
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

AMEMGYM: INTERACTIVE MEMORY BENCHMARKING
FOR ASSISTANTS IN LONG-HORIZON CONVERSATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Long-horizon interactions between users and LLM-based assistants necessitates effective
memory management, yet current approaches face challenges in training and evaluation of
memory. Existing memory benchmarks rely on static, off-policy data as context, limiting
evaluation reliability and scalability. To address these gaps, we introduce AMEMGYM,
an interactive environment enabling on-policy evaluation and optimization for memory-
driven personalization. AMEMGYM employs structured data sampling to predefine user
profiles, state-dependent questions, and state evolution trajectories, enabling cost-effective
generation of high-quality, evaluation-aligned interactions. LLM-simulated users expose
latent states through role-play while maintaining structured state consistency. Compre-
hensive metrics based on structured data guide both assessment and optimization of assis-
tants. Extensive experiments reveal performance gaps in existing memory systems (e.g.,
RAG, long-context LLMs, and agentic memory) and corresponding reasons. AMEMGYM
not only enables effective selection among competing approaches but also can potentially
drive the self-evolution of memory management strategies. By bridging structured state
evolution with free-form interactions, our framework provides a scalable, diagnostically
rich environment for advancing memory capabilities in conversational agents.

1 INTRODUCTION

Figure 1: On-policy v.s. off-policy evalua-
tion for assistants’ memory.

A crucial objective in the development of assistants based on
Large Language Models (LLMs) is to achieve long-horizon
conversational capabilities—that is, the ability to effectively
organize, manage, and utilize memory across extended se-
quences of dialogue turns. Robust memory management forms
the foundation for fulfilling complex user requests, tailoring
responses to users’ latest implicit states, and personalizing
suggestions and recommendations based on interaction his-
tory. However, progress in advancing conversational memory
systems for assistants is hampered by a critical bottleneck that
affects both scalable training and reliable evaluation: the data
used in existing benchmarks.

Current benchmarks typically rely on static, off-policy data for
evaluation (Xu et al., 2022; Wu et al., 2024; Hu et al., 2025),
rather than on-policy interactions. Figure 1 shows the compar-
ison on two approaches. Off-policy evaluation, in which an assistant is tested on conversational data that it
did not produce during actual interactions, presents several fundamental limitations. First, it fails to capture
the assistant’s true interactive property, as the evaluation data does not reflect the consequences of the as-

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

Table 1: A comparison of features across agent memory benchmarks.

Benchmark Eval. Mode Optim.
Feedback Automation Level Context Length Eval. Metrics

MSC (Xu et al., 2022) Static ✗ Manual 1.2K -

RealTalk (Lee et al., 2025) Static ✗ Manual 17K Emotional Intelligence, Persona Simulation, Memory
Probing (F1, accuracy)

DialSim (Kim et al., 2024) Static ✗ Manual - QA Accuracy
LoCoMo (Maharana et al., 2024) Static ✗ Semi-Automated 9.2K QA Accuracy, Summarization, Generation
PerLTQA (Du et al., 2024) Static ✗ Semi-Automated - QA Accuracy

LongMemEval (Wu et al., 2024) Static ✗ Semi-Automated Configurable (115K,
1.5M) Retrieval Recall, QA Accuracy

PersonaMem (Jiang et al., 2025) Static ✗ Fully Automated Configurable (32K,
128K, 1M) QA Accuracy

AMEMGYM (This Work) Interactive ✓ Fully Automated Configurable Overall (Accuracy, Normalized Memory Score) and
Diagnosis (Write, Read, Utilization).

sistant’s own conversational choices—a critical issue for evaluation realism. Second, because the evaluation
is biased, memory optimization could be misguided to wrong directions. Finally, the manual curation of
these evaluation scenarios (Lee et al., 2025; Kim et al., 2024) is costly and does not scale for comprehensive
testing across diverse, long-horizon conversational contexts.

To enable on-policy evaluation and provide reliable feedback for optimization, it is essential to employ a
simulated user that can strategically reveal information and pose relevant questions, a technique that has
demonstrated promise in other domains such as tool use (Wang et al., 2023; Lu et al., 2025). However,
deploying simulated users in open-ended conversational environments presents unique challenges. These
include determining what information to disclose dynamically while maintaining a natural and coherent
dialogue, as well as ensuring the generation of diverse, high-quality data that remains sufficiently controlled
for reliable evaluation.

To address these gaps, we introduce AMEMGYM, an interactive environment designed for the on-policy
evaluation and optimization of memory in long-horizon conversations. AMEMGYM grounds free-form in-
teractions in structured data generated through a schema-based approach. The framework predefines user
profiles, state-dependent questions, and state evolution trajectories to enable the cost-effective generation
of high-quality interactions aligned with evaluation targets. LLM-simulated users then expose these latent
states through natural role-play, ensuring consistency with the structured state evolution. Periodic evalua-
tion during interactions, using both overall and diagnostic metrics, guides assessment and optimization of
memory capabilities. Our contributions are threefold:

1. We introduce AMEMGYM, a novel framework for the on-policy evaluation of conversational mem-
ory. By grounding free-form interactions in a structured state evolution, AMEMGYM creates a scal-
able and diagnostically rich environment to reliably assess and advance the memory capabilities of
conversational agents.

2. We empirically demonstrate the reuse bias and potential drawbacks of off-policy evaluation, and
conduct the first extensive on-policy evaluation of popular memory systems. Our results highlight
the reliability of AMEMGYM for evaluating memory in the context of personalization.

