

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BOOSTING MULTIAGENT REINFORCEMENT LEARNING AT HIGH REPLAY RATIOS WITH ENSEMBLE RESET

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement learning with a high replay ratio, where the agent’s network parameters are updated multiple times per environment interaction, is an emerging way to improve sample efficiency. However, this paradigm remains underexplored in multiagent reinforcement learning (MARL). In this paper, we investigate how to efficiently train MARL at high replay ratios to accelerate learning. Surprisingly, we found that simply increasing the replay ratio leads to severe dormant neurons in the centralized global Q-value network, where neurons become inactive thereby undermining network expressivity and hindering the learning of MARL. To tackle this challenge, we propose Ensemble Reset (EnSet) to boost MARL at high replay ratios from two aspects. First and for the first time, EnSet utilizes an ensemble of global Q-value networks with parameter reset to reduce dormant neurons when updated at a high frequency. Second, EnSet diversifies the replay experience using a multiagent translation invariance prior of the global Q-function to prevent overfitting. Extensive experiments in SMAC, MPE, and SMACv2 show that EnSet substantially speeds up various MARL algorithms at high replay ratios.

1 INTRODUCTION

In recent years, multiagent reinforcement learning (MARL) has achieved significant advances in diverse domains that rely on collective intelligence, where multiple agents interact to solve complex sequential decision-making problems. Notable successes include real-time strategy games (Berner et al., 2019; Vinyals et al., 2019), distributed energy management (Yang et al., 2019; Novati et al., 2021), urban traffic signal control (Wu et al., 2020; Ma et al., 2024), etc. When applying MARL to real-world tasks, a major drawback of existing approaches is their low sample efficiency, which requires a huge amount of environmental interactions to learn satisfactory policies.

Although sample-efficient MARL algorithms are critical when deployed in the real world, where interaction with the environment is often limited, improving sample efficiency in the field of MARL remains a longstanding challenge without achieving a substantive breakthrough. Most existing works leverage the multiagent permutation prior to improve sample efficiency. For example, Ye et al. (2022) generate additional data by applying a permutation transform to homogeneous agents, exploiting the permutation invariance. In addition, Yu et al. (2023) utilize the global system symmetry to augment data, where rotating the global state induces a permutation of the optimal joint policy. Later, Hao et al. (2023) incorporate both permutation invariance and permutation equivariance inductive biases into agent network design to boost MARL. Orthogonal to the above works, another line of research starts to increase the replay ratio in MARL to improve sample efficiency. The replay ratio is defined as the number of updates of agent network parameters per environment interaction, and increasing it is an appealing strategy for improving sample efficiency by performing more updates within a fixed interaction budget (Chen et al., 2021; D’Oro et al., 2023). Recently, Yang et al. (2024) and Xu et al. (2024) found that increasing the replay ratio is efficient to accelerate the learning of MARL. Notably, Yang et al. (2024) periodically reset networks to mitigate the plasticity loss (Nikishin et al., 2022; Lyle et al., 2023) when training MARL at high replay ratios.

In this paper, we delve into boosting MARL with a high replay ratio to further push the boundary of sample efficiency from a novel angle centered on the global Q-network. Accordingly, we develop a novel method named Ensemble Reset (EnSet) to improve MARL sample efficiency by two innovations: (1) global Q-network ensemble reset and (2) global Q-value translation invariance. First and

054 for the first time, we reveal that the centralized global Q-network of MARL suffers from a severe
 055 dormant neuron issue at high replay ratios, where a large portion of network neurons become inactive
 056 to undermine network expressivity. Fortunately, this issue is effectively mitigated by the network
 057 ensemble. Based on this finding, EnSet employs an ensemble of global Q-networks combined with
 058 periodic parameter reset to reduce dormant neurons for stabilizing training. Second, EnSet diversi-
 059 fies the replay experience to prevent overfitting in the high-replay-ratio setting using global Q-value
 060 translation invariance, where a system-level coordinate translation of units results in the same global
 061 Q-values. Extensive experiments on a total of 14 tasks in SMAC, MPE, and SMACv2 environments
 062 demonstrate that EnSet significantly accelerates multiple MARL algorithms at high replay ratios
 063 with far fewer environment interactions, while beating various network reset baselines.

064 2 BACKGROUND

065 2.1 MARKOV GAMES

066 We use Markov games as the basic setting, which are an extended multiagent version of Markov
 067 Decision Processes (Littman, 1994). Markov games are described by a state transition function,
 068 $T : S \times A_1 \times \dots \times A_N \rightarrow P(S)$, which defines the probability distribution over all possible next
 069 states given the current global state $s \in S$ and each agent i 's action $a_i \in A_i$. The reward is given
 070 based on the global state and actions of all agents $R_i : S \times A_1 \times \dots \times A_N \rightarrow \mathbb{R}$. Meanwhile, Markov
 071 games can be partially observable, where each agent i perceives the environment through a local
 072 observation function $o_i = \mathcal{O}(s, i) \in O_i$, where O_i is agent i 's observation space. Consequently,
 073 each agent learns a policy $\pi_i : O_i \rightarrow P(A_i)$ that maps each agent's observation to a probability
 074 distribution over its action set, to maximize this agent's expected discounted cumulative returns,
 075 $J_i(\pi_i) = \mathbb{E}_{a_1 \sim \pi_1, \dots, a_N \sim \pi_N, s \sim T} [\sum_{t=0}^{\infty} \gamma^t R_i(s_t, a_{1,t}, \dots, a_{N,t})]$, where $\gamma \in [0, 1)$ is the discounted
 076 factor. If all agents share an identical reward function, i.e., $R_1 = \dots = R_N$, Markov games are fully
 077 cooperative (Matignon et al., 2012): a best-interest action of one agent is best-interest for others.

078 Many representative off-policy MARL algorithms, such as QMIX (Rashid et al., 2018) and MAD-
 079 DPG (Lowe et al., 2017), adopt the centralized training with decentralized execution (CTDE)
 080 paradigm to learn agent policies. CTDE allows agents to access global information during training
 081 for better coordination and to act independently based on local observations only when deployed
 082 for execution. In CTDE, there is usually a centralized global Q-value network to evaluate the joint
 083 policy given the multiagent system state and provide gradients to update each agent's decentralized
 084 policy, ensuring agents learn cooperative behaviors. In this work, we follow the CTDE paradigm.

085 2.2 REPLAY RATIO

086 Replay ratio refers to the number of updates of an agent's parameters for each environment inter-
 087 action (Chen et al., 2021; D'Oro et al., 2023). As each interaction with the environment comes at
 088 a cost, it is desirable to perform more updates with existing experiences before interacting with the
 089 environment again. Therefore, increasing the replay ratio is an appealing strategy for improving the
 090 sample efficiency of deep reinforcement learning (Chen et al., 2021; D'Oro et al., 2023; Schwarzer
 091 et al., 2023; Nauman et al., 2025; Lee et al., 2025), which has received much attention nowadays.
 092 Among them, Kim et al. (2023) utilize a sequential reset ensemble and adaptive agents composition
 093 to mitigate performance collapses caused by resetting at high replay ratios in the domain of safe RL.

094 To quantify sample efficiency and clarify the critical role of the replay ratio, we adopt the definition
 095 from Ye et al. (2022), which formalizes the expected number of times each experience in the replay
 096 buffer is sampled for agent training as

$$100 \quad \mathbb{E}[N_{sampled}] = \frac{N_{RR} \cdot N_B}{V \cdot T_U}, \quad (1)$$

101 where N_{RR} is the number of replay ratios for updating, which is performed N_{RR} times when inter-
 102 acting with the environment once. N_B is the batch size that there are N_B data experiences sampled
 103 into a batch for updating. The data acquisition speed V is the number of transition data experiences
 104 that are collected at each time step of environment interaction. T_U is the update interval where the
 105 updating is conducted every T_U time steps. Typically, works focusing on training reinforcement
 106 learning agents at a high replay ratio (Chen et al., 2021) aim to increase N_{RR} while keeping N_B ,
 107 learning agents at a high replay ratio (Chen et al., 2021) aim to increase N_{RR} while keeping N_B ,

V, and T_U unchanged. They seek to achieve higher sample efficiency through a higher $\mathbb{E}[N_{sampled}]$ with different approaches, finally improving performance with the same number of environment interactions, i.e., the same number of collected data experiences. This behavior is also termed replay ratio scaling (D’Oro et al., 2023), which is much less studied in the MARL domain than single-agent reinforcement learning. Until recently, Yang et al. (2024) and Xu et al. (2024) found that properly increasing the replay ratio improves the sample efficiency of MARL algorithms.

