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Abstract

Understanding representational similarity between neural recordings and compu-
tational models is essential for neuroscience, yet remains challenging to measure
reliably due to the constraints on the number of neurons that can be recorded
simultaneously. In this work, we apply tools from Random Matrix Theory to
investigate how such limitations affect similarity measures, focusing on Centered
Kernel Alignment (CKA) and Canonical Correlation Analysis (CCA). We pro-
pose an analytical framework for representational similarity analysis that relates
measured similarities to the spectral properties of the underlying representations.
We demonstrate that neural similarities are systematically underestimated under
finite neuron sampling, mainly due to eigenvector delocalization. Moreover, for
power-law population spectra, we show that the number of localized eigenvectors
scales as the square root of the number of recorded neurons, providing a simple
rule of thumb for practitioners. To overcome sampling bias, we introduce a denois-
ing method to infer population-level similarity, enabling accurate analysis even
with small neuron samples. Theoretical predictions are validated on synthetic and
real datasets, offering practical strategies for interpreting neural data under finite
sampling constraints.

1 Introduction

Understanding how artificial neural networks relate to biological neural activity remains one of the
central challenges in computational neuroscience [13, 50, 40]. As deep learning models become
increasingly sophisticated at matching human-level performance on complex tasks, there is growing
interest in whether these models actually learn representations that mirror those found in the brain
[53, 26, 25, 45, 35]. However, a fundamental obstacle stands in the way of making this comparison:
while artificial networks can be analyzed in their entirety, neuroscientists can only record from a small
subset of neurons in any given brain region [10, 51, 47]. This sampling limitation poses a critical
challenge for the field. When we measure the similarity between model and neural representations
using standard techniques like Canonical Correlation Analysis (CCA) or Centered Kernel Alignment
(CKA), how much does our limited neural sample size distort the true relationship? Addressing this
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issue is critical, given that these metrics increasingly inform model selection and neuroscientific
interpretation [42, 39].

Our work provides the first rigorous theoretical framework for understanding how neuron sampling
affects representational similarity measures. Our analysis reveals that measuring CCA and CKA
with a limited number of recorded neurons systematically underestimates the true population-level
similarity. This underestimation stems primarily from eigenvector delocalization [1, 15, 4]—a
phenomenon where sample eigenvectors become increasingly misaligned with their population
counterparts as the number of recorded neurons decreases.

Our analysis proceeds in two parts. First, in the forward problem, we investigate how neuron sub-
sampling from the full underlying population distorts the population eigencomponents and how
this distortion affects the computed similarity measures. Second, in the backward problem, we ask
whether observations from a finite number of neurons can be used to reliably infer the population
representational similarity.

1.1 Our Contributions

* Eigencomponent-wise Analysis of Representation Similarity: We show how neuron
sub-sampling alters the eigenvalues and eigenvectors of the Gram matrix, leading to a
systematic underestimation of CCA/CKA due to eigenvector delocalization.

* Backward Inference via Denoising Eigenvectors: We introduce a denoising method
that leverages population eigenvalue priors (e.g., power-law) to infer the true population
similarity from limited data, substantially correcting the sampling bias.

* Validation on Real Neural Data: Applying our framework to primate visual cortex
recordings confirms that even modest neuron counts can lead to severe underestimation of
model-brain similarity and that our method effectively recovers the missing signal.

1.2 Related Works

Representation similarity measures expressed in terms of eigencomponents were presented in detail
by Kornblith et al. [29], who showed that CCA, CKA, and linear regression scores can all be written
in terms of the eigenvalues and eigenvectors of the Gram matrices.

A key question is how these similarity measures behave under different kinds of noise. Broadly, there
are two primary noise sources:

1. Additive noise, which arises from trial-to-trial variability and measurement error. In many
studies, repeated trials and averaging can substantially mitigate this type of noise.

2. Sampling noise, which occurs because we can only record from a limited subset of neurons
rather than the entire population. Consequently, the sample eigenvectors and eigenvalues
differ from their population counterparts.

In this work, we focus on the latter issue—sampling noise—since we assume trial averaging already
reduces the additive noise to a manageable level.

One approach to address sampling noise is by studying the moments of the Gram matrix [28, 14].
While these methods provide a way to approximate the effect of sampling on the scalar values of
certain similarity measures, they do not directly offer an interpretable description of what happens to
the underlying eigencomponents. Recent work by [41] provides bounds on representation similarity
measures when the number of sampled neurons is limited. However, these bounds are tight only
under the assumption of a white Wishart model (i.e., all population eigenvalues are 1). For more
realistic data, where eigenvalues often decay according to a power-law(primary visual cortex for mice
in [49] and human visual cortex fMRI in [20]), these bounds can become too loose to be practically
informative.

Instead, we directly investigate how sampling noise affects both the eigenvalues and eigenvectors
of the sample Gram matrix using random matrix theory [43, 7, 8]. Extensive results exist for white
Wishart matrices and low-rank “spiked” models, including the Baik—Ben Arous—Péché (BBP) phase
transition [4], which reveals that sample eigenvectors often serve as poor estimators of their population
counterparts. These ideas have been extended to canonical correlation analysis [36, 9]. However, the



power-law-like spectra observed in neural data have not yet received comparable attention. Our work
attempts to bridge this gap by studying sampling noise in representations with strongly decaying
eigenvalues, which are ubiquitous in neural datasets.

2 Notation & Problem Setup

We use bold fonts for matrices and bracket notation for vectors’. We use a tilde to denote quantities
related to their population values.

We consider two centered population activations X € R”*N+ and Y € RP*Nv with N, and N,
neurons, recorded in response to a fixed set of stimuli of size P. Centered means that we subtract the

column-wise mean. Their corresponding population Gram matrices are given by >, =XXT and
3, =YY with eigendecomposition:
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where 5\1', fiq and |4;) , |W,) are respectively their eigenvalues and eigenvectors, and the eigenvectors
are mutually orthogonal, i.e. (@;|t;) = 0;; and (Wq |Wp) = gp.

The sample activations X € RP*Ne and Y € RP*Nv are assumed to be generated from the

population ones by a random projection X = XR where R € RYV*¥ is a random matrix with
Gaussian i.i.d entries. Their Gram matrices are defined as ¥, = XX and Y, = YY T with
eigendecomposition:
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Random projections serve as an effective approach for sampling high-dimensional data due to their
geometry-preserving properties [31] and are a popular method in analyzing neural dynamics from
limited recordings [19]. This assumption allows us to treat sample Gram matrices as structured
random Wishart matrices (see SL.A.1).

Noting that both population and sample eigenvectors reside in R”, we define self-overlap matrices
between sample and population eigenvectors for each representation as

~ \2
zg = E[<UZ|U]> ]7 zb = E[<wa|wb> } (3)
and cross-overlap matrices between the eigenvectors of two representations as
Miq = El(us|wa)?),  Miq := (@%]@a)* @)

Expectations are over different instances of neuron sampling via random projections. The cross-
overlap M between two population eigenvectors is deterministic, hence does not require averaging.

2.1 Common Representational Similarity Measures

Here, we review common representational similarity measures and show that these measures can be
expressed in terms of the average quantities presented above.

Canonical Correlation Analysis (CCA) is an algorithm that sequentially finds a set of orthonormal
vectors {a, } and {b,, } for which the correlation coefficients p, = corr(Xa,, Yb, ) for two matrices
X,Y are maximized [23]. The squared sum of these coefficients gives the CCA similarity (CCA =
D a p2), and can be expressed in terms of the overlap matrix M;, [5, 29]

u,|w,J Xy
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2For two vectors a, b € R™, (a|b) denotes their inner product (a’ b) and |a)b| their outer product (ab ).