3. We provide a proof of concept for agent self-evolution, showing that an agent can use environmental
feedback within AMEMGYM to autonomously refine its memory management policy.

2 RELATED WORK

Benchmarks for agent memory evaluation. The evaluation of agent memory has progressed from long-
context, single-turn tasks like the needle-in-a-haystack (NIAH) test and NoLiMa (Modarressi et al., 2025)
to more realistic multi-turn conversational datasets such as Multi-Session Chat (MSC) (Xu et al., 2022),
RealTalk (Lee et al., 2025), and DialSim (Kim et al., 2024). While these introduced more authentic di-
alogue patterns, their reliance on manual curation limited their scale and diversity. To address this, au-
tomated data generation frameworks like LoCoMo (Maharana et al., 2024), PerLTQA (Du et al., 2024),

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

Figure 2: An overview of the AMemGym framework.
LongMemEval (Wu et al., 2024), PersonaMem (Jiang et al., 2025), and MemoryAgentBench (Hu et al.,
2025) were developed. However, a critical limitation unites nearly all existing benchmarks: they rely on
static, off-policy data (Table 1). This approach fails to capture an agent’s true interactive performance, as
the evaluation data does not reflect the consequences of the agent’s own actions, misleading optimization.

Interactive agent evaluation by user simulation. An alternative line of research has focused on interac-
tive, on-policy evaluation environments that employ user simulators. This approach has proven effective in
domains like tool-use, where simulators provide robust on-policy evaluation (Wang et al., 2023; Lu et al.,
2025). Similarly, efforts like CollabLLM (Wu et al., 2025) have successfully employed user simulation to
train models for improved long-term collaboration, enabling them to move beyond passive responses and
actively help users achieve their goals. Applying this interactive paradigm to memory evaluation, however,
introduces unique challenges: a simulator must strategically reveal information over a long-horizon con-
versation while maintaining a natural flow and generating interactions that are both diverse and controlled
enough for reliable assessment. AMEMGYM directly addresses these challenges by introducing a schema-
based approach that grounds free-form, LLM-driven role-play in a structured state evolution plan, which
enables the controlled and scalable generation of on-policy, memory-focused evaluation scenarios.

3 AMEMGYM
AMEMGYM provides an interactive environment for benchmarking and optimizing personal assistant mem-
ory, with the scenario and the task described below.

LLM-based Assistants. An LLM-based assistant takes as input the observation (user input) ot and provides
output responses at (a sequence of tokens) based on its policy π and its internal memory at that time mt (e.g.,
tokens in the context window, text snippets written to an external index, or its own parameters): ot,mt

π−→
at,mt+1. The internal memory is updated through interactions.

Personalization with Memory. To effectively serve users with dynamically evolving personal states,
assistants described above must continuously track user states through interaction histories τt =
[o0, a0, o1, a1, . . . , ot] and deliver responses optimized for their latest latent states captured by mt. In reality,

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

the length of τt often goes well beyond the optimal context length of most LLMs. Therefore, an effective
information compression or memory mechanism is crucial for assistants to maintain accurate and up-to-date
user modeling. Here, states refer to comprehensive personal information crucial for enabling the intelli-
gent assistant to sustain meaningful conversations and address user-relevant concerns. This includes user
preferences, habits, plans, and environmental conditions, among other factors.

An overview of our framework1 is presented in Figure 2. We begin by describing the structured data sam-
pling process that forms the foundation of our evaluation framework (§ 3.1), then detail how on-policy inter-
actions are generated with grounded structured data (§ 3.2). We present comprehensive evaluation metrics
that assess both overall memory performance and provide diagnosis for different memory operations (§ 3.3).
Finally, we provide meta-evaluation results to show reliability of the fully-automated process (§ 3.4).

3.1 GENERATING STRUCTURED DATA FOR ON-POLICY INTERACTION

Evaluating memory is challenging due to the high cost of verifying correctness in long, noisy conversations.
To address this, we use a reverse-engineering strategy: starting from target evaluation questions, we trace
back to identify key user state variables for personalization, their possible temporal changes for a simulated
user, and the personalized responses for each experienced state combination. This servers as a structured
foundation that enables grounded interactions and automatic evaluation. Detailed prompts for each sampling
step are provided in Appendix C.1.

User Profile Sampling. We begin by selecting user profiles, which provide background information for
subsequent steps. For broad domain coverage, we use 100K personas from Nemotron-Personas (Meyer &
Corneil, 2025) as the pool, but custom sampling strategies can be easily applied for specific applications to
better accommodate target real-world distributions.

Question Sampling. The process starts with a user profile, p, used to sample a set of evaluation questions,
Qp. For each question qi ∈ Qp, an LLM extracts the information types required for a personalized answer.
These types S ′

i are occasionally redundant across questions (e.g., “experience level” and “years of work”).
Therefore, they are merged and refined by an LLM into a canonical global state schema, Σ =

⋃
i S ′

i.
The schema defines a set of M unique state variables (sj) and their possible discrete values set (Vj): Σ =
{(sj , Vj)}Mj=1. This comprehensive schema serves as the complete set of trackable user states for the entire
simulation.

User States Evolution. We then simulate a realistic progression of the user’s states over Np periods. The
state at the end of each period t is captured by a state vector, σt, a full assignment where each variable sj
is given a value vj from its corresponding set of possibilities Vj : σt = {(sj , vj) | (sj , Vj) ∈ Σ}. Each
state transition is prompted by a narrative life event, et, providing context for the change (σt−1

et−→ σt).
The resulting state evolution trajectory, Tσ = (σ0, . . . , σNp), provides the ground-truth for the user’s state
throughout the simulation.

