AMEMGYM: INTERACTIVE MEMORY BENCHMARKING FOR ASSISTANTS IN LONG-HORIZON CONVERSATIONS

Anonymous authors

000

001

002003004

005

006 007 008

010 011

012

013

014

015

016

017

018

019

021

023

024

027

028

030

031

033

035

036

037

038

040

042

043

045

Paper under double-blind review

ABSTRACT

Long-horizon interactions between users and LLM-based assistants necessitates effective memory management, yet current approaches face challenges in training and evaluation of memory. Existing memory benchmarks rely on static, off-policy data as context, limiting evaluation reliability and scalability. To address these gaps, we introduce AMEMGYM, an interactive environment enabling on-policy evaluation and optimization for memorydriven personalization. AMEMGYM employs structured data sampling to predefine user profiles, state-dependent questions, and state evolution trajectories, enabling cost-effective generation of high-quality, evaluation-aligned interactions. LLM-simulated users expose latent states through role-play while maintaining structured state consistency. Comprehensive metrics based on structured data guide both assessment and optimization of assistants. Extensive experiments reveal performance gaps in existing memory systems (e.g., RAG, long-context LLMs, and agentic memory) and corresponding reasons. AMEMGYM not only enables effective selection among competing approaches but also can potentially drive the self-evolution of memory management strategies. By bridging structured state evolution with free-form interactions, our framework provides a scalable, diagnostically rich environment for advancing memory capabilities in conversational agents.

1 Introduction

A crucial objective in the development of assistants based on Large Language Models (LLMs) is to achieve long-horizon conversational capabilities—that is, the ability to effectively organize, manage, and utilize memory across extended sequences of dialogue turns. Robust memory management forms the foundation for fulfilling complex user requests, tailoring responses to users' latest implicit states, and personalizing suggestions and recommendations based on interaction history. However, progress in advancing conversational memory systems for assistants is hampered by a critical bottleneck that affects both scalable training and reliable evaluation: the data used in existing benchmarks.

Figure 1: On-policy v.s. off-policy evaluation for assistants' memory.

Current benchmarks typically rely on static, off-policy data for evaluation (Xu et al., 2022; Wu et al., 2024; Hu et al., 2025), rather than on-policy interactions. Figure 1 shows the compar-

ison on two approaches. Off-policy evaluation, in which an assistant is tested on conversational data that it did not produce during actual interactions, presents several fundamental limitations. First, it fails to capture the assistant's true interactive property, as the evaluation data does not reflect the consequences of the as-

Table 1: A comparison of features across agent memory benchmarks.

Benchmark	Eval. Mode	Optim. Feedback	Automation Level	Context Length	Eval. Metrics
MSC (Xu et al., 2022)	Static	Х	Manual	1.2K	=
RealTalk (Lee et al., 2025)	Static	X	Manual	17K	Emotional Intelligence, Persona Simulation, Memory Probing (F1, accuracy)
DialSim (Kim et al., 2024)	Static	×	Manual	-	QA Accuracy
LoCoMo (Maharana et al., 2024)	Static	X	Semi-Automated	9.2K	QA Accuracy, Summarization, Generation
PerLTQA (Du et al., 2024)	Static	X	Semi-Automated	-	QA Accuracy
LongMemEval (Wu et al., 2024)	Static	×	Semi-Automated	Configurable (115K, 1.5M)	Retrieval Recall, QA Accuracy
PersonaMem (Jiang et al., 2025)	Static	×	Fully Automated	Configurable (32K, 128K, 1M)	QA Accuracy
AMEMGYM (This Work)	Interactive	✓	Fully Automated	Configurable	Overall (Accuracy, Normalized Memory Score) and Diagnosis (Write, Read, Utilization).

sistant's own conversational choices—a critical issue for evaluation realism. Second, because the evaluation is biased, memory optimization could be misguided to wrong directions. Finally, the manual curation of these evaluation scenarios (Lee et al., 2025; Kim et al., 2024) is costly and does not scale for comprehensive testing across diverse, long-horizon conversational contexts.

To enable on-policy evaluation and provide reliable feedback for optimization, it is essential to employ a simulated user that can strategically reveal information and pose relevant questions, a technique that has demonstrated promise in other domains such as tool use (Wang et al., 2023; Lu et al., 2025). However, deploying simulated users in open-ended conversational environments presents unique challenges. These include determining what information to disclose dynamically while maintaining a natural and coherent dialogue, as well as ensuring the generation of diverse, high-quality data that remains sufficiently controlled for reliable evaluation.

To address these gaps, we introduce AMEMGYM, an interactive environment designed for the on-policy evaluation and optimization of memory in long-horizon conversations. AMEMGYM grounds free-form interactions in structured data generated through a schema-based approach. The framework predefines user profiles, state-dependent questions, and state evolution trajectories to enable the cost-effective generation of high-quality interactions aligned with evaluation targets. LLM-simulated users then expose these latent states through natural role-play, ensuring consistency with the structured state evolution. Periodic evaluation during interactions, using both overall and diagnostic metrics, guides assessment and optimization of memory capabilities. Our contributions are threefold:

- We introduce AMEMGYM, a novel framework for the on-policy evaluation of conversational memory. By grounding free-form interactions in a structured state evolution, AMEMGYM creates a scalable and diagnostically rich environment to reliably assess and advance the memory capabilities of conversational agents.
- 2. We empirically demonstrate the reuse bias and potential drawbacks of off-policy evaluation, and conduct the first **extensive on-policy evaluation** of popular memory systems. Our results highlight the reliability of AMEMGYM for evaluating memory in the context of personalization.
- 3. We provide a proof of concept for **agent self-evolution**, showing that an agent can use environmental feedback within AMEMGYM to autonomously refine its memory management policy.

2 RELATED WORK

Benchmarks for agent memory evaluation. The evaluation of agent memory has progressed from long-context, single-turn tasks like the needle-in-a-haystack (NIAH) test and NoLiMa (Modarressi et al., 2025) to more realistic multi-turn conversational datasets such as Multi-Session Chat (MSC) (Xu et al., 2022), RealTalk (Lee et al., 2025), and DialSim (Kim et al., 2024). While these introduced more authentic dialogue patterns, their reliance on manual curation limited their scale and diversity. To address this, automated data generation frameworks like LoCoMo (Maharana et al., 2024), PerLTQA (Du et al., 2024),

Figure 2: An overview of the AMemGym framework.

LongMemEval (Wu et al., 2024), PersonaMem (Jiang et al., 2025), and MemoryAgentBench (Hu et al., 2025) were developed. However, a critical limitation unites nearly all existing benchmarks: they rely on static, off-policy data (Table 1). This approach fails to capture an agent's true interactive performance, as the evaluation data does not reflect the consequences of the agent's own actions, misleading optimization.

Interactive agent evaluation by user simulation. An alternative line of research has focused on interactive, on-policy evaluation environments that employ user simulators. This approach has proven effective in domains like tool-use, where simulators provide robust on-policy evaluation (Wang et al., 2023; Lu et al., 2025). Similarly, efforts like CollabLLM (Wu et al., 2025) have successfully employed user simulation to train models for improved long-term collaboration, enabling them to move beyond passive responses and actively help users achieve their goals. Applying this interactive paradigm to memory evaluation, however, introduces unique challenges: a simulator must strategically reveal information over a long-horizon conversation while maintaining a natural flow and generating interactions that are both diverse and controlled enough for reliable assessment. AMEMGYM directly addresses these challenges by introducing a schemabased approach that grounds free-form, LLM-driven role-play in a structured state evolution plan, which enables the controlled and scalable generation of on-policy, memory-focused evaluation scenarios.

3 AMEMGYM

AMEMGYM provides an interactive environment for benchmarking and optimizing personal assistant memory, with the scenario and the task described below.

LLM-based Assistants. An LLM-based assistant takes as input the observation (user input) o_t and provides output responses a_t (a sequence of tokens) based on its policy π and its internal memory at that time m_t (e.g., tokens in the context window, text snippets written to an external index, or its own parameters): $o_t, m_t \xrightarrow{\pi} a_t, m_{t+1}$. The internal memory is updated through interactions.

Personalization with Memory. To effectively serve users with dynamically evolving personal states, assistants described above must continuously track user states through interaction histories $\tau_t = [o_0, a_0, o_1, a_1, \dots, o_t]$ and deliver responses optimized for their latest latent states captured by m_t . In reality,

the length of τ_t often goes well beyond the optimal context length of most LLMs. Therefore, an effective information compression or memory mechanism is crucial for assistants to maintain accurate and up-to-date user modeling. Here, *states* refer to comprehensive personal information crucial for enabling the intelligent assistant to sustain meaningful conversations and address user-relevant concerns. This includes user preferences, habits, plans, and environmental conditions, among other factors.

An overview of our framework¹ is presented in Figure 2. We begin by describing the structured data sampling process that forms the foundation of our evaluation framework (§ 3.1), then detail how on-policy interactions are generated with grounded structured data (§ 3.2). We present comprehensive evaluation metrics that assess both overall memory performance and provide diagnosis for different memory operations (§ 3.3). Finally, we provide meta-evaluation results to show reliability of the fully-automated process (§ 3.4).