2.3 THE DORMANT NEURON PHENOMENON

Sokar et al. (2023) identify the dormant neuron phenomenon in deep reinforcement learning, where an agent’s network suffers from an increasing number of inactive neurons during the training process, thereby affecting network expressivity. The definition of the dormant neuron is given below.

Definition 1 (α -Dormant Neuron). Given an input distribution D , let $\rho_j^l(x)$ denote the activation of neuron j in layer l under input $x \in D$ and N_l be the number of neurons in layer l . The normalized activation score d_j^l of a neuron j in layer l is defined as follows:

$$d_j^l = \frac{\mathbb{E}_{x \in D} |\rho_j^l(x)|}{\frac{1}{N_l} \sum_{k=1}^{N_l} \mathbb{E}_{x \in D} |\rho_k^l(x)|}. \quad (2)$$

Then neuron j in layer l is defined as α -dormant if its activation score $d_j^l \leq \alpha$. In this paper, following Qin et al. (2024) who study the dormant neurons in MARL algorithms, we set α at 0.1. The dormant neuron rate for a neural network is defined as the proportion of the α -dormant neurons.

A few works have started to study the dormant neuron phenomenon in the domain of MARL. For example, Xu et al. (2024) use the dormant neuron rate as an indicator of plasticity when training MARL at high replay ratios. They found that the dormant neuron rate in the agent’s policy network remains at a low level during training due to the agent’s RNN structure. However, they do not consider the dormant neuron in the global Q-network, which is the core module in CTDE. More recently, Qin et al. (2024) found that, in multiagent value factorization algorithms, dormant neurons in the global Q-network increase as training proceeds with a standard replay ratio of 1. Accordingly, they propose ReBorn, which transfers the weights from overactive neurons to dormant neurons to help learning. However, they neglect to further study under a high replay ratio, leaving the effective scaling of the replay ratio for better sample efficiency unexplored. Another recent work is MARR (Yang et al., 2024), which investigates a closely related concept, plasticity loss (Lyle et al., 2023), in MARL. MARR introduces a multiagent Shrink & Perturb strategy to periodically reset network parameters to maintain the network plasticity. The multiagent Shrink & Perturb in MARR is defined as

$$\theta_t^i \leftarrow \alpha_r \theta_t^i + (1 - \alpha_r) \theta_0^i, \text{ for } i = 1, 2, \dots, N, \quad (3)$$

and

$$\phi_t \leftarrow \alpha_r \phi_t + (1 - \alpha_r) \phi_0, \quad (4)$$

where θ_0^i is agent i ’s initial policy or individual Q-value network parameters. ϕ_0 is the initial global Q-network parameters. θ_t^i and ϕ_t are the current agent and global Q-value network parameters, respectively. The interpolation factor α_r decides how much the current network parameters are kept. However, none of these works explicitly investigates the connection between dormant neurons in the global Q-network and high replay ratios, which is the key bottleneck to MARL sample efficiency.

3 BOOSTING MARL AT REPLAY RATIO VIA ENSEMBLE RESET

In this section, we introduce the proposed EnSet, which is illustrated in Figure 1. First, we found that the dormant neuron phenomenon in the global Q-value network is exacerbated when improving the training replay ratio in Section 3.1. Then, in Section 3.2, we show that the network ensemble, which employs multiple global Q-networks, surprisingly mitigates the phenomenon of dormant neurons and helps stabilize learning, especially when combined with the periodic network reset. Moreover, we introduce the global Q-value translation invariance to augment the global state in Section 3.3.

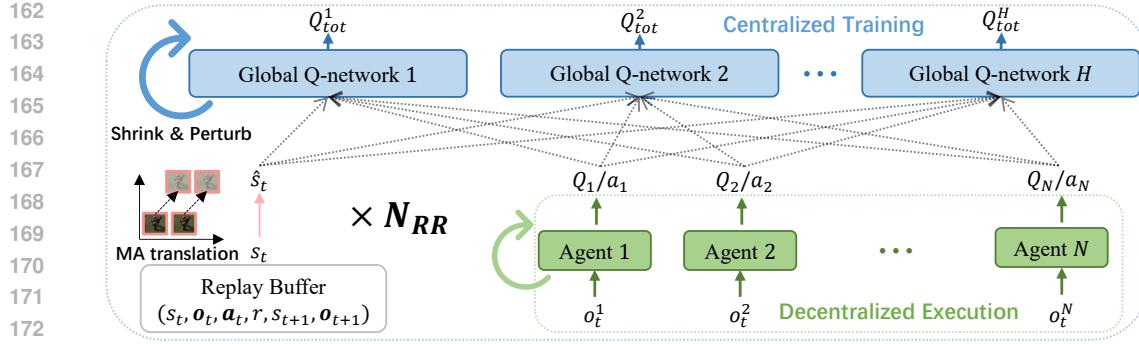


Figure 1: The illustration of the EnSet framework, which is trained under a high replay ratio of N_{RR} . The global Q-network ensemble with network reset tackles dormant neurons under high N_{RR} . The global state translation invariance is introduced to diversify the state s of the global Q-value function.

3.1 DORMANT NEURONS IN THE GLOBAL Q-NETWORK AT HIGH REPLAY RATIOS

First, we show how the dormant neuron in the global Q-network correlates with the replay ratios, which have never been explicitly studied before to the best of our knowledge. We use QMIX (Rashid et al., 2018), one of the most popular MARL algorithms, as the tested base algorithm. Following Qin et al. (2024), we measure dormant neurons in the hypernetworks of QMIX’s global Q-network. In the standard setting, the replay ratio is 1, which means that the network parameters are updated once after one episode. We increase the replay ratio to 5 and 10. The dormant ratio rates in the centralized Q-value network of QMIX under different replay ratios are given in Figure 2(a) and 2(b). As we can see, the dormant neuron phenomenon becomes severe enough to hinder the learning of QMIX in high-replay-ratio settings. This finding motivates us to reduce the dormant neurons to increase the replay ratio for boosting the sample efficiency of MARL algorithms. More cases as well as the dormant neuron rates in the agent network maintaining a low level are shown in Appendix A.

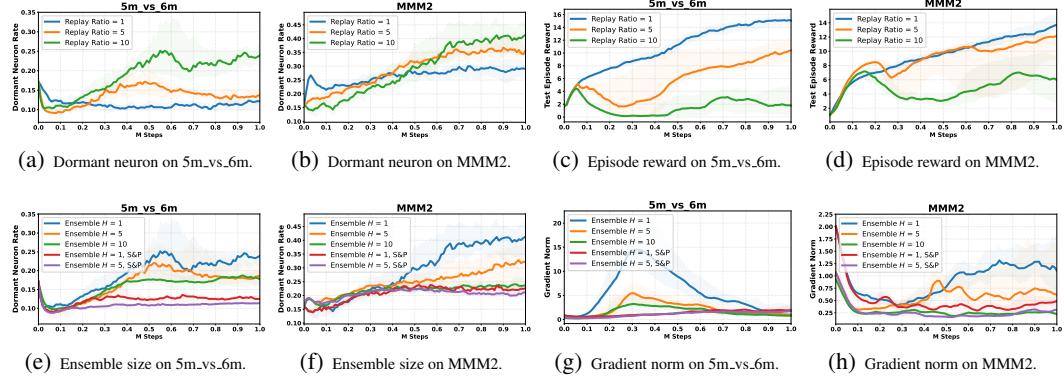


Figure 2: (a-b) show that the dormant neuron rate in the global Q-network is exacerbated at high replay ratios. (c-d) show that, when the replay ratio is 10, the learning collapses with many dormant neurons being inactive. (e-f) show that dormant neurons in global Q-networks are mitigated by the network ensemble as well as multiagent Shrink & Perturb (denoted as S&P) when the replay ratio is 10. (g-h) show that the ensemble smooths the updating gradient for network parameters.

3.2 GLOBAL Q-NETWORK ENSEMBLE WITH NETWORK RESET

Next, we show that the network ensemble is an efficient way to tackle the severe dormant neuron phenomenon when training at high replay ratios. For the first time, we propose Ensemble Reset to utilize an ensemble of global Q-networks with network parameter reset to stabilize MARL training at high updating frequency. As shown in Figure 1, we employ H global Q-networks in the central-

216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1

(Vasile et al., 2015) of the global Q-function to augment the state input of the global Q-network. For the multiagent translation invariance, we have the following definition (Vasile et al., 2015).