CCA is sensitive to perturbations when the condition number of X or Y is large [21]. To enhance
robustness, Singular Value CCA (SVCCA) performs CCA on the truncated singular values of X and
Y [44]. In this approach, the sum of the overlap matrix M is truncated to include only the first few
components. To avoid confusion, from now on, we will refer to SVCCA truncated to the top ten

components® for both X and Y as CCA, i.e (SV)CCA = £ 571%™ M.

Centered Kernel Alignment (CKA) is a summary statistic of whether two representations agree on

the (dis)similarity between a pair of examples based on their dot products [16]. CKA is defined as

™S, 3, . )
ﬁ and essentially measures the angle between two Gram matrices. In terms of spectral
r z r y

components, it can be expressed as:
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Note that CKA is very similar to CCA but with additional (normalized) eigenvalue weighting. CKA
will be the main focus of our work.

Representational Similarity Analysis (RSA) is a popular method in neuroscience used to compare
different brain regions in response to the same set of stimuli [30]. It is similar to CKA, except
RSA compares pair-wise Euclidean distances instead of pair-wise inner products. Recent work
has established its equivalence to CKA when RSA is combined with an extra centering step [52].
Therefore, our analyses are directly applicable to (centered-)RSA.

3 Theoretical Background

Treating ¥, and X, as random matrices described in Sec. 2, we leverage results from random
matrix theory [43] to compute deterministic equivalents of average CCA and CKA in the asymptotic
limit. Defining ¢, = P/N, and ¢, = P/N,, we consider the limit P, N, N,, — oo by keeping
qz,qy ™~ O(l)

Both similarity measures depend on the cross-overlap between sample eigenvectors M;, defined in
Eq. (4). Asymptotically M;, decouples as [7]

Mio =Y Q5 M;Qp,, (7)
J;b
where the self-overlaps Q7; and Q?, can be computed analytically [32]. The self-overlap matrix for
X can be expressed in terms of the resolvent matrix G(z) = (2 — X) ! given by:
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where C'is a constant and the resolvent G(z) has a deterministic equivalent defined by the following
self-consistent equation
Giy(2) & o) = 5 T G(2) ©
ij\R) = = s z)=—=1Ir zZ).
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We provide a detailed derivation of these results in SI.A. Here, we note that the complex function
g(z) and Eq. (8) can be solved numerically (see SL.D for details).

Main result. Asymptotically, we obtain an analytical formula for sample CCA (Eq. (5)) and sample
CKA (Eqg. (6)) by replacing the cross-overlap matrix M;, with its deterministic equivalent (Eq. (7)).

Several remarks are in order:

— While the theory for CCA and CKA should generally apply to the cases where both models are
sampled, henceforth, we fix one of the models to be deterministic for practical reasons. Often, neural
similarity measures are applied to compare biological data with limited neuron recordings to an

3In the original SVCCA formulation [44], components are typically retained to explain a fixed proportion of
variance. Our theoretical analysis applies regardless of the specific truncation criterion.



artificial model where the entire population is available. For example fixing model Y implies that its
self-overlap QY is just an identity matrix, hence simplifying Eq. (7) to M = Q*M.

— The analytical formula for CCA and CKA depends only on the population quantities. However,
since the self-overlap matrix @;; in Eq. (8) explicitly depends on individual eigencomponents, its
deterministic equivalent specifically depends on the expected sample eigenvalue for the i component
(E);) and the population eigenvalue for the j™ component \ 7)- The latter makes it harder to apply

the theory when the population eigenvalues cannot be observed. We discuss this issue further in
Sec. 4.2.

Sample Eigenvalues: Theoretical values of individual sample eigenvalues E[);] can be predicted
given the population eigenvalues by solving the following integral equation [43]
i
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where p(\) is the deterministic equivalent of the empirical eigenvalue density (see SI.A.2). Computing
E[);] this way may be problematic due to numerical instabilities. Alternatively, one can exploit the
fact that each single-trial eigenvalue concentrates around this mean with trial-to-trial fluctuations
of O(1/+/P) [43] and simply replace E[);] with a single-trial observation in the large P limit. We
provide a detailed account of this approximation in SL.A.5.

Sample Eigenvectors: Unlike eigenvalues, the sample eigenvectors <ui|ﬂj>2 exhibit trial-to-trial
fluctuations that persist even as P — oo (see SI.A.6). Still, we can compute the mean value of the
overlap represented by the squared overlap Q;; in Eq. (3).

BBP Phase Transition: In addition to inevitable fluctuation in the sample eigenvectors, their mean
behavior can still differ markedly from that of the population eigenvectors. A classic example is the
Baik—-Ben Arous—Péché (BBP) phase transition [4]. Consider a population Gram matrix with one
large “spike” eigenvalue and the rest equal to 1. Depending on whether the spike strength exceeds
a critical threshold determined by P/N, the sample eigenvector associated with it can either have
an Op(1) with the true eigenvector (localized) or can be completely uncorrelated (delocalized). We
depict this transition in Fig. 1a.

Numerical Confirmation: Finally, we numerically test the theoretical prediction for self-overlap
given by Eq. (8) on the eigenvectors of deep neural network activations. We extract layer activations
from a pre-trained ResNetl8 on CIFAR-10 images and subsample N neurons through random
projection. In Fig. 1b, we show the self-overlap Q;; for the first few eigenvectors of the layer
activations and demonstrate a perfect match with theory. As the number of neurons decreases, the
number of delocalized eigenvectors increases since fewer eigenvectors have self-overlap Q;; ~ 1.

The effect of eigenvector delocalization* is reflected in the CKA between the sampled and population
layer activations as shown in Fig. 1c. The alignment is completely misleading when small numbers
of neurons are sampled, which poses a significant problem for practical purposes.
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Figure 1: a) Illustration of eigenvector delocalization in BBP phase transition. b) Self-overlap @Q);;
between sample and population eigenvectors for ResNet18 activations. ¢) CKA between population
and sample activations when N neurons are sampled. The gray-shaded region represents the standard
deviation of empirical CKA across different random samplings.

*While eigenvalues also change, we show in SLF that the dominant factor in reduced CKA is the eigenvector
delocalization, especially for fast decaying spectra.



4 Applying Theory to Representation Similarity

4.1 Forward Problem: Impact of Neuron Sampling on Similarity

In the forward problem, we assume that the population eigenvalues and eigenvectors are known. The
first step is to obtain the typical sample eigenvalues by running a single-trial numerical simulation.
We then move on to the eigenvectors by computing Q using Eq. (8). Finally, we calculate the overlap
between the two systems, M, using Eq. (7). Having these components allows us to evaluate both
CCA and CKA as functions of the number of neurons N.

As illustrated in Fig. 2, the theoretical predictions obtained from this eigen-decomposition match
the observed CCA and CKA across different values of V. Notice that CKA decreases when the
number of neurons N is reduced. As discussed above, both of these effects can be explained by the
delocalization of eigenvectors.

-+ Pop. CKA L—" --s Pop. CCA
—%— Est. CKA (ours) 0.30 4 7 — Est. CCA (ours)
0.304 ~== Theory { " ~== Theory

+ Sample CKA 0.25 1L~ 4 Sample CCA

20 40 60 80 100 20 40 60 80 100
Neuron size N Neuron size N

Figure 2: Comparison of sample vs population measures for CKA and CCA: Error bars represent
empirical sample similarity and dotted lines the theoretical predictions. The black dotted line marks
the true population similarity which is set close to 0.5 for both measures. Solid lines indicate inferred
true similarity from samples. Sample similarity is lower due to eigenvector delocalization, while our
method consistently provides a closer estimate of the true value.