To create the inputs for on-policy interaction in each session, we generate a series of natural language
utterances that the simulated user will say initially. Within each period t, an utterance ut,k is designed to
implicitly expose a small related subset of the user’s current state, σexposed ⊂ σt. This is generated by a
function Gutt conditioned on the states to be revealed and the user’s profile: ut,k = Gutt(σexposed, p). These
pre-generated, state-bearing utterances form a core part of the structured data blueprint. They are used to
initiate conversational turns during the on-policy interaction phase (§ 3.2).

Personalized Response Generation. Finally, to create the evaluation ground truth, we generate per-
sonalized answers for each predefined question qi. Each question requires a subset of state variables,
Sreq(qi) ⊂ {s1, . . . , sM}, and a specific assignment of values to these variables is a state variant, ν:

1We use gpt-4.1 (OpenAI, 2025) for structured data generation and user simulation.

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

ν = {(sj , vj) | sj ∈ Sreq(qi), vj ∈ Vj}. For each pair (qi, ν), we generate a distinct answer ri,ν . To ensure
a high-quality, one-to-one mapping, a reflection step verifies that the answer is unambiguous: it is accepted
only if an LLM classifier C can recover the variant from the question-answer pair, i.e., C(qi, ri,ν) = ν.

3.2 ON-POLICY INTERACTION

Different from prior static evaluation on long-context LLMs or memory agents (Xu et al., 2022; Maharana
et al., 2024; Wu et al., 2024; Jiang et al., 2025), we sample on-policy interactions as in Figure 1. Given the
offline structured data sampled in Section 3.1, our user simulator interacts with the target assistant to expose
this information through natural conversation. This step outputs a (possibly long-context) dialogue history
τ . Later in Section 4.2, we demonstrate the necessity of on-policy evaluation.

State Exposure. To enable reliable evaluation, key user states—those that change between periods—must
be clearly reflected in the conversation history. This is achieved by using the grounded utterances (ut,k)
that were pre-generated as part of the structured data. For benchmarking consistency, we use these fixed
initial state-bearing utterances to begin each conversational session, ensuring that the necessary information
is introduced into the dialogue.

Role-Play with LLMs. Conversation generation is performed by a user LLM, which role-plays based
on the user profile and state evolution. It is configured with: (1) a system prompt template incorporating
the user profile, (2) current states σt, and (3) the latest conversation context. The user LLM produces
responses conditioned on dialogue history and underlying states, ensuring coherent alignment between free-
form conversation and structured state evolution.

3.3 EVALUATION METRICS

Given the grounded interactive environment, assistants are prompted to answer all evaluation questions
after each interaction period. These responses provide feedback for agent builders to assess and optimize
assistants (§ 4), and enable assistants to self-improve (§ 5), based on the evaluation metrics described below.

Overall Evaluation. We use the average question answering accuracy as the metric for evaluating end-to-
end performance on our benchmark, denoted as the overall score. This metric captures the model’s ability
to integrate both personalization (tailoring responses based on specific user states) and memory (retaining
user states from previous conversations) to achieve high performance. To provide a clearer view on memory,
we introduce normalized memory scores. It isolates the memory component from raw task performance
by normalizing the overall accuracy between a random baseline (lower bound) and an upper bound (UB)
with perfect memory access. For each evaluation period, the score is computed as: Smemory = Soverall−Srandom

SUB−Srandom
.

The upper bound SUB is determined by providing the assistant with ground-truth user states at evaluation
time, thereby entirely bypassing the memory retrieval process. It measures the assistant’s reasoning and
application capabilities when required information is perfectly available.

Figure 3: An overview of diagnostic metrics:
write, read, and utilization.

Diagnostic Evaluation. We decompose failures in over-
all question answering into three distinct operational
stages of memory processing: write, read, and utiliza-
tion. Corresponding failure rates enable systematic er-
ror attribution. For each user state, we query its value
at every evaluation period. If the assistant demonstrates
knowledge of all relevant state values but still fails to an-
swer an overall evaluation question correctly, we classify
this as a utilization failure. Otherwise, we examine the
state query results at the nearest write position to distinguish between write and read failures (Figure 3).

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

3.4 META-EVALUATION

To validate the data quality of AMEMGYM, we conducted a two-stage meta-evaluation with human anno-
tators. First, we assessed state exposure, confirming that user states are clearly introduced into the conver-
sation. On a sample of 200 queries, annotators found that the state information was successfully conveyed
with an average quality score of 99.1% and an inter-annotator agreement (Gwet’s AC1 (Gwet, 2001)) of
96.8%. Second, we evaluated conversational state integrity to ensure that the simulated user’s dialogue does
not contradict established ground-truth states over time. Across 748 annotated items from 40 conversations,
the dialogue maintained a 99.2% consistency score, with a Gwet’s AC1 of 98.2%. These results confirm that
AMEMGYM generates high-fidelity data, providing a reliable foundation for memory evaluation. Details of
this evaluation are in Appendix D.