Definition 2 (Multiagent Translation Invariance). In a D -dimensional coordinate system, a function $f : S \rightarrow Y$, where the global state $s \in S$ contains features of multiple agents and units as $s = (x_1, \dots, x_N, x_o)$, $x_i = (c_i, e_i)$ includes the agent i 's coordinate features $c_i \in \mathbb{R}^D$ as well as agent i 's extra unit features e_i , and x_o represents other system features such as joint actions if f needs, is said to be translation invariant if for all $z \in \mathbb{R}^D$ the following condition holds:

$$f((c_1 + z, e_1), \dots, (c_N + z, e_N), x_o) = f(x_1, \dots, x_N, x_o), \quad (6)$$

where the translation variable z in each coordinate dimension is uniformly sampled from $[-\alpha_z, \alpha_z]$. When f becomes the global Q-value function Q_{tot} , we are inspired to apply the multiagent translation invariance into the input global state s of the global Q-network as

$$Q_{tot}((c_1 + z, e_1), \dots, (c_N + z, e_N), x_o) = Q_{tot}(x_1, \dots, x_N, x_o). \quad (7)$$

This invariance property also applies to other environmental units in multiagent systems if they have coordinate features. Although the multiagent translation invariance is a natural data augmentation operation for the global Q-value function, few works utilize this property in the MARL domain.

We give the algorithmic descriptions of EnSet in Algorithm 1. EnSet follows the standard workflow of off-policy MARL algorithms. Specifically, in Lines 1, EnSet employs an ensemble of H global Q-value networks. In Line 8, EnSet transforms global state s to \hat{s} in mini-batch B with the multiagent translation. Then, in Line 9, each global Q-network is updated with a temporal difference error calculated with \hat{s} . Finally, in Line 17, given the network reset interval T_R time steps, EnSet performs Shrink & Perturb to inject plasticity into both the global Q-network networks and agent networks to keep learning ability. Next, we evaluate the efficacy of EnSet with extensive experiments.

4 EXPERIMENTS

In this section, we conduct extensive experiments to validate EnSet. First, we integrate EnSet into classical MARL algorithms such as QMIX (Rashid et al., 2018), QPLEX (Wang et al., 2021), and ATM (Yang et al., 2022) in the well-known StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) of a discrete action space (Section 4.1). Second, we compare EnSet with other multiagent network reset techniques in the high-replay-ratio setting (Section 4.2). Third, we conduct the ablation study to validate each component of EnSet in Section 4.3. Fourth, we further validate EnSet in the classical multiagent particle (MPE) environment (Lowe et al., 2017) of the continuous action space by combining it with MADDPG (Lowe et al., 2017) and FACMAC (Peng et al., 2021) in Section 4.4. Fifth, experiments of EnSet with finetuned QMIX in SMACv2 (Ellis et al., 2023) are given in Section 4.5. Finally, we present the replay ratio scaling experiments in Section 4.6.

4.1 STARCRAFT II MULTI-AGENT CHALLENGE

First, we experiment in the well-known StarCraft II Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019), a widely adopted testbed consisting of decentralized micromanagement tasks for evaluating MARL approaches. We train multiple agents to control allied units respectively to beat the enemies, while a built-in handcrafted AI controls these enemy units. The SMAC environment is with discrete action space, and the version of StarCraft II is 4.6.2. We implement EnSet based on the pymarl framework (Samvelyan et al., 2019) with default training and evaluation configurations.

In SMAC, we evaluate on 8 tasks, i.e., 2s3z, 10m_vs_11m, 3s5z, 5m_vs_6m, MMM2, 3s5z_vs_3s6z, 6h_vs_8z, and corridor. These tasks include homogeneous and heterogeneous multiagent scenarios, as well as symmetrical and asymmetrical multiagent scenarios for a comprehensive evaluation. For example, on the task of 2s3z, each side has 2 Stalkers and 3 Zealots units, where the multiagent system is heterogeneous and symmetrical. More descriptions of these tasks are given in Appendix C.

First, we show that EnSet is able to boost the performance of popular MARL algorithms under high replay ratios. We integrate EnSet into QMIX, QPLEX, and ATM with a replay ratio of 10, where 10 updates are executed after one episode. For EnSet, the ensemble size H of the global Q-network is set at 5. The coordinate translation variable α_z in Equation (6) is set at 0.2. The hyperparameters of

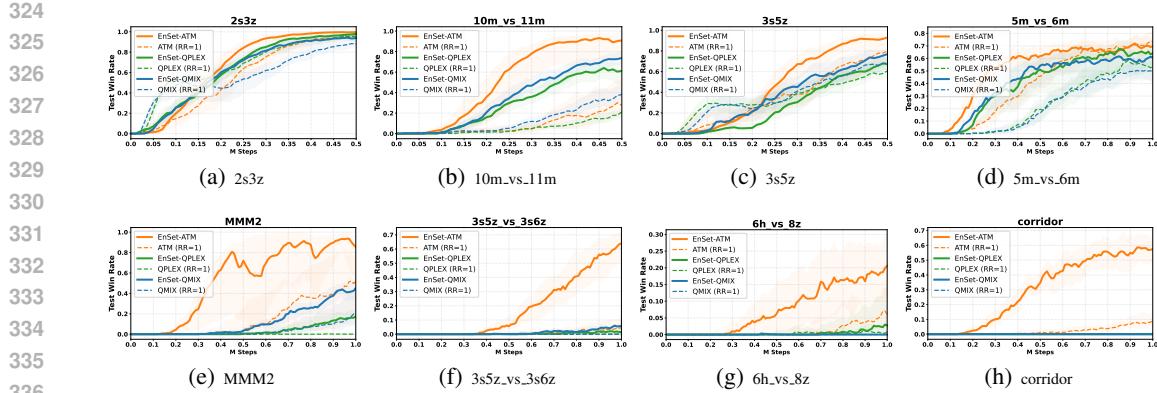


Figure 3: Benchmark experiments of EnSet for boosting MARL algorithms in SMAC within limited environment interactions. Enset-QMIX, EnSet-QPLEX, and EnSet-ATM are trained with a replay ratio of 10, while QMIX, QPLEX, and ATM are trained with a default replay ratio value of 1.

multiagent Shrink & Perturb follow MARR (Yang et al., 2024). All these special hyperparameters of EnSet are summarized in Appendix B and kept the same across methods and tasks. We run all methods over 6 independent training runs with different random seeds.

The experimental results are shown in Figure 3, including the median performance as well as the shaded 25-75% percentiles. As we see, EnSet significantly boosts QMIX, QPLEX, and ATM. For the easy scenarios, including 2s3z, 10m_vs_11m, and 3s5z, the number of environment interactions is set at 0.5 million. With such a small interaction budget, EnSet successfully speeds up the standard MARL algorithms especially on 10m_vs_11m, demonstrating superior sample efficiency. For the remaining scenarios, we set the number of environment interactions at 1 million steps. EnSet also substantially speeds up the learning of each MARL algorithm, while the standard ones with a replay ratio of 1 learn slowly. Specifically, in the super hard scenarios such as 3s5z_vs_3s6z and corridor, EnSet successfully improves the performance of ATM by a large margin within only 1 million steps. These results in SMAC show that EnSet is efficient in boosting MARL algorithms at a high replay ratio to achieve sample efficiency given the same environment interactions.

Additionally, results of EnSet with different global Q-network ensemble sizes are reported in Appendix E. Results of EnSet with a standard replay ratio of 1 are given in Appendix F. The comparison of EnSet with standard MARL algorithms having more environment steps is shown in Appendix H.

4.2 COMPARING WITH MARL NETWORK RESET METHODS

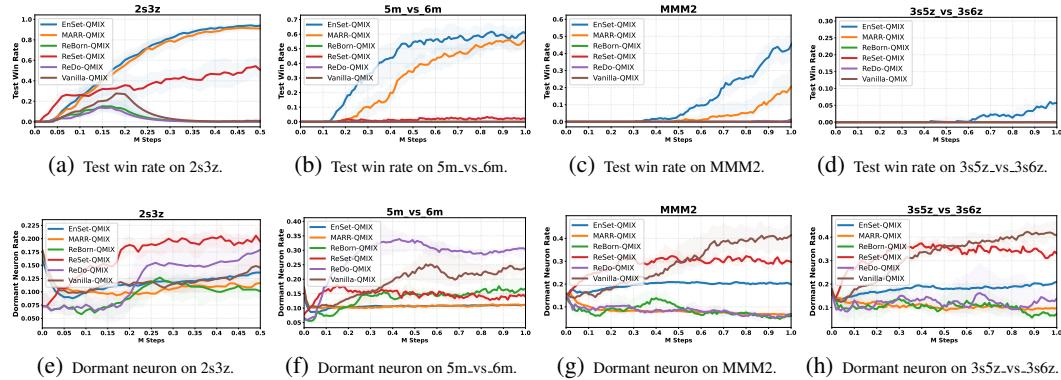


Figure 4: Benchmarking different MARL network reset methods in SMAC. Replay ratio is set at 10.

