which means that the network parameters are updated once
after one episode. We increase the replay ratio to 5 and 10. The dormant ratio rates in the centralized
Q-value network of QMIX under different replay ratios are given in Figure 2(a) and 2(b). As we
can see, the dormant neuron phenomenon becomes severe enough to hinder the learning of QMIX
in high-replay-ratio settings. This finding motivates us to reduce the dormant neurons to increase
the replay ratio for boosting the sample efficiency of MARL algorithms. More cases as well as the
dormant neuron rates in the agent network maintaining a low level are shown in Appendix A.
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(a) Dormant neuron on 5m vs 6m.
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(b) Dormant neuron on MMM2.
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(c) Episode reward on 5m vs 6m.
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(d) Episode reward on MMM2.
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(e) Ensemble size on 5m vs 6m.
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(f) Ensemble size on MMM2.
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(g) Gradient norm on 5m vs 6m.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
M Steps

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

G
ra

di
en

t 
N

or
m

MMM2
Ensemble H = 1
Ensemble H = 5
Ensemble H = 10
Ensemble H = 1, S&P
Ensemble H = 5, S&P

(h) Gradient norm on MMM2.

Figure 2: (a-b) show that the dormant neuron rate in the global Q-network is exacerbated at high
replay ratios. (c-d) show that, when the replay ratio is 10, the learning collapses with many dormant
neurons being inactive. (e-f) show that dormant neurons in global Q-networks are mitigated by the
network ensemble as well as multiagent Shrink & Perturb (denoted as S&P) when the replay ratio
is 10. (g-h) show that the ensemble smooths the updating gradient for network parameters.

3.2 GLOBAL Q-NETWORK ENSEMBLE WITH NETWORK RESET

Next, we show that the network ensemble is an efficient way to tackle the severe dormant neuron
phenomenon when training at high replay ratios. For the first time, we propose Ensemble Reset to
utilize an ensemble of global Q-networks with network parameter reset to stabilize MARL training
at high updating frequency. As shown in Figure 1, we employ H global Q-networks in the central-
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ized training stage. In contrast, we do not enable ensemble on agent policy or individual Q-value
networks, as previous studies (Xu et al., 2024; Qin et al., 2024) show that no severe dormant neuron
phenomenon exists in agent networks. Additionally, it ensures that, in the decentralized execution
stage, no extra storage or computation resources are needed to deploy the learned agent networks
without the ensemble. When updating, each global Q-network receives the same mini-batch B with
size NB . To calculate the target global Q-value, each global Q-network with network parameters ϕh

uses its own target network backup ϕ̄h. The loss function for the h’th global Q-value network is

L(ϕh) =
1

NB

∑
(st,at,st+1)∈B

(Qϕh

tot(st,at)− (r + γmax
at+1

Qϕ̄h

tot(st+1,at+1)))
2. (5)

The agent receives the independent gradient flow from each global Q-network to update its policy
or individual Q-value network. Dormant neuron rates with different global Q-network ensemble
sizes under a replay ratio of 10 are shown in Figure 2(e) and 2(f). As we see, the dormant neuron
rate decreases as the ensemble size increases. We hypothesize that, the global Q-network ensemble
smooths the gradients for the network updating to reduce the dormant neurons, and Figure 2 (g-h)
support our hypothesis as the gradient norm decreases if the ensemble size increases. In addition
to the global Q-network ensemble, to maintain the network plasticity under high replay ratios, we
incorporate the multiagent Shrink & Perturb strategy (Yang et al., 2024) in Equation (3) and (4)
to reset the network parameters to the initial parameters periodically. As in Figure 2 (e-f), this
combined ensemble reset operation on the global Q-network further reduces the dormant neuron
rate. Moreover, we eliminate the possibility that standard MARL algorithms with a single large
global Q-network achieve similar effects to the proposed ensemble reset in Appendix G.

Algorithm 1 Multiagent Reinforcement Learning with Ensemble Reset (EnSet)
1: Initialize each agent’s policy or individual Q-value network parameters θ1, θ2, ..., θN , an ensemble of

H global Q-value network parameters ϕ1, ϕ2, ..., ϕH and an empty replay buffer D. Set target network
parameters θ̄i ← θi for i = 1, 2, ..., N , and ϕ̄h ← ϕh for h = 1, 2, ..., H . Set network update interval
TU , target network update interval TC , and network reset interval TR.