4 MEMORY EVALUATION WITH AMEMGYM

4.1 EVALUATION SETUP

Data Configuration. AMEMGYM offers configurable parameters to control evaluation difficulty. We focus
on two configurations to showcase flexibility and ensure reproducibility, differing in three key dimensions:
the number of evolution periods Np (quantity of key information), required states per question Ns (reasoning
depth), and interaction turns per state exposure Ni (noise level). We define two variants using the tuple
(Np, Ns, Ni): base (10, 2, 4) which requires 128K+ context window and extra (20, 3, 10) which requires
512K+ context window. Both variants use 20 randomly sampled user profiles with 10 evaluation questions
each, totaling 200 questions tested at Np + 1 positions with potentially different answers due to evolving
user states. We present base results in the main text as they are sufficiently challenging. See Appendix F.1
for extra results and other configurable parameters.

Figure 4: Memory implementations.

Memory Implementation. Existing memory systems for
LLM-based assistants, despite implementation variations,
share a common design philosophy of constructing memory
hierarchies to exchange between short-term and long-term
memory (Packer et al., 2023; Chhikara et al., 2025; Xu et al.,
2025). We abstract this connection by focusing on two key
aspects: storage location (in-context vs. external) and writing
strategy (agentic vs. direct).

As shown in Figure 4, we focus on the four memory imple-
mentations: Native LLMs (LLM) rely solely on context win-
dows, maintaining long-term memory in-context as raw con-
tent. Standard RAG (RAG) uses Retrieval-Augmented Gener-
ation with external indexing for long-term storage in raw for-
mat. Agentic Write (External) (AWE) autonomously decides what to write to external long-term memory
and retrieves using embedding models as in RAG. Agentic Write (In-Context) (AWI) operates similarly
but stores long-term memory in-context without independent retrieval. For AWE, we additionally study
critical parameters: memory update frequency (freq), minimum short-term messages in-context (ns), and
retrieved memories count (topk).2 We denote these configurations as AWE-(freq, ns, topk).3 All mem-
ory implementations use gpt-4.1-mini (OpenAI, 2025) for response generation and memory operations and
text-embedding-3-small (OpenAI, 2024a) for embeddings to ensure a fair comparison.

2We implement AW and RAG variants using the open-source mem0 library (Chhikara et al., 2025).
3We use AWE-(2,4,30) as the default configuration.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

UB Mean 0 1 2 3 4 5 6 7 8 9 10
Period Index

claude-sonnet-4
gemini-2.5-flash
gemini-2.0-flash

gemini-2.5-flash-lite
gpt-4.1

gpt-4.1-mini
deepseek-v3
gpt-4o-mini

random

.928 .462 .760 .585 .485 .500 .460 .425 .405 .310 .365 .385 .405

.900 .448 .710 .610 .545 .495 .470 .380 .355 .275 .355 .390 .345

.925 .400 .670 .515 .425 .395 .385 .345 .335 .315 .315 .375 .325

.858 .399 .610 .555 .475 .425 .370 .320 .325 .280 .345 .360 .320

.913 .395 .700 .515 .440 .405 .370 .320 .300 .290 .345 .330 .330

.917 .367 .695 .550 .465 .390 .315 .270 .245 .230 .250 .300 .330

.864 .326 .545 .415 .375 .345 .330 .245 .255 .210 .255 .310 .305

.816 .317 .500 .420 .370 .355 .290 .295 .275 .220 .255 .230 .280
.231 .231 .231 .231 .231 .231 .231 .231 .231 .231 .231 .231 0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
ve

ra
ll

Sc
or

e

Mean 0 1 2 3 4 5 6 7 8 9 10
Period Index

claude-sonnet-4
gemini-2.5-flash

gemini-2.5-flash-lite
gemini-2.0-flash

gpt-4.1
gpt-4.1-mini
deepseek-v3
gpt-4o-mini

.336 .803 .541 .361 .380 .314 .270 .241 .117 .193 .227 .244

.327 .750 .584 .459 .381 .352 .218 .184 .068 .190 .240 .168

.269 .608 .541 .391 .299 .220 .146 .147 .080 .183 .202 .140

.244 .647 .415 .274 .232 .216 .160 .149 .127 .123 .209 .138

.244 .723 .438 .297 .249 .201 .128 .097 .087 .169 .148 .148

.203 .710 .481 .333 .226 .118 .056 .020 -.001 .029 .103 .155

.152 .512 .298 .217 .179 .153 .022 .036 -.034 .039 .125 .124

.149 .481 .335 .232 .211 .100 .105 .070 -.019 .042 -.001 .086
0.0

0.2

0.4

0.6

0.8

M
em

or
y

Sc
or

e

Figure 5: Evaluation on native LLMs. Overall scores and normalized memory scores are both demonstrated.

Table 2: The on-policy v.s. off-policy
comparison on memory scores of vari-
ous assistants. Results on different native
LLMs are listed in a separate table below.
Memory agents use the same LLM (gpt-
4.1-mini) for generation.

Memory Agents On-policy ↑ Off-policy ↑ ∆Rank
AWE-(2,4,30) .291 .253(.038) ▼ 3
AWE-(2,8,30) .278 .271(.007) –
AWE-(2,4,10) .275 .273(.002) ▲ 2
AWE-(4,4,30) .262 .229(.033) ▼ 3
AWE-(2,0,30) .261 .262(.001) ▲ 2
AWE-(2,4,50) .251 .248(.003) ▲ 1
AWE-(8,4,30) .233 .221(.012) ▼ 1
RAG-(2,4,30) .227 .241(.014) ▲ 2
LLM .203 .198(.005) ▼ 1
AWI .172 .199(.027) ▲ 1

