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Peptides, typically ranging from 2 to 50 amino acid residues, represent a fundamental class of
biomolecules with extraordinary versatility in biological systems. Their significance spans multi-
ple domains, from cellular signaling and hormonal regulation to potential therapeutic interventions
and antibacterial mechanisms. Unlike larger protein molecules, peptides offer distinct advantages
such as enhanced cellular penetration (Thapa & Sullivan, 2018) and lower immunogenicity (Real-
Fernandez et al., 2023). Given their multifaceted roles and enormous demand for peptide biologics,
computational strategies, particularly those based on machine learning (ML), have become impor-
tant tools for accelerating peptide design and discovery (Goles et al., 2024; Nielsen et al., 2024) with
examples such as RFpeptide (Rettie et al., 2024), Pepflow (Abdin & Kim, 2024), PepMLM (Chen
et al., 2024), and Peptune (Tang et al., 2025) for de novo design. Although ML-guided discovery
workflows can be extremely powerful tools, their effectiveness is often hindered by the scarcity of
extensive datasets required for training robust models (Alzubaidi et al., 2023).

Recently, techniques such as biophysics-based protein language models (Gelman et al., 2025), deep
learning-based (Biswas et al., 2021), and few-shot learning (Zhou et al., 2024), have been developed
for single proteins to aid in data-scarce scenarios. While these techniques have been successful in
addressing data scarcity for single proteins, biologics usually do not work in isolation. Thus, there
is a clear need for models that can consider both binder partners, as peptide-protein binding involves
complex structural and functional dependencies that single-protein models fail to capture effectively.

Here we describe Minimal Data Maximal Insight (MDMI), a novel computational method for pep-
tide discovery which identifies novel binders from a limited dataset through a structural-based ap-
proach. In MDMI, we work with approximately 100 well-characterized peptide sequences to a
specific target protein. We focus on a split Green Fluorescent Protein (GFP) system with GFP11,
a 16-amino acid fragment as our peptide model, and its complementary larger fragment, GFP1-10
(217 amino acids) as our target protein proxy. When GFP1-10 and GFP11 successfully interact,
they reconstitute into a functional GFP complex, emitting fluorescence, which serves as an optical
readout of functionality (Figure. 1a).

Our pipeline combines a structure-based predictive model with a generative model. For the
sequence-agnostic predictive model (Figure 1b.), we began by simulating 3D structures of the GFP1-
10/GFP11 complex for each mutant using AlphaFold Multimer (Evans et al., 2022). These struc-
tures were scored using SPserver (Aguirre-Plans et al., 2021) for statistical potentials and PyRosetta
(Chaudhury et al., 2010) for physics-informed evaluation. Next, an ensemble model was trained
based on these scores. Together, these components form the foundation for our peptide binder pre-
diction model. Next, a genetic algorithm, implemented via PyGad, introduces genetic diversity
and broadens the search space for peptide sequence variations (Figure 1c). Starting with an initial
randomized population of sequences, each sequence’s functional potential is assessed, focusing on
brightness when bound to GFP1-10. Sequences with higher potential are used to generate offspring,
combining traits through crossover operations. Top candidates, exhibiting high solubility, are se-
lected for experimental testing. Using our homemade dataset and upon validation of the predictive
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Figure 1: a)The GFP1-10 fragment (gray) and GFP11 fragment (green) interact to reconstitute a
functional Green Fluorescent Protein (GFP) b) Schematic representation of the predictive model
in MDMI pipeline c) Schematic representation of the genetic algorithm workflow d) Scatter plot
comparing the predicted brightness values axis) to experimentally measured brightness (x-axis) for
training and validation datasets. e) Distribution of normalized fluorescence (RFU) for sequences
with 19–38% mutation rates compared to the wild-type (WT) sequence. f) Performance of highly
mutated GFP11 variants (up to 62% sequence difference)

model (Figure 1d), we employed the genetic algorithm to identify novel sequences with 3-6 mu-
tations, corresponding to approximately 19-38% mutation rates. The genetic algorithm evaluated
1317 sequences, from which 40 sequences with the highest predicted functionality and high sol-
ubility were selected for wet lab validation. As illustrated in Figure 1e, the sequences within the
designed batch exhibited significantly higher signals than the control group. Specifically, 63% of
the designed sequences exhibited more than 20% activity relative to the wild-type, 28% showed over
60% activity, and 20% demonstrated greater than 75% activity compared to the wild-type indicating
successful enhancement through structural modeling and genetic algorithm as well as employing a
well-curated dataset. Next, to further understand the underlying motifs contributing to successful
binding and functionality, we analyzed the sequences that exhibited more than 60% activity. By
identifying frequently occurring amino acids within these sequences, we assembled new variants
incorporating these residues. This approach led to sequences with 10 amino acid differences, rep-
resenting significant deviations from the wild type (62% sequence difference) corresponding to new
and distant peaks on the sequence-function landscape. The results of the screening, shown in Figure
1f, revealed that all of the designed sequences displayed a high degree of fluorescence compared to
the wild-type GFP11, despite 10 out of the 16 amino acids being different.
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By decoupling peptide design from large datasets, MDMI democratizes access to advanced compu-
tational tools for labs with limited resources. With only one round of screening, we were able to
train a machine learning algorithm capable of predicting sequences with high degree of functionality.
MDMI’s ability to engineer highly divergent yet functional sequences opens doors to de novo pep-
tide therapeutics with reduced immunogenicity and enhanced stability. Demonstrated on GFP11,
MDMI’s pipeline is adaptable to any peptide-protein system, offering a blueprint for accelerating
therapeutic peptide discovery (e.g., antimicrobials, targeted drug delivery).
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