
Summarize and Generate to Back-translate:
Unsupervised Translation of Programming Languages

Anonymous ACL submission

Abstract

Back-translation is widely known for its effec-001
tiveness for neural machine translation when002
little to no parallel data is available. In this003
approach, a source-to-target model is coupled004
with a target-to-source model and trained in005
parallel. While the target-to-source model006
generates noisy sources, the source-to-target007
model is trained to reconstruct the targets and008
vice versa. Recent developments of multilin-009
gual pre-trained sequence-to-sequence models010
for programming languages have been very ef-011
fective for a broad spectrum of downstream012
software engineering tasks. Therefore, it is013
compelling to train them to build program-014
ming language translation systems via back-015
translation. However, these models cannot be016
further trained via back-translation since they017
learn to output sequences in the same language018
as the inputs during pre-training. As an alterna-019
tive, we suggest performing back-translation020
via code summarization and generation. In021
code summarization, a model learns to gen-022
erate a natural language (NL) summary given023
a piece of code, and in code generation, the024
model learns to do the opposite. Therefore,025
target-to-source generation in back-translation026
can be viewed as target-to-NL-to-source gen-027
eration. We take advantage of labeled data028
for the code summarization task. We show029
that our proposed framework performs compa-030
rably to state-of-the-art methods, if not exceed-031
ing their translation performance between Java032
and Python languages.033

1 Introduction034

Choice of programming language (PL) in software035

development depends on the requirement of the036

software and the available features of a particular037

PL. In modern API-driven software development,038

the choice of language often depends on the avail-039

ability of libraries and APIs. The advent of newer040

and richer programming languages often requires041

legacy software to be translated into modernized042

Input in Java
1 p u b l i c s t a t i c boolean generator (

Ps iBu i l de r b , i n t l) {
2 boolean r = f a l s e ;
3 i f (! recurs ion_guard (b , l)) r e t u r n r ;
4 r = generator_0 (b , l + 1) ;
5 i f (! r) r e t u r n generator_1 (b , l + 1) ;
6 }

(1) Java to Python Generation
1 p u b l i c s t a t i c boolean generator (

Ps iBu i l de r b , i n t l) {
2 boolean r = f a l s e ;
3 i f (! recurs ion_guard (b , l)) r e t u r n r ;
4 i f (! generator_0 (b , l)) r e t u r n r ;
5 r = generator_0 (b , l + 1) ;
6 i f (! r) r e t u r n generator_1 (b , l + 1) ;
7 }

(2) Java Code to NL Summary

guard is used to determine if a generator is already
defined .

(3) NL Summary to Python Code
1 def i s_genera to r (s e l f , name) :
2 i f name i n s e l f . _generators :
3 r e t u r n True
4 i f name i n s e l f . _generators [name] :
5 r e t u r n True
6 r e t u r n False

Figure 1: Although PLBART is asked to generate in
Python given input in Java (1), it generates in Java (due
to its pre-training objective). In contrast, PLBART fine-
tuned on code summarization and generation, generates
“noisy” translations (as in (2, 3)).

PLs. In theory, modern programming languages’ 043

“Turing Completeness” allows rule-based transla- 044

tion of programs from one PL to another. The rule- 045

based translation may require an extensive number 046

of handwritten transformation rules and could end 047

up producing very unreadable source code. In ad- 048

dition, such translation could entail translating the 049

entire library, even if a library implementing simi- 050

lar functionality is available in the target PL. 051

Aligning libraries and APIs across different PLs 052

is a non-trivial task. Recent progress in Neural Ma- 053

chine Translation (NMT) (Bahdanau et al., 2015; 054

1

Vaswani et al., 2017) leveraging pretrained mod-055

els (Feng et al., 2020a; Guo et al., 2021; Roziere056

et al., 2021; Ding et al., 2021; Ahmad et al., 2021a;057

Wang et al., 2021) could be a possible way to learn058

the alignment between PLs and translate source059

code across languages.060

A significant challenge in supervised learning061

for NMT is the need for large-scale parallel corpora.062

For instance, if we are planning to train a translator063

for Java to Python translation, we need a consid-064

erable number of the same program (i.e., exhibiting065

the same semantic behavior) in both the languages.066

Availability of such parallel datasets is a vital chal-067

lenge in programming language translation (Chen068

et al., 2018). Back-Translation (BT) (Edunov et al.,069

2018; Lachaux et al., 2020) is a clever way to learn070

alignments across different languages. While BT071

demonstrates success in NMT, those require either072

(i.) small (perhaps noisy) parallel datasets or (ii.) a073

model with some capacity of cross-lingual genera-074

tion - to kickstart the BT-based learning process.075

In this research, we investigate the suitability076

of multilingual Pre-trained Sequence-to-Sequence077

Model (PSM) (e.g., PLBART (Ahmad et al.,078

2021a)) for unsupervised programming language079

translation via BT. In particular, we assume a use080

case scenario, where there is no parallel data avail-081

able. Without much of a surprise, we empirically082

found that, while these PSMs are good at generat-083

ing code in each language, they exhibit very little084

to no knowledge about the cross-lingual generation085

since such PSMs are typically trained to reconstruct086

code sequences from noisy inputs. For example,087

when we provide the input code in Figure 1 to088

PLBART and ask to generate Python code without089

any training, it generates a slight variation of the090

input Java code, showing its lack of knowledge091

about cross-lingual generation.092

To endow such PSMs with knowledge about093

cross-lingual generation, we propose the usage of094

a third language (i.e., English), which is available095

in bulk quantity. Since a large quantity of mono-096

lingual code corpora comes with documentation,097

which supposedly describes what the source code is098

doing, we train a Summarize-and-Generate (S&G)099

model that can generate pseudo-parallel code se-100

quences. Figure 1 shows PLBART’s behavior when101

it is further trained via S&G. First, given the Java102

code, it generates a NL summary (figure 1-2), and103

subsequently generates Python Code (figure 1-3).104

We empirically show that, even if such S&G model105

generates noisy parallel sequences, it allows us to 106

employ PSMs in the BT-based training to learn 107

programming language translation. 108

In summary, we present a Summarize-and- 109

Generate (S&G) based approach to enable unsuper- 110

vised program translation training of PLBART via 111

Back-Translation (BT). Experiment results show 112

that our proposed approach makes PLBART train- 113

able via BT and performs comparably or better than 114

state-of-the-art program translation models.1 115

2 Motivation 116

Recent years saw several Pre-trained Sequence- 117

to-Sequence models (PSM) (Ahmad et al., 2021a; 118

Wang et al., 2021). These models are pre-trained 119

on hundreds of Gigabytes of source code. Thus, 120

we are motivated to investigate their adoption in 121

learning program translation via back-translation in 122

this work. To understand such feasibility, we inves- 123

tigate the program representations generated by the 124

PSM. As a case study, we chose PLBART (Ahmad 125

et al., 2021a) and evaluated its multilingual embed- 126

dings as suggested in Artetxe and Schwenk (2019). 127

We find the parallel Java function for each of the 128

948 Python functions using the parallel dataset pro- 129

posed in Lachaux et al. (2020). We find the nearest 130

neighbor using cosine similarity between function 131

embeddings and calculate the error rate. Unsur- 132

prisingly, PLBART performs poorly in function 133

retrieval with an 87.5% error rate. 134

In comparison, we fine-tune PLBART jointly on 135

code summarization and generation in Java and 136

Python. Repeating the experiment of function re- 137

trieval, we find fine-tuned PLBART’s error rate 138

drops to 23.7%. To visually illustrate the embed- 139

dings produced by PLBART and its fine-tuned vari- 140

ant, we provide a T-SNE plot of 8 sample functions’ 141

embedding in Figure 2. We see the functions that 142

belong to the same language are clustered together 143

while the same functions in two different languages 144

are far apart from each other (see Figure 2a). 145

In contrast, the fine-tuned PLBART breaks up 146

the intra-language clusters and brings functions 147

in different languages close to each other in the 148

embedding space (see Figure 2b). These results 149

motivate us to initialize the translation models with 150

fine-tuned PLBART on code summarization and 151

generation for back-translation as it learned some 152

alignment across programming languages. 153

1We have made our code publicly available at https:
//github.com/hidden/hidden.