Second, we compare EnSet with other MARL network reset methods such as MARR (Yang et al., 2024), ReBorn (Qin et al., 2024), ReSet (Nikishin et al., 2022), and ReDo (Sokar et al., 2023) on the basis of QMIX. MARR (Yang et al., 2024) introduces the Shrink & Perturb strategy into MARL to reset network parameters periodically. ReBorn (Qin et al., 2024) transfers the weights from overactive neurons to dormant neurons to prevent both the overactive and dormant neurons in MARL networks. ReSet (Nikishin et al., 2022) addresses early agent experience bias by periodically resetting the last layer of the neural network to avoid overfitting. ReDo (Sokar et al., 2023) periodically reinitializes the input weights of dormant neurons and zeros the output weights of dormant neurons. We also present the vanilla QMIX, which is directly trained at a replay ratio of 10, as a comparison. The corresponding performance is plotted in Figure 4. At the same time, we also give the dormant neuron rates in the global Q-network to see how these methods work. It is clear that EnSet maintains the dormant neuron rates at a low level and achieves the best performance among baselines. Interestingly, although MARR, ReDo, and ReBorn have lower dormant neuron rates than EnSet in MMM2 and 3s5z_vs_3s6z, they perform worse than EnSet. This indicates that, while a high dormant neuron rate prevents MARL from stabilizing learning, forcing a much lower dormant neuron rate may constrain network parameters and hurt network representation ability. Moreover, an in-depth comparison between EnSet and MARR is provided in Appendix D for reference.

4.3 ABLATION STUDY OF ENSET

Here, we also conduct the ablation study to validate each component of EnSet under high replay ratios in SMAC and MPE. There are three key techniques in EnSet such as the global Q-network ensemble, the multiagent Shrink & Perturb strategy, as well as the multiagent state translation. Results of the ablation study on these components are shown in Figure 5.

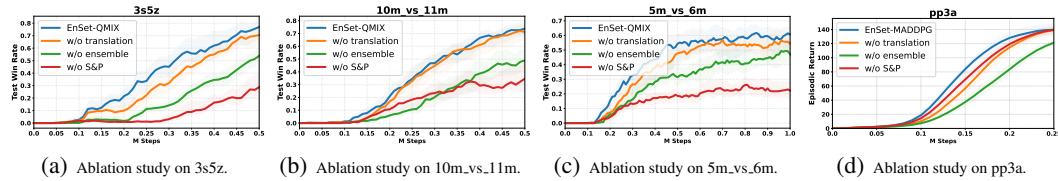


Figure 5: The ablation study of EnSet-QMIX in SMAC and EnSet-MADDPG in MPE. Replay ratio is set at 10 in SMAC and 25 in MPE. ‘w/o ensemble’ means the number of global Q-networks in EnSet is 1. ‘w/o translation’ means the multiagent translation invariance is not applied in the global states. ‘w/o S&P’ means the multiagent Shrink & Perturb strategy is not used in EnSet.

We see that the global Q-network ensemble and multiagent Shrink & Perturb in ensemble reset largely affects performance, implying that tackling dormant neurons is the key to keeping learning at high replay ratios (Yang et al., 2024). Specifically, the ensemble contributes the most to the performance in pp3a, further highlighting its importance. Meanwhile, the multiagent state translation slightly improves performance consistently during the learning process in all these tested scenarios.

4.4 MULTIAGENT PARTICLE ENVIRONMENT

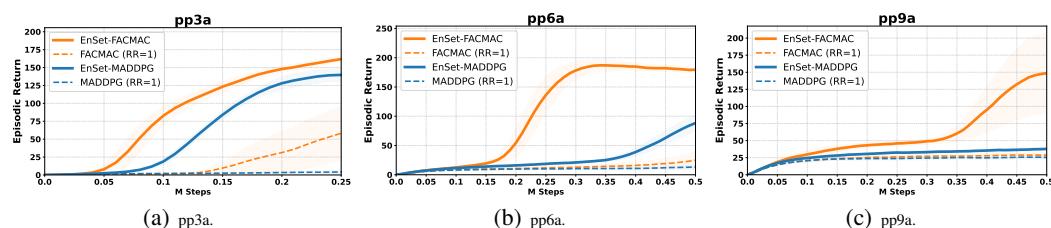


Figure 6: Benchmark experiments of EnSet for boosting MARL algorithms in the MPE environment. Enset-MADDPG and Enset-FACMAC are trained with a replay ratio of 25, while the standard MADDPG and FACMAC algorithms are trained with a default replay ratio value of 1.

We further evaluate EnSet in the Multiagent Particle Environment (MPE) (Lowe et al., 2017), which features a continuous action space. Following established benchmarks (Peng et al., 2021), we adopt a set of predator-prey tasks where multiple slower cooperative agents must capture faster prey in a continuous two-dimensional toroidal space with obstacle landmarks. More details are provided in Appendix C. We experiment on 3 tasks with different agent numbers, i.e., pp3a where 3 agents catch 1 prey, pp6a where 6 agents catch 2 preys, and pp9a where 9 agents catch 3 preys. All training configurations strictly follow Peng et al. (2021) for fair comparison. Hyperparameters of EnSet in MPE are the same as in SMAC and listed in Appendix B. Next, we test EnSet on these varying scenarios by combining it with MADDPG and FACMAC with a replay ratio of 25. Results in MPE are shown in Figure 6, which are averaged over 6 independent runs with a 95% confidence interval. For the easy pp3a, the environment interactions are 0.25 million steps. For pp6a and pp9a, the number of environment steps is 0.5 million. Impressively, EnSet boosts the learning of both MADDPG and FACMAC, indicating EnSet is general for off-policy MARL algorithms.

4.5 THE SMACv2 ENVIRONMENT

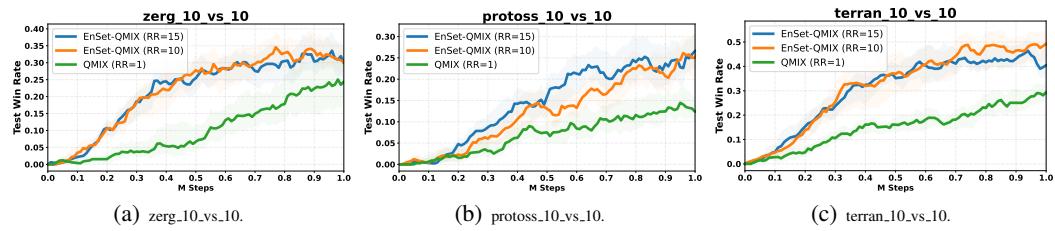


Figure 7: Benchmark experiments of EnSet for boosting MARL in SMACv2. Enset-QMIX is trained with a replay ratio of 10 or 15, while QMIX is trained with a default replay ratio of 1.

In this section, we evaluate EnSet in SMACv2 (Ellis et al., 2023), which is established to enforce sufficient stochasticity and meaningful partial observability for benchmarking MARL algorithms. We conduct the experiments with EnSet on 3 scenarios, including zerg_10_vs_10, protoss_10_vs_10, and terran_10_vs_10. More details of these SMACv2 tasks refer to Appendix C. In SMACv2, we build EnSet on top of pymarl2 (Hu et al., 2023), which introduces various code-level optimizations for MARL, such as N -step returns, large batch size, Adam optimizer, and so on. We follow the default hyperparameters of pymarl2, where the sampling environment number is optimized to 8. The hyperparameters of EnSet are the same as in SMAC and MPE. We experimented with EnSet-QMIX using two replay ratios of 10 and 15. The results are shown in Figure 7, including the median performance as well as the shaded 25-75% percentiles. We see that, under both high replay ratios, EnSet successfully boosts QMIX in these challenging SMACv2 tasks.

4.6 DIFFERENT REPLAY RATIOS

In this section, we demonstrate how different replay ratios affect EnSet’s performance. We experiment with EnSet using different replay ratios, such as 10, 25, and 50, for both QMIX on 5m_vs_6m and MADDPG on pp3a. The performance metrics and dormant neuron rates are shown in Figure 8. We see that high replay ratios lead to severe dormant neuron rates, and EnSet helps greatly reduce dormant neurons. On the other hand, the optimal replay ratio depends on environments and methods. A replay ratio of 10 is better than 25 and 50 in 5m_vs_6m, while replay ratios of 25 and 50 are better than 10 in pp3a. Nevertheless, EnSet always stabilizes MARL at different high replay ratios.