LLMs On-policy ↑ Off-policy ↑ ∆Rank
claude-sonnet-4 .336 .339(.003) –
gemini-2.5-flash .327 .317(.010) –
gemini-2.5-flash-lite .269 .204(.065) ▼ 2
gemini-2.0-flash .244 .214(.030) –
gpt-4.1 .244 .244(.000) ▲ 2
gpt-4.1-mini .203 .198(.005) –
deepseek-v3 .152 .165(.013) –
gpt-4o-mini .149 .164(.015) –

We evaluate a diverse set of native LLMs, including claude-
sonnet-4 (Anthropic, 2025), gemini-{2.5-flash, 2.5-flash-lite,
2.0-flash} (Google, 2024; 2025), gpt-{4.1, 4.1-mini} (OpenAI,
2025), deepseek-v3 (Liu et al., 2024), and gpt-4o-mini (Ope-
nAI, 2024b). All models are configured with max tokens as
8192 and temperature as 0. The prompts used for evaluation
are provided in Appendix C.3. For user simulation, we employ
gpt-4.1 and the additional study presented in Appendix F.2 in-
dicate that the choice of user LLM has minimal impact on the
evaluation results.

4.2 ON-POLICY VERSUS OFF-POLICY EVALUATION

Off-policy evaluation introduces reuse bias, undermining
memory optimization and configuration selection, particu-
larly for agents. All existing memory benchmarking studies
use off-policy evaluation, testing models on pre-generated inter-
action traces that do not reflect their own conversational behav-
ior. We directly compare on-policy and off-policy evaluation
with AMEMGYM, where off-policy evaluation uses on-policy
interaction traces from gpt-4.1 for memory updates and omits
the interaction process.

Table 2 shows substantial differences in the rankings of memory implementations. Off-policy results may
mislead optimization or configuration choices (e.g., trends for ns and topk differ). For LLM comparison,
this bias is less pronounced, likely because LLMs are designed for universal distributions and exhibit more
similar and consistent interactions. Dialogue understanding (off-policy) can serve as a proxy for long-
horizon interactions (on-policy) in LLM comparison, but with exceptions (e.g., gemini-2.5-flash-lite). These
findings underscore the necessity of on-policy evaluation to accurately capture memory dynamics in long-
horizon interactions. We use on-policy results throughout the remainder of this paper.

4.3 EVALUATION ON NATIVE LLMS AND AGENTS

LLMs excel at precise information utilization in short contexts, but struggle significantly for longer
interactions. As shown in Figure 5, all evaluated LLMs achieve SUB > 0.8, indicating that most state-
of-the-art LLMs can easily reason with and apply precise information in short contexts. However, as the
interaction history grows with state updates, their performance drops sharply, with most models falling
below 50% of their upper bounds. Some models even perform no better than random guessing in later
periods. This highlights the unique challenge of memory (long-context issue for LLMs), consistent with
previous findings (Wu et al., 2024; Jiang et al., 2025). This trend is even more straightforward when using
the normalized memory score. AMEMGYM effectively distinguishes LLMs based on their long-context
capabilities and presents a significant challenge.

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Mean 0 1 2 3 4 5 6 7 8 9 10
Period Index

AWE-(2,4,30)
AWE-(2,8,30)
AWE-(2,4,10)
AWE-(4,4,30)
AWE-(2,0,30)
AWE-(2,4,50)
AWE-(8,4,30)
RAG-(2,4,30)

LLM
AWI

.291 .603 .466 .361 .290 .286 .191 .218 .173 .216 .214 .187

.278 .610 .458 .368 .333 .293 .233 .157 .129 .171 .147 .163

.275 .656 .518 .389 .368 .265 .191 .109 .050 .133 .192 .155

.262 .671 .526 .347 .311 .237 .098 .116 .057 .156 .177 .187

.261 .702 .435 .347 .269 .265 .148 .122 .108 .201 .147 .132

.251 .618 .466 .304 .297 .209 .162 .170 .050 .133 .192 .155

.233 .755 .450 .318 .255 .181 .162 .054 -.016 .141 .110 .155

.227 .763 .473 .354 .290 .181 .070 .088 -.001 .044 .125 .108

.203 .710 .481 .333 .226 .118 .056 .020 -.001 .029 .103 .155

.172 .519 .315 .198 .226 .139 .098 .040 -.016 .081 .147 .140
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
em

or
y

Sc
or

e

Figure 6: Memory scores of different mem-
ory agents. We omit the overall score com-
parison as they use the same LLM (gpt-4.1-
mini) for generation.

Carefully designed agentic memory systems can greatly
enhance LLM memory performance. Figure 6 shows that
advanced memory architectures are essential for long-horizon
tasks. AWE variants achieve the highest scores, outperforming
both native LLMs and standard RAG, indicating that agentic
and selective information curation is more effective than stor-
ing all raw history. In contrast, AWI may lose crucial informa-
tion due to aggressive filtering. Section 4.4 further analyzes
these implementations using diagnostic metrics. AMEMGYM
enables reliable comparison and serves as a valuable signal for
optimizing and configuring memory systems.

4.4 DIAGNOSIS ON MEMORY AGENTS
We analyze decomposed failure rates for write, read, and utilization stages (Section 3.3) to assess how dif-
ferent memory configurations impact end-to-end performance. Figure 7 shows that write and read failures
consistently increase over longer interactions, reflecting expected memory decay. Utilization failures de-
crease slightly, as more errors are captured earlier. We now examine the specific effects of each memory
setting.