2

https://github.com/hidden/hidden
https://github.com/hidden/hidden

(a) PLBART (b) PLBART + S&G

Figure 2: T-SNE plot of function embeddings of Java and Python functions. Figure 2a shows the embedding
generated by PLBART model. Figure 2b are the generated embedding when the PLBART is finetuned to jointly
summarize code to NL and generate code from NL (PLBART + S&G). While PLBART clusters programs from
each individual PLs, same program in different PLs are brought closer to each other by PLBART + S&G.

3 Approach154

Sequence-to-sequence models, such as PLBART155

(Ahmad et al., 2021a), CodeT5 (Wang et al., 2021),156

map source code sequences into a shared multilin-157

gual space by pre-training on multiple program-158

ming languages jointly using unlabeled data (e.g.,159

source code from Github). The pre-training ob-160

jective of these models is either denoising autoen-161

coding (DAE) or fill-in-the-blank, where the mod-162

els reconstruct the original code snippet or predict163

the missing code tokens given a corrupted code164

snippet. Although pre-trained jointly on many lan-165

guages, these models only learn to generate in the166

same language as input. As a result, these mod-167

els are not trainable via back-translation (BT) to168

learn programming language translation in an un-169

supervised fashion. As an alternative, we propose170

translating to and from natural language to perform171

back-translation between two programming lan-172

guages. We refer to translating to and from natural173

language as code summarization and code genera-174

tion, respectively. Our proposal is motivated based175

on the availability of bimodal data, source code,176

and their summaries that are used to train code177

summarization and generation models.178

3.1 Back-translation179

Back-translation (BT) is one of the most popular180

ways for unsupervised machine translation (Artetxe181

et al., 2018b; Lample et al., 2018a,b). In this ap-182

proach, we leverage monolingual data in an un-183

supervised fashion. BT jointly trains a source-to-184

target model coupled with a backward target-to-185

source model. The target-to-source model trans-186

lates target sequences into the source language, pro-187

ducing noisy sources corresponding to the ground 188

truth target sequences. The source-to-target model 189

is then trained to generate the targets from the noisy 190

sources and vice versa. The two models are trained 191

in parallel until convergence. This training proce- 192

dure is widely known as online back-translation 193

and the focus of this work. 194

Back-translation uses a target-to-source model to 195

generate noisy sources and trains a source-to-target 196

model to reconstruct the targets. Specifically, in 197

each step k (a mini-batch update), back-translation 198

performs the following: 199

P(f)
k = {(x, fk−1(x))|x ∈ Dsource}

bk = TRAIN target→source
(
P(f)
k

)
P(b)
k =

{
(bk(y), y) |y ∈ Dtarget

}
fk = TRAIN source→target

(
P(b)
k

)
.

(1) 200

Here, Dsource, Dtarget represents unlabeled data in 201

source and target languages and TRAIN indicates 202

standard sequence-to-sequence training. 203

Generally, the training via back-translation starts 204

from a forward (f0) and a backward (b0) model that 205

is trained using parallel data (small gold-standard 206

or large-scale but noisy). Then an extensive collec- 207

tion of unlabeled data is used to train the translation 208

models. In this work, we assume there is no paral- 209

lel data available across programming languages. 210

We initialize the forward and backward model with 211

the pre-trained language model, PLBART. As men- 212

tioned before, PLBART cannot generate code in a 213

language different from the input (not even a noisy 214

code) (for example, figure 1-1). Therefore, we pro- 215

pose jointly fine-tuning PLBART on code summa- 216

rization and generation on multiple programming 217

3

Python

def circlearea(a) :
 if a < 0 :
 return -1
 A = 3.14 * 3 * pow(a,2)
 return A / 4

Summary

Compute the area of the
circle inscribed in a

hexagon with side length
"a"

Train S

Train G

Java
int nextPowerOf2(int n){
 int count = 0;
 if (n>0 && (n & (n-1)) == 0)
 return n;
 while(n != 0){
 n >>= 1; count += 1;
 }
 return 1 << count;
}

Python
def nextPowerOf2(n):
 count = 0
 if (n and not(n & (n - 1))):
 return n
 while(n != 0):
 n >>= 1
 count += 1
 return 1 << count

Train fk

Apply (S, G) / bk

Train bk

Apply (S, G) / fk

Figure 3: Overview of our proposed back-translation framework to train PLBART. In the first k = m steps (out
of total N training steps), we use a multilingual code summarization and generation model (S,G) to perform
back-translation. In the remaining steps (N −m), PLBART is trained via standard back-translation method.

languages in a supervised setting. Then use the218

resulting model to initialize the forward and back-219

ward model (f0, b0) for back-translation.220

3.2 Code Summarization and Generation221

Source code documentation (e.g., docstring or com-222

ment) written by software developers are available223

along with source code on a large scale. Such doc-224

umentation has been the key source to form source225

code summarization datasets (Wan et al., 2018;226

Hu et al., 2018; LeClair and McMillan, 2019; Hu-227

sain et al., 2019). These datasets are also utilized228

in natural language (NL) to code generation stud-229

ies (Parvez et al., 2021). It is tangible that we can230

use a code summarization and generation model to231

translate programming languages. Such a model232

would first generate an NL summary from code233

in the source language and then generate code in234

the target language from the previously generated235

NL summary. As we show in the evaluation, such236

an approach does not work well in practice (see237

table 2); however, code summarization and gener-238

ation models are viable proxies to generate noisy239

translations. This enables us to train PLBART, to240

begin with generating noisy translations and further241

learn to improve in a self-supervised fashion when242

trained via back-translation. Formally, we jointly243

train PLBART in a supervised setting to learn code244

summarization (S) and generation (G):245

S = TRAINCode→Summary (Pc,s)
G = TRAINSummary→Code (Pc,s)

(2)246

where Pc,s is estimated using the code-to-text247

benchmark from CodeXGlue (Lu et al., 2021). We248

follow Tang et al. (2021) to perform multilingual249

fine-tuning of PLBART (in Java and Python) to 250

learn S and G. 251

3.3 Summarize–Generate to Back-translate 252

The back-translation method requires the target-to- 253

source (b) and source-to-target (f) models to gen- 254

erate semantically equivalent (parallel) sequences 255

in the source and target languages, respectively. 256

These parallel sequences are then used to train the 257

models to learn translations as described in Eq. (1). 258

Specifically, the parallel sequences {(x̂, y), (x, ŷ)} 259

created by computing ŷ ← fk−1(x) and x̂← bk(y) 260

kick-start the learning process in back-translation. 261

Generally, the curated parallel sequences tend to 262

be noisy since we do not have access to accurate 263

target-to-source and source-to-target models. How- 264

ever, both the models trained in parallel via back- 265

translation until convergence, resulting in useful 266

translation models. 267

The advancements of pre-trained sequence-to- 268

sequence models on programming languages en- 269

ables us to use them in initializing the source-to- 270

target (f) and target-to-source (b) models for back- 271

translation. Presumably, such pre-trained models 272

should facilitate the learning process during train- 273

ing. Yet, their pre-training objective – i.e., recon- 274

struction of original input from a noisy source lim- 275

its their ability to generate code snippets across 276

languages (as shown in Figure 1). For example, 277

PLBART as f(·) and b(·) would reconstruct the 278

input, resulting in fk−1(x) ≈ x and bk(y) ≈ y. As 279

a result, the models will learn to merely copy the 280

input sequences rather than translate them. 281

To this end, we propose to make use of available 282

parallel data between programming and natural lan- 283

4

Algorithm 1 Training Procedure
Input: Monolingual data Ds and Dt of languages
s and t; number of initial steps m; number of total
steps I; code summarizer S(·, ·); code generator
G(·, ·); parameters θ to initialize the forward and
backward translation models f(·, ·) and b(·, ·).
Output: Final model parameters θ.