4.2 Backward Problem: Inferring Population Similarity from Limited Neurons

Just like in our earlier analysis, inferring the population representational similarity begins with
estimating the eigenvalues of the underlying population. In general, this is difficult because sample
eigenvalues can deviate substantially from their population counterparts. Moreover, if N < P, there
are P — N zero eigenvalues in the sample covariance matrix, further complicating the problem.

However, if we adopt a parametric form, we can often achieve significant improvements in accu-
racy [41]. Here, we assume a power-law spectrum of the form \; = i~1~7, and develop a numerical
method based on random matrix theory that reliably infers the true decay rate of population eigen-
values based on only the sample eigenvalues (see SI.C for detailed analysis). One can also consider
more sophisticated eigenvalue models (e.g. broken power-law [41]) are also possible.

While it is possible to estimate the population eigenvalues for general spectra [33], they require
estimating each eigenvalue individually and are hence computationally expensive. Here, we only
consider the power-law spectrum because 1) we only need to estimate a single parameter and 2) we
can derive a closed-form expression for the population eigenvalues (see SI.C for derivation) and 3) it
has been shown to be relevant for biological systems [49].

After estimating the population eigenvalues {;\1}, we address the eigenvectors by computing the
self-overlap matrix Q using Eq. (8). Since every population eigenbasis produces the same mean
self-overlap, estimated population eigenvalues {);} are sufficient to find Q.

Our final goal is to estimate the population cross-overlaps M, which are required to infer the true
population similarity between two systems. Here, we propose a constrained optimization problem to
invert the forward relationship M = Q M using the estimated Q and the observed M, as shown in
Alg. 1.



Two challenges arise in this naive approach. First, eigenvector statistics do not self-average [43], so
the empirical cross-overlap M deviates from its expected value. This discrepancy can be partially
mitigated by trial averaging or statistical bootstrapping. Second, the self-overlap Q is not invertible
unless P < N. As a result, it is impossible to recover the entire matrix IM. Intuitively, only the first
few eigenvectors are well-localized; the rest delocalize and lose information, so we can only reliably
retrieve the corresponding columns of M.

While the constrained optimization provides point estimates of M, it does not directly quantify their
uncertainty. To assess the reliability of these estimates, we additionally derive confidence intervals
under a maximum likelihood estimation (MLE) framework. This allows us to estimate statistical
uncertainty for each Mj,, as well as for composite quantities such as CKA and CCA (see SI1.G).

Algorithm 1 Inferring Pop. Cross-Overlap M

Require: {)\;}7 ,: Sample eigenvalues 6: Step 2: Compute Self-overlap matrix
I: P:# of stlmuh N: # of neurons 7: Q « function({j\} P,N)
2: M € RP*P: sample cross-overlap
8: Step 3: Optimize Population Similarity
3: Step 1: Estimate Population Eigenvalues 9: M,y + arg miny, IM-Q-M|r
4: Assume power-law ansatz: PO 10: St MZ] € [0,1] for Vi, j
5: Find v that best explains {\;}7;

return M, ;

4.2.1 Up to How Many Eigenvectors Can We Resolve for Given N, P?

Consider a power-law spectrum, which decays relatively quickly. Under such a spectrum, only
the leading sample eigenvectors tend to be well-localized, as shown in Fig. 3(Left). If we run the
backward algorithm, we observe that for a given N, P, we can reliably recover only those initial
components that remain localized, as shown in Fig. 3(Right).

Practical implication. For power-law population spectra \; o i7177, the critical localization
index scales as i*(N) =~ H'T;\/]V (see SI.H). This provides a simple rule of thumb: with /V recorded
neurons, one can reliably resolve roughly H‘"’ VN leadlng eigenvectors. Conversely, to stably recover

the top k components, it is sufficient to record N = k? neurons.

(1+w)2

Sample Index

Figure 3: Left: Participation ratio (P.R.) of self-overlap (1/ Z Q ), indicating the onset of eigenvec-
tor delocalization, for a power-law spectrum Ai ~ @12, For fixed N, increasing P marginally affects
the leading eigenvectors. By contrast, for fixed P, increasing /N makes more eigenvectors localized.
Only sample eigenvectors below the black horizontal line are localized (P.R. ~ 1). Heuristically, M;,
can be recovered reliably for only indices below this line. Right: Each column shows the 5-trial
averaged M, the theoretical prediction of M, the inferred population overlap M., and the actual
population overlap M. With fewer neurons N, sample eigenvectors become delocalized, causing
large discrepancies. Nevertheless, our inference method successfully recovers the dominant overlaps,
which are enough for global similarity measures such as CKA and CCA.

We can explicitly truncate these eigenvectors by taking a partial inverse of Q (see SI.E). However,
this approach can be numerically unstable and might produce values of M;; outside the [0, 1] range.



Additionally, Fig. 3(Left) demonstrates that, under a power-law of the same exponent, varying P has
a subtler effect on these leading indices than varying [V, which significantly affects localization.

4.2.2 Why This Is Sufficient for Inferring Population Similarity

Although our denoising approach only manages to recover the leading few eigencomponents (those
that remain localized), it is precisely these components that matter most for similarity measures
like CKA and (SV)CCA. As shown in Fig. 2, these metrics are governed primarily by the initial
eigenvalues and eigenvectors. Thus, even with a very limited number of neurons, estimating those
leading components is sufficient for practical purposes.

Note that for CKA (and not CCA), there is an alternative approach to infer population similarity called
the moment-based estimator [22, 28, 14], which computes the similarity using unbiased statistics.
This method is more suitable for estimating similarity with small datasets but lacks theoretical insight.
In contrast, our approach provides an analytical framework for studying how spectral properties
precisely alter the observed similarity, but it assumes sufficiently large datasets so that all biases are
negligible.

S Experiments

5.1 Synthetic Data with a Known Population Gram Matrix

We first evaluate our approach on a synthetic dataset where the population Gram matrix is fully
specified, allowing us to directly compare our estimated similarity measures against the ground-truth
population values.

Fig. 2 illustrates that our forward and backward procedures work well. In the forward approach,
we show that the eigencomponent-based analysis matches the empirical results closely. In the
backward approach, even with an extremely limited number of neurons (N =~ 20), our method
infers a population similarity close to the actual value, despite the observed sample similarity being
substantially lower.

Since the population eigenvectors are known, we can also verify how well the inferred overlaps
match the true overlaps. Specifically, Fig. 3(Right) displays the top-left 10 x 10 block of each
matrix: the empirical M, the theoretical M (second column), the inferred population overlap 1\~/Iest
(third column), and the actual population overlap M (fourth column). In this example, we set
>, = fly, and hence the actual population cross-overlap should be the identity matrix. However,
with fewer neurons, the sample eigenvectors become more delocalized, as evident in the first column.
The theoretical prediction of this phenomenon (second column) aligns closely with the empirical
observation. Notably, even with severely limited neurons, our backward-inference method recovers a
cross-overlap matrix 1\7[53,5 (third column) much closer to the true identity than the naive observed M.

5.1.1 Sampling Neurons Can Change Representation Similarity Ranking

Next, we showcase a synthetic example in which sampling can lead to a reversal in the similarity
rankings of models. Specifically, we construct two models:

* Model 1 has significant overlap with the Brain on its first 3 population eigenvectors.

* Model 2 has significant overlap with the Brain on the next 3 eigenvectors.

We set the total population (SV)CCA of Model 2 to be higher than that of Model 1. However, as
neurons are sampled, eigenvectors corresponding to larger indices (smaller eigenvalues) tend to
delocalize more. Hence, the empirical cross-overlap M for Model 2 deteriorates faster, causing
its (SV)CCA to drop more than that of Model 1. Eventually, Model 1 overtakes Model 2 in the
sample-based (SV)CCA ranking, as illustrated in Fig. 4(Left).