5 CONCLUSION

In this paper, we propose EnSet to stabilize MARL training at high replay ratios for sample efficiency. EnSet consists of two key innovations: the global Q-network ensemble reset and global Q-value translation invariance. First, we found that the dormant neuron phenomenon becomes severe when the replay ratio is high, and the global Q-network ensemble with network parameter reset mitigates the high dormant neuron rate issue to stabilize the learning process of MARL. Second, we

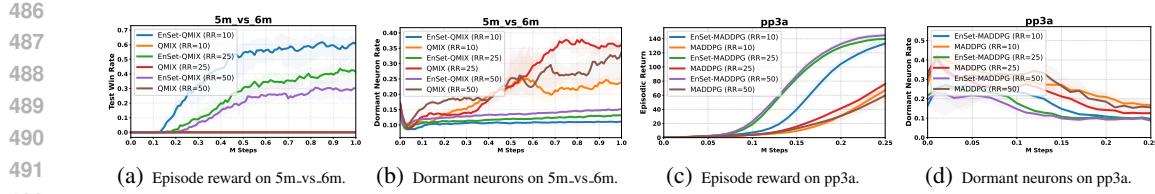


Figure 8: Experimental results of EnSet under different replay ratios.

introduce the multiagent translation invariance into the global state to generate more replay experience for the global Q-networks. Extensive experiments in SMAC, MPE, and SMACv2 show that EnSet speeds up the learning of MARL to a new degree at the high-replay-ratio setting.

For future work, dynamically adjusting the replay ratio throughout learning is interesting. Second, integrating EnSet into on-policy MARL algorithms (e.g., MAPPO, COMA) is worth exploring. Third, a deeper and theoretical analysis of how the dormant neuron phenomenon in MARL arises and proceeds during training is also important.

REFERENCES

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with Large Scale Deep Reinforcement Learning. *CoRR*, abs/1912.06680, 2019. URL <http://arxiv.org/abs/1912.06680>. arXiv: 1912.06680.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized Ensembled Double Q-Learning: Learning Fast Without a Model. In *International Conference on Learning Representations*, 2021.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G. Bellemare, and Aaron Courville. Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier. In *The Eleventh International Conference on Learning Representations*, 2023.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan, Jakob N. Foerster, and Shimon Whiteson. SMACv2: an improved benchmark for cooperative multi-agent reinforcement learning. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc. event-place: New Orleans, LA, USA.

Jianye Hao, Xiaotian Hao, Hangyu Mao, Weixun Wang, Yaodong Yang, Dong Li, YAN ZHENG, and Zhen Wang. Boosting Multiagent Reinforcement Learning via Permutation Invariant and Permutation Equivariant Networks. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=OxNQXyZK-K8>.

Jian Hu, Siying Wang, Siyang Jiang, and Musk Wang. Rethinking the Implementation Tricks and Monotonicity Constraint in Cooperative Multi-agent Reinforcement Learning. In *The Second Blogpost Track at ICLR 2023*, 2023. URL <https://openreview.net/forum?id=Y8hONVbMSDj>.

Woojun Kim, Yongjae Shin, Jongeui Park, and Youngchul Sung. Sample-efficient and safe deep reinforcement learning via reset deep ensemble agents. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc. event-place: New Orleans, LA, USA.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Reinforcement learning with augmented data. In *Proceedings of the 34th International Conference on*

540 *Neural Information Processing Systems*, NIPS '20, Red Hook, NY, USA, 2020. Curran Associates
 541 Inc. ISBN 978-1-7138-2954-6. event-place: Vancouver, BC, Canada.
 542

543 Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, and Jaegul Choo. Hyperspherical
 544 Normalization for Scalable Deep Reinforcement Learning. In *Forty-second International
 545 Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=kfYxyvCYQ4>.
 546

547 Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
 548 *Machine Learning Proceedings*, pp. 157–163. Elsevier, 1994.
 549

550 Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
 551 critic for mixed cooperative-competitive environments. In *Proceedings of the 31st International
 552 Conference on Neural Information Processing Systems*, NIPS'17, pp. 6382–6393, Red Hook,
 553 NY, USA, 2017. Curran Associates Inc. ISBN 978-1-5108-6096-4. event-place: Long Beach,
 554 California, USA.
 555

556 Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
 557 Understanding plasticity in neural networks. In *Proceedings of the 40th International Conference
 558 on Machine Learning*, ICML'23, Honolulu, Hawaii, USA, 2023. JMLR.org.
 559

560 Chengdong Ma, Aming Li, Yali Du, Hao Dong, and Yaodong Yang. Efficient and scalable re-
 561 inforcement learning for large-scale network control. *Nature Machine Intelligence*, September
 562 2024. ISSN 2522-5839. doi: 10.1038/s42256-024-00879-7. URL <https://www.nature.com/articles/s42256-024-00879-7>.
 563

564 Laetitia Matignon, Guillaume J. Laurent, and Nadine Le Fort-Piat. Independent reinforcement learn-
 565 ers in cooperative Markov games: a survey regarding coordination problems. *The Knowledge
 566 Engineering Review*, 27(1):1–31, 2012.
 567

568 Michal Nauman, Mateusz Ostaszewski, Krzysztof Jankowski, Piotr Miłoś, and Marek Cygan. Big-
 569 ger, regularized, optimistic: scaling for compute and sample-efficient continuous control. In *Pro-
 570 ceedings of the 38th International Conference on Neural Information Processing Systems*, NIPS
 571 '24, Red Hook, NY, USA, 2025. Curran Associates Inc. ISBN 979-8-3313-1438-5. event-place:
 572 Vancouver, BC, Canada.
 573

574 Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The Pri-
 575 macy Bias in Deep Reinforcement Learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
 576 Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International
 577 Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*,
 578 pp. 16828–16847. PMLR, July 2022. URL <https://proceedings.mlr.press/v162/nikishin22a.html>.
 579

580 Guido Novati, Hugues Lascombes De Laroussilhe, and Petros Koumoutsakos. Automating tur-
 581 bulence modelling by multi-agent reinforcement learning. *Nature Machine Intelligence*, 3(1):
 582 87–96, January 2021. ISSN 2522-5839. doi: 10.1038/s42256-020-00272-0. URL <https://www.nature.com/articles/s42256-020-00272-0>.
 583

584 Bei Peng, Tabish Rashid, Christian A. Schroeder de Witt, Pierre-Alexandre Kamienny, Philip H. S.
 585 Torr, Wendelin Böhmer, and Shimon Whiteson. FACMAC: factored multi-agent centralised pol-
 586 icy gradients. In *Proceedings of the 35th International Conference on Neural Information Pro-
 587 cessing Systems*, NIPS '21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN 978-1-
 588 7138-4539-3.
 589

590 Haoyuan Qin, Chennan Ma, Mian Deng, Zhengzhu Liu, Songzhu Mei, Xinwang Liu,
 591 Cheng Wang, and Siqi Shen. The Dormant Neuron Phenomenon in Multi-Agent Re-
 592 inforcement Learning Value Factorization. In A. Globerson, L. Mackey, D. Bel-
 593 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural In-
 594 formation Processing Systems*, volume 37, pp. 35727–35759. Curran Associates, Inc.,
 595 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/3eec5006051d9544e717067de3220198-Paper-Conference.pdf.
 596

594 Tabish Rashid, Mikayel Samvelyan, Christian Schröder de Witt, Gregory Farquhar, Jakob N. Fo-
 595 erster, and Shimon Whiteson. QMIX: Monotonic Value Function Factorisation for Deep Multi-
 596 Agent Reinforcement Learning. In *Proceedings of the 35th International Conference on Machine*
 597 *Learning*, pp. 4292–4301, 2018.

598 Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
 599 Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob Foerster, and Shimon White-
 600 son. The StarCraft Multi-Agent Challenge. In *Proceedings of the 18th International Conference*
 601 *on Autonomous Agents and MultiAgent Systems*, AAMAS '19, pp. 2186–2188, Richland, SC,
 602 2019. International Foundation for Autonomous Agents and Multiagent Systems. ISBN 978-1-
 603 4503-6309-9. event-place: Montreal QC, Canada.

604 Max Schwarzer, Johan Obando-Ceron, Aaron Courville, Marc G. Bellemare, Rishabh Agarwal, and
 605 Pablo Samuel Castro. Bigger, Better, Faster: Human-Level Atari with Human-Level Efficiency.
 606 In *Proceedings of the 40th International Conference on Machine Learning*. JMLR.org, 2023.

607 Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The Dormant Neuron Phe-
 608 nomenon in Deep Reinforcement Learning. In *Proceedings of the 40th International Conference*
 609 *on Machine Learning*, ICML'23. JMLR.org, 2023. Place: Honolulu, Hawaii, USA.