1: for k = 0, · · · , I do
2: y ← (ys ∼ Ds) ∪ (yt ∼ Dt)
3: if k ≤ m then
4: xnl ∼ S(·|y) . code-to-summary
5: x̂ ∼ G(·|xnl) . summary-to-code
6: else
7: x̂← (xs ∼ b(·|yt)) ∪ (xt ∼ f(·|ys))
8: Update θ by maximizing log-likelihood of
f(x̂s, yt) and b(x̂t, ys)

guages to fine-tune PLBART and then use its pa-284

rameters to initialize source-to-target (f) and target-285

to-source (b) models for back-translation. Con-286

sequently, we revise the back-translation training287

method outlined in Eq. (1) to follow a two-step288

generation process to perform back-translation:289

code-to-summary generation in natural language290

followed by summary-to-code generation in the291

source language. Formally, the first m steps (k ≤292

m) of back-translation is performed as:293

P(f)
k = {(x,G (S (x))) |x ∈ Dsource}

P(b)
k =

{
(G (S (y)), y) |y ∈ Dtarget

}
.

(3)294

We find the noisy parallel sequences2 generated295

via summarization and generation commences the296

learning process. The overall idea of our proposed297

framework is illustrated in Figure 3 and the Al-298

gorithm 1 describes the training procedure. Note299

that we find it is sufficient to apply our proposed300

summarization-generation based back-translation301

only for the firstm steps as the source-to-target and302

target-to-source models gradually learn to translate,303

the standard back-translation training reinstated.304

4 Experiment Setup305

4.1 Models and Baselines306

Our model As noted earlier, PLBART (Ahmad307

et al., 2021a) and CodeT5 (Wang et al., 2021)308

are two popular sequence-to-sequence models pre-309

trained on source code that cannot be trained via310

2The output sequences are still noisy since the code sum-
marization and generation models are not highly accurate
although trained in a supervised fashion.

back-translation (BT). As an alternative, our pro- 311

posed approach can be leveraged to train both mod- 312

els to learn programming language translation in 313

an unsupervised fashion. In this work, we chose 314

PLBART to perform experiments and show the 315

effectiveness of our proposed approach. 316

Baseline Models 317

We compare our proposed approach applied to 318

PLBART with the following existing approaches. 319

• j2py is a framework that translates Java source 320

code to Python.3 It follows handwritten rules man- 321

ually built using expert knowledge. 322

• Summarize-and-Generate (S&G) performs 323

code-to-code translation via two steps, code-to- 324

summary and summary-to-code generation. We 325

evaluate the S&G model (as in Eq. (2)) that is used 326

to perform code summarization and generation in 327

our proposed framework to train PLBART via BT. 328

• TransCoder is a neural translation model for 329

programming languages (Lachaux et al., 2020). 330

TransCoder is developed by pretraining Trans- 331

former (Vaswani et al., 2017) via masked language 332

modeling (MLM) objective (Devlin et al., 2019) 333

on monolingual source code datasets. In a second 334

step, TransCoder is trained via denoising autoen- 335

coding (DAE) and BT. In this work, we consider 336

TransCoder as the primary baseline. 337

• DOBF Roziere et al. (2021) proposed a pre- 338

training objective, DOBF, that leverages the struc- 339

tural aspects of programming languages. Accord- 340

ing to this pretraining paradigm, the identifiers 341

(class, function, and variable names) in code snip- 342

pets are obfuscated, and a model is trained to re- 343

cover the original names. DOBF shares the exact 344

same neural architecture as TransCoder. 345

4.2 Evaluation Dataset and Metrics 346

Evaluation Dataset Lachaux et al. (2020) pro- 347

posed an evaluation dataset composed of parallel 348

functions in Java, Python, and C++ languages. The 349

dataset consists of 464 Java to Python and 482 350

Python to Java test examples, where each example 351

is accompanied by 10 unit test cases. 352

Evaluation Metrics 353

• BLEU measures n-gram overlap between a 354

generated translation and a collection of reference 355

translations (Papineni et al., 2002). 356

3https://github.com/natural/
java2python

5

https://github.com/natural/java2python
https://github.com/natural/java2python

Java Python
Github - unimodal data
Nb of functions 44.5 M 42.0 M
Nb of tokens 3.3 B 4.1 B
CodeNet - unimodal data
Nb of functions 0.42 M 0.15 M
Nb of tokens 47.3 M 17.0 M
CodeXGlue - bimodal data
Nb of functions 164,923 251,818
Nb of tokens 21.2 M 44.3 M

Table 1: Statistics of the data used to train PLBART
at different stages in this work. Bimodal data refers to
parallel function-summary pairs, while unimodal data
refers to monolingual (and unparallel) functions.