Fig. 4(Right) presents the empirical and population cross-overlaps of the two models (each compared
to the Brain). We set P = 200 and N = 30, and all population eigenvalues follow a power-law
with exponent —1.2. Model 2’s higher-dimensional overlaps delocalize more strongly, producing an
apparent discrepancy that flips their observed ranking once neuron sampling is taken into account.
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Figure 4: Left: Sample-based CCA ranking flips despite Model 2 having a larger population CCA
than Model 1. The decrease in Model 2’s CCA is more pronounced due to its stronger reliance on
higher-indexed eigenvectors, which become more delocalized with limited neuron sampling. Right:
Empirical vs. population cross-overlaps for Model 1 vs. Brain and Model 2 vs. Brain. Here, P = 200
and N = 30. All three population eigenvalue spectra follow a power-law with exponent —1.2.
Although Model 2’s true overlap is higher at the population level, it relies on higher-indexed (smaller
eigenvalue) components, which delocalize more severely in the sample.

5.2 Brain Data

Finally, we apply our denoising framework to real neural recordings in the primate visual cortex,
comparing them against various computational model predictions. (for experimental details see SI.D)

In Fig. 5, we illustrate a scatter plot of the representation similarity for different models compared to
neural responses from V2 cortex [18, 46], given an artificially limited neuron count of N = 20 out
of 103 neurons. The x-axis corresponds to the observed sample CKA or CCA, while the y-axis is
our inferred population measure. Observe that our inference method consistently produces higher
population similarity estimates than the naive sample estimates. In particular, certain models that
appear to have lower similarity (when judged by the raw, sample-based metric) can actually exhibit
higher true similarity to the brain once sampling effects are taken into account.
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Figure 5: Scatter plots of observed sample similarity vs. inferred population similarity for multiple
models compared to V2 cortex, using only N = 20 neurons (out of a larger set). (Left) CKA results;
(Right) CCA results. The dotted line y = x indicates equality. Notice that the inferred population
similarity is consistently higher than the naive sample-based measure, demonstrating how limited
neuron sampling can lead to underestimation of the true model-brain correspondence.

6 Conclusion and Outlook

We have presented an eigencomponent-based analysis of how sampling a finite number of neurons
affects similarity measures, including CCA and CKA. By applying methods from Random Matrix
Theory, we established that this limited sampling systematically underestimates similarity because of
eigenvector delocalization in the sample Gram matrices. Our framework provides:



* Forward Analysis: Predicting how Population eigenvalues and eigenvectors will manifest
under neuron sampling, thus explaining the observed drop in similarity.

* Backward Inference: Denoising algorithm to infer Population representation similarity
from limited data, overcoming the biases introduced by sampling noise.

We validated our approach on both synthetic and real datasets. In the synthetic experiments, where
the population Gram matrices were fully known, we showed that our method reliably recovers the
true population overlaps and similarity values, even in regimes with very few neurons. Importantly,
we highlighted a striking effect of sampling: under certain configurations, the ranking of two models
with respect to the brain can be inverted when only a limited set of neurons is recorded. In real
datasets from primate visual cortex, our method consistently produced higher population similarity
estimates than naive sample-based methods, underscoring that the observed decrease in similarity is
largely a sampling artifact.

Moreover, for representations with power-law eigenspectra, we identified a universal scaling law: the
number of well-localized eigenvectors grows as the square root of the number of recorded neurons.
This v/N behavior offers a practical rule of thumb—researchers can estimate how many principal
components can be reliably resolved for a given neuron count, or conversely, how many neurons
are needed to capture a desired number of components (see SI.H). This scaling bridges theoretical
predictions with experimental design, guiding how to interpret and plan neural recording studies
under finite sampling constraints.

Future Directions. There are several promising avenues for extending our work. First, it would be
valuable to explore more sophisticated spectral priors—such as broken power-law spectra—to account
for multiple functional subpopulations in the data, each contributing a distinct spectral structure.
Second, while we have focused on sampling noise, future work should incorporate explicit models
of additive noise that arise in real-time neurophysiological recordings, relaxing the assumption that
trial averaging eliminates most of it. Third, improved denoising methods could be developed by
adopting Bayesian approaches to model the joint distribution of sample eigenvectors and population
eigenvectors [38], thus allowing more accurate recovery of the population eigenspaces. Finally, as
we outline in SI.B, our framework naturally extends to regression settings, where sampling-induced
distortions in eigencomponents can adversely affect regression scores, much like their impact on
representational similarity measures.

Overall, our results suggest that practical neuroscience studies must account for sampling-induced
eigenvector delocalization when interpreting representational similarity. By unveiling the intrinsic
biases introduced by limited neuron sampling and proposing a systematic solution, we aim to
provide neuroscientists and machine learning researchers with more reliable tools for comparing
computational models and neural data.

7 Limitations

Our framework assumes that neural responses arise from Gaussian (linear) projections of latent
population codes. This yields analytical tractability via random matrix theory, but real data can
exhibit non-Gaussian statistics, nonlinearities, and stimulus-dependent covariances, which may
reduce the quantitative accuracy of our estimators when higher-order dependencies dominate.

In addition, the similarity measures we study rely on specific symmetry assumptions; our method
currently models rotational invariance only, ignoring other relevant symmetries (e.g., translation,
scaling, permutation). It also does not yet cover dynamic (time-resolved/trajectory) or nonlinear
similarity metrics. Extending the theory to these richer classes remains a crucial area for future
research.
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* While we encourage the release of code and data, we understand that this might not be
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reproduce the results. See the NeurIPS code and data submission guidelines (https:
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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versions (if applicable).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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eigenvalue decay rates, and modeling assumptions. The figures include clear descriptions of
the experimental conditions, and the text refers to supplementary information for additional
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» The answer NA means that the paper does not include experiments.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
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* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The supplementary materials include the full codebase along with specific
information about computational resources required.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper’s research focus on the theoretical analysis of neural representations
does not raise immediate ethical concerns.
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e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper mainly develops a theoretical framework for understanding common
representational similarity measures.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
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that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Not applicable.
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* The answer NA means that the paper poses no such risks.
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 Datasets that have been scraped from the Internet could pose safety risks. The authors
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not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: The paper cites original sources for datasets and prior work, including specific
references to the primate visual cortex recordings (Freeman 2013, Schrimpf 2018) and
previous research on representational similarity measures.
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e The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
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* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Not applicable.
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* The answer NA means that the paper does not involve crowdsourcing nor research with
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* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: LLMs were not used as components of the research methodology.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Derivation of the Main Result
A.1 The Sample Gram Matrix

Let X € RP*N: denote the true population matrix with P samples and N, neurons. We consider
sampling only in the neuron/feature axis. The sample data X € RP*Nz is obtained by applying an

N, x N, random projection matrix R, on X

- 1
X:X&”(m%NN(QM). s1)

The population and sample Gram matrices and their corresponding eigencomponents are denoted as

Bp = XX =)\ Jui)ul (S2)

In Random Matrix Theory (RMT), it is often convenient to consider matrices of the form M =
vVCW+/C, where W = RR T is a random Wishart matrix and C is a deterministic square matrix.

We first put 3, into this form to simplify our calculations [27]. The sample Gram matrix can be

written in terms of the SVD components of X = UAl/ VT

3, = XR,R] X = UAL/2 (VTRIRJV) AL2UT, (S3)

where A, € RP*Ne is a diagonal matrix, and U € RP*” and V' € RN=*N= orthogonal matrices.
Since deterministic orthogonal transformations of Wishart matrices are again Wishart matrices, we
get:

>, = UAY?W, AL2UT, (S4)

where W, = VTRwRIV is a random Wishart matrix with aspect ratio ¢, = N, /N,. We divide
our discussion into two cases:

« When P > N,, the eigenvalue matrix can be completed to a P x P-matrix by zero padding
and replacing W, with a Wishart matrix with ¢, = P/N,. Using the orthogonality of U,
this allows us to express X, as

¥, = (UAY2UT)(UW,UT)(UAY2UT) = /2, W,\/2, (S5)

where W, is a Wishart matrix with aspect ratio g, = P/N,.