610 Cristian-Ioan Vasile, Mac Schwager, and Calin Belta. SE(N) invariance in networked systems.
 611 In *2015 European Control Conference (ECC)*, pp. 186–191. IEEE, July 2015. ISBN 978-3-
 612 9524269-3-7. doi: 10.1109/ECC.2015.7330544. URL [http://ieeexplore.ieee.org/](http://ieeexplore.ieee.org/document/7330544/)
 613 [document/7330544/](http://ieeexplore.ieee.org/document/7330544/).

614 Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
 615 oung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
 616 Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou,
 617 Max Jaderberg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
 618 Budden, Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff,
 619 Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom
 620 Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
 621 Grandmaster level in StarCraft II using multi-agent reinforcement learning. *Nature*, 575(7782):
 622 350–354, November 2019. ISSN 0028-0836, 1476-4687. doi: 10.1038/s41586-019-1724-z. URL
 623 <https://www.nature.com/articles/s41586-019-1724-z>.

624 Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. QPLEX: Duplex Dueling
 625 Multi-Agent Q-Learning. In *International Conference on Learning Representations*, 2021. URL
 626 <https://openreview.net/forum?id=Rcmk0xxIQV>.

627 Tong Wu, Pan Zhou, Kai Liu, Yali Yuan, Xiumin Wang, Huawei Huang, and Dapeng Oliver Wu.
 628 Multi-Agent Deep Reinforcement Learning for Urban Traffic Light Control in Vehicular Net-
 629 works. *IEEE Transactions on Vehicular Technology*, 69(8):8243–8256, August 2020. ISSN
 630 0018-9545, 1939-9359. doi: 10.1109/TVT.2020.2997896. URL [https://ieeexplore.](https://ieeexplore.ieee.org/)
 631 [ieee.org/](https://ieeexplore.ieee.org/)[document/9103316/](https://ieeexplore.ieee.org/document/9103316/).

632 Linjie Xu, Zichuan Liu, Alexander Dockhorn, Diego Perez-Liebana, Jinyu Wang, Lei Song, and
 633 Jiang Bian. Higher Replay Ratio Empowers Sample-Efficient Multi-Agent Reinforcement Learn-
 634 ing. In *2024 IEEE Conference on Games (CoG)*, pp. 1–8, Milan, Italy, August 2024. IEEE. ISBN
 635 979-8-3503-5067-8. doi: 10.1109/CoG60054.2024.10645658. URL <https://ieeexplore.>
 636 [ieee.org/](https://ieeexplore.ieee.org/)[document/10645658/](https://ieeexplore.ieee.org/document/10645658/).

637 Yaodong Yang, Jianye Hao, Yan Zheng, and Chao Yu. Large-Scale Home Energy Management
 638 Using Entropy-Based Collective Multiagent Deep Reinforcement Learning Framework. In *Pro-
 639 ceedings of the 28th International Joint Conference on Artificial Intelligence*, pp. 630–636. In-
 640 ternational Joint Conferences on Artificial Intelligence Organization, 2019. doi: 10.24963/ijcai.
 641 2019/89. URL <https://doi.org/10.24963/ijcai.2019/89>.

642 Yaodong Yang, Guangyong Chen, Weixun Wang, Xiaotian Hao, Jianye Hao, and Pheng Ann Heng.
 643 Transformer-based working memory for multiagent reinforcement learning with action parsing.
 644 In *Proceedings of the 36th International Conference on Neural Information Processing Systems*,
 645 NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 978-1-7138-7108-8. event-
 646 place: New Orleans, LA, USA.

648 Yaodong Yang, Guangyong Chen, Jianye Hao, and Pheng Ann Heng. Sample-efficient multiagent
649 reinforcement learning with reset replay. In *Proceedings of the 41st International Conference on*
650 *Machine Learning*, ICML’24, Vienna, Austria, 2024. JMLR.org.

651

652 Zhenhui Ye, Yining Chen, Xiaohong Jiang, Guanghua Song, Bowei Yang, and Sheng Fan. Improv-
653 ing sample efficiency in Multi-Agent Actor-Critic methods. *Applied Intelligence*, 52(4):3691–
654 3704, 2022.

655 Xin Yu, Rongye Shi, Pu Feng, Yongkai Tian, Jie Luo, and Wenjun Wu. ESP: Exploiting Sym-
656 metry Prior for Multi-Agent Reinforcement Learning. In *Frontiers in Artificial Intelligence and*
657 *Applications*. IOS Press, 2023.

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

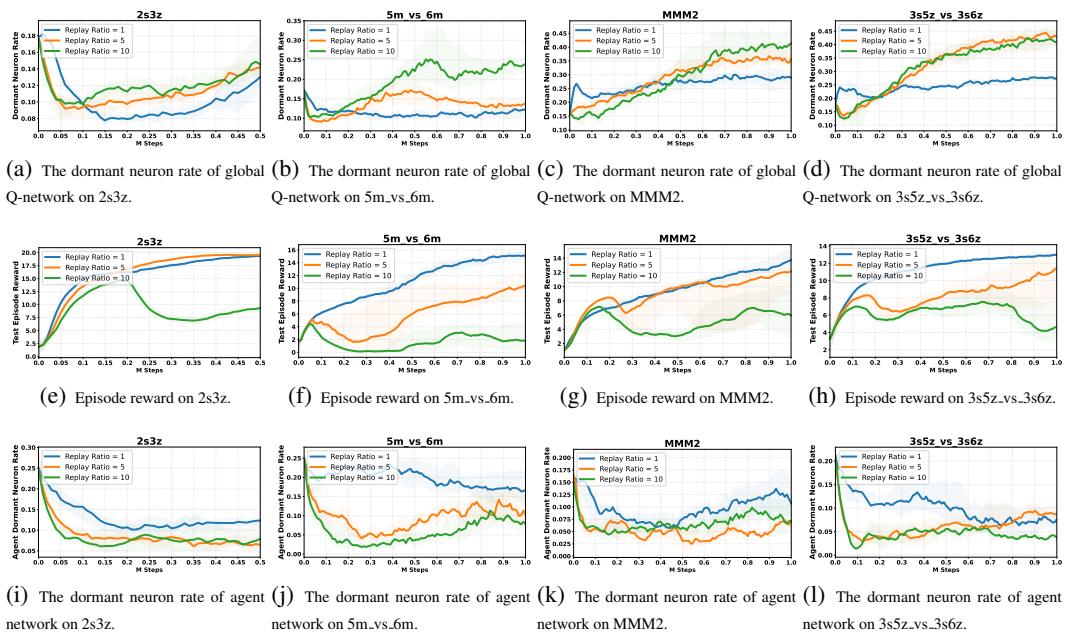
699

700

701

702 A MORE EXPERIMENTAL RESULTS OF DORMANT NEURONS IN HIGH 703 REPLAY RATIO SETTING 704

705 Here, we show more results of dormant neurons in the high-replay-ratio setting in Figure 9. We
706 observe that, when the replay ratio is either 5 or 10, the dormant neuron rate in the global Q-network
707 is higher than when the replay ratio is 1. Furthermore, when the replay ratio reaches 10, the learning
708 cripples in all the tested cases. This necessitates EnSet, which stabilizes MARL at high replay ratios
709 by tackling dormant neurons in the global Q-network. At the same time, the dormant neuron rate in
710 the agent network maintains a low level even when the replay ratio increases.
711



733 Figure 9: The dormant neuron phenomenon in the global Q-network is exacerbated when improving
734 replay ratios. Higher replay ratios cause learning instability. When the replay ratio is 10, the learning
735 collapses with lots of dormant neurons being inactive in the global Q-network.
736

737 B HYPERPARAMETERS OF ENSET 738

739 All special hyperparameters of EnSet are the same across algorithms, tasks, and environments in
740 this paper. The global Q-network ensemble size of EnSet H is set at 5. The translation variable α_z
741 for multiagent translation in Equation (6) is set at 0.2. The hyperparameters of multiagent Shrink
742 & Perturb follow MARR (Yang et al., 2024), where the interpolation factor α_r is set at 0.8 and
743 the reset interval T_R is set at 2000. For the agent observation enhancement, we follow MARR
744 to enable random amplitude scaling (Laskin et al., 2020) on agent observation features in EnSet,
745 where the scale variable is sampled from a uniform distribution over a range [0.8, 1.2]. The special
746 hyperparameters of EnSet are summarized in Table 1. Other hyperparameters except the replay ratio
747 follow the standard MARL algorithms.
748

749 Table 1: Summary of special hyperparameters of EnSet.
750

751 EnSet hyperparameters	752 Component	753 Value
754 global Q-network ensemble size of EnSet H	755 Ensemble Reset	756 5
757 interpolation factor α_r	758 Ensemble Reset	759 0.8
759 reset interval T_R	760 Ensemble Reset	761 2000
762 translation variable α_z	763 Multiagent Translation	764 0.2
765 scale variable range	766 Random Amplitude Scaling	767 [0.8, 1.2]