• Exact Match (EM) represents the percentage357

of generated translations exactly match with the358

collection of reference translations.359

• CodeBLEU measures grammatical and logical360

correctness in addition to n-gram overlap between361

generated and reference translations (Ren et al.,362

2020). CodeBLEU assesses grammatical and log-363

ical correctness based on the abstract syntax tree364

and the data-flow structure.365

• Computational Accuracy (CA) evaluates if a366

generated function outputs the same as the refer-367

ence when given the same set of inputs. Lachaux368

et al. (2020) introduced this evaluation metric to369

perform evaluation based on unit tests.370

4.3 Training Datasets and Preprocessing371

Code Summarization and Generation Lu et al.372

(2021) curated a code summarization dataset con-373

sisting of code and summary pairs based on the374

CodeSearchNet dataset (Husain et al., 2019). We375

use this dataset in Java and Python program-376

ming languages to train the code-to-summary and377

summary-to-code generation models.378

Back-translation (BT) For BT training (as dis-379

cussed in § 3.3), we use the GitHub public dataset380

available on Google BigQuery (Hoffa, 2016).4381

Note that the Github dataset is composed of source382

code that covers a wide variety of programming383

topics (as they come from various projects). In384

contrast, the evaluation dataset is composed of pro-385

gramming problems covering basic data structure386

and algorithmic concepts. Therefore, to investigate387

the impact of data on BT training, we alternatively388

4https://console.cloud.google.com/
marketplace/product/github/github-repos

chose unparallel code samples in Java and Python 389

from CodeNet (Puri et al., 2021). The CodeNet 390

dataset is collected from two online judge websites, 391

AIZU Online Judge and AtCoder, and composed of 392

submissions for 4053 problems. We use the dedu- 393

plicate accepted solutions of the problems for BT 394

training. Presumably, CodeNet and the evaluation 395

dataset have a similar nature that should positively 396

impact downstream translation performance. 397

Preprocessing We use tree_sitter5 for to- 398

kenizing Java functions and the tokenizer of the 399

standard library for Python.6 We extract standalone 400

functions7 from the BT training datasets following 401

the function extraction technique from Lachaux 402

et al. (2020). We filter the standalone functions 403

exceeding a maximum length of 256 to cope with 404

our computational resources. The statistics of the 405

preprocessed datasets are presented in Table 1. 406

4.4 Implementation Details 407

We jointly train PLBART on code summarization 408

and generation in Java and Python using the au- 409

thors’ provided code.8 Subsequently, we further 410

train PLBART via back-translation as described 411

in Algorithm 1. We set I = 10, 000 and tuned 412

m = 200.9 We train PLBART using 8 Nvidia 413

GeForce RTX 2080 Ti GPUs, and the effective 414

batch size is maintained at 1024 instances at both 415

training stages. We optimize PLBART with the 416

Adam optimizer (Kingma and Ba, 2015), a learn- 417

ing rate of 10e-4, and use a polynomial learning 418

rate decay scheduling. The best models are selected 419

based on the validation BLEU scores. We imple- 420

ment our approach in Fairseq (Ott et al., 2019) and 421

use float16 operations to speed up training. 422

Decoding During inference, we use beam search 423

decoding (Koen, 2004) to generate multiple trans- 424

lations using PLBART. We chose greedy search 425

(Beam 1) as the default decoding scheme for valida- 426

tion and evaluation. However, following Lachaux 427

et al. (2020), we report two sets of results for the 428

computational accuracy (CA) metric: CA@n B=n, 429

5https://github.com/tree-sitter/
py-tree-sitter

6https://docs.python.org/3/library/
tokenize.html

7Standalone functions can be used without instantiating
a class. In Java, this corresponds to static methods, and in
Python, it corresponds to functions outside classes.

8https://github.com/wasiahmad/PLBART/
tree/main/multilingual

9We tuned m in the range [100, 1000] with 100 steps.

6

https://console.cloud.google.com/marketplace/product/github/github-repos
https://console.cloud.google.com/marketplace/product/github/github-repos
https://github.com/tree-sitter/py-tree-sitter
https://github.com/tree-sitter/py-tree-sitter
https://docs.python.org/3/library/tokenize.html
https://docs.python.org/3/library/tokenize.html
https://github.com/wasiahmad/PLBART/tree/main/multilingual
https://github.com/wasiahmad/PLBART/tree/main/multilingual

Models
Java→ Python Python→ Java

BLEU EM CodeBLEU CA BLEU EM CodeBLEU CA
j2py* - - - 38.3 - - - -
TransCoder∗ 68.1 3.7 - 35.0 64.6 0.8 - 24.7
TransCoder w/ DOBF∗ - - - 49.2 - - - 39.5
S&G (2) 7.6 0.0 15.8 0.2 12.4 0 16.3 0.2
PLBART (this work)
trained via BT 31.2 0.0 36.6 0.0 31.7 0.0 32.1 0.0
trained via BT (via S&G) 63.2 2.5 60.4 35.4 64.1 1.2 65.9 43.8

Table 2: Evaluation results of the baselines models and our proposed framework using greedy decoding. ∗ indicates
scores reported from Lachaux et al. (2020).

Models TransCoder PLBART
Java→ Python
CA@1 B=1 35.0 35.5
CA@1 B=10 49.0 38.4
CA@5 B=5 60.0 47.0
CA@10 B=10 64.4 50.0
Python→ Java
CA@1 B=1 24.7 43.8
CA@1 B=10 36.6 45.4
CA@5 B=5 44.3 52.5
CA@10 B=10 51.1 55.0

Table 3: Computational accuracy (CA@m) with beam
search decoding and comparison between TransCoder
and PLBART. TransCoder’s performances are reported
from Lachaux et al. (2020). The value B indicates the
beam size. CA@m B=n means that we use beam de-
coding to generate n translations, and select the top m
translations based on their log-probability scores.

the percentage of functions with at least one correct430

translation in the beam (of size n), and CA@1 B=n431

the percentage of functions where the hypothesis432

in the beam with the highest log-probability is a433

correct translation.434

5 Results435

5.1 Main Result436

Table 2 shows the performance of our proposed437

approach and the baseline models on both Java438

to Python and Python to Java translation. We be-439

gin by comparing PLBART directly used in back-440

translation (BT) training vs. our proposed approach441

(last block in Table 2). As emphasized before,442

PLBART does not know to generate across lan-443

guages, so when the model is trained via BT, it444

only learns to copy the input sources. As a result,445

PLBART scores 0% EM and 0% CA, while 30+446

BLEU and CodeBLEU scores indicate that they are447

not a reliable indicator of translation correctness.448

In contrast, following our proposed approach 449

of summarizing and generating to back-translate, 450

PLBART trained via BT (via S&G) achieves com- 451

parable or better performance than TransCoder.10 452

We further compare them using beam search de- 453

coding in Table 3. This work studies the feasibility 454

of using pre-trained sequence-to-sequence models 455

for unsupervised programming language transla- 456

tion via BT. The experimental results conclude that 457

such models cannot directly be used in BT train- 458

ing; however, training via S&G empowers them to 459

generate across languages and further be trained 460

via BT to learn to translate. 461

5.2 Analysis 462

Summarize and generate to create parallel data 463

Our proposed approach generates parallel code se- 464

quences on the fly (online) for training. An alter- 465

native to our approach is to use a code summariza- 466

tion and generation model to create parallel code 467

sequences (offline) and warm-start PLBART for 468

back-translation-based training. We compare these 469

two approaches in Table 4, and the results show that 470

both approaches perform comparably. However, it 471

is essential to note that the online setting gives us 472

flexibility as we can tune the number of initial steps 473

(m in Algorithm 1). In contrast, the offline setting 474

requires generating a sufficiently large number of 475

parallel code sequences. 476

Impact of in-domain training data The evalua- 477

tion dataset comprises solutions to programming 478

problems involving data structures and algorithm 479

concepts. While Github offers large-scale unla- 480

beled data, most of its code belongs to software 481

projects that use APIs and advanced functionalities. 482

Therefore, we utilize an alternative dataset called 483

10Note that, while comparing PLBART with TransCoder
on the translation performance, their differences (shown in
Table 9) should be taken into account.

7

Init. Checkpoint
Java to Python Python to Java

BLEU EM CodeBLEU CA BLEU EM CodeBLEU CA
Warm-start w/ PD 59.5 2.5 57.1 37.9 62.6 1.7 65.9 43.8
Proposed approach 63.2 2.5 60.4 35.4 64.1 1.2 65.9 43.8

Table 4: Comparison between PLBART warm-started using parallel data (PD) and our approach to summarize and
generate to back-translate on the fly during the initial steps of back-translation training.

Data Source
Java to Python Python to Java

BLEU EM CodeBLEU CA BLEU EM CodeBLEU CA
Github 63.2 2.5 60.4 35.4 64.1 1.2 65.9 43.8
CodeNet 65.6 1.6 61.7 50.9 65.1 1.2 68.5 46.5

Table 5: PLBART evaluation results when our proposed framework uses data from Github (available via BigQuery
(Hoffa, 2016)) and competitive programming sites (available via CodeNet (Puri et al., 2021)).