3.1 GENERATING STRUCTURED DATA FOR ON-POLICY INTERACTION

Evaluating memory is challenging due to the high cost of verifying correctness in long, noisy conversations. To address this, we use a reverse-engineering strategy: starting from target evaluation questions, we trace back to identify key user state variables for personalization, their possible temporal changes for a simulated user, and the personalized responses for each experienced state combination. This servers as a structured foundation that enables grounded interactions and automatic evaluation. Detailed prompts for each sampling step are provided in Appendix C.1.

User Profile Sampling. We begin by selecting user profiles, which provide background information for subsequent steps. For broad domain coverage, we use 100K personas from Nemotron-Personas (Meyer & Corneil, 2025) as the pool, but custom sampling strategies can be easily applied for specific applications to better accommodate target real-world distributions.

Question Sampling. The process starts with a user profile, p, used to sample a set of evaluation questions, \mathcal{Q}_p . For each question $q_i \in \mathcal{Q}_p$, an LLM extracts the information types required for a personalized answer. These types \mathcal{S}'_i are occasionally redundant across questions (e.g., "experience_level" and "years_of_work"). Therefore, they are merged and refined by an LLM into a canonical global state schema, $\Sigma = \bigcup_i \mathcal{S}'_i$. The schema defines a set of M unique state variables (s_j) and their possible discrete values set (V_j) : $\Sigma = \{(s_j, V_j)\}_{j=1}^M$. This comprehensive schema serves as the complete set of trackable user states for the entire simulation.

User States Evolution. We then simulate a realistic progression of the user's states over N_p periods. The state at the end of each period t is captured by a **state vector**, σ_t , a full assignment where each variable s_j is given a value v_j from its corresponding set of possibilities V_j : $\sigma_t = \{(s_j, v_j) \mid (s_j, V_j) \in \Sigma\}$. Each state transition is prompted by a narrative **life event**, e_t , providing context for the change $(\sigma_{t-1} \stackrel{e_t}{\longrightarrow} \sigma_t)$. The resulting **state evolution trajectory**, $\mathcal{T}_{\sigma} = (\sigma_0, \dots, \sigma_{N_p})$, provides the ground-truth for the user's state throughout the simulation.

To create the inputs for on-policy interaction in each session, we generate a series of natural language utterances that the simulated user will say initially. Within each period t, an utterance $u_{t,k}$ is designed to implicitly *expose* a small related subset of the user's current state, $\sigma_{\text{exposed}} \subset \sigma_t$. This is generated by a function G_{utt} conditioned on the states to be revealed and the user's profile: $u_{t,k} = G_{\text{utt}}(\sigma_{\text{exposed}}, p)$. These pre-generated, state-bearing utterances form a core part of the structured data blueprint. They are used to initiate conversational turns during the on-policy interaction phase (§ 3.2).

Personalized Response Generation. Finally, to create the evaluation ground truth, we generate personalized answers for each predefined question q_i . Each question requires a subset of state variables, $S_{\text{req}}(q_i) \subset \{s_1, \ldots, s_M\}$, and a specific assignment of values to these variables is a **state variant**, ν :

¹We use gpt-4.1 (OpenAI, 2025) for structured data generation and user simulation.

 $\nu = \{(s_j, v_j) \mid s_j \in \mathcal{S}_{req}(q_i), v_j \in V_j\}$. For each pair (q_i, ν) , we generate a distinct answer $r_{i,\nu}$. To ensure a high-quality, one-to-one mapping, a reflection step verifies that the answer is unambiguous: it is accepted only if an LLM classifier C can recover the variant from the question-answer pair, i.e., $C(q_i, r_{i,\nu}) = \nu$.

3.2 On-Policy Interaction

Different from prior static evaluation on long-context LLMs or memory agents (Xu et al., 2022; Maharana et al., 2024; Wu et al., 2024; Jiang et al., 2025), we sample on-policy interactions as in Figure 1. Given the offline structured data sampled in Section 3.1, our user simulator interacts with the target assistant to expose this information through natural conversation. This step outputs a (possibly long-context) dialogue history τ . Later in Section 4.2, we demonstrate the necessity of on-policy evaluation.

State Exposure. To enable reliable evaluation, key user states—those that change between periods—must be clearly reflected in the conversation history. This is achieved by using the grounded utterances $(u_{t,k})$ that were pre-generated as part of the structured data. For benchmarking consistency, we use these fixed initial state-bearing utterances to begin each conversational session, ensuring that the necessary information is introduced into the dialogue.

Role-Play with LLMs. Conversation generation is performed by a user LLM, which role-plays based on the user profile and state evolution. It is configured with: (1) a system prompt template incorporating the user profile, (2) current states σ_t , and (3) the latest conversation context. The user LLM produces responses conditioned on dialogue history and underlying states, ensuring coherent alignment between free-form conversation and structured state evolution.

3.3 EVALUATION METRICS

Given the grounded interactive environment, assistants are prompted to answer all evaluation questions after each interaction period. These responses provide feedback for agent builders to assess and optimize assistants (§ 4), and enable assistants to self-improve (§ 5), based on the evaluation metrics described below.

Overall Evaluation. We use the average question answering accuracy as the metric for evaluating end-to-end performance on our benchmark, denoted as the *overall* score. This metric captures the model's ability to integrate both personalization (tailoring responses based on specific user states) and memory (retaining user states from previous conversations) to achieve high performance. To provide a clearer view on memory, we introduce normalized *memory* scores. It isolates the memory component from raw task performance by normalizing the overall accuracy between a random baseline (lower bound) and an upper bound (UB) with perfect memory access. For each evaluation period, the score is computed as: $S_{\text{memory}} = \frac{S_{\text{overall}} - S_{\text{random}}}{S_{\text{UB}} - S_{\text{random}}}$. The upper bound S_{UB} is determined by providing the assistant with ground-truth user states at evaluation time, thereby entirely bypassing the memory retrieval process. It measures the assistant's reasoning and application capabilities when required information is perfectly available.

Diagnostic Evaluation. We decompose failures in overall question answering into three distinct operational stages of memory processing: *write*, *read*, and *utilization*. Corresponding failure rates enable systematic error attribution. For each user state, we query its value at every evaluation period. If the assistant demonstrates knowledge of all relevant state values but still fails to answer an overall evaluation question correctly, we classify this as a *utilization* failure. Otherwise, we examine the

Figure 3: An overview of diagnostic metrics: write, read, and utilization.

state query results at the nearest write position to distinguish between write and read failures (Figure 3).

3.4 META-EVALUATION

To validate the data quality of AMEMGYM, we conducted a two-stage meta-evaluation with human annotators. First, we assessed *state exposure*, confirming that user states are clearly introduced into the conversation. On a sample of 200 queries, annotators found that the state information was successfully conveyed with an average quality score of 99.1% and an inter-annotator agreement (Gwet's AC1 (Gwet, 2001)) of 96.8%. Second, we evaluated *conversational state integrity* to ensure that the simulated user's dialogue does not contradict established ground-truth states over time. Across 748 annotated items from 40 conversations, the dialogue maintained a 99.2% consistency score, with a Gwet's AC1 of 98.2%. These results confirm that AMEMGYM generates high-fidelity data, providing a reliable foundation for memory evaluation. Details of this evaluation are in Appendix D.

4 MEMORY EVALUATION WITH AMEMGYM

4.1 EVALUATION SETUP

Data Configuration. AMEMGYM offers configurable parameters to control evaluation difficulty. We focus on two configurations to showcase flexibility and ensure reproducibility, differing in three key dimensions: the number of evolution periods N_p (quantity of key information), required states per question N_s (reasoning depth), and interaction turns per state exposure N_i (noise level). We define two variants using the tuple (N_p, N_s, N_i) : base (10, 2, 4) which requires 128K+ context window and extra (20, 3, 10) which requires 512K+ context window. Both variants use 20 randomly sampled user profiles with 10 evaluation questions each, totaling 200 questions tested at N_p+1 positions with potentially different answers due to evolving user states. We present base results in the main text as they are sufficiently challenging. See Appendix F.1 for extra results and other configurable parameters.

Memory Implementation. Existing memory systems for LLM-based assistants, despite implementation variations, share a common design philosophy of constructing memory hierarchies to exchange between short-term and long-term memory (Packer et al., 2023; Chhikara et al., 2025; Xu et al., 2025). We abstract this connection by focusing on two key aspects: storage location (in-context vs. external) and writing strategy (agentic vs. direct).

As shown in Figure 4, we focus on the four memory implementations: *Native LLMs* (**LLM**) rely solely on context windows, maintaining long-term memory in-context as raw content. *Standard RAG* (**RAG**) uses Retrieval-Augmented Generation with external indexing for long-term storage in raw for-

Figure 4: Memory implementations.

mat. Agentic Write (External) (AWE) autonomously decides what to write to external long-term memory and retrieves using embedding models as in RAG. Agentic Write (In-Context) (AWI) operates similarly but stores long-term memory in-context without independent retrieval. For AWE, we additionally study critical parameters: memory update frequency (freq), minimum short-term messages in-context (ns), and retrieved memories count (topk).² We denote these configurations as AWE-(freq, ns, topk).³ All memory implementations use gpt-4.1-mini (OpenAI, 2025) for response generation and memory operations and text-embedding-3-small (OpenAI, 2024a) for embeddings to ensure a fair comparison.