756 C SUMMARY OF EXPERIMENTAL TASKS AND COMPUTING RESOURCES
757
758759 Here, we briefly summarize the tasks in SMAC, MPE, and SMACv2 environments in Table 2.
760761 There are 8 tasks in SMAC. For map 2s3z, each side has 2 Stalkers and 3 Zealots. For map 3s5z,
762 both sides have 3 Stalkers and 5 Zealots. In the map of 10m_vs_11m, there are 10 allied marines
763 against 11 marine enemies. In 5m_vs_6m, there are 5 allied marines against 6 marine enemies. In
764 MMM2, there are 1 Medivac, 2 Marauders, and 7 Marines against 1 Medivac, 3 Marauders, and 8
765 Marines. In 3s5z_vs_3s6z, there are 3 Stalkers and 5 Zealots against 3 Stalkers and 6 Zealots. In
766 corridor, 6 allied Zealots are against 24 Zerglings. In 6h_vs_8z, there are 6 Hydralisks against 8
767 Zealots. At each episode, a group of allied units is going to fight against the enemy units.
768769 In MPE, we use a set of predator-prey tasks, where multiple slower cooperative agents must capture
770 faster prey in a continuous two-dimensional toroidal space with obstacle landmarks. If one agent
771 collides with the prey while at least another one is close enough, a team reward of +10 is given.
772 However, if only one agent collides with the prey without any other agent being close enough, a
773 negative team reward of -1 is given. Otherwise, no reward is provided. In this task, each agent can
774 observe its own position and velocity, the relative positions of other agents, the relative position and
775 velocity of preys, and the relative positions of landmarks. Additionally, each agent has a view radius,
776 which restricts the agents from receiving information about other entities (including all landmarks,
777 other agents, and preys) that are outside the view.
778779 In SMACv2, task scenarios are procedurally generated and require agents to generalize to previ-
780 ously unseen settings during evaluation. We experiment with three challenging tasks, including
781 zerg_10_vs_10, protoss_10_vs_10, and terran_10_vs_10. In zerg_10_vs_10, there are 10 allied zerg
782 units randomly generated to fight against 10 zerg enemy units, which are also randomly generated.
783 In protoss_10_vs_10, 10 randomly generated protoss agents are controlled to fight against 10 protoss
784 enemies. In terran_10_vs_10, 10 allied terran units fight against 10 terran enemy units.
785
786
787788 Table 2: Summary of experimental tasks in SMAC, MPE, and SMACv2.
789

SMAC		
Task Name	Allied Units	Enemy Units
2s3z	2 Stalkers, 3 Zealots	2 Stalkers, 3 Zealots
10m_vs_11m	10 Marines	11 Marines
3s5z	3 Stalkers, 5 Zealots	3 Stalkers, 5 Zealots
5m_vs_6m	5 Marines	6 Marines
MMM2	1 Medivac, 2 Marauders, 7 Marines	1 Medivac, 3 Marauders, 8 Marines
3s5z_vs_3s6z	3 Stalkers, 5 Zealots	3 Stalkers, 6 Zealots
6h_vs_8z	6 Hydralisks	8 Zealots
corridor	6 Zealots	24 Zerglings
MPE		
Task Name	Agents	Preys
3a	3 Agents	1 Prey
6a	6 Agents	2 Preys
9a	9 Agents	3 Preys
SMACv2		
Task Name	Allied Units	Enemy Units
zerg_10_vs_10	10 Randomly Zerg Units	10 Randomly Zerg Units
protoss_10_vs_10	10 Randomly Protoss Units	10 Randomly Protoss Units
terran_10_vs_10	10 Randomly Terran Units	10 Randomly Terran Units

800 For the computing resources, the experiments are conducted with the NVIDIA GPUs. The version of
801 PyTorch is 2.6.0. The operating system is Ubuntu. For a single instance of all the algorithms except
802 ATM and EnSet-ATM, the amount of GPU memory is small, which is usually less than 1GB. For a
803 single instance of ATM and EnSet-ATM based on transformer layers, the maximum GPU memory
804 is about 24GB on corridor, where a total of up to 30 units exist in this map.
805

810

811

Table 3: Summary of differences of EnSet and MARR in experiments.

Method	EnSet	MARR
Multiagent Shrink & Perturb	Yes	Yes
Global Q-network ensemble	Yes	No
Agent observation augmentation	Random amplitude scaling	Random amplitude scaling
Global state augmentation	Multiagent translation	Random amplitude scaling
Number of Environments in SMAC	1	8
Replay ratio in SMAC	10	50
Number of Environments in MPE	1	4
Replay ratio in MPE	25	25

820

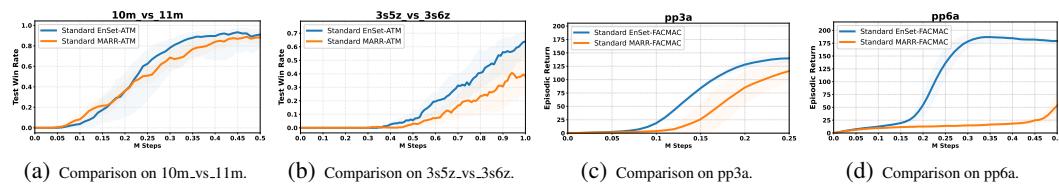
D MORE COMPARISONS OF ENSET WITH MARR

823

In this section, we conduct an in-depth comparison with MARR with its official default settings, such as the number of environments for sampling. We first list the key differences between EnSet and MARR in Table 3. As we see, MARR employs parallel environments for scaling the replay ratio while EnSet uses the default series environment in both SMAC and MPE. The interpolation factor α_r of 0.8 in multiagent Shrink & Perturb is the same in both EnSet and MARR, and the reset interval T_R is set at 2000 for both methods. EnSet integrates the global Q-network ensemble, while MARR does not consider it. The ensemble size of global Q-networks in EnSet is set at 5. For the local observation, we augment EnSet’s agent observation with the random amplitude scaling by following MARR with the same hyperparameters. In EnSet, we apply the multiagent translation to diversify the global state s , which implies the global Q-value invariance. In contrast, the random amplitude scaling in MARR causes biases in the estimation of global Q-values. For example, increasing the allied unit health would increase the global Q-value, which departs from its true value to an overestimation. EnSet and MARR also have different replay ratios in SMAC, where EnSet uses 10 and MARR uses 50. The replay ratio is set at 25 for both EnSet and MARR in MPE.

831

Next, we compare EnSet and MARR with their default settings at the same environment interaction steps. We integrate EnSet and MARR into the best standard algorithms (i.e., ATM in SMAC and FACMAC in MPE). The results are shown in Figure 10. In both simple scenarios, 10m_vs_11m and pp3a, as well as difficult scenarios, 3s5z_vs_3s6z and pp6a, EnSet outperforms MARR within the same environment steps, regardless of different settings such as parallel/series environments and replay ratios. This indicates that EnSet achieves a higher sample efficiency than MARR.



849

Figure 10: The comparison of standard EnSet and MARR in SMAC as well as MPE.

850

E DIFFERENT GLOBAL Q-NETWORK ENSEMBLE SIZES

855

In this section, we study how the ensemble size of the global Q-network affects the performance of EnSet. In Figure 11, the ensemble size H of 1 performs worst in these cases, while H of 5 consistently performs well in both SMAC and MPE. At the same time, H of 10 also achieves superior performance in 3s5z and pp3a, further proving ensemble’s effectiveness at high replay ratios.

860

861

F ENSET WITH A STANDARD REPLAY RATIO OF 1

862

863

Although EnSet is specially designed for the high-replay-ratio training setting, we also wonder about the performance of EnSet under the standard replay ratio of 1. Therefore, we provide the results in

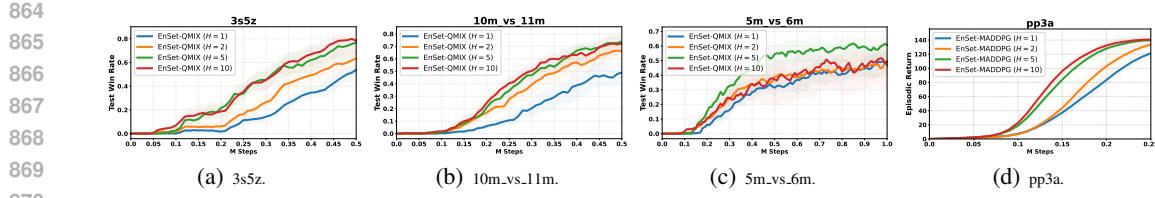


Figure 11: Experimental evaluation of the performance of different ensemble sizes in EnSet.