CodeNet collected from two online judge websites.484

We refer to this dataset as in-domain data, and we485

compare its usage with Github data on BT-based486

training. The results in Table 5 show that the use of487

in-domain data significantly boosts the translation488

performance, notably in Java-to-Python translation.489

A detailed error analysis reveals that such perfor-490

mance boost is due to reduction in TypeError.491

Due to the page limit, we present the findings of492

the error analysis in the Appendix.493

In addition, we discuss the limitations and risks494

of using our proposed model in the Appendix.495

6 Related Work496

Programming Language Translation Translat-497

ing programs or source code across different pro-498

gramming languages (PL) requires a profound un-499

derstanding of the PLs. Having strictly defined500

syntax and semantics, PLs are suitable for phrase-501

based statistical machine translation (Nguyen et al.,502

2013; Karaivanov et al., 2014; Aggarwal et al.,503

2015). Chen et al. (2018) introduced a tree to tree504

machine translation to translate programs and to505

learn the syntactic alignment between source and506

target PL. Recently proposed pretrained program-507

ming language models showed promising results508

in translating programs across PLs (Feng et al.,509

2020b; Guo et al., 2021; Ahmad et al., 2021a,b).510

However, these approaches require a set of parallel511

programs to train the encoder-decoder model.512

Recently proposed Transcoder (Lachaux et al.,513

2020) shows initial success results in unsupervised514

program translation, eliminating the requirement515

of bi-modal data. They achieve such jointly train-516

ing a model using XLM (Conneau and Lample,517

2019), Denoising Auto Encoding (DAE) (Vincent518

et al., 2008), and Back-Translation(BT) (Lample519

et al., 2018a). This work empirically investigated 520

the suitability of adopting BT to train existing pre- 521

trained encoder-decoder models and proposed an 522

alternative via summarization and generation. 523

Unsupervised Machine Translation via Back- 524

translation Gathering sufficiently large parallel 525

corpora has been a major challenge for Machine 526

Translation (MT) (Guzmán et al., 2019). Several 527

research efforts are invested in learning MT using 528

monolingual data (Artetxe et al., 2018a,b; Lachaux 529

et al., 2020) to solve this problem. For example, 530

Gulcehre et al. (2015) proposed integration of a 531

Language model integrated into the decoder. He 532

et al. (2016) proposed Neural MT (NMT) as a bidi- 533

rectional and dual learning task. More recent ad- 534

vancements in unsupervised MT leverages back- 535

translation (BT) (Sennrich et al., 2016; Lample 536

et al., 2018a,b). In back-translation, the target-to- 537

source model generates noisy sources given tar- 538

get sequences and then trains the source-to-target 539

model to reconstruct the targets and vice versa. 540

While BT has been widely adopted for unsuper- 541

vised NMT, it is used in other applications (Zhu 542

et al., 2017; Hoffman et al., 2018; Shen et al., 2017; 543

Yang et al., 2018; Zhang et al., 2019). 544

7 Conclusion 545

In this research, we show that pretrained sequence- 546

to-sequence models (e.g., PLBART) are not suit- 547

able for direct adaptation via back-translation to 548

learn to translate. To address the issue, we pro- 549

pose to use code summarization and generation as 550

an alternative to performing back-translation. We 551

show that our proposed approach turns PLBART 552

into a translation model that performs comparably 553

to existing unsupervised translation models. 554

8

References555

Karan Aggarwal, Mohammad Salameh, and Abram556
Hindle. 2015. Using machine translation for con-557
verting python 2 to python 3 code. Technical report,558
PeerJ PrePrints.559

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and560
Kai-Wei Chang. 2021a. Unified pre-training for pro-561
gram understanding and generation. In Proceedings562
of the 2021 Conference of the North American Chap-563
ter of the Association for Computational Linguistics:564
Human Language Technologies, pages 2655–2668,565
Online. Association for Computational Linguistics.566

Wasi Uddin Ahmad, Md Golam Rahman Tushar,567
Saikat Chakraborty, and Kai-Wei Chang. 2021b.568
Avatar: A parallel corpus for java-python program569
translation. arXiv preprint arXiv:2108.11590.570

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.571
2018a. Unsupervised statistical machine transla-572
tion. In Proceedings of the 2018 Conference on573
Empirical Methods in Natural Language Processing,574
pages 3632–3642, Brussels, Belgium. Association575
for Computational Linguistics.576

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and577
Kyunghyun Cho. 2018b. Unsupervised neural ma-578
chine translation. In International Conference on579
Learning Representations.580

Mikel Artetxe and Holger Schwenk. 2019. Mas-581
sively multilingual sentence embeddings for zero-582
shot cross-lingual transfer and beyond. Transac-583
tions of the Association for Computational Linguis-584
tics, 7:597–610.585

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-586
gio. 2015. Neural machine translation by jointly587
learning to align and translate. In International Con-588
ference on Learning Representations.589

Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-590
to-tree neural networks for program translation. In591
Advances in Neural Information Processing Systems592
31, pages 2547–2557. Curran Associates, Inc.593

Alexis Conneau and Guillaume Lample. 2019. Cross-594
lingual language model pretraining. In H. Wal-595
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,596
E. Fox, and R. Garnett, editors, Advances in Neu-597
ral Information Processing Systems 32, pages 7059–598
7069. Curran Associates, Inc.599

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and600
Kristina Toutanova. 2019. BERT: Pre-training of601
deep bidirectional transformers for language under-602
standing. In Proceedings of the 2019 Conference603
of the North American Chapter of the Association604
for Computational Linguistics: Human Language605
Technologies, Volume 1 (Long and Short Papers),606
pages 4171–4186, Minneapolis, Minnesota. Associ-607
ation for Computational Linguistics.608

Yangruibo Ding, Luca Buratti, Saurabh Pujar, Alessan- 609
dro Morari, Baishakhi Ray, and Saikat Chakraborty. 610
2021. Contrastive learning for source code with 611
structural and functional properties. arXiv preprint 612
arXiv:2110.03868. 613

Sergey Edunov, Myle Ott, Michael Auli, and David 614
Grangier. 2018. Understanding back-translation at 615
scale. In Proceedings of the 2018 Conference on 616
Empirical Methods in Natural Language Processing, 617
pages 489–500, Brussels, Belgium. Association for 618
Computational Linguistics. 619

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, 620
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing 621
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020a. 622
CodeBERT: A pre-trained model for programming 623
and natural languages. In Findings of the Associa- 624
tion for Computational Linguistics: EMNLP 2020, 625
pages 1536–1547, Online. Association for Compu- 626
tational Linguistics. 627

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, 628
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing 629
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020b. 630
CodeBERT: A pre-trained model for programming 631
and natural languages. In Findings of the Associa- 632
tion for Computational Linguistics: EMNLP 2020, 633
pages 1536–1547, Online. Association for Compu- 634
tational Linguistics. 635

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun 636
Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares, 637
Holger Schwenk, and Yoshua Bengio. 2015. On us- 638
ing monolingual corpora in neural machine transla- 639
tion. arXiv preprint arXiv:1503.03535. 640

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu 641
Tang, Shujie Liu, Long Zhou, Nan Duan, Jian Yin, 642
Daxin Jiang, et al. 2021. Graphcodebert: Pre- 643
training code representations with data flow. In 644
International Conference on Learning Representa- 645
tions. 646

Francisco Guzmán, Peng-Jen Chen, Myle Ott, Juan 647
Pino, Guillaume Lample, Philipp Koehn, Vishrav 648
Chaudhary, and Marc’Aurelio Ranzato. 2019. The 649
FLORES evaluation datasets for low-resource ma- 650
chine translation: Nepali–English and Sinhala– 651
English. In Proceedings of the 2019 Conference on 652
Empirical Methods in Natural Language Processing 653
and the 9th International Joint Conference on Natu- 654
ral Language Processing (EMNLP-IJCNLP), pages 655
6098–6111, Hong Kong, China. Association for 656
Computational Linguistics. 657

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu, 658
Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual learn- 659
ing for machine translation. In Advances in Neural 660
Information Processing Systems, volume 29. Curran 661
Associates, Inc. 662

Felipe Hoffa. 2016. Github on bigquery: Analyze all 663
the open source code. 664