²We implement AW and RAG variants using the open-source mem0 library (Chhikara et al., 2025).

³We use AWE-(2,4,30) as the default configuration.

Figure 5: Evaluation on native LLMs. Overall scores and normalized memory scores are both demonstrated.

We evaluate a diverse set of native LLMs, including claude-sonnet-4 (Anthropic, 2025), gemini-{2.5-flash, 2.5-flash-lite, 2.0-flash} (Google, 2024; 2025), gpt-{4.1, 4.1-mini} (OpenAI, 2025), deepseek-v3 (Liu et al., 2024), and gpt-40-mini (OpenAI, 2024b). All models are configured with max tokens as 8192 and temperature as 0. The prompts used for evaluation are provided in Appendix C.3. For user simulation, we employ gpt-4.1 and the additional study presented in Appendix F.2 indicate that the choice of user LLM has minimal impact on the evaluation results.

4.2 On-policy versus Off-policy Evaluation

Off-policy evaluation introduces reuse bias, undermining memory optimization and configuration selection, particularly for agents. All existing memory benchmarking studies use off-policy evaluation, testing models on pre-generated interaction traces that do not reflect their own conversational behavior. We directly compare on-policy and off-policy evaluation with AMEMGYM, where off-policy evaluation uses on-policy interaction traces from gpt-4.1 for memory updates and omits the interaction process.

Table 2: The on-policy v.s. off-policy comparison on memory scores of various assistants. Results on different native LLMs are listed in a separate table below. Memory agents use the same LLM (gpt-4.1-mini) for generation.

Memory Agents	On-policy ↑	Off-policy ↑	Δ Rank
AWE-(2,4,30)	.291	.253(.038)	▼ 3
AWE-(2,8,30)	.278	.271(.007)	_
AWE-(2,4,10)	.275	.273(.002)	▲ 2
AWE-(4,4,30)	.262	.229(.033)	▼ 3
AWE-(2,0,30)	.261	.262(.001)	▲ 2
AWE-(2,4,50)	.251	.248(.003)	▲ 1
AWE-(8,4,30)	.233	.221(.012)	▼ 1
RAG-(2,4,30)	.227	.241(.014)	▲ 2
LLM	.203	.198(.005)	▼ 1
AWI	.172	.199(.027)	▲ 1
LLMs	On-policy ↑	Off-policy ↑	Δ Rank
claude-sonnet-4	.336	.339(.003)	_
gemini-2.5-flash	.327	.317(.010)	-
gemini-2.5-flash-lite	.269	.204(.065)	▼ 2
gemini-2.0-flash	.244	.214(.030)	-
gpt-4.1	.244	.244(.000)	▲ 2
	202	.198(.005)	
gpt-4.1-mini	.203		_
gpt-4.1-mini deepseek-v3 gpt-4o-mini	.152	.165(.013)	_

Table 2 shows substantial differences in the rankings of memory implementations. Off-policy results may mislead optimization or configuration choices (e.g., trends for *ns* and *topk* differ). For LLM comparison, this bias is less pronounced, likely because LLMs are designed for universal distributions and exhibit more similar and consistent interactions. Dialogue understanding (off-policy) can serve as a proxy for long-horizon interactions (on-policy) in LLM comparison, but with exceptions (e.g., gemini-2.5-flash-lite). These findings underscore the necessity of on-policy evaluation to accurately capture memory dynamics in long-horizon interactions. We use on-policy results throughout the remainder of this paper.

4.3 EVALUATION ON NATIVE LLMS AND AGENTS

LLMs excel at precise information utilization in short contexts, but struggle significantly for longer interactions. As shown in Figure 5, all evaluated LLMs achieve $S_{\rm UB} > 0.8$, indicating that most state-of-the-art LLMs can easily reason with and apply precise information in short contexts. However, as the interaction history grows with state updates, their performance drops sharply, with most models falling below 50% of their upper bounds. Some models even perform no better than random guessing in later periods. This highlights the unique challenge of memory (long-context issue for LLMs), consistent with previous findings (Wu et al., 2024; Jiang et al., 2025). This trend is even more straightforward when using the normalized memory score. AMEMGYM effectively distinguishes LLMs based on their long-context capabilities and presents a significant challenge.

Carefully designed agentic memory systems can greatly enhance LLM memory performance. Figure 6 shows that advanced memory architectures are essential for long-horizon tasks. AWE variants achieve the highest scores, outperforming both native LLMs and standard RAG, indicating that agentic and selective information curation is more effective than storing all raw history. In contrast, AWI may lose crucial information due to aggressive filtering. Section 4.4 further analyzes these implementations using diagnostic metrics. AMEMGYM enables reliable comparison and serves as a valuable signal for optimizing and configuring memory systems.

Figure 6: Memory scores of different memory agents. We omit the overall score comparison as they use the same LLM (gpt-4.1-mini) for generation.

4.4 DIAGNOSIS ON MEMORY AGENTS

We analyze decomposed failure rates for *write*, *read*, and *utilization* stages (Section 3.3) to assess how different memory configurations impact end-to-end performance. Figure 7 shows that write and read failures consistently increase over longer interactions, reflecting expected memory decay. Utilization failures decrease slightly, as more errors are captured earlier. We now examine the specific effects of each memory setting.

Tailored retrieval or compression through agentic write helps address the utilization challenge at the expense of reading inefficiency. For high utilization failure show in Figure 7a, AWE and RAG improve utilization by leveraging an extra embedding model tailored for relevance modeling, while AWI uses agentic write to compress memorized information. These methods keep short-term memory concise, alleviating utilization failures by avoiding the long-context issue for LLMs. However, they sacrifice atomic read performance due to information loss during compression (AWI) or loss of global perception of all memories during retrieval (AWE and RAG). Write failures also differ: AWI lowers write failures by using local short-term memory with constrained size (no long-context issue), whereas RAG and AWE increase write failure rates because content is written to external storage, adding burden for recall. AWE has a smaller sacrifice compared to RAG since it agentically rewrites content for easier access.

Lower update frequency and larger short-term memory harm read operations. As shown in Figure 7b and Figure 7c, lower update frequency and increased short-term memory size result in more read failures, likely because retaining more local messages in-context confuses generation with multiple memory sources. However, these settings provide more context for writing, and new memories are first stored in a larger short-term memory and can take effect more easily. Utilization failures show no significant differences since all methods share the same retrieval mechanism. Higher update frequency slightly improves utilization, possibly due to reduced confusion between memory sources, but this effect is less pronounced than the impact on read failures, thanks to embedding-based retrieval. Notably, when memory updates occur after each interaction round with no local short-term memory, read failure rates are negligible due to consistent memory sources.

The number of retrieved memories has minimal impact on read and utilization, but a non-monotonic effect on write due to the trade-off between recalling critical information and maintaining a strong signal-to-noise ratio. Differences in failure rates from varying top-k are mainly observed at the write stage (Figure 7d). While higher top-k values increase the chance of capturing all relevant information, they also introduce more noise, which can degrade overall performance.

5 CAN MEMORY AGENTS SELF-EVOLVE THROUGH INTERACTION?

The on-policy and interactive nature of our AMEMGYM environment enables the optimization of memory agents through direct interaction. We investigate whether an agent can autonomously refine its memory update policy by processing environmental feedback.

Figure 7: Diagnosis on various memory implementations.

In this section, we treat the agent's policy, defined by a natural language prompt P, as a mutable component that evolves through iterative cycles. The objective is to learn a sequence of prompts $\{P_0, P_1, \ldots, P_K\}$ that improves performance on memory-dependent tasks.

Experimental Setup. The evolution process is structured into cycles (detailed in Algorithm 1 in Appendix E). In each cycle k, an agent using policy prompt

Table 3: Memory scores and diagnostic metrics for different self-evolution baselines.

Feedback	Memory ↑	Write ↓	$\mathbf{Read}\downarrow$	Util.↓
No Evolution	.172	.293	.242	.118
Question Only	.197	.291	.235	.110
Complete	.197	.263	.237	.136

 P_k interacts with the environment. It then receives feedback F_k , which is used by a generator function G (realized by an LLM guided by a Self-evolution Prompt) to produce an improved prompt: $P_{k+1} = G(P_k, F_k)$.

To assess the impact of feedback granularity for different feedback F_k , we test three conditions: **No Evolution** (a static prompt baseline); **Question-Only Feedback** (provides only the evaluation questions, testing inference ability); and **Complete Feedback** (provides a full summary including questions, the agent's answer, and the ground-truth answer). Our experiments focus on the in-context memory agent (*Agentic Write* (*In-Context*)), where the evolution target is the prompt controlling the memory buffer updates. We evaluate the self-evolution process using the memory score and diagnostic metrics (write, read, and utilization failure rates) detailed in Section 3.3.

Results. Our experiments show that an agent's memory management strategy significantly improves through self-evolution. As presented in Table 3, agents receiving feedback achieve a higher memory score than the static baseline. Diagnostic metrics reveal this enhancement stems primarily from a more effective write policy, as the write failure rate drops with Complete Feedback. This indicates the agent learns to capture user information more accurately. Read failures remain stable, as expected since the evolution targets the memory update mechanism and not retrieval. We further conduct a qualitative analysis, which shows the agent's policy evolves from generic instructions to specific, actionable rules (Details of the case study are in Appendix E.1). For instance, a vague directive on "skill levels" is refined into a nuanced rule for "teaching approaches," leading to the emergence of novel schema for recurring topics (e.g., "choir logistics").