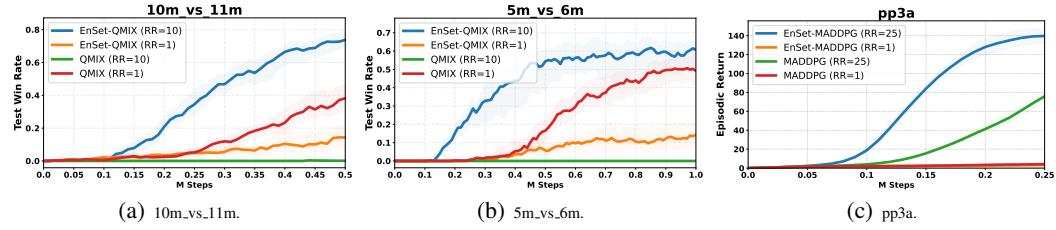


Figure 12: Experimental evaluation of the performance of EnSet with a replay ratio of 1.

Figure 12. EnSet with a replay ratio of 1 performs worse than the standard MARL algorithms with a replay ratio of 1, which is expected as network reset is employed to forget past experience while no severe dormant neuron phenomenon exists. However, both the standard QMIX and MADDPG fail to learn at high replay ratios. On the other hand, EnSet at high replay ratios achieves a significant improvement over standard MARL algorithms with a replay ratio of 1. These results confirm that EnSet is specifically designed to address the challenge of training MARL at high replay ratios.

G COMPARISON OF ENSEMBLE WITH A LARGE GLOBAL Q-NETWORK

In this section, we examine whether the standard MARL algorithms with a single large global Q-network achieve similar results to EnSet-based algorithms with the ensemble reset. We refer to the default model size of the global Q-network in the standard MARL algorithms as the standard size. At the same time, we set the model size of the global Q-network in the standard MARL algorithms to the same size as EnSet’s global Q-network ensemble. We also enlarge the model size of the global Q-network to be twice the size of EnSet’s global Q-network ensemble. Results of MARL algorithms with standard model size, model size as EnSet’s global Q-network ensemble, and model size twice as EnSet’s global Q-network ensemble are in Figure 13. The standard MARL algorithms with various model sizes fail to learn at high replay ratios, showing the ensemble reset’s effectiveness.

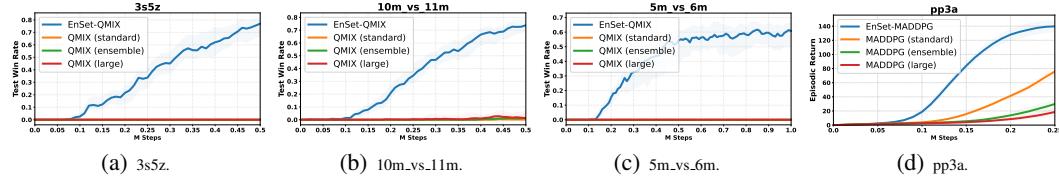


Figure 13: The comparison results of EnSet and the standard MARL algorithms with a large global Q-network. ‘ensemble’ indicates the model size equals the size of EnSet’s ensembled global Q-networks. ‘large’ indicates the model size is twice the size of EnSet’s ensembled global Q-networks.

H COMPARING STANDARD MARL WITH MORE ENVIRONMENT STEPS

In this section, we show that EnSet outperforms the advanced MARL algorithms with a standard replay ratio of 1, even given more environment interaction steps. To make a practical comparison,

we experiment on the most challenging tasks, including 3s5z_vs_3s6z and corridor in SMAC and pp9a in MPE. At the same time, we use advanced MARL algorithms such as ATM and FACMAC as the tested algorithms, which show superior performance in SMAC and MPE, respectively. The comparison results are plotted in Figure 14. It shows that, even though the number of environment interaction steps of the standard ATM is twice that of EnSet-ATM, EnSet-ATM’s performance is still better. A similar result is also for the standard FACMAC and EnSet-FACMAC. In pp9a, while the standard FACMAC’s environmental steps are four times of EnSet-FACMAC, its final policy performs worse than EnSet-FACMAC, further showing EnSet’s impressive sample efficiency.

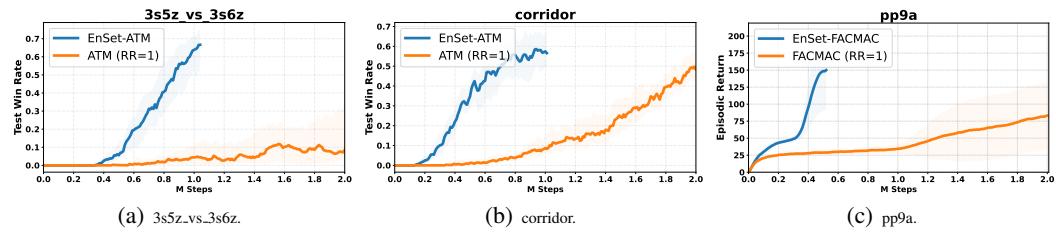


Figure 14: The comparison of EnSet with standard MARL algorithms with more environment steps.

I INTRODUCING ENSET TO OTHER NETWORK RESET TECHNIQUES

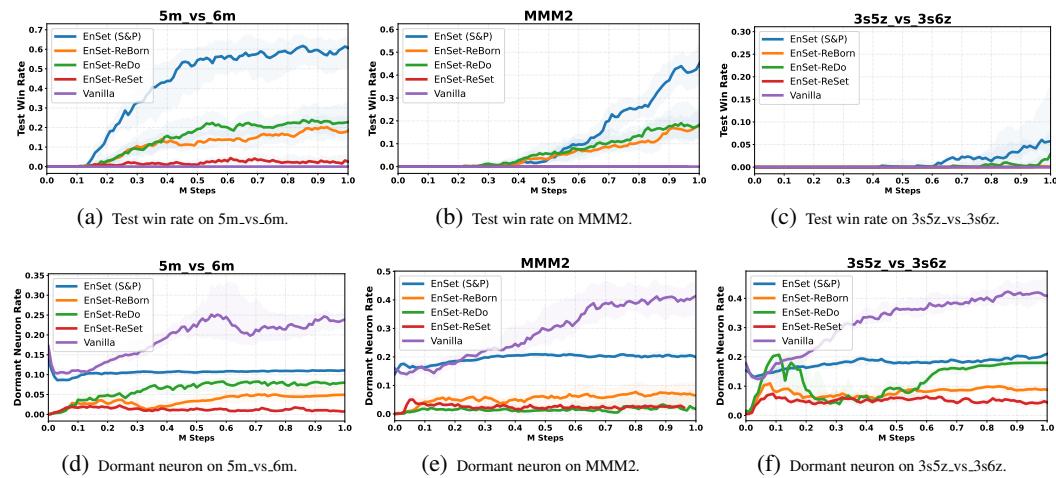


Figure 15: Introducing EnSet to other network reset techniques by replacing the Shrink & Perturb (denoted as S&P) with ReBorn, ReDo, and ReSet in SMAC. Replay ratio is set at 10. The base algorithm is QMIX, and Vanilla indicates QMIX with a replay ratio of 10.

In this section, we replace the Shrink & Perturb in the standard EnSet with other MARL network reset techniques, such as ReBorn, ReDo, and ReSet. Results are shown in Figure 15. First, although all methods mitigate the severe dormant neurons in the vanilla QMIX, EnSet is the most compatible with Shrink & Perturb, achieving the best performance among all these methods. Second, although EnSet-based ReSet has the lowest dormant neuron rates (almost to 0) in all maps, it performs poorly, further confirming that forcing a much lower dormant neuron rate may constrain network parameters and hurt network representation ability. These results show that the Shrink & Perturb is compatible with EnSet best among these reset techniques, which may benefit from its soft-reset mechanism.

J BROADER IMPACTS

MARL is a practical paradigm that models real-world scenarios. The proposed EnSet stabilizes the learning of existing off-policy MARL algorithms at high replay ratios to learn satisfactory policies

972 within limited environment interaction steps. However, when applied to real-world tasks, EnSet-
973 based MARL algorithms still need some exploration steps to learn, which may lead to unsafe sit-
974 uations. On the other hand, the findings that high replay ratios exacerbate dormant neurons in the
975 global Q-network may inspire the development of single-agent reinforcement learning algorithms.
976

977 K LIMITATIONS

978

979 Our study may have limitations under extensive consideration. One main limitation of EnSet is that
980 it is not suitable for the on-policy MARL algorithms, as it utilizes the replay buffer with a high
981 replay ratio. Second, the global Q-network ensemble in EnSet increases the computation cost in the
982 training stage, therefore increasing the running time of instances.
983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025