9

https://peerj.com/preprints/1459.pdf
https://peerj.com/preprints/1459.pdf
https://peerj.com/preprints/1459.pdf
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://doi.org/10.18653/v1/2021.naacl-main.211
https://arxiv.org/abs/2108.11590
https://arxiv.org/abs/2108.11590
https://arxiv.org/abs/2108.11590
https://doi.org/10.18653/v1/D18-1399
https://doi.org/10.18653/v1/D18-1399
https://doi.org/10.18653/v1/D18-1399
https://openreview.net/pdf?id=Sy2ogebAW
https://openreview.net/pdf?id=Sy2ogebAW
https://openreview.net/pdf?id=Sy2ogebAW
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
http://papers.nips.cc/paper/7521-tree-to-tree-neural-networks-for-program-translation.pdf
http://papers.nips.cc/paper/7521-tree-to-tree-neural-networks-for-program-translation.pdf
http://papers.nips.cc/paper/7521-tree-to-tree-neural-networks-for-program-translation.pdf
http://papers.nips.cc/paper/8928-cross-lingual-language-model-pretraining.pdf
http://papers.nips.cc/paper/8928-cross-lingual-language-model-pretraining.pdf
http://papers.nips.cc/paper/8928-cross-lingual-language-model-pretraining.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2110.03868
https://arxiv.org/abs/2110.03868
https://arxiv.org/abs/2110.03868
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://www.aclweb.org/anthology/2020.findings-emnlp.139
https://www.aclweb.org/anthology/2020.findings-emnlp.139
https://www.aclweb.org/anthology/2020.findings-emnlp.139
https://arxiv.org/abs/1503.03535
https://arxiv.org/abs/1503.03535
https://arxiv.org/abs/1503.03535
https://arxiv.org/abs/1503.03535
https://arxiv.org/abs/1503.03535
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
https://doi.org/10.18653/v1/D19-1632
https://doi.org/10.18653/v1/D19-1632
https://doi.org/10.18653/v1/D19-1632
https://doi.org/10.18653/v1/D19-1632
https://doi.org/10.18653/v1/D19-1632
https://doi.org/10.18653/v1/D19-1632
https://doi.org/10.18653/v1/D19-1632
https://proceedings.neurips.cc/paper/2016/file/5b69b9cb83065d403869739ae7f0995e-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/5b69b9cb83065d403869739ae7f0995e-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/5b69b9cb83065d403869739ae7f0995e-Paper.pdf
https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code
https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code
https://cloud.google.com/blog/topics/public-datasets/github-on-bigquery-analyze-all-the-open-source-code

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,665
Phillip Isola, Kate Saenko, Alexei Efros, and Trevor666
Darrell. 2018. CyCADA: Cycle-consistent adversar-667
ial domain adaptation. In Proceedings of the 35th668
International Conference on Machine Learning, vol-669
ume 80 of Proceedings of Machine Learning Re-670
search, pages 1989–1998. PMLR.671

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and672
Zhi Jin. 2018. Summarizing source code with trans-673
ferred api knowledge. In Proceedings of the Twenty-674
Seventh International Joint Conference on Artificial675
Intelligence, IJCAI-18, pages 2269–2275. Interna-676
tional Joint Conferences on Artificial Intelligence677
Organization.678

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis679
Allamanis, and Marc Brockschmidt. 2019. Code-680
searchnet challenge: Evaluating the state of seman-681
tic code search. arXiv preprint arXiv:1909.09436.682

Svetoslav Karaivanov, Veselin Raychev, and Martin683
Vechev. 2014. Phrase-based statistical translation684
of programming languages. In Proceedings of the685
2014 ACM International Symposium on New Ideas,686
New Paradigms, and Reflections on Programming &687
Software, pages 173–184.688

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A689
method for stochastic optimization. In 3rd Inter-690
national Conference on Learning Representations,691
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,692
Conference Track Proceedings.693

Philipp Koen. 2004. Pharaoh: a beam search decoder694
for phrase-based statistical machine translation mod-695
els. In Proceedings of the 6th Conference of the696
Association for Machine Translation in the Ameri-697
cas: Technical Papers, pages 115–124, Washington,698
USA. Springer.699

Marie-Anne Lachaux, Baptiste Roziere, Lowik700
Chanussot, and Guillaume Lample. 2020. Unsu-701
pervised translation of programming languages.702
In Advances in Neural Information Processing703
Systems, volume 33, pages 20601–20611. Curran704
Associates, Inc.705

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,706
and Marc’Aurelio Ranzato. 2018a. Unsupervised707
machine translation using monolingual corpora only.708
In International Conference on Learning Represen-709
tations.710

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-711
dovic Denoyer, and Marc’Aurelio Ranzato. 2018b.712
Phrase-based & neural unsupervised machine trans-713
lation. In Proceedings of the 2018 Conference on714
Empirical Methods in Natural Language Processing,715
pages 5039–5049, Brussels, Belgium. Association716
for Computational Linguistics.717

Alexander LeClair and Collin McMillan. 2019. Rec-718
ommendations for datasets for source code summa-719
rization. In Proceedings of the 2019 Conference720

of the North American Chapter of the Association 721
for Computational Linguistics: Human Language 722
Technologies, Volume 1 (Long and Short Papers), 723
pages 3931–3937, Minneapolis, Minnesota. Associ- 724
ation for Computational Linguistics. 725

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey 726
Svyatkovskiy, Ambrosio Blanco, Colin Clement, 727
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021. 728
Codexglue: A machine learning benchmark dataset 729
for code understanding and generation. arXiv 730
preprint arXiv:2102.04664. 731

Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N 732
Nguyen. 2013. Lexical statistical machine transla- 733
tion for language migration. In Proceedings of the 734
2013 9th Joint Meeting on Foundations of Software 735
Engineering, pages 651–654. 736

Myle Ott, Sergey Edunov, Alexei Baevski, Angela 737
Fan, Sam Gross, Nathan Ng, David Grangier, and 738
Michael Auli. 2019. fairseq: A fast, extensible 739
toolkit for sequence modeling. In Proceedings of 740
the 2019 Conference of the North American Chap- 741
ter of the Association for Computational Linguistics 742
(Demonstrations), pages 48–53, Minneapolis, Min- 743
nesota. Association for Computational Linguistics. 744

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 745
Jing Zhu. 2002. Bleu: a method for automatic eval- 746
uation of machine translation. In Proceedings of 747
the 40th Annual Meeting of the Association for Com- 748
putational Linguistics, pages 311–318, Philadelphia, 749
Pennsylvania, USA. Association for Computational 750
Linguistics. 751

Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty, 752
Baishakhi Ray, and Kai-Wei Chang. 2021. Retrieval 753
augmented code generation and summarization. In 754
Findings of the Association for Computational Lin- 755
guistics: EMNLP 2021, pages 2719–2734, Punta 756
Cana, Dominican Republic. Association for Compu- 757
tational Linguistics. 758

Ruchir Puri, David S Kung, Geert Janssen, Wei 759
Zhang, Giacomo Domeniconi, Vladmir Zolotov, Ju- 760
lian Dolby, Jie Chen, Mihir Choudhury, Lindsey 761
Decker, et al. 2021. Project codenet: A large-scale 762
ai for code dataset for learning a diversity of coding 763
tasks. arXiv preprint arXiv:2105.12655. 764

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie 765
Liu, Duyu Tang, Ming Zhou, Ambrosio Blanco, and 766
Shuai Ma. 2020. Codebleu: a method for auto- 767
matic evaluation of code synthesis. arXiv preprint 768
arXiv:2009.10297. 769

Baptiste Roziere, Marie-Anne Lachaux, Marc 770
Szafraniec, and Guillaume Lample. 2021. Dobf: A 771
deobfuscation pre-training objective for program- 772
ming languages. In Advances in Neural Information 773
Processing Systems. 774

Rico Sennrich, Barry Haddow, and Alexandra Birch. 775
2016. Improving neural machine translation mod- 776
els with monolingual data. In Proceedings of the 777