2: for each time step t do
3: Each agent i takes action ai,t ∼ πθi(·|oi,t). Step into state st+1. Receive rt and observe oi,t+1.
4: Add transition data to the replay buffer: D ← D ∪ {(st,ot,at, rt, st+1,ot+1)}.
5: if t mod TU = 0 then
6: for each update time nRR from 1 to NRR do
7: Sample a mini-batch B = {(s,o,at, r, s

′,o′)} from D.
8: Perform the multiagent translation augmentation on global state s to get ŝ in sampled B.
9: Update each global Q-network on augmented mini-batch B by

L(ϕh) =
1

NB

∑
(ŝt,at,ŝt+1)∈B

(Qϕh

tot(ŝt,at)− (r + γmax
at+1

Qϕ̄h

tot(ŝt+1,at+1)))
2.

10: Update each agent’s policy or Q-value networks θ1, θ2, ..., θN on augmented B.
11: end for
12: end if
13: if t mod TC = 0 then
14: Update each target global Q-network ϕ̄h ← ϕh and each target agent network θ̄i ← θi.
15: end if
16: if t mod TR = 0 then
17: Shrink & Perturb as Equation (3) and (4) on each global Q-network ϕh and agent network θi.
18: end if
19: end for

3.3 GLOBAL Q-VALUE TRANSLATION INVARIANCE

Beyond the ensemble reset to enable training MARL at high replay ratios, we found that diversifying
the replay experience via multiagent intrinsic properties is also effective to enhance the sample
efficiency. Learning at a high replay ratio would make the agents incur a risk of overfitting to earlier
experiences, negatively affecting the rest of the learning process (Nikishin et al., 2022). Therefore,
the multiagent experience augmentation techniques could be naturally incorporated into the high-
replay-ratio training setting of MARL. In this paper, we explore the multiagent translation invariance
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(Vasile et al., 2015) of the global Q-function to augment the state input of the global Q-network. For
the multiagent translation invariance, we have the following definition (Vasile et al., 2015).

Definition 2 (Multiagent Translation Invariance). In a D-dimensional coordinate system, a function
f : S → Y , where the global state s ∈ S contains features of multiple agents and units as s =
(x1, · · · , xN , xo), xi = (ci, ei) includes the agent i’s coordinate features ci ∈ RD as well as agent
i’s extra unit features ei, and xo represents other system features such as joint actions if f needs, is
said to be translation invariant if for all z ∈ RD the following condition holds:

f((c1 + z, e1), · · · , (cN + z, eN ), xo) = f(x1, · · · , xN , xo), (6)

where the translation variable z in each coordinate dimension is uniformly sampled from [−αz, αz].
When f becomes the global Q-value function Qtot, we are inspired to apply the multiagent transla-
tion invariance into the input global state s of the global Q-network as

Qtot((c1 + z, e1), · · · , (cN + z, eN ), xo) = Qtot(x1, · · · , xN , xo). (7)

This invariance property also applies to other environmental units in multiagent systems if they have
coordinate features. Although the multiagent translation invariance is a natural data augmentation
operation for the global Q-value function, few works utilize this property in the MARL domain.

We give the algorithmic descriptions of EnSet in Algorithm 1. EnSet follows the standard workflow
of off-policy MARL algorithms. Specifically, in Lines 1, EnSet employs an ensemble of H global Q-
value networks. In Line 8, EnSet transforms global state s to ŝ in mini-batch B with the multiagent
translation. Then, in Line 9, each global Q-network is updated with a temporal difference error
calculated with ŝ. Finally, in Line 17, given the network reset interval TR time steps, EnSet performs
Shrink & Perturb to inject plasticity into both the global Q-network networks and agent networks to
keep learning ability. Next, we evaluate the efficacy of EnSet with extensive experiments.

4 EXPERIMENTS

In this section, we conduct extensive experiments to validate EnSet. First, we integrate EnSet into
classical MARL algorithms such as QMIX (Rashid et al., 2018), QPLEX (Wang et al., 2021), and
ATM (Yang et al., 2022) in the well-known StarCraft Multi-Agent Challenge (SMAC) (Samvelyan
et al., 2019) of a discrete action space (Section 4.1). Second, we compare EnSet with other mul-
tiagent network reset techniques in the high-replay-ratio setting (Section 4.2). Third, we conduct
the ablation study to validate each component of EnSet in Section 4.3. Fourth, we further validate
EnSet in the classical multiagent particle (MPE) environment (Lowe et al., 2017) of the continuous
action space by combining it with MADDPG (Lowe et al., 2017) and FACMAC (Peng et al., 2021)
in Section 4.4. Fifth, experiments of EnSet with finetuned QMIX in SMACv2 (Ellis et al., 2023) are
given in Section 4.5. Finally, we present the replay ratio scaling experiments in Section 4.6.