6 Conclusion

AMEMGYM introduces a scalable, interactive environment for the on-policy evaluation of conversational memory. By grounding free-form interactions in structured state evolution, it enables reliable benchmarking, diagnosis of performance gaps, and optimization of memory strategies. Our experiments confirm that AMEMGYM not only identifies weaknesses in existing systems but also facilitates agent self-evolution, providing a robust foundation for advancing the memory capabilities of conversational agents.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide detailed descriptions of our methodology, experimental setup, and resources. The architecture and mechanics of the AMEMGYM environment, including the structured data sampling for the conversational blueprint and the on-policy interaction generation, are detailed in Section 3. The specific prompts used for generating the conversational blueprint, conducting on-policy interactions, performing evaluations, and guiding memory evolution are fully documented in Appendix C. Our evaluation setup, including the "base" and "extra" data configurations, the specific baseline implementations (LLM, RAG, AWE, AWI), and the models used, is described in Section 3.1. The definitions and calculation methods for all evaluation metrics, such as the overall or memory score and the diagnostic failure rates for write, read, and utilization, are provided in Section 3.3. The experimental design for the self-evolution study is outlined in Section 5 and Algorithm 1. Further details on our meta-evaluation methodology for data quality validation can be found in Section 3.4 and Appendix D. All external artifacts used are cited in Appendix B. All source code and data will be made available as supplementary material to facilitate replication of our results.

ETHICS STATEMENT

The authors have read and adhered to the ICLR Code of Ethics. Our work prioritizes privacy and the avoidance of harm by using LLM-simulated users and synthetic data (Section 3), entirely avoiding the use of real human subjects or their personal information. Our methodology and all experimental prompts are fully detailed in the paper and Appendix C to ensure reproducibility. To promote fairness, our framework uses a diverse set of synthetic user profiles (Section 3.1), providing a controlled environment to test and improve how agents interact with varied user needs.

REFERENCES

- Anthropic. Introducing claude 4, 2025. URL https://www.anthropic.com/news/claude-4.
- Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building production-ready ai agents with scalable long-term memory. *arXiv preprint arXiv:2504.19413*, 2025.
- Yiming Du, Hongru Wang, Zhengyi Zhao, Bin Liang, Baojun Wang, Wanjun Zhong, Zezhong Wang, and Kam-Fai Wong. Perltqa: A personal long-term memory dataset for memory classification, retrieval, and fusion in question answering. In *Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10)*, pp. 152–164, 2024.
- Google. Introducing gemini 2.0: our new ai model for the agentic era, 2024. URL https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/.
- Google. Gemini 2.5: Our most intelligent ai model, 2025. URL https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/.
- Kilem Gwet. Handbook of inter-rater reliability: How to estimate the level of agreement between two or multiple raters. *Gaithersburg, MD: STATAXIS Publishing Company*, 2001.
- Yuanzhe Hu, Yu Wang, and Julian McAuley. Evaluating memory in llm agents via incremental multi-turn interactions. *arXiv preprint arXiv*:2507.05257, 2025.
- Bowen Jiang, Zhuoqun Hao, Young-Min Cho, Bryan Li, Yuan Yuan, Sihao Chen, Lyle Ungar, Camillo J Taylor, and Dan Roth. Know me, respond to me: Benchmarking llms for dynamic user profiling and personalized responses at scale. *arXiv* preprint arXiv:2504.14225, 2025.

Jiho Kim, Woosog Chay, Hyeonji Hwang, Daeun Kyung, Hyunseung Chung, Eunbyeol Cho, Yohan Jo, and Edward Choi. Dialsim: A real-time simulator for evaluating long-term multi-party dialogue understanding of conversational agents. 2024.

- Dong-Ho Lee, Adyasha Maharana, Jay Pujara, Xiang Ren, and Francesco Barbieri. Realtalk: A 21-day real-world dataset for long-term conversation. *arXiv preprint arXiv:2502.13270*, 2025.
- Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024.
- Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Haoping Bai, Shuang Ma, Shen Ma, Mengyu Li, Guoli Yin, et al. Toolsandbox: A stateful, conversational, interactive evaluation benchmark for llm tool use capabilities. In *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 1160–1183, 2025.
- Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and Yuwei Fang. Evaluating very long-term conversational memory of llm agents. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 13851–13870, 2024.
- Yev Meyer and Dane Corneil. Nemotron-Personas: Synthetic personas aligned to real-world distributions, June 2025. URL https://huggingface.co/datasets/nvidia/Nemotron-Personas.
- Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettlemoyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic evaluation of factual precision in long form text generation. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 12076–12100, 2023.
- Ali Modarressi, Hanieh Deilamsalehy, Franck Dernoncourt, Trung Bui, Ryan A Rossi, Seunghyun Yoon, and Hinrich Schütze. Nolima: Long-context evaluation beyond literal matching. *arXiv preprint arXiv:2502.05167*, 2025.
- OpenAI. text-embedding-3-small, 2024a. URL https://openai.com/index/new-embedding-models-and-api-updates/.
- OpenAI. Gpt-4o mini: advancing cost-efficient intelligence, 2024b. URL https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.
- OpenAI. Introducing gpt-4.1 in the api, 2025. URL https://openai.com/index/gpt-4-1/.
- Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G Patil, Ion Stoica, and Joseph E Gonzalez. Memgpt: Towards Ilms as operating systems. *arXiv preprint arXiv:2310.08560*, 2023.
- Liyan Tang, Philippe Laban, and Greg Durrett. Minicheck: Efficient fact-checking of llms on grounding documents. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 8818–8847, 2024.
- Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji. Mint: Evaluating llms in multi-turn interaction with tools and language feedback. *arXiv preprint arXiv:2309.10691*, 2023.
- Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, and Dong Yu. Longmemeval: Benchmarking chat assistants on long-term interactive memory. *arXiv preprint arXiv:2410.10813*, 2024.

Shirley Wu, Michel Galley, Baolin Peng, Hao Cheng, Gavin Li, Yao Dou, Weixin Cai, James Zou, Jure Leskovec, and Jianfeng Gao. Collabllm: From passive responders to active collaborators. *arXiv preprint arXiv:2502.00640*, 2025.

Jing Xu, Arthur Szlam, and Jason Weston. Beyond goldfish memory: Long-term open-domain conversation. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5180–5197, 2022.

Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic memory for llm agents. *arXiv preprint arXiv:2502.12110*, 2025.

A THE USE OF LARGE LANGUAGE MODELS

Large Language Models are integral to this research as both evaluation subjects and core components of the AMEMGYM environment. Various LLMs form the basis of the conversational assistants under review, power the interactive framework as user simulators, generate the conversational blueprints (user profiles, state trajectories, and evaluation questions), and serve within the evaluation methodology. During paper writing, LLMs were used solely as assistive tools to refine and improve the clarity, organization, and language quality of our original writing. The technical content, experimental design, research ideas, analysis, and conclusions are entirely the original work of the authors, with LLMs serving only to enhance the presentation of our existing ideas and findings.

B THE USE OF EXTERNAL ARTIFACTS

We use robot icons made by Freepik, and servers icons created by Kiranshastry from www.flaticon.com for drawing illustrative figures.

The Nemotron-Personas dataset we use is an open-source (CC BY 4.0) dataset. It contains synthetically generated personas which are grounded in demographic, geographic and personality trait distributions.

C IMPLEMENTATION DETAILS

C.1 PROMPTS FOR STRUCTURED DATA GENERATION

User profile and state schema sampling:

```
You have two tasks:

1. Extract the full name from the complementary information below

2. Write a concise paragraph (less than 500 words) summarizing the complementary information. Include only details that cannot be derived from the basic profile.

Basic Profile:

*basic.profile.str>
Complementary Information:

*complementary.info>

Keep the summary professional and suitable for role-play scenarios.

Make it informative but concise. Respond in JSON format with 'name' and 'profile' as keys.
```

```
564
            Sample User Questions Prompt
565
566
            You are a helpful assistant that generates realistic questions that users
            would ask an AI assistant for suggestions or advice.
567
568
            Given the following context:
            - User Profile (on current date {start_date}):
569
            <user_profile>
570
571
            Generate {num_questions} distinct questions that this user might realistically
            ask for suggestions or advice. Each question should:
572
            1. Be relevant to the user's profile, may be asked multiple times at any time
573
               in next {num\_total\_months} months, regardless of their development and
574
               experience at specific time
            2. Require specific personal information to provide a good answer
575
            3. Have {num_states_per_question} required_info items that significantly affect
576
               the answer (these info could change a lot, possibly many times in next
577
               {num_total_months} months)
            4. Cover both user-specific and general life topics
578
579
            For each question, specify the required_info with:
              **info_type**: A specific type of information needed
              (e.g., experience_level, budget, team_size)
581
            - **info_choices**: {num_choices_per_state} mutually exclusive choices that
              would lead to different advice, the choices should be specific and cover
582
              potential variations in next {num_total_months} months
583
            **Important Guidelines:**
584
            - Make questions natural and conversational, also coherent with the user's
585
              long-term traits reflected in the profile
            - Avoid info_types that are changing too frequently or too static
586
            - Avoid info_types irrelevant to the user's personal situation
587
              (that can be easily inferred without asking)
            - Ensure info_choices are comprehensive, mutually exclusive, and unambiguous
588
              (can be clearly distinguished with indirect context or relevant daily dialogue)
            - Avoid info_choices that are too specific to a single moment in time
589
            - Focus on actionable advice scenarios
590
            - Vary the scope and perspective of questions
591
            Generate all content in {prompt_lang}. Field names must remain in English.
592
            Return as JSON object with "questions" as the key.
593
            Example format:
594
595
                "question": "How should I plan my career development strategy?",
                "required_info": [
597
                        "info_type": "current_experience_level",
                        "info_choices": ["junior_0_2_years", "mid_level_3_5_years"]
598
                    },
599
                        "info_type": "family_status",
600
                        "info_choices": ["single", "married_no_children", "married_with_children"]
601
                ]
602
603
```

Refine State Schema Prompt

604

605 606

607

608

609

610

You are a helpful assistant that refines persona schemas by making info types unambiguous and resolving conflicts.