10

https://proceedings.mlr.press/v80/hoffman18a.html
https://proceedings.mlr.press/v80/hoffman18a.html
https://proceedings.mlr.press/v80/hoffman18a.html
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.24963/ijcai.2018/314
https://doi.org/10.24963/ijcai.2018/314
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://doi.org/10.1145/2661136.2661148
https://doi.org/10.1145/2661136.2661148
https://doi.org/10.1145/2661136.2661148
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://link.springer.com/chapter/10.1007/978-3-540-30194-3_13
https://link.springer.com/chapter/10.1007/978-3-540-30194-3_13
https://link.springer.com/chapter/10.1007/978-3-540-30194-3_13
https://link.springer.com/chapter/10.1007/978-3-540-30194-3_13
https://link.springer.com/chapter/10.1007/978-3-540-30194-3_13
https://proceedings.neurips.cc/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://openreview.net/forum?id=rkYTTf-AZ
https://openreview.net/forum?id=rkYTTf-AZ
https://openreview.net/forum?id=rkYTTf-AZ
https://doi.org/10.18653/v1/D18-1549
https://doi.org/10.18653/v1/D18-1549
https://doi.org/10.18653/v1/D18-1549
https://doi.org/10.18653/v1/N19-1394
https://doi.org/10.18653/v1/N19-1394
https://doi.org/10.18653/v1/N19-1394
https://doi.org/10.18653/v1/N19-1394
https://doi.org/10.18653/v1/N19-1394
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664
https://doi.org/10.1145/2491411.2494584
https://doi.org/10.1145/2491411.2494584
https://doi.org/10.1145/2491411.2494584
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/2021.findings-emnlp.232
https://aclanthology.org/2021.findings-emnlp.232
https://aclanthology.org/2021.findings-emnlp.232
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2105.12655
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2102.07492
https://arxiv.org/abs/2102.07492
https://arxiv.org/abs/2102.07492
https://arxiv.org/abs/2102.07492
https://arxiv.org/abs/2102.07492
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009

54th Annual Meeting of the Association for Compu-778
tational Linguistics (Volume 1: Long Papers), pages779
86–96, Berlin, Germany. Association for Computa-780
tional Linguistics.781

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi782
Jaakkola. 2017. Style transfer from non-parallel text783
by cross-alignment. In Advances in Neural Informa-784
tion Processing Systems 30.785

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-786
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-787
gela Fan. 2021. Multilingual translation from de-788
noising pre-training. In Findings of the Association789
for Computational Linguistics: ACL-IJCNLP 2021,790
pages 3450–3466, Online. Association for Computa-791
tional Linguistics.792

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob793
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz794
Kaiser, and Illia Polosukhin. 2017. Attention is all795
you need. In Advances in Neural Information Pro-796
cessing Systems 30, pages 5998–6008. Curran Asso-797
ciates, Inc.798

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and799
Pierre-Antoine Manzagol. 2008. Extracting and800
composing robust features with denoising autoen-801
coders. In Proceedings of the 25th international con-802
ference on Machine learning, pages 1096–1103.803

Yao Wan, Zhou Zhao, Min Yang, Guandong Xu,804
Haochao Ying, Jian Wu, and Philip S. Yu. 2018. Im-805
proving automatic source code summarization via806
deep reinforcement learning. In Proceedings of807
the 33rd ACM/IEEE International Conference on808
Automated Software Engineering, ASE 2018, page809
397–407, New York, NY, USA. Association for810
Computing Machinery.811

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.812
Hoi. 2021. CodeT5: Identifier-aware unified pre-813
trained encoder-decoder models for code under-814
standing and generation. In Proceedings of the 2021815
Conference on Empirical Methods in Natural Lan-816
guage Processing, pages 8696–8708, Online and817
Punta Cana, Dominican Republic. Association for818
Computational Linguistics.819

Zichao Yang, Zhiting Hu, Chris Dyer, Eric P Xing, and820
Taylor Berg-Kirkpatrick. 2018. Unsupervised text821
style transfer using language models as discrimina-822
tors. In Proceedings of the 32nd International Con-823
ference on Neural Information Processing Systems,824
pages 7298–7309.825

Zhirui Zhang, Shuo Ren, Shujie Liu, Jianyong Wang,826
Peng Chen, Mu Li, Ming Zhou, and Enhong Chen.827
2019. Style transfer as unsupervised machine trans-828
lation. In Thirty-Third AAAI Conference on Artifi-829
cial Intelligence.830

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A831
Efros. 2017. Unpaired image-to-image translation832

using cycle-consistent adversarial networks. In Pro- 833
ceedings of the IEEE international conference on 834
computer vision, pages 2223–2232. 835

11

https://papers.nips.cc/paper/2017/file/2d2c8394e31101a261abf1784302bf75-Paper.pdf
https://papers.nips.cc/paper/2017/file/2d2c8394e31101a261abf1784302bf75-Paper.pdf
https://papers.nips.cc/paper/2017/file/2d2c8394e31101a261abf1784302bf75-Paper.pdf
https://doi.org/10.18653/v1/2021.findings-acl.304
https://doi.org/10.18653/v1/2021.findings-acl.304
https://doi.org/10.18653/v1/2021.findings-acl.304
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://doi.org/10.1145/3238147.3238206
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://dl.acm.org/doi/pdf/10.5555/3327757.3327831
https://dl.acm.org/doi/pdf/10.5555/3327757.3327831
https://dl.acm.org/doi/pdf/10.5555/3327757.3327831
https://dl.acm.org/doi/pdf/10.5555/3327757.3327831
https://dl.acm.org/doi/pdf/10.5555/3327757.3327831
https://arxiv.org/abs/1808.07894
https://arxiv.org/abs/1808.07894
https://arxiv.org/abs/1808.07894
https://openaccess.thecvf.com/content_ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2017/papers/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.pdf

Supplementary Material: Appendices

TransCoder PLBART
Java→ Python
#Tests 464 464
Error 149 146
Failure 93 146
Success 218 164

EM 17 24
Timeout 4 8
Python→ Java
#Tests 482 482
Error 201 212
Failure 118 53
Success 157 211

EM 6 2
Timeout 6 6

Table 6: Detailed results of computational accuracy us-
ing greedy decoding for Java↔ Python translation.

A Analysis of Computational Accuracy836

Table 6 shows the breakdown of computational837

accuracies for Java-to-Python and Python-to-Java838

translation for TransCoder and our proposed ap-839

proach using PLBART. We execute the generated840

function and match the output w.r.t. the expected841

output. TransCoder results in 149 error cases, 93842

failure cases, and 218 success cases in Java-to-843

Python translation, with 17 solutions matching the844

ground truth. In contrast, PLBART results in 146845

error cases, 146 failure cases, 164 success cases.846

Out of these 164 successes in PLBART, 24 solu-847

tions exactly match the target solution.848

For Python-Java translation, TransCoder results849

in 201 errors, 118 failures, and 157 successes, out850

of which 6 are an exact match. On the other hand,851

in the case of PLBART, there are 212 error cases,852

53 failure cases, and 211 success cases, out of853

which 2 exactly match the target solution.854

B Error Analysis855

We further analyze the error cases for TransCoder856

and our proposed approach using PLBART. Since857

Python is an interpreted language, syntactic and858

semantic errors are caught at runtime. Thus, we859

categorize all errors for Java-to-Python translation860

as runtime errors. Table 7 shows the errors in861

both Java-to-Python and Python-to-Java translation.862

While PLBART is susceptible to TypeError,863

Error Category TransCoder PLBART

#Errors (Java→ Python) 149 146

Compilation - -

Runtime 149 146
TypeError 47 61
IndexError 18 20
NameError 17 16
ValueError 11 15
UnboundLocalError 13 11
Others 17 14
SyntaxError 26 9

#Errors (Python→ Java) 201 212

Compilation 151 180
TypeError 89 108
CantFindSymbol 23 30
SyntaxError 14 25
BadOperand 15 12
Others 10 5

Runtime 50 27
IndexOutOfBoundsE. 40 15
NumberFormatE. 5 6
NullPointerE. 2 3
Others 3 3

Table 7: Category of errors made by the TransCoder
and PLBART translation models. The error categories
are sorted based on the PLBART’s error count on the
respective category. In Python → Java runtime error
categories, “E.” stands for “Exception”.