4.1 STARCRAFT II MULTI-AGENT CHALLENGE

First, we experiment in the well-known StarCraft II Multi-Agent Challenge (SMAC) (Samvelyan
et al., 2019), a widely adopted testbed consisting of decentralized micromanagement tasks for eval-
uating MARL approaches. We train multiple agents to control allied units respectively to beat the
enemies, while a built-in handcrafted AI controls these enemy units. The SMAC environment is
with discrete action space, and the version of StarCraft II is 4.6.2. We implement EnSet based on
the pymarl framework (Samvelyan et al., 2019) with default training and evaluation configurations.

In SMAC, we evaluate on 8 tasks, i.e., 2s3z, 10m vs 11m, 3s5z, 5m vs 6m, MMM2, 3s5z vs 3s6z,
6h vs 8z, and corridor. These tasks include homogeneous and heterogeneous multiagent scenarios,
as well as symmetrical and asymmetrical multiagent scenarios for a comprehensive evaluation. For
example, on the task of 2s3z, each side has 2 Stalkers and 3 Zealots units, where the multiagent
system is heterogeneous and symmetrical. More descriptions of these tasks are given in Appendix C.

First, we show that EnSet is able to boost the performance of popular MARL algorithms under high
replay ratios. We integrate EnSet into QMIX, QPLEX, and ATM with a replay ratio of 10, where 10
updates are executed after one episode. For EnSet, the ensemble size H of the global Q-network is
set at 5. The coordinate translation variable αz in Equation (6) is set at 0.2. The hyperparameters of
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Figure 3: Benchmark experiments of EnSet for boosting MARL algorithms in SMAC within limited
environment interactions. Enset-QMIX, EnSet-QPLEX, and EnSet-ATM are trained with a replay
ratio of 10, while QMIX, QPLEX, and ATM are trained with a default replay ratio value of 1.

multiagent Shrink & Perturb follow MARR (Yang et al., 2024). All these special hyperparameters
of EnSet are summarized in Appendix B and kept the same across methods and tasks. We run all
methods over 6 independent training runs with different random seeds.

The experimental results are shown in Figure 3, including the median performance as well as the
shaded 25-75% percentiles. As we see, EnSet significantly boosts QMIX, QPLEX, and ATM. For
the easy scenarios, including 2s3z, 10m vs 11m, and 3s5z, the number of environment interactions
is set at 0.5 million. With such a small interaction budget, EnSet successfully speeds up the standard
MARL algorithms especially on 10m vs 11m, demonstrating superior sample efficiency. For the
remaining scenarios, we set the number of environment interactions at 1 million steps. EnSet also
substantially speeds up the learning of each MARL algorithm, while the standard ones with a replay
ratio of 1 learn slowly. Specifically, in the super hard scenarios such as 3s5z vs 3s6z and corridor,
EnSet successfully improves the performance of ATM by a large margin within only 1 million steps.
These results in SMAC show that EnSet is efficient in boosting MARL algorithms at a high replay
ratio to achieve sample efficiency given the same environment interactions.

Additionally, results of EnSet with different global Q-network ensemble sizes are reported in Ap-
pendix E. Results of EnSet with a standard replay ratio of 1 are given in Appendix F. The comparison
of EnSet with standard MARL algorithms having more environment steps is shown in Appendix H.

4.2 COMPARING WITH MARL NETWORK RESET METHODS
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Figure 4: Benchmarking different MARL network reset methods in SMAC. Replay ratio is set at 10.
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Second, we compare EnSet with other MARL network reset methods such as MARR (Yang et al.,
2024), ReBorn (Qin et al., 2024), ReSet (Nikishin et al., 2022), and ReDo (Sokar et al., 2023) on
the basis of QMIX. MARR (Yang et al., 2024) introduces the Shrink & Perturb strategy into MARL
to reset network parameters periodically. ReBorn (Qin et al., 2024) transfers the weights from over-
active neurons to dormant neurons to prevent both the overactive and dormant neurons in MARL
networks. ReSet (Nikishin et al., 2022) addresses early agent experience bias by periodically reset-
ting the last layer of the neural network to avoid overfitting. ReDo (Sokar et al., 2023) periodically
reinitializes the input weights of dormant neurons and zeros the output weights of dormant neurons.
We also present the vanilla QMIX, which is directly trained at a replay ratio of 10, as a comparison.
The corresponding performance is plotted in Figure 4. At the same time, we also give the dormant
neuron rates in the global Q-network to see how these methods work. It is clear that EnSet main-
tains the dormant neuron rates at a low level and achieves the best performance among baselines.
Interestingly, although MARR, ReDo, and ReBorn have lower dormant neuron rates than EnSet in
MMM2 and 3s5z vs 3s6z, they perform worse than EnSet. This indicates that, while a high dormant
neuron rate prevents MARL from stabilizing learning, forcing a much lower dormant neuron rate
may constrain network parameters and hurt network representation ability. Moreover, an in-depth
comparison between EnSet and MARR is provided in Appendix D for reference.