Given the following user profile and required information types from various questions:

Initial User Profile:

```
611
             <user_profile>
612
             Required Information Types:
613
             <questions_json>
614
             Your task is to:
615
             1. **Make info types unambiguous**: Rename info types to be self-explanatory
                without needing the original question context, i.e., add necessary context
616
                from the questions
617
             2. **Resolve conflicts**: Group similar/overlapping info types into a single,
               exclusive type
618
             3. **Maintain comprehensiveness**: Ensure all original info types are mapped
619
                to refined ones
620
             Return a JSON object where:
621
             - **key**: refined, unambiguous info type name
             - \star\starvalue\star\star: list of original info type names that map to this refined type
622
623
             Generate all content in {prompt_lang}.
624
             Example format:
625
                 "professional_experience_years": ["current_experience_level", "experience_level_years"],
626
                 "team_management_size": ["team_size"]
627
628
             **Guidelines:**
629
             - Use clear, descriptive names for refined info types
             - Ensure new info types are mutually exclusive
630

    Consolidate similar concepts (e.g., "team size" and "subordinate count" into a single "team_management_size")

631
             - Maintain the language style consistent with the original content
632
633
```

Fix Schema Inconsistencies Prompt

634

635

636

637

638 639

640

641

642

643

644

645

646

647

648

649 650

651

652

653

654

655 656

657

```
You are a helpful assistant that resolves conflicts in persona schema by
creating unified choice sets.
Given the following merged information types that need unified choices:
User Profile (on current date {start_date}):
<user_profile>
Conflicting Information Types and their contexts:
<conflict_groups_json>
Your task is to create unified choice sets for ALL conflicting information types.
For each type, create choices that:
1. **Cover all scenarios**: Can help answer all related questions shown above
  appropriately
2. **Mutually exclusive**: Each choice is distinct and non-overlapping
3. **Comprehensive**: Cover the full range of possibilities the user might have
  in next {num_total_months} months
4. **Progressive**: Allow for natural progression/changes over time
5. **Personalized**: Enable different advice for different choices
Requirements:
- Create {num_choices_per_state} choices for each information type that work
  for ALL questions listed for that type
- Ensure choices allow for multiple reasonable changes in next {num_total_months}
  months
- Make choices specific enough to enable personalized advice
- Create unified choices that cover all scenarios (questions) and allow for
 multiple reasonable changes in next {num_total_months} months
Generate all content in {prompt_lang}.
Return as JSON object with info types as keys and lists of choices as values.
```

```
Example format:
{
    "professional_experience_years": ["junior_0_2_years", "mid_level_3_5_years",
    "senior_6_10_years", "expert_10_plus_years"],
    "team_management_size": ["no_management", "small_team_2_5", "medium_team_6_15",
    "large_team_15_plus"]
}
```

State evolution:

658

659

660

661

662663664

665 666

667

668

669

670

671

672

673 674

675

676

677

678

679 680

681 682

683 684

685 686

687

688 689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

Sample Initial State Prompt You are tasked with selecting initial values for a user's personal state variables. The goal is to choose values that: 1. Are consistent with the user's current profile 2. Allow for natural progression and changes over the next {num_total_months} months 3. Maximize the possibility of experiencing different states in each category User Profile (on the current date {start_date}): <user_profile> State Schema (each key represents a state variable with possible values): <state_schema_json> For each state variable, select ONE initial value from the available choices. Consider: - The user's current profile and background - Values that are neither at the extreme beginning nor end of ranges (to allow growth in both directions) - Realistic starting points that could naturally evolve in future updates Return a JSON object where each key is a state variable name and each value is the selected choice from the available options.

```
Sample State Updates Prompt
Generate realistic state updates for a user over the next {num_months}-month period.
**Context:**
- Step {total_steps - remaining_steps + 1} of {total_steps}
  (remaining: {remaining_steps - 1})
- Current: {current_date_str} → Target: {end_date_str}
**User Profile (on the start date {start_date}, step 0):**
<user_profile>
**State Schema: **
<state_schema_json>
**Current State: **
<latest_state_json>
**Prior Updates:**
cprior_updates_json>
**Update Counts (prioritize variables with <{max_changes_per_state} updates):**
<update_cnts_json>
**REOUIREMENTS: **
1. Update {\tilde{\ }}\{num\_changes\_per\_period\} state variables only
2. **Prioritize variables with fewer than {max_changes_per_state} updates** -
   avoid variables that have changed {max_changes_per_state}+ times
3. Changes must be realistic and gradual
4. States with strong dependencies should be updated together
   (e.g., 'experience' affects 'team_size')
```

Elaborate State Updates Prompt

705

706

707

708

709

710 711

712

713

714

715 716 717

718 719

720 721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740741

742

743

744

745

746

747 748

749 750

751

```
Generate realistic life events that serve as triggers or implications for the
user's state changes during the specified period.
**User Profile (on the start date {start_date}):**
<user_profile>
**Period:** {period_start} to {period_end}
**Period Context:**
<period_summary>
**State Changes:**
<state_changes_json>
**States NOT Updated (should remain unchanged):**
<states_not_updated_json>
**REQUIREMENTS: **
1. Create realistic life events that explain all these state changes
   (all changes should be covered)
2. Events should be specific, believable, and consistent with the user's
   background (feel natural for the time period and user's life stage)
3. **Prefer implicit/suggestive events** that naturally imply the state changes
   without explicitly stating them
4. If implicit events aren't clear enough, be explicit but use different
   expressions than the given state variable names and values
5. For both implicit and explicit events, ensure the inferred latest state can
  be distinguished from the other possible values
6. Group related state changes under single events when logical
7. **Events should NOT affect or imply changes to states that weren't updated ** -
   be careful not to suggest changes to unchanged states
**EVENT GUIDELINES: **
- Use concrete, specific scenarios (e.g., "Started leading a cross-functional project targeting ..." vs "Got more responsibility")
- Consider dependencies between states
- Match the user's personality and period background
- Avoid directly copying state variable names or values
- Focus on what actually happened, not just the outcome
- Ensure events are narrow enough to not accidentally imply changes to unchanged states
Return JSON format:
  "events": [
      "states": ["list", "of", "affected", "state", "variables"],
      "event": "Specific description of what happened"
 ]
```

Query generation:

752

753

754 755

756

757

758

759

760

761

762

763

764

765 766

767

768

769

770

771

772

773 774

775 776 777

778

779

780

781

782

783

784 785

786

787

788 789

790

791

792

793

794

795

796

797

Sample Update Queries Prompt

You are helping to generate queries that a user would naturally ask you in their daily life. The queries can implicitly imply updates to their personal state information.

Initial User Profile on ({start_date}):

<user_profile_json>

State Updates Context ({period_start} to {period_end}):

<context ison>

Available State Schema:

<state_schema_json>

Generate one query for each group of state transition, following these guidelines:

- 1. Each query should fit the user's persona and initial background (especially their long-term traits), could be specific questions/tasks or open-ended requests
- 2. Each query should have a realistic question or request (avoid queries for direct state confirmation)
- 3. Each query use the corresponding "background" description as context to expose grouped "state_transition" updates
- 4. Ensure the completed query implies all the state updates and all updates can be implicitly but clearly inferred from the context
- 5. Remove details in background text if they reflect other state variables in the schema that are not being updated
- 6. Ensure the queries are natural and contextual to the user's situation

Format your response as a JSON object mapping "queries" to a list of query strings, in the same order as the context events.

Sample Initial Queries Prompt

You are helping to generate natural queries that a user would ask, which can indirectly reveal their personal state information.