TransCoder is disproportionately susceptible to 864

SyntaxError. In the case of Python-to-Java 865

translation, PLBART exhibits more Compilation 866

errors, but TransCoder exhibits more Runtime er- 867

rors. The most common type of compilation errors 868

in both TransCoder and PLBART is TypeError. 869

The most common runtime error in Python-to-Java 870

translation is InderOutOfBoundException 871

for both models, where TransCoder exhibits more 872

than twice the number of such errors in PLBART. 873

Finally, we identified the top five error categories 874

(which accounts for 123 errors out of 146) ex- 875

hibited by PLBART in Java-to-Python translation 876

and analyzed the error messages. In most cases, 877

TypeError and ValueError are due to mis- 878

match in underlying data type of variable. Table 8 879

shows the detailed statistics of different error types, 880

sub-types, and their frequencies. 881

12

Error Category Count

Type Error 61
list indices must be integers or slices, not A 18
A object does not support item assignment 13
A object cannot be interpreted as an integer 8
unsupported/bad operand type(s) 10
int object is not iterable/callable/subscriptable 6
Others 6

Index Error 20
B index out of range 19
others 1

Name Error 16
name C is not defined 16

Value Error 15
not enough values to unpack 7
too many values to unpack 3
the truth value of an array with more than one element is ambiguous 3
others 2

Unbound Local Error 11
local variable D referenced before assignment 11

Table 8: Analyzing the five most frequent error cases (123 out of 146) encountered in PLBART generated Java to
Python translation. A and B indicate {bool, int, tuple, str, range} and {string, list}, respectively. C and D indicate
identifier (class, function, variable) names.

C Qualitative Examples882

Figure 4 shows an example of Java-to-Python trans-883

lation by PLBART. The translated code is both884

syntactically and semantically correct i.e., our com-885

piler could successfully parse and build the trans-886

lated code. It passed 2 test cases out of 10 when exe-887

cuted. The translated code is slightly different from888

the input Java code. In particular, line 13 in the889

input Java code is a loop that iterates backward (de-890

creasing order). However, line 12 in the generated891

python code iterates forward (increasing order). If892

the generated python code was range(c-1, 0,893

-1) instead of range(c-1), it would pass all894

the test cases. We attribute such behavior to the895

fact that range(*) is much more frequent pattern896

than range(*, 0, -1) in python code.897

D TransCoder vs. PLBART898

As we consider TransCoder as the primary base-899

line of our proposed approach using PLBART, for900

the sake of fairness, we compare them in terms901

of model structure and training setting. Table 9902

presents the comparison. TransCoder and PLBART903

both use the Transformer (Vaswani et al., 2017) ar-904

chitecture, but TransCoder is a twice as large model 905

as PLBART. Both the models have gone through a 906

two-stage training process. In Stage-1, TransCoder 907

is pre-trained via MLM using 920B tokens, while 908

PLBART is pre-trained via DAE using 87B tokens. 909

In Stage-2, TransCoder leverages 625M tokens and 910

jointly trained via DAE and BT. In comparison, 911

PLBART is trained via BT using 430M tokens. 912

Why TransCoder does not suffer from the 913

same language generation issue? In Stage-1 914

pre-training, TransCoder only trains the Trans- 915

former Encoder and then initializes a decoder with 916

Encoders’ parameters, and the cross attention sub- 917

layers are randomly initialized. We speculate that 918

such random initialization leaves TransCoder un- 919

biased towards generating in the same language 920

as input. Moreover, PLBART uses language ID 921

token as a prefix to generate in the target lan- 922

guage. We noticed that PLBART’s decoder dis- 923

regards the prefix token if not fine-tuned to gen- 924

erate in the target language. On the other hand, 925

TransCoder uses language embeddings with each 926

token in the input. Intuitively, this does not allow 927

the TransCoder’s decoder to ignore the language 928

13

Input function in Java

1 s t a t i c i n t sortedCount (i n t mat [] [] ,
2 i n t r , i n t c) {
3 i n t r e s u l t = 0 ;
4 f o r (i n t i = 0 ; i < r ; i ++) {
5 i n t j ;
6 f o r (j = 0 ; j < c − 1; j ++)
7 i f (mat [i] [j + 1] <= mat [i] [j])
8 break ;
9 i f (j == c − 1) r e s u l t ++;

10 }
11 f o r (i n t i = 0 ; i < r ; i ++) {
12 i n t j ;
13 f o r (j = c − 1; j > 0 ; j −−)
14 i f (mat [i] [j − 1] <= mat [i] [j])
15 break ;
16 i f (c > 1 && j == 0) r e s u l t ++;
17 }
18 r e t u r n r e s u l t ;
19 }

Translated function in Python

1 def sor ted_count (mat , r , c) :
2 r e s u l t = 0
3 f o r i i n range (r) :
4 j = 0
5 f o r j i n range (c − 1) :
6 i f mat [i] [j + 1] <= mat [i] [j] :
7 break
8 i f j == c − 1:
9 r e s u l t += 1

10 f o r i i n range (r) :
11 j = c − 1
12 f o r j i n range (c − 1) :
13 i f mat [i] [j − 1] <= mat [i] [j] :
14 break
15 i f c > 1 and j == 0:
16 r e s u l t += 1
17 r e t u r n r e s u l t

Figure 4: An example of Java to Python translation by PLBART that passes 2 out of 10 unit test cases. Line no. 13
(marked in green) in the Java function is incorrectly translated in python (line no. 12, marked in red). Replacing
the range function parameter “(c-1)” by “(c - 1, 0, -1)” would make the translated function pass all the test cases.

TransCoder PLBART
#layers (encoder) 6 6
#layers (decoder) 6 6
#heads 8 12
Model dim 1024 768
Vocab size 64,000 50,000
Total parameters 312 M 140 M
Stage1: Pre-training
Objective MLM DAE
Total tokens 920 B 87 B
Token types BPE Sentencepiece
Languages Java, Python, C++ Java, Python, English
Stage2: Training
Objective DAE+BT BT
Total tokens 625 M 430 M
Token types BPE Sentencepiece
Languages Java, Python, C++ Java, Python

Table 9: TransCoder vs. PLBART.

information. For example, with position index “0”929

and language ID “Python”, TransCoder is more930

likely to generate “def” token and less likely to931

generate “static” or “int” since they do not ap-932

pear in the Python language. In essence, unlike933

PLBART, TransCoder does not suffer from the is-934

sue of sequence-to-sequence models being unable935

to generate across languages.936

E Limitations and Risks937

One of the risks of using our developed translation938

model is we used the Github dataset for training939

that may contain information that uniquely identi- 940

fies an individual or offensive content. Since we 941

are developing the translation model for research 942

purposes only, we believe our usage of the Github 943

data does not violate their licensing terms and con- 944

ditions. While we do not present it as a justifica- 945

tion, the PLBART model was pre-trained on the 946

Github data that may include sensitive informa- 947

tion. As our intention is to develop a programming 948

language translation model, it is unlikely to gener- 949

ate sensitive information unless it is provided such 950

information as input. 951

14