4.3 ABLATION STUDY OF ENSET

Here, we also conduct the ablation study to validate each component of EnSet under high replay
ratios in SMAC and MPE. There are three key techniques in EnSet such as the global Q-network en-
semble, the multiagent Shrink & Perturb strategy, as well as the multiagent state translation. Results
of the ablation study on these components are shown in Figure 5.
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(c) Ablation study on 5m vs 6m.
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Figure 5: The ablation study of EnSet-QMIX in SMAC and EnSet-MADDPG in MPE. Replay ratio
is set at 10 in SMAC and 25 in MPE. ‘w/o ensemble’ means the number of global Q-networks in
EnSet is 1. ‘w/o translation’ means the multiagent translation invariance is not applied in the global
states. ‘w/o S&P’ means the multiagent Shrink & Perturb strategy is not used in EnSet.

We see that the global Q-network ensemble and multiagent Shrink & Perturb in ensemble reset
largely affects performance, implying that tackling dormant neurons is the key to keeping learning
at high replay ratios (Yang et al., 2024). Specifically, the ensemble contributes the most to the per-
formance in pp3a, further highlighting its importance. Meanwhile, the multiagent state translation
slightly improves performance consistently during the learning process in all these tested scenarios.

4.4 MULTIAGENT PARTICLE ENVIRONMENT
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Figure 6: Benchmark experiments of EnSet for boosting MARL algorithms in the MPE environ-
ment. Enset-MADDPG and EnSet-FACMAC are trained with a replay ratio of 25, while the stan-
dard MADDPG and FACMAC algorithms are trained with a default replay ratio value of 1.
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We further evaluate EnSet in the Multiagent Particle Environment (MPE) (Lowe et al., 2017), which
features a continuous action space. Following established benchmarks (Peng et al., 2021), we adopt
a set of predator-prey tasks where multiple slower cooperative agents must capture faster prey in
a continuous two-dimensional toroidal space with obstacle landmarks. More details are provided
in Appendix C. We experiment on 3 tasks with different agent numbers, i.e., pp3a where 3 agents
catch 1 prey, pp6a where 6 agents catch 2 preys, and pp9a where 9 agents catch 3 preys. All training
configurations strictly follow Peng et al. (2021) for fair comparison. Hyperparameters of EnSet in
MPE are the same as in SMAC and listed in Appendix B. Next, we test EnSet on these varying
scenarios by combining it with MADDPG and FACMAC with a replay ratio of 25. Results in
MPE are shown in Figure 6, which are averaged over 6 independent runs with a 95% confidence
interval. For the easy pp3a, the environment interactions are 0.25 million steps. For pp6a and pp9a,
the number of environment steps is 0.5 million. Impressively, EnSet boosts the learning of both
MADDPG and FACMAC, indicating EnSet is general for off-policy MARL algorithms.

4.5 THE SMACV2 ENVIRONMENT
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(c) terran 10 vs 10.

Figure 7: Benchmark experiments of EnSet for boosting MARL in SMACv2. Enset-QMIX is trained
with a replay ratio of 10 or 15, while QMIX is trained with a default replay ratio value of 1.

In this section, we evaluate EnSet in SMACv2 (Ellis et al., 2023), which is established to enforce
sufficient stochasticity and meaningful partial observability for benchmarking MARL algorithms.
We conduct the experiments with EnSet on 3 scenarios, including zerg 10 vs 10, protoss 10 vs 10,
and terran 10 vs 10. More details of these SMACv2 tasks refer to Appendix C. In SMACv2, we
build EnSet on top of pymarl2 (Hu et al., 2023), which introduces various code-level optimizations
for MARL, such as N -step returns, large batch size, Adam optimizer, and so on. We follow the
default hyperparameters of pymarl2, where the sampling environment number is optimized to 8.
The hyperparameters of EnSet are the same as in SMAC and MPE. We experimented with EnSet-
QMIX using two replay ratios of 10 and 15. The results are shown in Figure 7, including the median
performance as well as the shaded 25-75% percentiles. We see that, under both high replay ratios,
EnSet successfully boosts QMIX in these challenging SMACv2 tasks.