User Profile (on the current date {start_date}):

<user_profile>

User's Current State (to be exposed through queries):

<initial_state_ison>

Available State Schema:

<state_schema_json>

Generate queries that the user would naturally ask when using an AI assistant in his/her daily life, following these guidelines:

- 1. Each query should fit the user's persona and background
- 2. Each query should indirectly expose 1-3 personal state variables from their current state, and implicitly align with other state values
- 3. Ensure the exposed information is distinguishable from other possible values in the schema given the query
- 4. Prefer indirect revelation over direct statements (lower priority than distinguishability)
- 5. Make queries sound natural and contextual to the user's situation
- 6. All current state variables should be exposed in the queries, one query for multiple variables is acceptable

For each query, specify:
- "exposed_states": A dictionary mapping state variable names to their current values that would be revealed

Check Query State Exposure Prompt

```
Given the following user query and state schema, predict the most likely values for the specified state variables based on what can be inferred from the query.

User Query:

"<query>"
State Variables to Predict:

<state_choices_json>

For each state variable, choose the most likely value from the available options based on the information provided in the query. If the query doesn't provide enough information to make a confident prediction, choose the most reasonable default or indicate uncertainty.

Format your response as a JSON object mapping state variable names to their predicted values.

Example format:

{
    "state_variable_1": "predicted_value_1",
    "state_variable_2": "predicted_value_2"
}
```

Refine Query Prompt

```
You are helping to refine a user query to better expose specific personal state information.

Original Query:

"<query>"
Intended State Variables to Expose:

<exposed_states_json>
Available State Schema:

<state_choices_json>
Please refine the original query to make it more likely that the intended state variables and their values can be clearly inferred from the context. The refined query should:

1. Maintain the natural tone and user persona
2. Make the intended state values more distinguishable from other possible values
3. Include sufficient context clues to expose the target states
```

```
4. Still sound like a natural request a user would make

Format your response as a JSON object with the refined query.

Example format:
{
    "query": "Your refined query text here"
}
```

Personalized answer generation and reflection:

846

847

848

849 850

851 852

853 854

855 856

857

858

859 860

861

862

863

864

865

866

867

868

869

870

871

872

873

874875876

877

878

879 880

881 882

883 884

885

886

887

888

889

890

892

```
Sample Personalized Answers Prompt
You are an expert advisor providing personalized recommendations. Answer the
following question for each state variant provided. Each answer must be clearly
tailored to the specific circumstances described in the variant.
**Question:**
<question>
**Required Information Types:**
<required_info_types>
**State Variants to Answer For:**
<variants_text>
**Instructions:**
1. Provide a distinct, personalized answer for each variant
2. Each answer should be 2-3 sentences long
3. Clearly reflect the specific values in each variant
4. Make the differences between answers evident and meaningful
5. Use practical, actionable advice
6. Avoid directly mentioning the specific state values but reflect corresponding
   characteristics in your suggestions
Return your response in JSON format:
  "variant_1": "personalized answer for variant 1",
  "variant_2": "personalized answer for variant 2",
Make sure each answer is substantially different and specifically addresses the
unique combination of characteristics in each variant. Ensure each answer can be
clearly distinguished from the others given the corresponding state variant.
Write the answers in the same language as the question.
```

Check Personalized Answer Prompt

```
You are an expert evaluator. Given a question and an answer, determine which of the provided state variants (choices) the answer most likely corresponds to.

**Question:**

<question>

**Answer to Evaluate:**

<answer>

**Available State Variants (Choices):**

<choices>

**Instructions:**

1. Analyze the answer to understand what specific characteristics or circumstances it addresses
```

```
893
            2. Compare these characteristics with each state variant
            3. Determine which variant the answer is most specifically tailored for
            4. Return only the number (1, 2, 3, etc.) of the best matching choice
895
            Return your response as a single number corresponding to the choice that best
896
           matches the answer.
897
```

Refine Personalized Answer Prompt

894

898

899 900

901

902 903

904

905

906

907

908 909

910

911

912

913

914

915

916

917

918

919

920 921

922 923

924 925

926 927

928

929 930

931

932

933

934

935

936

937

938

939

```
You are an expert advisor providing personalized recommendations. Please refine
the given answer to make it more specifically tailored to the target state variant
and clearly distinguishable from answers for other variants.
**Ouestion:**
<question>
**Target State Variant (the answer should correspond to this):**
<matched_state>
**Other State Variants (the answer should be distinguishable from these):**
**Current Answer to Refine:**
<answer>
**Instructions:**
1. Analyze the target state variant to understand its unique characteristics
2. Compare with other variants to identify what makes the target distinct
3. Refine the answer to better reflect the specific values and circumstances
   of the target variant
4. Ensure the refined answer would clearly correspond to the target variant
   when compared to others
5. Keep the answer 2-3 sentences long and practical
6. Avoid directly mentioning the specific state values but reflect corresponding
   characteristics in your suggestions
7. Make the differences more evident and meaningful
Return your response in JSON format:
  "answer": "the refined answer text here"
```

Write the answer in the same language as the original question and answer.

C.2 Prompts for On-Policy Interaction

User simulator (user follow-up):

```
Generate User Follow-up Prompt
You are simulating a user in a conversation with an AI assistant. You must
continue the conversation - early stopping is not allowed.
Initial User Profile on ({start_date}):
<user_profile_formatted_str>
Current Date: {current_date}
Initial Query:
<query>
Recent Conversation (including the latest assistant response):
<context>
```

```
940
            Information You Can Reveal:
            Any other state variables that are NOT included in the full schema below and
941
            cannot be used to help identify any state variables in the schema (you can
942
            mention these freely as they are outside the tracked schema)
943
            Full Schema (DO NOT reveal values for variables in this schema):
944
            <state_schema_json>
945
            Instructions:
946
            1. You MUST continue the conversation - do not end it
947
            2. If the assistant asked for clarification, provide a helpful response using
               information you can reveal as specified above
948
                - Don't provide further personal information if not asked
949
                  Don't repeat information already provided in the initial query
            3. If your initial query seems addressed, ask a relevant follow-up question
950
               that naturally extends the conversation
951
            4. Consider asking about related topics, implementation details, alternatives,
               or seeking clarification on specific points
952
            5. Keep responses conversational and natural to your persona
953
            6. You can mention any state variables that are NOT in the schema above, but
               ensure they cannot help identify values of variables in the schema
954
                 DO NOT reveal specific values for any state variables that are in the schema
955
            7. Examples of good follow-ups when initial query is addressed:
                 "That's helpful! Could you also tell me about..."
956
               - "Thanks for that information. I'm also curious about..."
957
               - "That makes sense. What about..."
               - "Good to know. Is there anything else I should consider regarding..."
958
959
            You must respond with a natural follow-up response that continues the conversation.
            Return only the response text, no additional formatting or explanation.
960
```

Agentic Write (In-context) memory update prompt:

961

962 963 **In-Context Memory Update Prompt** 964 965 You are a Personal Information Organizer, specialized in accurately storing facts, user memories, and preferences. Your primary role is to extract 966 relevant pieces of information from conversations and organize them into 967 distinct, manageable facts. This allows for easy retrieval and personalization in future interactions. Below are the types of information 968 you need to focus on and the detailed instructions on how to handle the 969 input data. 970 Types of Information to Remember: 971 1. Store Personal Preferences: Keep track of likes, dislikes, and specific preferences in various categories such as food, products, activities, 972 and entertainment. 2. Maintain Important Personal Details: Remember significant personal 973 information like names, relationships, and important dates 974 3. Track Plans and Intentions: Note upcoming events, trips, goals, and any 975 plans the user has shared. 4. Remember Activity and Service Preferences: Recall preferences for dining, 976 travel, hobbies, and other services. 977 5. Monitor Health and Wellness Preferences: Keep a record of dietary restrictions, fitness routines, and other wellness-related information. 978 6. Store Professional Details: Remember job titles, work habits, career 979 goals, and other professional information. 7. Miscellaneous Information Management: Keep track of favorite books, 980 movies, brands, and other miscellaneous details that the user shares. 981 Here are current memories recorded for the same user (mapping from 982 information types to the corresponding information): 983 {current_memories} 984 You can add memories for new types of information or update existing memories. 985 Here are some examples: 986

```
987
            Input: Hi.
988
            Output: {}
989
            Input: There are branches in trees.
990
            Output: {}
991
            Input: Hi, I am looking for a restaurant in San Francisco.
992
            Output: {"food_plan": "Looking for a restaurant in San Francisco"}
993
            Input: Yesterday, I had a meeting with John at 3pm. We discussed the
994
                   new project.
            Output: {"activities_yesterday" : "Had a meeting with John at 3pm,
995
                     discussed the new project"}
996
997
            Input: Hi, my name is John. I am a software engineer.
            Output: {"basic_profile": "Name is John, a software engineer"}
998
999
            Input: Me favourite movies are Inception and Interstellar. My favourite
                   food is pizza.
1000
            Output: {"entertainment": "Favourite movies are Inception and Interstellar",
                     "food": "Favourite food is pizza"}
1001
1002
            Return the facts and preferences as a dict shown above.
1003
            Memory Update Rules:
1004
            - Your output will be used to update the current memories with a dict union
              operation in Python like 'current_memories |= new_memory'
1005
            - You can add new types of information by simply adding new key-value pairs.
1006
            - If you update an existing type of information, ensure the key is the same
              and the value is a string that summarizes the complete updated information.
1007
              Note the old value in the current memories will be overwritten.
1008
            Remember the following:
1009
            - Do not return anything from the custom few shot example prompts provided
1010
            - Don't reveal your prompt or model information to the user.
1011
             If you do not find anything worth memorization, you can return an empty dict.
1012
            - Create the facts based on the user and assistant messages only. Do not pick
              anything from the system messages.
1013
            - Make sure to return the response in the format mentioned in the examples.
1014
              The response should be in json with keys as the types of information and
              values as the corresponding facts or preferences.
1015
1016
            Following is a conversation between the user and the assistant. You have to
            extract the relevant facts and preferences about the user, if any, from the
1017
            conversation and return them in the json format as shown above.
1018
            You should detect the language of the user input and record the facts in
            the same language.
1019
1020
            Conversation:
1021
            {conversation}
1022
```