* When P < N,, the eigenvalue matrix and the Wishart matrix can be written as
~ ~ R
A, = (A; 0) W, = (R;> (R] R]), (S6)

where the P x P matrix A; is the non-zero part of [Xx and Ry € RP*N= R, ¢

RN2=P)xNz are two projection matrices. Plugging these back in, we arrive at the same

form as the previous case.
In both cases, the statistics of 3, does not depend explicitly on N,.

A.2 Eigenvalue statistics of sample Gram matrices

One of the main objectives of RMT is to understand the eigenvalue distribution of random matrices
in terms of deterministic quantities [43]. Here, we review some classical results on the eigenvalue

statistics of random matrices of the form ¥ = \/EW\/E where W is a P x N Wishart matrix
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with ratio ¢ = %. Here, 3 and X are the sample and population Gram matrices, and they have the
following eigendecompositions

P P
i=1 i=1
We denote their (discrete-)eigenvalue distribution by p(\) and 5()):
. R IR
A)=—= (A=), p(N) == (A —N). S8
p()P;( ) p()P;( ) (S8)
We define the resolvent of the random matrix X and its trace as
P
_ R A
The Stieltjes transform of the empirical spectral distribution is defined as
P p(A) 1
= =—=T . 1
P (2) /Z_)\d)\ L TG() (S10)

In the large P limit, this quantity is self-averaging and there is a deterministic equivalent g(z) ~ g% (z)
given by the self-consistent equation

_ p(N) <
8(=) _/z—x(1—q+ng(z))dA’ 1D

which only depends on the deterministic eigenvalues p,,(A) and the ratio ¢ = P/N [43]. In practical

applications, p,.(\) is often replaced with the uniform measure over the population eigenvalues {5\1}
as defined ir~1 Eq. (S8). This remarkable result was first obtained in [37] for white Wishart matrices

(for which 3 =1).

Due to the equivalence g(z) ~ g”(z) in large P limit, these two integrals are equivalent

) i) .
N S el o

from which one can obtain the density of the limiting spectral density using the inversion formula [8]

p(A) = 1 lim Img(\ — in). (S13)

T n—0+t
The Stieltjes transform also connects to the effective regularization in ridge regression [6, 24, 11, 2].
We define a new function x(z) as
z

= -1 1 1 -1
M) = ey M= R (s14)
and express Eq. (S11) in terms of this quantity:
_s) [ PN s 11 -
g(z) = , /5\+H(z)d)\z ¢ (27 +r(z)7). (S15)

Then, we obtain a new self-consistent equation for s

aN s

K(z) =—z+k(z —p(N)dA, S16)
2 © [ i (
which is also known as the Silverstein equation [48]. Expressing this in terms of the discrete
population eigenvalues, and evaluating it at z = —\, we get
P -
1 Ai
K=A+K— - , S17)
VT (

which is exactly the equation for the renormalized ridge parameter in [11, 2] with the scaling
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A.3 Eigenvector statistics of sample Gram matrices and the self-overlap matrix

This result from Eq. (S11) can also be generalized to the resolvent matrix itself [27, 8], which
becomes diagonal in the population eigenbasis:

G(z) =

P .
|wi ui] - Z _ |G )] 7 (S18)
i=1 z =\ i=1 Z_)‘i(l_Q+qZG(Z))

where the integral over eigenvalues is replaced by the discrete measure over population eigenvalues.
This allows us to study the eigenvector statistics by analyzing the quantity

M~

~

(u;i;)? 1
;|G (2 : J _ ) (S19)
] Z; Nz =M1 —q+qze(2))

In the large P limit, the sum over empirical eigenvalues becomes an integral:

Q(A’ 5‘])

PN, (S20)

(3]G () ) —

where we defined Q(\i, \;) := P (u; |ﬂj>2 is the overlap between the i sample eigenvector and the
J™ population eigenvector. Now, we can obtain Q();, \;) using the following inversion formula

Q\i, \j) = lim Im (G;|G(N\; — in)|d;) . (S21)

71'[)()\2) n—0t
Using the equivalence in Eq. (S19) and evaluating this expression explicitly:
3 g
Qi \j) = — —— N 2
(1= ) = A+ aadshn)] + [axdyma(y)]

(S22)

we get an explicit formula for eigenvector overlaps [32, 8], where p();) is given by Eq. (S13) and
h(z) is its Hilbert transform:

h(z) = p.V./ ()\))\d)\ (S23)

and can be obtained from the Stieltjes transform via

lim g(z —in) = bh(z) +imp(z). (S24)
n—0+

A.4 Overlap formula for two Gram matrices

Here, we provide a short review of the work by Bun et al. [7] which derives an overlap formula
between eigenvectors from random matrices. We consider observations from two representations
X € RP*Ne and Y € RP>*Nv in response to a common set of inputs of size P. Their sample Gram
matrices have decompositions:

¥, =XX' = Z/\m (wi|, =, =YY = ZuaIwa (wa . (S25)

We assume that X and Y are observations sampled from the underlying population features X e

RP*Nz and Y € RE*Ny through independent random projections. The corresponding population
Gram matrices are decomposed as:

P P
=Y Nilw)i|, By =YY" =" i i)l . (S26)

a=1
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We consider two sample data matrices X € RP*¥= and Y € RP*Nv_ In Sec. A.1, we showed that
the sample Gram matrices can be expressed in terms of the population ones as:

3, = /5w, /5,
®, = &Wy \/27 (S27)

where the Wishart matrices W, and W, have aspect ratios ¢, = P/N, and ¢, = P/N,, respectively.
Resolvents of the sample Gram matrices are

L Ju)u) . Jwa)wdl
G,(2)=(z—-%,) ' = Z A G,()=(F-%2,) = Z Z,‘lia (528)

)
z— N\
i=1 ‘ a=1 a

P w 2
b)) =B | ST G (G| =B | 35 ¥ s s

where the expectation is over random realizations of sample Gram matrices [7]. In the limit P — oo,
as empirical eigenvalues become continuous, this object approaches a deterministic function

/ n_ [ _P=Npy(1) N w2
Ul )~ () = [ LSS MO s, M) ~E [Pl a>(]s30)

Here, p,()), py(1) are the eigenvalue densities of 3., 3, given by Eq. (S13). The function
M\, pa) ~ E [P <ui\wa>2} denotes the expected overlap between two eigenvectors associated

with eigenvalues \; and i, and it is the central object for our analysis since it directly appears in
CCA and CKA. This quantity can be obtained by computing 1)(\; — in, ue + in’), collecting the
term proportional to 77’ and taking the limit 7, 7" — 0 [7]:

(Ai = A+i0)pz(N) (pa — =11 ) py (1)

Y(Xi —in, pa + ') = / P R R pra S M\, p)dAdu
_ npz(A) Ty o dnd
/()\i_)\)2+n2(ﬂa—u)2+71'2 (A pldrdp+(...)
s 2 ps (Ai)py (Ha) M (N, p1a) + (.. (S31)

To simplify, we will assume that the population eigenvectors form a complete set of basis:

P P
T=") )] =) [ta)ibal - (S32)
i=1 a=1
Then each resolvent in Eq. (S29) can be expressed in these bases:
2) = |w)Xay] ®5(z),  5(2) : (W]Ga(2)la;),
.3
2) =) [@a)dn] DY), DU () = (@alGy(2)]dn), ($33)

where ®; and @], are the matrix elements of resolvents G(z) and G, (2') in their respective

deterministic bases. Then, Eq. (S29) simplifies to

Vp(z,2') Z DY(2)Cja @Y (2)Cy | = Z E[®%(2)]C;.E[®Y,(2))]C):, (S34)

i,7,a,b i,7,a,b
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where we defined the deterministic overlap matrix elements C‘m := (@;|w,). In the second equality,
we assumed that the two resolvents are independent, reducing the problem to computing the expected
resolvent of a single Gram matrix.