Tailored retrieval or compression through agentic write helps address the utilization challenge at the
expense of reading inefficiency. For high utilization failure show in Figure 7a, AWE and RAG improve
utilization by leveraging an extra embedding model tailored for relevance modeling, while AWI uses agen-
tic write to compress memorized information. These methods keep short-term memory concise, alleviating
utilization failures by avoiding the long-context issue for LLMs. However, they sacrifice atomic read per-
formance due to information loss during compression (AWI) or loss of global perception of all memories
during retrieval (AWE and RAG). Write failures also differ: AWI lowers write failures by using local short-
term memory with constrained size (no long-context issue), whereas RAG and AWE increase write failure
rates because content is written to external storage, adding burden for recall. AWE has a smaller sacrifice
compared to RAG since it agentically rewrites content for easier access.

Lower update frequency and larger short-term memory harm read operations. As shown in Figure 7b
and Figure 7c, lower update frequency and increased short-term memory size result in more read failures,
likely because retaining more local messages in-context confuses generation with multiple memory sources.
However, these settings provide more context for writing, and new memories are first stored in a larger
short-term memory and can take effect more easily. Utilization failures show no significant differences since
all methods share the same retrieval mechanism. Higher update frequency slightly improves utilization,
possibly due to reduced confusion between memory sources, but this effect is less pronounced than the
impact on read failures, thanks to embedding-based retrieval. Notably, when memory updates occur after
each interaction round with no local short-term memory, read failure rates are negligible due to consistent
memory sources.

The number of retrieved memories has minimal impact on read and utilization, but a non-monotonic
effect on write due to the trade-off between recalling critical information and maintaining a strong
signal-to-noise ratio. Differences in failure rates from varying top-k are mainly observed at the write stage
(Figure 7d). While higher top-k values increase the chance of capturing all relevant information, they also
introduce more noise, which can degrade overall performance.

5 CAN MEMORY AGENTS SELF-EVOLVE THROUGH INTERACTION?

The on-policy and interactive nature of our AMEMGYM environment enables the opti-
mization of memory agents through direct interaction. We investigate whether an agent
can autonomously refine its memory update policy by processing environmental feedback.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

Strategy Write ↓ Read ↓ Util. ↓
LLM .301 .087 .244
RAG .377 .172 .067
AWE .338 .159 .074
AWI .286 .245 .122

Note: Statistics presented as mean failure

rates over all periods for clarity, the origi-

nal figure is in Appendix F.3.

(a) Write Strategy

0 2 4 6 8 10
Period Index

0.0

0.1

0.2

0.3

0.4

Fa
ilu

re
 R

at
e

freq-2-write
freq-2-read
freq-2-util.

freq-4-write
freq-4-read
freq-4-util.

freq-8-write
freq-8-read
freq-8-util.

(b) Update Frequency (freq)

0 2 4 6 8 10
Period Index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
ilu

re
 R

at
e

ns-0-write
ns-0-read
ns-0-util.

ns-4-write
ns-4-read
ns-4-util.

ns-8-write
ns-8-read
ns-8-util.

(c) Short-term Length (ns)

0 2 4 6 8 10
Period Index

0.0

0.1

0.2

0.3

0.4

Fa
ilu

re
 R

at
e

topk-10-write
topk-10-read
topk-10-util.

topk-30-write
topk-30-read
topk-30-util.

topk-50-write
topk-50-read
topk-50-util.

(d) Top-k

Figure 7: Diagnosis on various memory implementations.

Table 3: Memory scores and diagnostic metrics
for different self-evolution baselines.

Feedback Memory ↑ Write ↓ Read ↓ Util. ↓
No Evolution .172 .293 .242 .118
Question Only .197 .291 .235 .110

Complete .197 .263 .237 .136

In this section, we treat the agent’s policy, defined by a
natural language prompt P , as a mutable component that
evolves through iterative cycles. The objective is to learn
a sequence of prompts {P0, P1, . . . , PK} that improves
performance on memory-dependent tasks.

Experimental Setup. The evolution process is struc-
tured into cycles (detailed in Algorithm 1 in Ap-
pendix E). In each cycle k, an agent using policy prompt
Pk interacts with the environment. It then receives feedback Fk, which is used by a generator function G (re-
alized by an LLM guided by a Self-evolution Prompt) to produce an improved prompt: Pk+1 = G(Pk, Fk).

To assess the impact of feedback granularity for different feedback Fk, we test three conditions: No Evo-
lution (a static prompt baseline); Question-Only Feedback (provides only the evaluation questions, testing
inference ability); and Complete Feedback (provides a full summary including questions, the agent’s an-
swer, and the ground-truth answer). Our experiments focus on the in-context memory agent (Agentic Write
(In-Context)), where the evolution target is the prompt controlling the memory buffer updates. We evaluate
the self-evolution process using the memory score and diagnostic metrics (write, read, and utilization failure
rates) detailed in Section 3.3.

Results. Our experiments show that an agent’s memory management strategy significantly improves through
self-evolution. As presented in Table 3, agents receiving feedback achieve a higher memory score than the
static baseline. Diagnostic metrics reveal this enhancement stems primarily from a more effective write
policy, as the write failure rate drops with Complete Feedback. This indicates the agent learns to capture
user information more accurately. Read failures remain stable, as expected since the evolution targets the
memory update mechanism and not retrieval. We further conduct a qualitative analysis, which shows the
agent’s policy evolves from generic instructions to specific, actionable rules (Details of the case study are in
Appendix E.1). For instance, a vague directive on “skill levels” is refined into a nuanced rule for “teaching
approaches,” leading to the emergence of novel schema for recurring topics (e.g., “choir logistics”).