4.6 DIFFERENT REPLAY RATIOS

In this section, we demonstrate how different replay ratios affect EnSet’s performance. We experi-
ment with EnSet using different replay ratios, such as 10, 25, and 50, for both QMIX on 5m vs 6m
and MADDPG on pp3a. The performance metrics and dormant neuron rates are shown in Figure 8.
We see that high replay ratios lead to severe dormant neuron rates, and EnSet helps greatly reduce
dormant neurons. On the other hand, the optimal replay ratio depends on environments and meth-
ods. A replay ratio of 10 is better than 25 and 50 in 5m vs 6m, while replay ratios of 25 and 50 are
better than 10 in pp3a. Nevertheless, EnSet always stabilizes MARL at different high replay ratios.

5 CONCLUSION

In this paper, we propose EnSet to stabilize MARL training at high replay ratios for sample effi-
ciency. EnSet consists of two key innovations: the global Q-network ensemble reset and global
Q-value translation invariance. First, we found that the dormant neuron phenomenon becomes se-
vere when the replay ratio is high, and the global Q-network ensemble with network parameter reset
mitigates the high dormant neuron rate issue to stabilize the learning process of MARL. Second, we
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Figure 8: Experimental results of EnSet under different replay ratios.

introduce the multiagent translation invariance into the global state to generate more replay experi-
ence for the global Q-networks. Extensive experiments in SMAC, MPE, and SMACv2 show that
EnSet speeds up the learning of MARL to a new degree at the high-replay-ratio setting.

For future work, dynamically adjusting the replay ratio throughout learning is interesting. Second,
integrating EnSet into on-policy MARL algorithms (e.g., MAPPO, COMA) is worth exploring.
Third, a deeper and theoretical analysis of how the dormant neuron phenomenon in MARL arises
and proceeds during training is also important.
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ger, regularized, optimistic: scaling for compute and sample-efficient continuous control. In Pro-
ceedings of the 38th International Conference on Neural Information Processing Systems, NIPS
’24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN 979-8-3313-1438-5. event-place:
Vancouver, BC, Canada.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The Pri-
macy Bias in Deep Reinforcement Learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 16828–16847. PMLR, July 2022. URL https://proceedings.mlr.press/v162/
nikishin22a.html.

Guido Novati, Hugues Lascombes De Laroussilhe, and Petros Koumoutsakos. Automating tur-
bulence modelling by multi-agent reinforcement learning. Nature Machine Intelligence, 3(1):
87–96, January 2021. ISSN 2522-5839. doi: 10.1038/s42256-020-00272-0. URL https:
//www.nature.com/articles/s42256-020-00272-0.

Bei Peng, Tabish Rashid, Christian A. Schroeder de Witt, Pierre-Alexandre Kamienny, Philip H. S.
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A MORE EXPERIMENTAL RESULTS OF DORMANT NEURONS IN HIGH
REPLAY RATIO SETTING

Here, we show more results of dormant neurons in the high-replay-ratio setting in Figure 9. We
observe that, when the replay ratio is either 5 or 10, the dormant neuron rate in the global Q-network
is higher than when the replay ratio is 1. Furthermore, when the replay ratio reaches 10, the learning
cripples in all the tested cases. This necessitates EnSet, which stabilizes MARL at high replay ratios
by tackling dormant neurons in the global Q-network. At the same time, the dormant neuron rate in
the agent network maintains a low level even when the replay ratio increases.
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(e) Episode reward on 2s3z.
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(f) Episode reward on 5m vs 6m.
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(g) Episode reward on MMM2.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
M Steps

2

4

6

8

10

12

14

Te
st

 E
pi

so
de

 R
ew

ar
d

3s5z_vs_3s6z
Replay Ratio = 1
Replay Ratio = 5
Replay Ratio = 10

(h) Episode reward on 3s5z vs 3s6z.
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(j) The dormant neuron rate of agent

network on 5m vs 6m.
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(k) The dormant neuron rate of agent

network on MMM2.
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(l) The dormant neuron rate of agent

network on 3s5z vs 3s6z.

Figure 9: The dormant neuron phenomenon in the global Q-network is exacerbated when improving
replay ratios. Higher replay ratios cause learning instability. When the replay ratio is 10, the learning
collapses with lots of dormant neurons being inactive in the global Q-network.