As discussed around Eq. (S19), the resolvent G, has a limiting value for P — oo that is diagonal in
the corresponding deterministic basis [8], and its matrix elements are given by:

(51'.7'
- )\1(1 —qz + q:z:Zg:v(Z))

where g, (z) satisfies the self-consistency condition in Eq. (S11).

D7 (2) = +0O(P~1/?), (S35)

In order to compute the overlap M (\;, itq ), we use Eq. (S31) and collect the term proportional to
nm’. Thanks to Eq. (S34) and Eq. (S35), this term simplifies to:

w%m(xi)py(ua)M(Ai,ua):;Ebj(hmlm@ O i) & (i, @l — 1))

n—0
(S36)
Defining
~ 1
2(Niy Aj) 1= ——— lim Tm ®F;(\; — in), a> fip) = ——— lim Im ® —in
Q ( J) ﬂpx(Al) =0 ( 77) Qy(ﬂ :u’b) Wpy(na) =0 bb( n )
(S37)
we get an equation for M as
M (N, pa) = ZQx Xis A1) C3,Qy (thas ). (S38)
Here, @), and @), were already calculated in Eq. (522). Identifying the following quantities
N - 1 ~ - 1 .
& =B (ugliy)” = ;Qz@\ia%‘)a QY = E (waip)” = 7Qy(:u’avub)a
1 -
Mia = E (uilwa)® = 5M(Nis pa), - Mio := (iili0a)” = CF,, (839)
we get our main result [7]:
=Q"MQ" ",
z 1 qg:)\ij\j
i — PT- - 2 - 27
(1= a) = X + @ik ()] + [aadidymon ()]
1 i
T QyHalty . - (S40)
a P ~ ~ ~
(s (1 = ay) = Ha + ayafishy(ta)]” + [aytafivmoy(pa)]

A.5 Statistics of sample eigenvalues and its concentration properties

As we discussed in the main text, the practical usage of Eq. (S22) requires computing the expec-
tation value of individual sample eigenvalues. Eq. (S40), treating i biggest sample eigenvalue as

deterministic and plugging n = 1/v/P

For sufficient conditions, we can show that the sample resolvent g(z) self-averages. In this case, the
sample eigenvalue density p(\) converges in law. Here, we show that for practical use of Eq. (S21),
Eq. (S40), we can treat 5™ largest eigenvalue effectively as deterministic in its most probable position.

Specifically, we demonstrate that for a large number of eigenvalues P, the most probable ¢-th largest
eigenvalue \; satisfies

/oo P A= (s41)
A

and that the fluctuations around this most probable is O(1/+/P).
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Consider a set of P eigenvalues {\1, Ao, ..., Ap} drawn independently from the probability density
p(N\). We order these eigenvalues in descending order:

A1) = A@) = -0 = Apy,

where A(;) denotes the i largest eigenvalue. To find the most probable value \; for the i" largest
eigenvalue, we focus on the probability that exactly #i eigenvalues exceed a threshold \. If we define

O = / (V) N,
b
then the probability that exactly i out of P samples exceed ) is given by the binomial expression

F(\Pi) = (]_D > [FO)] [1=FN)] 7

7

We determine the threshold \; that maximizes F'(), P, ) by setting its derivative (with respect to \)
to zero. From this calculation, one obtains the simple condition

- 1

F\) = —.

Equivalently, since F(A) = [~ p(X\') dX, the most probable i largest eigenvalue \; satisfies
/ N (A)dX = .
W PR

7

Now we calculate approximations for fluctuation around this most probable position. Let’s analyze
F (X, P,i) near \;. Write A = \; + 6\ and expand F'(\) in a Taylor series about \;:

1 d*F
2 dN?

FA) = F(\i +0\) ~ F(\) + r

N oA +

s

(6A)? + ...
Ai

Since F(\;) = % and ); is determined by maximizing F(\, P, ), the first derivative of F" at ),
vanishes:
dF

= =0
dX ’

g
thus

I\~ i 1 "0y 2
F(\) =~ 7 T3 F"(\) (6N)°.
(We expect F"'()\;) < 0 since F'()\) decreases with \.)

Substituting this expansion back into (%) [F())] ‘ [1—F(\)] P~ We find that the dominant depen-
dence on d\ appears in a Gaussian-like factor

exp( =4 [F"(\)| P (91)?).
This indicates that \ is peaked sharply around \; with a variance
9 1

g; =

YA

In summary, most probable i-th largest eigenvalue ;) is determined by

o0 7
A p) A = =,

7

with fluctuation O(1/v/P).
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A.6 Statistics of sample eigenvalues and its concentration properties

Note that unlike eigenvalue density converges in law, eigenvector statistics Eq. (S21) is noisy even
when P — oo [43]. In this case, we define the () matrix as the expectation over different trials as in
Eq. (S39). Equivalently, this could be obtained by averaging over a small eigenvalue interval, which
could be done by plugging in a small n = 1/ V/P to extract the pole. Note that this 1 /\/P is also
obtained by analyzing fluctuation around the most probable i-th biggest eigenvalue as above. This is
essentially averaging over a Cauchy distribution centered at A with width 7). Thus, for practical usage
of Eq. (S40), we simply plug this most likely i-th eigenvalue [8], with = 1/+/P.

B Relation to regression-based similarity measures

Regression Score is not a representational similarity measure but is commonly used for scoring
model closeness to the brain [46, 12]. Here, we discuss how our theoretical analysis for the overlap
matrix M can also be applied to the regression setting. Regression score measures how well a
model’s activations X predict neural responses Y via a linear probe. Concretely, one performs ridge
regression on a training subset (X, Y1.p) of size p < P, obtaining:

X(p) = YB(p). (S42)
5 . 2
Blp) = argmin||[Y1,8 — Xyllp + aresllBll7 (S43)
Then the regression score gives the neural prediction error,
IX(p) — X3

Note that this error can be decomposed to each error mode, where E,(p) = >, Wi(p) where

77e K2 Wi
Wi(p) = 1= Grimre

The quantity 1W; denotes the projection of target labels on the i'-model eigenvalue and hence can be
expressed in terms of eigencomponents, W; = > y ﬁMw However, calculating W; assumes
k

that there is access to population-level eigenvalues and poses a problem with limited data. In future
work, we would like to test whether our analyses help improve the reliability of regression-based
similarity methods.

C Theory of Power-Law Spectrum

Here, we consider the case where the population spectrum obeys a power-law:

- E\ ¢
/\k:() , k=1,...,P, s>1 (S45)
P
where we normalized eigenvalue indices explicitly by P. For large P, the population density becomes:
o1& 1 (P
p(A) = = O(A—Ag) ~ = 0N — Ag)dk S46
PO = 5300 =R~ 5 [ 60 - Ry (546)
‘We change the variables to y := A for which we get:
dp = —sPk—*"Ldk = —% pHs dg. (S47)
In the limit P — oo, the density becomes
- 1 [ ~ - -
p(\) = 7/ p VS SN =) dp =~y XY, Ae [l o), y=s"1, (S48)
51

where we defined y € [0, 1] for notational convenience. Note that, in this definition, the expectation
value of \ diverges.