6 CONCLUSION

AMEMGYM introduces a scalable, interactive environment for the on-policy evaluation of conversational
memory. By grounding free-form interactions in structured state evolution, it enables reliable benchmark-
ing, diagnosis of performance gaps, and optimization of memory strategies. Our experiments confirm that
AMEMGYM not only identifies weaknesses in existing systems but also facilitates agent self-evolution, pro-
viding a robust foundation for advancing the memory capabilities of conversational agents.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide detailed descriptions of our methodology, experi-
mental setup, and resources. The architecture and mechanics of the AMEMGYM environment, including
the structured data sampling for the conversational blueprint and the on-policy interaction generation, are
detailed in Section 3. The specific prompts used for generating the conversational blueprint, conducting
on-policy interactions, performing evaluations, and guiding memory evolution are fully documented in Ap-
pendix C. Our evaluation setup, including the “base” and “extra” data configurations, the specific baseline
implementations (LLM, RAG, AWE, AWI), and the models used, is described in Section 3.1. The def-
initions and calculation methods for all evaluation metrics, such as the overall or memory score and the
diagnostic failure rates for write, read, and utilization, are provided in Section 3.3. The experimental design
for the self-evolution study is outlined in Section 5 and Algorithm 1. Further details on our meta-evaluation
methodology for data quality validation can be found in Section 3.4 and Appendix D. All external artifacts
used are cited in Appendix B. All source code and data will be made available as supplementary material to
facilitate replication of our results.

ETHICS STATEMENT

The authors have read and adhered to the ICLR Code of Ethics. Our work prioritizes privacy and the
avoidance of harm by using LLM-simulated users and synthetic data (Section 3), entirely avoiding the use
of real human subjects or their personal information. Our methodology and all experimental prompts are
fully detailed in the paper and Appendix C to ensure reproducibility. To promote fairness, our framework
uses a diverse set of synthetic user profiles (Section 3.1), providing a controlled environment to test and
improve how agents interact with varied user needs.

REFERENCES

Anthropic. Introducing claude 4, 2025. URL https://www.anthropic.com/news/claude-4.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
production-ready ai agents with scalable long-term memory. arXiv preprint arXiv:2504.19413, 2025.

Yiming Du, Hongru Wang, Zhengyi Zhao, Bin Liang, Baojun Wang, Wanjun Zhong, Zezhong Wang, and
Kam-Fai Wong. Perltqa: A personal long-term memory dataset for memory classification, retrieval,
and fusion in question answering. In Proceedings of the 10th SIGHAN Workshop on Chinese Language
Processing (SIGHAN-10), pp. 152–164, 2024.

Google. Introducing gemini 2.0: our new ai model for the agentic era,
2024. URL https://blog.google/technology/google-deepmind/
google-gemini-ai-update-december-2024/.

Google. Gemini 2.5: Our most intelligent ai model, 2025. URL https://blog.google/
technology/google-deepmind/gemini-model-thinking-updates-march-2025/.

Kilem Gwet. Handbook of inter-rater reliability: How to estimate the level of agreement between two or
multiple raters. Gaithersburg, MD: STATAXIS Publishing Company, 2001.

Yuanzhe Hu, Yu Wang, and Julian McAuley. Evaluating memory in llm agents via incremental multi-turn
interactions. arXiv preprint arXiv:2507.05257, 2025.

Bowen Jiang, Zhuoqun Hao, Young-Min Cho, Bryan Li, Yuan Yuan, Sihao Chen, Lyle Ungar, Camillo J
Taylor, and Dan Roth. Know me, respond to me: Benchmarking llms for dynamic user profiling and
personalized responses at scale. arXiv preprint arXiv:2504.14225, 2025.

10

https://www.anthropic.com/news/claude-4
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Jiho Kim, Woosog Chay, Hyeonji Hwang, Daeun Kyung, Hyunseung Chung, Eunbyeol Cho, Yohan Jo, and
Edward Choi. Dialsim: A real-time simulator for evaluating long-term multi-party dialogue understanding
of conversational agents. 2024.

Dong-Ho Lee, Adyasha Maharana, Jay Pujara, Xiang Ren, and Francesco Barbieri. Realtalk: A 21-day
real-world dataset for long-term conversation. arXiv preprint arXiv:2502.13270, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437,
2024.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Haoping Bai, Shuang Ma, Shen Ma,
Mengyu Li, Guoli Yin, et al. Toolsandbox: A stateful, conversational, interactive evaluation benchmark
for llm tool use capabilities. In Findings of the Association for Computational Linguistics: NAACL 2025,
pp. 1160–1183, 2025.

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and Yuwei Fang.
Evaluating very long-term conversational memory of llm agents. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13851–13870,
2024.

Yev Meyer and Dane Corneil. Nemotron-Personas: Synthetic personas aligned to real-world distributions,
June 2025. URL https://huggingface.co/datasets/nvidia/Nemotron-Personas.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettle-
moyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic evaluation of factual precision in long
form text generation. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 12076–12100, 2023.

Ali Modarressi, Hanieh Deilamsalehy, Franck Dernoncourt, Trung Bui, Ryan A Rossi, Seunghyun Yoon,
and Hinrich Schütze. Nolima: Long-context evaluation beyond literal matching. arXiv preprint
arXiv:2502.05167, 2025.

OpenAI. text-embedding-3-small, 2024a. URL https://openai.com/index/
new-embedding-models-and-api-updates/.

OpenAI. Gpt-4o mini: advancing cost-efficient intelligence, 2024b. URL https://openai.com/
index/gpt-4o-mini-advancing-cost-efficient-intelligence/.