B HYPERPARAMETERS OF ENSET

All special hyperparameters of EnSet are the same across algorithms, tasks, and environments in
this paper. The global Q-network ensemble size of EnSet H is set at 5. The translation variable αz

for multiagent translation in Equation (6) is set at 0.2. The hyperparameters of multiagent Shrink
& Perturb follow MARR (Yang et al., 2024), where the interpolation factor αr is set at 0.8 and
the reset interval TR is set at 2000. For the agent observation enhancement, we follow MARR
to enable random amplitude scaling (Laskin et al., 2020) on agent observation features in EnSet,
where the scale variable is sampled from a uniform distribution over a range [0.8, 1.2]. The special
hyperparameters of EnSet are summarized in Table 1. Other hyperparameters except the replay ratio
follow the standard MARL algorithms.

Table 1: Summary of special hyperparameters of EnSet.
EnSet hyperparameters Component Value
global Q-network ensemble size of EnSet H Ensemble Reset 5
interpolation factor αr Ensemble Reset 0.8
reset interval TR Ensemble Reset 2000
translation variable αz Multiagent Translation 0.2
scale variable range Random Amplitude Scaling [0.8, 1.2]
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C SUMMARY OF EXPERIMENTAL TASKS AND COMPUTING RESOURCES

Here, we briefly summarize the tasks in SMAC, MPE, and SMACv2 environments in Table 2.

There are 8 tasks in SMAC. For map 2s3z, each side has 2 Stalkers and 3 Zealots. For map 3s5z,
both sides have 3 Stalkers and 5 Zealots. In the map of 10m vs 11m, there are 10 allied marines
against 11 marine enemies. In 5m vs 6m, there are 5 allied marines against 6 marine enemies. In
MMM2, there are 1 Medivac, 2 Marauders, and 7 Marines against 1 Medivac, 3 Marauders, and 8
Marines. In 3s5z vs 3s6z, there are 3 Stalkers and 5 Zealots against 3 Stalkers and 6 Zealots. In
corridor, 6 allied Zealots are against 24 Zerglings. In 6h vs 8z, there are 6 Hydralisks against 8
Zealots. At each episode, a group of allied units is going to fight against the enemy units.

In MPE, we use a set of predator-prey tasks, where multiple slower cooperative agents must capture
faster prey in a continuous two-dimensional toroidal space with obstacle landmarks. If one agent
collides with the prey while at least another one is close enough, a team reward of +10 is given.
However, if only one agent collides with the prey without any other agent being close enough, a
negative team reward of -1 is given. Otherwise, no reward is provided. In this task, each agent can
observe its own position and velocity, the relative positions of other agents, the relative position and
velocity of preys, and the relative positions of landmarks. Additionally, each agent has a view radius,
which restricts the agents from receiving information about other entities (including all landmarks,
other agents, and preys) that are outside the view.

In SMACv2, task scenarios are procedurally generated and require agents to generalize to previ-
ously unseen settings during evaluation. We experiment with three challenging tasks, including
zerg 10 vs 10, protoss 10 vs 10, and terran 10 vs 10. In zerg 10 vs 10, there are 10 allied zerg
units randomly generated to fight against 10 zerg enemy units, which are also randomly generated.
In protoss 10 vs 10, 10 randomly generated protoss agents are controlled to fight against 10 protoss
enemies. In terran 10 vs 10, 10 allied terran units fight against 10 terran enemy units.

Table 2: Summary of experimental tasks in SMAC, MPE, and SMACv2.
SMAC

Task Name Allied Units Enemy Units
2s3z 2 Stalkers, 3 Zealots 2 Stalkers, 3 Zealots
10m vs 11m 10 Marines 11 Marines
3s5z 3 Stalkers, 5 Zealots 3 Stalkers, 5 Zealots
5m vs 6m 5 Marines 6 Marines
MMM2 1 Medivac, 2 Marauders, 7 Marines 1 Medivac, 3 Marauders, 8 Marines
3s5z vs 3s6z 3 Stalkers, 5 Zealots 3 Stalkers, 6 Zealots
6h vs 8z 6 Hydralisks 8 Zealots
corridor 6 Zealots 24 Zerglings

MPE
Task Name Agents Preys
3a 3 Agents 1 Prey
6a 6 Agents 2 Preys
9a 9 Agents 3 Preys