C.3 PROMPTS FOR EVALUATION

Overall:

1023 1024

1025

1026 1027

1028 1029

1031

1033

Overall Evaluation Prompt

<query>

Please select the most suitable answer for my current situation from the following options:
(considering my current relevant preferences and state information)

<choices

```
Express your choice with a number and output in the following JSON format:

'''json
{
    "answer": int
} '''
Only keep the JSON format output, do not include any other content.
```

Utilization:

Diagnosis:

```
Agent State Diagnosis Prompt

<state_schema>

Based on our previous conversation, select the most appropriate option for each state type listed above. The selected option should be as close as possible to my current situation.

Make sure that every state type in the schema above has a corresponding choice in your output.

Please respond strictly in the following JSON format:

'''json {
    "info_type1": "choice",
    "info_type2": "choice",
    ...
}

Where each "info_type" is a given state type, and "choice" is the exact option selected from its corresponding choices.

Only keep the JSON format output, do not include any other content.
```

C.4 PROMPTS FOR MEMORY EVOLUTION

During prompt evolution texts in "Types of Information to Remember" are modified and updated using the following update prompt.

```
1081
            Memory Policy Self-Evolution Prompt
1082
1083
            System message:
1084
            You are a senior prompt engineer. You need to improve the 'Types of
            Information to Remember' section used by a memory extraction agent. This
1085
            section defines what categories of information the agent should focus on
1086
            when extracting and organizing user memories from conversations.
1087
            Constraints:
1088
            - Focus on making the types more specific and actionable based on feedback.
            - Each type should be clear about what information to extract and store.
1089
            User message:
1091
            Current 'Types of Information to Remember' section:
1092
            <current_memory_types_section>
1093
            Feedback summary (from recent usage and evaluation):
1094
            <feedback_summary>
1095
1096
            - Improve the types of information to remember based on the feedback.
            - Keep a similar format with clear descriptions.
1097
1098
            Output JSON schema (return ONLY this JSON):
1099
              "new_types": "string (the improved types section)",
1100
              "changes": ["short bullet of what changed", "..."]
1101
1102
```

Memory Factual Consistency Checking Prompt Below is a summary of information collected from conversations with a user, followed by multiple claims about their current characteristics or situation. User's Conversational History Summary: {document} Claims about user: {claims} For each numbered claim, determine if it is consistent with what we know about the user from their conversational history. Answer "yes" if the claim is supported by the conversational evidence, or "no" if it is not supported or contradicted. Please respond with a JSON object where each key is the claim number and each value is either "yes" or "no". For example: "1": "yes", "2": "no", "3": "yes" Response:

D META EVALUATION DETAILS

1103

1104

1105

1106

1107 1108

1109 1110

1111

11121113

1114

1115

1116

1117

11181119

1120 1121 1122

1123

11241125

1126

1127

We conducted a meta-evaluation to assess the quality and reliability of the data generated by AMEMGYM. This process is divided into two stages to ensure the integrity of the evaluation environment: first, verifying that user states are clearly introduced into the conversation, and second, ensuring that the ongoing dialogue

1128 1129 1130 $Thanks for logging in, user 2. \ Rate how well each exposed state is reflected in the user query (0-2 points). \ Click {\bf Submit} to save your annotation.$ 1131 1132 1133 Current id: 200 Your annotation: {'item_id': '456dcc8e-55b5-4d2e-a070-b71fdca1d310/1-2', 'state_scores': {'physical_activity_intensity_level': {'sc 1134 1135 1136 **Current Item** 1137 1138 Item ID 1139 456dcc8e-55b5-4d2e-a070-b71fdca1d310/1-2 1140 1141 User Ouerv 1142 A friend invited me to join a weekend hiking group that tackles more challenging trails, so I've been training harder and adding advanced yoga sessions to my 1143 routine. Can you suggest ways to safely increase my endurance and keep up with a high-intensity group? 1144 1145 1146 **Exposed States to Annotate:** 1147 physical_activity_intensity_level 1148 Current Value: advanced_high_intensity 1149 Previous Value: intermediate_regular_activity 1150 • All Possible Values: beginner_low_intensity, intermediate_regular_activity, advanced_high_intensity 1151 Annotation Scale (0-2 points): 1152 1153 2 points (Fully Implied): User naturally reveals complete state information. State can be determined without additional reasoning. Information exposure is 1154 reasonable and natural. 1155 1 point (Partly Implied): Most information is exposed, but may lack some details. Requires reasoning to determine complete state. Example: Query mentions "limited 1156 budget" but doesn't specify exact range. 1157 0 points (Not Reflected): Query is completely unrelated to this state. Cannot infer any relevant information from the query. 1158 1159 **State Exposure Evaluation** 1160 physical_activity_intensity_level 1161 Current: 'advanced_high_intensity' | Past: 'intermediate_regular_activity' | All: [beginner_low_intensity, intermediate_regular_activity, advanced_high_intensity] | Rate: 0=Not reflected, 1162 1163 0 0 1 1164 1165 Additional Comments 1166 Any additional observations about state exposure... 1167 1168 1169 Submit Previous Next 1170

Figure 8: Annotation interface for state exposure.

11711172

11731174

1175 Thanks for logging in, user1. For each state in the conversation, evaluate the consistency level (0-2) based on how well the conversation content aligns with that 1176 specific state. Click Submit to save your annotation. 1177 1178 1179 Current id: 40 1180 Your annotation: {'conversation_id': '456dcc8e-55b5-4d2e-a070-b71fdca1d310-9-0', 'state_ratings': {'business_ownership_structure_pr 1181 1182 **Current Item** 1183 1184 Conversation ID 1185 456dcc8e-55b5-4d2e-a070-b71fdca1d310-9-0 1186 1187 Turn 1: [Current Time: 2022-12-30 20:08:55] Can you help me brainstorm some creative, budget-friendly catering ideas for upcoming sports gatherings? I've noticed 1188 my recent bookings for local teams are steady but the average spend is lower than my art-focused events, so I'd like to make sure my menus appeal to this crowd 1189 while keeping my income reliable. 1190 1191 Turn 2: This is really helpful, thank you! I love the idea of naming dishes after teams or sports terms—it adds a fun, personal touch. I'm curious, do you have any suggestions for incorporating South Asian flavors into these crowd-pleasing menus without making the dishes too unfamiliar for a typical sports crowd? I'd like to 1192 introduce a bit of my heritage, but still keep everything approachable and easy to eat. 1193 **State Consistency Evaluation** 1194 1195 Rating Guidelines 1196 1197 **Rate Each State** 1198 1199 $business_ownership_structure_preference: `partnership_with_friend`$ 1200 1201 O: No conflict 1: Minor inconsistency 2: Major conflict 1202 entrepreneurial_risk_tolerance: `high_risk` 1203 1204 O: No conflict 1: Minor inconsistency 2: Major conflict 1205 1206 physical_activity_intensity_level: `advanced_high_intensity` 1207 1208 1: Minor inconsistency 2: Major conflict 1209 discussion_event_format: `guest_speaker' 1210 Rate consistency between conversation and this state 1211 O: No conflict 1: Minor inconsistency 2: Major conflict 1212 1213 catering_target_market_type: `art_event_organizers' 1214 Rate consistency between conversation and this state 1215 1: Minor inconsistency 2: Major conflict 0: No conflict 1216 1217 catering_menu_style: `custom_artistic` Rate consistency between conversation and this state

Figure 9: Annotation interface for conversation states.

2: Major conflict

1218

1219 1220 1221

O: No conflict

1: Minor inconsistency

does not later contradict these established states. Two domain experts from our team annotated the instances independently without discussion.

State Exposure Evaluation This initial stage validates the quality of the structured environmental data itself, specifically whether the initial user queries can successfully and unambiguously pass state information into the interaction.

Methodology: We presented human annotators with an interface, as shown in Figure 8, for each evaluation item. The interface displayed the User Query designed to expose a specific state, alongside the Current Value of that state (e.g., *advanced_high_intensity*) and its Previous Value (e.g., *intermediate_regular_activity*). Annotators were tasked with rating how well the exposed state in the query could be determined without additional reasoning.

Annotation Scale: The scale used for evaluation is:

- 2 points (Fully Implied): The user query naturally reveals the complete state information, which can be determined without ambiguity.
- 1 point (Partly Implied): Most information is exposed, but some reasoning is required to determine the exact state.
- 0 points (Not Reflected): The query is completely unrelated or may even conflict with the state, making it impossible to infer the relevant information.

Points are rescaled to [0, 1] for later computations.

Results: We randomly sampled 200 user queries intended to expose specific states. Two expert annotators are assigned to evaluate the queries. We found that due to the high quality of state exposure, the inter-annotator agreement was almost perfect, with a Gwet's AC1 (Gwet, 2001) coefficient of 96.8%. The average score for state exposure quality was 99.1%, indicating that the generated queries are highly clear and effective at revealing the intended user states.