27



C.1 Solving the Stieltjes transform

Next, we need to solve the self-consistent equation for the Stieltjes transform Eq. (S11) which reads:

e ey e
g(z)f/1 p 5\(1—q+ng(z))d)\7 p(A) =4 . (549)

This integral has a closed-form solution expressed in terms of hypergeometric functions [3]. To
evaluate this integral, it is convenient to work in terms of the following quantities:
z q , w
= ) = = zg(z), k:= . S50
- B g 9 a(2) Tt b (850)

Then the integral equation becomes

OO~—1—'y ~ K o’
g’:'y/-e/ A = d/\Z—’W{_’Y/ Y du
1 /Q—)\ 0 1_u

= 77n*’YB(,€; 1+7, O)a (S51)

where we made a change of variables u := k/ X in the first line and used the integral definition of the
incomplete Beta function

B(z;a,b) = / w1 — u)’Ldu. (S52)
0

The integral solution reported in [3] can be obtained from Eq. (S51) by using the following identity
[17] in terms of hypergeometric functions:

24(1—2)b

B(z;a,b) = oF1(1,a+bja+1;2). (S53)

We rewrite the self-consistent equation by replacing the definition of «

;L w - w
g__7(1+ﬂg/> B<1+B/,1+7,0>. (S54)

While this equation is exact, it is not possible to solve for g. To obtain an analytical solution for the
self-consistent equation, we need to expand the r.h.s. to leading order in g’:

g = —yw "B (w;1+7,0)+¢'By (w —yw "B (w; 1+ %0)> +0 ((59’)2) ., (S55)

which can be truncated to the linear order provided that 8g’ < 1. Solving for g, we get
, —yw B (w; 1+ ~,0)

g = . (S56)
1—67( —yw=7B (w; 1+%0))
We also provide a power series expansion of the incomplete beta function:
oo 1 y—n _
——w + 7(cot 1), whenw > 1
B (w;1+1,0) = Z& 0 ny — m(cot(my) — 1), (S57)
Zn 1 W when w < 1,

which will be helpful when we implement these functions numerically. In terms of the power series,
the solution becomes:

- m(cot(my) — w7 + 307 ﬁw’”
1+ By (my(eot(my) — ihw= + Tty w2 w — 1)
m(cot(my) —i)w™7 + D07 ) ,Yw’”

= , (S58)
14 By <7r'y(c0t(ﬂ"y) — w7 + Zn 0 n— Ww )

where we simplified the denominator in the last line using % = — ZZO:O w™".
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Next, we compute the sample eigenvalue density p()\) and its Hilbert transform h(\) by computing

/A_'
lim g(A—in) = lim g =i

n—0+ n—0+t A —1in

=h(\) +imp(N). (859)

This is an extremely tedious calculation that we perform using Mathematica. Furthermore, we expand
the results in ¢ and, assuming ¢ < 1, keep only the linear term. In this regime, the leading order
behavior of p(A) and h(\) looks like:

1 - N AN 2
AN =217 1= 2 t A7 —— I\ o
p(N) =7 a7 | 2my cot(my) +Zn_7 +0(¢*)

n=1

1 (1_ 17
h(A) = A (1 A7 Yy cot(my) — A 17>

1) cot
+ my%q (w'y)\%l (cot2(7r'y) — 1) + A”QW) +0(¢%, X3).  (S60)
-7
Here, we did not include higher-order terms for h(A) to avoid clutter.

Finally, we use the formula for estimating sample eigenvalues Eq. (S41) for which we obtain an
explicit formula:

oo s 1
O ::/ pANAA=A"7 [ 1 =gy [ A Tmeotmy + ) ——A""] | (S61)
Ouain)i= [ 0N >

n=1

Here, the semi-colon separates sample-related arguments that we have empirical access to (\;, ¢)
from the only population-related quantity, . Hence, using the following relation [34, 8]

5 gi7) = 5 (S62)

we can either predict the shape of empirical eigenvalues given the decay rate of population spectrum
(forward), or infer the population decay rate given the empirical observations of eigenvalues (back-
ward). Finally, we numerically test our theory and obtain perfect agreement with empirical data in
Fig. S1.

—== Theory
«  Experiment
—— N=25(1.127)
N =50 (1.114)
—— N=75(1.108)
—— N =100 (1.106)
—— N =150 (1.103)
—— N =200 (1.102)
N =500 (1.101) 1074
10-¢ | ) —— N =1000 (1.100)

=== Theory
* Experiment
—— N =25(2.404)
N =50 (2.403)
—— N=175(2.404)
—— N =100 (2.402)
—— N =150 (2.402)
—— N =200 (2.401)
N =500 (2.400)
—— N = 1000 (2.400)

1004

Eigenvalue A¢
Eigenvalue A¢

. -5 |

Ae=k-11 10

100 10t 0010 100 10t 10? 10°
Index of eigenvector k Index of eigenvector k

Figure S1: For a population spectrum with A = k11 (Left) and A, = k24 (Right), we show the
spectra of the empirical eigenvalues for different N. Black solid line indicates the true eigenvalue
decay. The numbers in parentheses in the legend indicate the inferred true decay rate from a population
of N. In the regime s < 2 (y > 0.5), the empirical eigenvalues are always overestimated (Left), and
in the regime s > 2 (y < 0.5) they are always underestimated (Right).

D Experimental Details

Code for all experiments is publicly available in this Github repository. All experiments were done
using a single A100 GPU.
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D.1 Synthetic Data

For the synthetic experiments, we generate a population activation matrix in R”>*" whose Gram
matrix follows a chosen spectral distribution (e.g., a power-law). We then form the sample activation
matrix by projecting onto a random subset (or random linear subspace) of size N, yielding R”*%
This procedure enables us to directly control the underlying population eigenvalues and eigenvectors,
facilitating clean comparisons between sample-level and population-level similarity measures.

D.2 Brain Data

We employ a set of publicly available neural recordings from primate visual cortex (e.g., V2) and
compare these against the representations of various vision models, similarly to the methodology in
[12]. In total, we evaluate 32 models spanning supervised, self-supervised, and adversarially trained
architectures, including well-known families such as ResNet, DenseNet, MobileNet, EfficientNet,
and Vision Transformers. We extract intermediate-layer activations for each model on the same set of
visual stimuli used in the neural recordings, applying the standard preprocessing routines (e.g., image
resizing, ImageNet normalization).

Within each model, we select one or more representative layers (e.g., post-ReL.U or transformer
blocks). We then compute Gram matrices from those activations, matching the dimensionality of the
neural dataset. In scenarios where the dataset contains more neurons than we wish to analyze, we
project the data into a lower-dimensional subspace of size V. Finally, we compute representational
similarity (e.g., CKA or (SV)CCA) between these model-derived Gram matrices and the neural Gram
matrices, both in their raw (sample) forms and using our denoising procedure for backward inference.

E Another denoising method: truncated inverse

We utilize a truncated Singular Value Decomposition (SVD) to obtain a regularized estimate of M:

M=Vx_ UM, (S63)

trunc

where Q) = UX VT is the SVD of Q*), and 1. is the truncated inverse of the singular values,
defined as:

Logfi<r
Do) =10 e o
( trune J {0 otherwise, oo

F Sample CKA with population eigenvalue term

We demonstrate that eigenvector delocalization is the dominant factor causing the decrease in sample
CKA for rapidly decaying spectra such as power-law or exponential distributions.

In Fig. S2, we consider a population with eigenvalues following X = i~ %2 and in Fig. S3, we

examine a population with eigenvalues following \; = e~%. These experiments confirm that while
sampling affects both eigenvalues and eigenvectors, the systematic underestimation of CKA is
predominantly caused by eigenvector delocalization rather than changes to the eigenvalue distribution.
This holds true for both power-law and exponential eigenvalue spectra, which are common in neural
data.