SMACv2
Task Name Allied Units Enemy Units
zerg 10 vs 10 10 Randomly Zerg Units 10 Randomly Zerg Units
protoss 10 vs 10 10 Randomly Protoss Units 10 Randomly Protoss Units
terran 10 vs 10 10 Randomly Terran Units 10 Randomly Terran Units

For the computing resources, the experiments are conducted with the NVIDIA GPUs. The version of
PyTorch is 2.6.0. The operating system is Ubuntu. For a single instance of all the algorithms except
ATM and EnSet-ATM, the amount of GPU memory is small, which is usually less than 1GB. For a
single instance of ATM and EnSet-ATM based on transformer layers, the maximum GPU memory
is about 24GB on corridor, where a total of up to 30 units exist in this map.
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Table 3: Summary of differences of EnSet and MARR in experiments.
Method EnSet MARR
Multiagent Shrink & Perturb Yes Yes
Global Q-network ensemble Yes No
Agent observation augmentation Random amplitude scaling Random amplitude scaling
Global state augmentation Multiagent translation Random amplitude scaling
Number of Environments in SMAC 1 8
Replay ratio in SMAC 10 50
Number of Environments in MPE 1 4
Replay ratio in MPE 25 25

D MORE COMPARISONS OF ENSET WITH MARR

In this section, we conduct an in-depth comparison with MARR with its official default settings,
such as the number of environments for sampling. We first list the key differences between EnSet
and MARR in Table 3. As we see, MARR employs parallel environments for scaling the replay
ratio while EnSet uses the default series environment in both SMAC and MPE. The interpolation
factor αr of 0.8 in multiagent Shrink & Perturb is the same in both EnSet and MARR, and the
reset interval TR is set at 2000 for both methods. EnSet integrates the global Q-network ensemble,
while MARR does not consider it. The ensemble size of global Q-networks in EnSet is set at
5. For the local observation, we augment EnSet’s agent observation with the random amplitude
scaling by following MARR with the same hyperparameters. In EnSet, we apply the multiagent
translation to diversify the global state s, which implies the global Q-value invariance. In contrast,
the random amplitude scaling in MARR causes biases in the estimation of global Q-values. For
example, increasing the allied unit health would increase the global Q-value, which departs from its
true value to an overestimation. EnSet and MARR also have different replay ratios in SMAC, where
EnSet uses 10 and MARR uses 50. The replay ratio is set at 25 for both EnSet and MARR in MPE.

Next, we compare EnSet and MARR with their default settings at the same environment interaction
steps. We integrate EnSet and MARR into the best standard algorithms (i.e., ATM in SMAC and
FACMAC in MPE). The results are shown in Figure 10. In both simple scenarios, 10m vs 11m
and pp3a, as well as difficult scenarios, 3s5z vs 3s6z and pp6a, EnSet outperforms MARR within
the same environment steps, regardless of different settings such as parallel/series environments and
replay ratios. This indicates that EnSet achieves a higher sample efficiency than MARR.
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Figure 10: The comparison of standard EnSet and MARR in SMAC as well as MPE.

E DIFFERENT GLOBAL Q-NETWORK ENSEMBLE SIZES

In this section, we study how the ensemble size of the global Q-network affects the performance of
EnSet. In Figure 11, the ensemble size H of 1 performs worst in these cases, while H of 5 con-
sistently performs well in both SMAC and MPE. At the same time, H of 10 also achieves superior
performance in 3s5z and pp3a, further proving ensemble’s effectiveness at high replay ratios.

F ENSET WITH A STANDARD REPLAY RATIO OF 1

Although EnSet is specially designed for the high-replay-ratio training setting, we also wonder about
the performance of EnSet under the standard replay ratio of 1. Therefore, we provide the results in
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(a) 3s5z.
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Figure 11: Experimental evaluation of the performance of different ensemble sizes in EnSet.
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(b) 5m vs 6m.
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Figure 12: Experimental evaluation of the performance of EnSet with a replay ratio of 1.

Figure 12. EnSet with a replay ratio of 1 performs worse than the standard MARL algorithms with a
replay ratio of 1, which is expected as network reset is employed to forget past experience while no
severe dormant neuron phenomenon exists. However, both the standard QMIX and MADDPG fail
to learn at high replay ratios. On the other hand, EnSet at high replay ratios achieves a significant
improvement over standard MARL algorithms with a replay ratio of 1. These results confirm that
EnSet is specifically designed to address the challenge of training MARL at high replay ratios.