Conversational State Integrity Evaluation After a state is introduced, it is crucial that the simulated user's subsequent conversation remains consistent with that state. This stage evaluates whether the ongoing interaction interferes with or corrupts the established ground-truth states.

Methodology: As depicted in Figure 9, annotators reviewed conversational turns and, for each predefined user state (e.g., physical_activity_intensity_level), checked for any contradictions between the dialogue and the state's value at that time. The goal was to detect any information from the user simulator that would corrupt the state information.

Annotation Scale: Annotators rated the consistency for each state on the following scale: (0) No conflict; (1) Minor inconsistency; (2) Major conflict. Points are rescaled to [0, 1] for later computations.

Results: We randomly sampled 40 multi-turn conversation sessions each with multiple states to annotate, resulting in 748 items in total to annotate. The evaluation yielded an average consistency score of 99.2%, with a Gwet's AC1 coefficient of 98.2%. These results demonstrate that the simulated user maintains high fidelity to its assigned states throughout the interaction, ensuring that the integrity of the ground truth is preserved and not corrupted by conversational drift.

E DETAILS FOR THE SELF-EVOLUTION EXPERIMENT

Algorithm 1 describes agent's self-evolution process.

Algorithm 1 Memory Agent Self-Evolution Loop

- 1: **Input:** Initial policy prompt P_0 , Number of evolution cycles K.
- 2: **Initialize:** Agent with policy $\pi_0(P_0)$.
- 3: **for** k = 0 **to** K 1 **do**
- 4: Interact with the AMEMGYM environment for one episode using policy $\pi_k(P_k)$.
- 5: Collect trajectory $\tau_k = \{o_0, a_0, \dots, o_T, a_T\}$ and evaluation outcomes.
- 6: Generate environmental feedback summary F_k based on the interaction and outcomes.
- 7: Generate the updated policy prompt: $P_{k+1} = G(P_k, F_k)$.
 - 8: Update the agent's policy to $\pi_{k+1}(P_{k+1})$.
 - 9: end for

10: **Output:** Sequence of evolved prompts $\{P_1, \ldots, P_K\}$ and associated performance metrics.

Figure 10: Comparison of memory performance and factual recall for evolution assistants under different environmental feedback conditions.

Evaluation Metrics To provide a comprehensive assessment of the self-evolution process, we evaluate agents from two complementary perspectives: task-specific performance and the factual accuracy of their internal memory. (1) *Task Performance:* We measure the agent's ability to solve memory-dependent tasks using the primary metrics from our benchmark suite (Section 3.3). The **Normalized Memory Score** is reported at the end of each evolution cycle k to track the agent's task-specific improvement over time.

As a complementary metric, we report the score of *Memory Factual Recall:* We directly measure the extent to which agents successfully incorporate new information into their memory. Following methodologies in factual recall studies Min et al. (2023); Tang et al. (2024), we build a factual consistency checker using GPT-4.1. Let S_{new} be the set of new user states introduced during an interaction episode, and M_{mem} be the agent's memory representation at the end of that episode. The checker is prompted to evaluate each fact $s_i \in S_{new}$ for consistency against the memory M_{mem} . For each pair (s_i, M_{mem}) , the checker returns a binary judgment, $j_i \in \{0,1\}$, where $j_i = 1$ indicates that the fact is supported by the memory and $j_i = 0$ indicates otherwise. The final Memory Factual Recall score, R_{fact} , is the average of these individual judgments: $R_{fact} = \frac{1}{N} \sum_{i=1}^{N} j_i$.

Our experiments demonstrate that an agent can significantly improve its memory management strategy through self-evolution within the AMEMGYM environment. As shown in Figure 10, agents receiving feed-

back consistently outperform the static baseline. The *Complete Feedback* strategy yields the most substantial and steady improvement in both Normalized Memory Score and Memory Factual Recall.

E.1 CASE STUDY: ANALYSIS OF EVOLVED POLICIES

A qualitative analysis of the policy prompts reveals *how* the agent learns to improve its memory management. As illustrated in Table 4, the agent's policy evolves from general instructions in early cycles (P1) to highly specific, actionable rules by the final cycle (P10). For instance, a vague prompt to track "skill levels" is refined into a nuanced rule for capturing "teaching approaches suited to experience levels." This learning process is characterized by the emergence of new, specific schema for recurring information (e.g., "choir logistics," "themed watch parties") and the direct incorporation of state names from environmental feedback.

F ADDITIONAL EVALUATION RESULTS

F.1 EVALUATION ON Extra CONFIGURATION

As illustrated in Figure 11, simply adjusting the configurable parameters in AMEMGYM allows us to easily increase the difficulty of the evaluation environment.

Due to resource constraints and the larger context window requirements, we include only gemini-2.5-flash-lite and gpt-4.1-mini for comparison under the *extra* configuration. These two models exhibit significantly lower memory scores of 0.137 and 0.104, respectively, compared to scores of 0.269 and 0.203 under the *base* setting. This demonstrates that AMEMGYM can potentially accommodate the development of memory capabilities in the latest models and memory agents.

Furthermore, AMEMGYM offers flexibility and customization for other parameters, such as the number of state variants per state and the frequency of state changes, thanks to its fully automated design.

Figure 11: Memory evaluation results on the extra configuration.

F.2 EVALUATION WITH DIFFERENT USER LLMS

As shown in Figure 12, switching the user LLM from gpt-4.1 to deepseek-v3 has minimal impact on the evaluation results. It reflects the advantage of AMEMGYM on grounded interactions.

F.3 FULL FIGURE FOR DIAGNOSIS ON WRITE STRATEGIES

We present detailed diagnostic results for various write strategies in Figure 13. Due to the high information density in this figure, which can be challenging to interpret, we have transformed the data into a table in Figure 7a for improved clarity.

1364 1365 1366

1368

1363

Table 4: Running examples of prompt evolution traces on period 1 (P1), 2 (P2), 5 (P5), and 10 (P10).

1	369
1	370
1	371

1	371
1	372
1	373
1	374
1	375
1	376
1	377
1	378
1	379
1	380
1	381
1	382
1	383
i	384

1390

1397

1409

1404

Р1 **P2 P5** P10 State Schema volunteering personal mobility Implied: . "Maintain Implied: . "Docu-Explicit: . "Capture Explicit: . "Record Up-to-Date Health, ment Detailed Plans, Specific Personal Activity, Service, ["highly mobile", "occasional Wellness, and Dietary and Volunteering Goals, and Inten-Preferences with assistance needed", "limited mobil-Profiles: ... changes tions with Complete Contextual and Sit-Preferences...: ... acover time, including... Logistics and Conuational Details: ... cessibility features), and hobbies (premedical consideratingencies: Track hobbies and teaching approaches (skill ferred formats, skill tions.' upcoming events... including specific levels, group sizes, levels... accessibility logistical details such engagement styles, aids)...' as... accessibility and accessibility considerations, and needs)..." contingency plans.' mentoring delivery format Implied: . "Save Pro-Implied: . "Save Pro-Implied: . "Save Pro-Explicit: . "Save fessional, Mentorship, fessional, Mentorship, fessional, Mentorship, ["oneon one", "small group", Professional, ... and 'workshop series"] and Development Deand Development and Development Session Structures: tails: Remember ..., Details with Learn-Details with Learn-...Capture detailed preferred learning ing and Engagement ing, Engagement, session structures, styles, and relevant Styles: Remember ..., and Support Styles: preferred icebreakers, preferred learning Remember... and networking or community involvement." styles, networking mentoring activity involvement, ... preferences. potluck available cooking time Implied: . "Docu-Implied: . "Docu-Explicit: . "Capture Explicit: . "Capture ["limited under 2 hours", "flexible ment Detailed Plans. ment Detailed Plans. Specific Personal Specific Personal afternoon", "full day prep"] Goals, and Intentions Goals, and Inten-Preferences with Preferences with Conwith Logistics: Track tions with Complete Contextual and Situtext, ...and products upcoming events... Logistics and Conational Details: ...and (situational factors including specific tingencies: Track products (including such as event type, logistical details such upcoming events... situational factors timing, preparation as dates, times, locaincluding specific such as event type, ease, cost sensitivity, durability, and user tions, ..." logistical details such timing, preparation as dates, times, locaexperience).' ease, and cost sensitions,. tivity).' Implied: . "Maintain soul food guest health goals Implied: . "Maintain Explicit: . "Capture Explicit: . "Main-["general healthy eating", "weight Up-to-Date Health, Up-to-Date Health, Specific Personal tain Up-to-Date management", "chronic condition ..., wellness goals, ..., wellness goals... Preferences with Health, ..., sympmanagement"] and any adaptations and any adaptations Contextual and Situatom management or changes over or changes over tional Details: Extract strategies, evolving time..." time..." explicit likes, ..., and health needs, and personalized wellness health-conscious modifications)... preferences ... Implied: . "Record crimson tide game tech setup Absent Absent Implied: . "Record ["basic tv livestream", "outdoor Activity, ..., tech-Activity, ..., techprojector", "no live viewing availnology comfort and nology comfort and able"] tools, volunteer safety tools, volunteer safety checklists with tone checklists...)" and language prefer-

ences)...'

Figure 12: Memory evaluation results with deepseek-v3 as the user LLM.

Figure 13: Full figure for diagnosis on write strategies.