G Confidence Interval under Maximum Likelihood Estimation

Although it is hard to calculate the uncertainty of the estimator from constrained optimization, we
can compute it using maximum likelihood estimation for M.
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Figure S2: Left: Normalized sample eigenvalues for P = 100 and \; = i~ -2 with varying V. The
first few terms of normalized eigenvalues remain relatively stable despite neuron sampling. Right:
Sample CKA between brain and model with identical representations (true CKA = 1) as neurons
are sampled. The deviation is primarily due to eigenvector delocalization, as shown by the close

match between observed sample CKA and CKA calculated with population eigenvalues but sample
eigenvectors.
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Figure S3: Left: Normalized sample eigenvalues for P = 100 and \; = e~ with varying N. As with
the power-law case, the dominant normalized eigenvalue components remain relatively stable under
sampling. Right: Sample CKA behavior with exponential eigenvalue decay. The observed sample
CKA closely tracks the hybrid CKA (population eigenvalues with sample eigenvectors), confirming
that eigenvector delocalization primarily drives the CKA reduction.

G.1 Problem Setup

For two sets of eigenvectors {|u;)}_, (unobserved) and {|v,)}/_, (observed), we estimate con-

2
. . . ~(t .
based on empirical eigenvectors {|u£ )> P | across trials

fidence intervals for M;, = ‘<uj |Ua> i=1

t.

Our neuron-wise sampling model assumes:

P
i) =" e/ Qi lug), el ~ N(0,1) id. (S65)
j=1

where Q € R”*P is fixed across trials.

Projecting onto |v,) gives:

P
<va ﬁﬁt)> ~N(0,03), on =Y QiiMj, (S66)
j=1
The squared overlaps follow:
2
MZ((:) = <Ua agt)> ~ U?@X% (S67)




G.2 Confidence Intervals (CI)
G.2.1 Single-Trial Case

The negative log-likelihood for a single trial is:

w2 for

i=1

For a confidence interval on M, ka» We use profile likelihood:

LProﬁle(m) = max _ eXp(—Ea(M‘a)) with Mka =m
{Mja:j#k, 0<M;a <1}

The (1 — «) Clis:

CLi—o(Mya) = {m € [0,1] : —210g(Lprofile(M)/Limax) < X3 1_a}

(S68)

(S69)

(S70)

Algorithm 2 Profile CI for M, ko (Single Trial)

1: Input: M,,, Q, index k, level 1 — «

2: Output: [M Jower ) [PPer]

3: Set1 = X1 1—q- Compute L,y by minimizing ¢, in Eq. (S68).

4: for m on a grid in [0, 1] do

5: Minimize ¢,(M.,) subject to Mo =mand 0 < ja <1 #k).
6: Set A(m) = —2 1og( profile (112 )/Lmax).

7: end for

8: Return the smallest and largest m with A(m) < 7.

G.2.2 Multiple Trials

For T trials with the same @), the joint negative log-likelihood is:

. - 1 M-(t)
O (Ma) =) 5> (o, + —5

The joint profile likelihood and CI follow analogously:

CI) (M) = {m € [0,1] : Ap(m) < X3 .}

(S71)

(S72)

Algorithm 3 Profile CI for My, (Multiple Trials)

Input: {M}?}g;l, Q, index k, level 1 — o, optional weights w;
Output: [MoV M, PP
Set 7 = xi,_,- Compute L{E). by minimizing
for m ona grid in [0, 1] do

Minimize £ (M., ) subject to My =mand 0 < Mja <1(5#k).

Set Arr(m) = —210g (L{fh.(m)/Lik ).
end for
Return the smallest and largest m with Ar(m) < 7.

joint
gioint

A A i e
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G.3 ClIs for CKA and CCA

For weighted functionals like CKA or CCA:
P P

FOD) =33 wjw] M, (S73)
j=la=1
Apply the delta method:

of oy
M, = WjW,

1. Compute gradient:

2. Estimate Fisher information: Z . = V26" (M)

3. Calculate variance: Var(f) = V f TI]\Z; vf

4. CL: f(M) £ 21_q s - /Var(J)
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] < L)
g 0.6 S 044 °
...... and o T e A s s sl®

041@ ® Sample CKA ® Sample CCA
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Figure S4: MLE estimation and confidence interval of 5 trials. Here P = 100, and the two population
Gram matrices had power-law eigenvalues with exponent —1.2. Left: For CKA. Blue dots are
the empirical sample CKA, where the orange dotted line is the theoretical line for sample CKA.
The green solid line is the estimated population CKA using MLE, and the blue shades are the 95%
confidence interval. Right: Same analysis but for CCA.

H Eigenvector Delocalization via Support Mergers

H.1 Setup and diagnostic

Let & € RP*F have eigenvalues {\;}1,. From N i.i.d. samples X = %'/2Z with Z;; ~ N(0,1),
the sample covariance is S = %X X T. A convenient diagnostic for support components is

1 &
+ % Zl
whose monotonicity between its poles z; = 1/ \; tracks gaps vs. support. Intervals with B'(x) < 0

correspond to gaps; support edges occur where the local monotonicity changes (tangency/inflection).
See [8] for related transform pictures.5

B(z) := (S74)

1
_I"

8=

1
s

H.2 From support mergers to eigenvector delocalization

Decreasing N is akin to increasing an effective noise level: nearby spikes mix first (Dyson Brownian
motion intuition). Thus leading (well-separated) spikes remain isolated, while deeper ones merge
into a common bulk. Empirically, the diagonal overlaps Q;; stay near 1 up to an index i’ and then
drop sharply; the drop aligns with the point where a local neighborhood can no longer sustain two
separated support components.

>Sign conventions vary; our conclusions are invariant under a global sign flip.
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Figure S5: Counting components via B. Blue segments on the vertical axis correspond to support
intervals (adapted from Fig. 6 of [8]).
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Figure S6: Heuristic. Additive Dyson Brownian motion shown; in our multiplicative setting, the
same local-mixing picture applies: smaller inter-spike spacing A\; — A\;41 = earlier merger.

H.3 Two-peak approximation and the /N law

Assume a power-law population spectrum

N =i 177, v >0, (S75)

so the poles of B are x; = 1/ S\i = 117, Between two consecutive poles b = x; and a = x;41
(a > b), approximate locally

1 1 1 1
B]oc(if) ~ ; + N|:a—$+b—x:| . (S76)

A local merger occurs when z — - is tangent to the rational term (equlvalently, equal value and
slope at z* € (b, a)). Solving the tangency system gives the critical sample size

[(z‘ + 150 z'%<1+v>]3
= . (S77)
[+ 1y — i1+

*
%

For N > N}, the two local components near z; and ;41 remain separated; for N < N7, they
merge.
Remark H.1 (Key: /N scaling of eigenvector delocalization). Using (i + DI — 17 =
(147)i" + o(i?) and (i + 1)3 (7 433047 = 23047 4 o(;3(147)), Eq. (S77) yields

NF = ﬁ 21+ o(1)).
Hence the delocalization threshold (where @);; drops) occurs at

(V) = LT
i*(N) = \/g\/ﬁ.

Interpretation: the number of population-aligned eigenvectors grows only like /N ; beyond ¢*, local
support components have merged and the corresponding sample eigenvectors are mixed with the bulk.

This /N law is the main practical takeaway. See Fig. S7.
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Figure S7: Left: PR of sample eigenvector when population eigenvalue followed power-law with
exponent —1.2. Vertical lines with colors are theoretical predictions for the critical index from the two-
peak approximation. The black horizontal dashed line corresponds to PR = 2, which roughly marks
the index at which the eigenvector becomes delocalized. Right: Critical index ', where population
eigenvalue followed power-law with exponent —1 — ~. Solid lines are theoretical predictions from
the two-peak approximation, i’ = HT; V/N. Markers are empirical critical index when PR is 2.
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