G COMPARISON OF ENSEMBLE WITH A LARGE GLOBAL Q-NETWORK

In this section, we examine whether the standard MARL algorithms with a single large global Q-
network achieve similar results to EnSet-based algorithms with the ensemble reset. We refer to the
default model size of the global Q-network in the standard MARL algorithms as the standard size.
At the same time, we set the model size of the global Q-network in the standard MARL algorithms
to the same size as EnSet’s global Q-network ensemble. We also enlarge the model size of the global
Q-network to be twice the size of EnSet’s global Q-network ensemble. Results of MARL algorithms
with standard model size, model size as EnSet’s global Q-network ensemble, and model size twice as
EnSet’s global Q-network ensemble are in Figure 13. The standard MARL algorithms with various
model sizes fail to learn at high replay ratios, showing the ensemble reset’s effectiveness.
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Figure 13: The comparison results of EnSet and the standard MARL algorithms with a large global
Q-network. ‘ensemble’ indicates the model size equals the size of EnSet’s ensembled global Q-
networks. ‘large’ indicates the model size is twice the size of EnSet’s ensembled global Q-networks.

H COMPARING STANDARD MARL WITH MORE ENVIRONMENT STEPS

In this section, we show that EnSet outperforms the advanced MARL algorithms with a standard
replay ratio of 1, even given more environment interaction steps. To make a practical comparison,
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we experiment on the most challenging tasks, including 3s5z vs 3s6z and corridor in SMAC and
pp9a in MPE. At the same time, we use advanced MARL algorithms such as ATM and FACMAC
as the tested algorithms, which show superior performance in SMAC and MPE, respectively. The
comparison results are plotted in Figure 14. It shows that, even though the number of environment
interaction steps of the standard ATM is twice that of EnSet-ATM, EnSet-ATM’s performance is
still better. A similar result is also for the standard FACMAC and EnSet-FACMAC. In pp9a, while
the standard FACMAC’s environmental steps are four times of EnSet-FACMAC, its final policy
performs worse than EnSet-FACMAC, further showing EnSet’s impressive sample efficiency.
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(a) 3s5z vs 3s6z.
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(b) corridor.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
M Steps

0

25

50

75

100

125

150

175

200

Ep
is

od
ic

 R
et

ur
n

pp9a
EnSet-FACMAC
FACMAC (RR=1)

(c) pp9a.

Figure 14: The comparison of EnSet with standard MARL algorithms with more environment steps.

I INTRODUCING ENSET TO OTHER NETWORK RESET TECHNIQUES
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(a) Test win rate on 5m vs 6m.
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(b) Test win rate on MMM2.
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(c) Test win rate on 3s5z vs 3s6z.
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(d) Dormant neuron on 5m vs 6m.
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(e) Dormant neuron on MMM2.
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(f) Dormant neuron on 3s5z vs 3s6z.

Figure 15: Introducing EnSet to other network reset techniques by replacing the Shrink & Perturb
(denoted as S&P) with ReBorn, ReDo, and ReSet in SMAC. Replay ratio is set at 10. The base
algorithm is QMIX, and Vanilla indicates QMIX with a replay ratio of 10.

In this section, we replace the Shrink & Perturb in the standard EnSet with other MARL network
reset techniques, such as ReBorn, ReDo, and ReSet. Results are shown in Figure 15. First, although
all methods mitigate the severe dormant neurons in the vanilla QMIX, EnSet is the most compatible
with Shrink & Perturb, achieving the best performance among all these methods. Second, although
EnSet-based ReSet has the lowest dormant neuron rates (almost to 0) in all maps, it performs poorly,
further confirming that forcing a much lower dormant neuron rate may constrain network parameters
and hurt network representation ability. These results show that the Shrink & Perturb is compatible
with EnSet best among these reset techniques, which may benefit from its soft-reset mechanism.

J BROADER IMPACTS

MARL is a practical paradigm that models real-world scenarios. The proposed EnSet stabilizes the
learning of existing off-policy MARL algorithms at high replay ratios to learn satisfactory polices
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within limited environment interaction steps. However, when applied to real-world tasks, EnSet-
based MARL algorithms still need some exploration steps to learn, which may lead to unsafe sit-
uations. On the other hand, the findings that high replay ratios exacerbate dormant neurons in the
global Q-network may inspire the development of single-agent reinforcement learning algorithms.

K LIMITATIONS

Our study may have limitations under extensive consideration. One main limitation of EnSet is that
it is not suitable for the on-policy MARL algorithms, as it utilizes the replay buffer with a high
replay ratio. Second, the global Q-network ensemble in EnSet increases the computation cost in the
training stage, therefore increasing the running time of instances.
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