OpenAI. Introducing gpt-4.1 in the api, 2025. URL https://openai.com/index/gpt-4-1/.

Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G Patil, Ion Stoica, and Joseph E Gonzalez.
Memgpt: Towards llms as operating systems. arXiv preprint arXiv:2310.08560, 2023.

Liyan Tang, Philippe Laban, and Greg Durrett. Minicheck: Efficient fact-checking of llms on grounding doc-
uments. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing,
pp. 8818–8847, 2024.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji. Mint: Evalu-
ating llms in multi-turn interaction with tools and language feedback. arXiv preprint arXiv:2309.10691,
2023.

Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, and Dong Yu. Longmemeval: Bench-
marking chat assistants on long-term interactive memory. arXiv preprint arXiv:2410.10813, 2024.

11

https://huggingface.co/datasets/nvidia/Nemotron-Personas
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4-1/

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Shirley Wu, Michel Galley, Baolin Peng, Hao Cheng, Gavin Li, Yao Dou, Weixin Cai, James Zou, Jure
Leskovec, and Jianfeng Gao. Collabllm: From passive responders to active collaborators. arXiv preprint
arXiv:2502.00640, 2025.

Jing Xu, Arthur Szlam, and Jason Weston. Beyond goldfish memory: Long-term open-domain conversation.
In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 5180–5197, 2022.

Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic memory
for llm agents. arXiv preprint arXiv:2502.12110, 2025.

A THE USE OF LARGE LANGUAGE MODELS

Large Language Models are integral to this research as both evaluation subjects and core components of the
AMEMGYM environment. Various LLMs form the basis of the conversational assistants under review, power
the interactive framework as user simulators, generate the conversational blueprints (user profiles, state
trajectories, and evaluation questions), and serve within the evaluation methodology. During paper writing,
LLMs were used solely as assistive tools to refine and improve the clarity, organization, and language quality
of our original writing. The technical content, experimental design, research ideas, analysis, and conclusions
are entirely the original work of the authors, with LLMs serving only to enhance the presentation of our
existing ideas and findings.

B THE USE OF EXTERNAL ARTIFACTS

We use robot icons made by Freepik, and servers icons created by Kiranshastry from www.flaticon.com
for drawing illustrative figures.

The Nemotron-Personas dataset we use is an open-source (CC BY 4.0) dataset. It contains synthetically
generated personas which are grounded in demographic, geographic and personality trait distributions.

C IMPLEMENTATION DETAILS

C.1 PROMPTS FOR STRUCTURED DATA GENERATION

User profile and state schema sampling:

Sample User Profiles Prompt

You have two tasks:
1. Extract the full name from the complementary information below
2. Write a concise paragraph (less than 500 words) summarizing the

complementary information. Include only details that cannot be
derived from the basic profile.

Basic Profile:

<basic profile str>

Complementary Information:

<complementary info>

Keep the summary professional and suitable for role-play scenarios.
Make it informative but concise. Respond in JSON format with ‘name‘
and ‘profile‘ as keys.

12

www.flaticon.com

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Sample User Questions Prompt

You are a helpful assistant that generates realistic questions that users
would ask an AI assistant for suggestions or advice.

Given the following context:
- User Profile (on current date {start_date}):

<user profile>

Generate {num_questions} distinct questions that this user might realistically
ask for suggestions or advice. Each question should:

1. Be relevant to the user’s profile, may be asked multiple times at any time
in next {num_total_months} months, regardless of their development and
experience at specific time

2. Require specific personal information to provide a good answer
3. Have {num_states_per_question} required_info items that significantly affect

the answer (these info could change a lot, possibly many times in next
{num_total_months} months)

4. Cover both user-specific and general life topics

For each question, specify the required_info with:
- **info_type**: A specific type of information needed

(e.g., experience_level, budget, team_size)
- **info_choices**: {num_choices_per_state} mutually exclusive choices that

would lead to different advice, the choices should be specific and cover
potential variations in next {num_total_months} months

Important Guidelines:
- Make questions natural and conversational, also coherent with the user’s

long-term traits reflected in the profile
- Avoid info_types that are changing too frequently or too static
- Avoid info_types irrelevant to the user’s personal situation

(that can be easily inferred without asking)
- Ensure info_choices are comprehensive, mutually exclusive, and unambiguous

(can be clearly distinguished with indirect context or relevant daily dialogue)
- Avoid info_choices that are too specific to a single moment in time
- Focus on actionable advice scenarios
- Vary the scope and perspective of questions

Generate all content in {prompt_lang}. Field names must remain in English.
Return as JSON object with "questions" as the key.

Example format:
{

"question": "How should I plan my career development strategy?",
"required_info": [

{
"info_type": "current_experience_level",
"info_choices": ["junior_0_2_years", "mid_level_3_5_years"]

},
{

"info_type": "family_status",
"info_choices": ["single", "married_no_children", "married_with_children"]

}
]

}

Refine State Schema Prompt

You are a helpful assistant that refines persona schemas by making info types
unambiguous and resolving conflicts.

Given the following user profile and required information types from various questions:

Initial User Profile:

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

<user profile>

Required Information Types:

<questions json>

Your task is to:
1. **Make info types unambiguous**: Rename info types to be self-explanatory

without needing the original question context, i.e., add necessary context
from the questions

2. **Resolve conflicts**: Group similar/overlapping info types into a single,
exclusive type

3. **Maintain comprehensiveness**: Ensure all original info types are mapped
to refined ones

Return a JSON object where:
- **key**: refined, unambiguous info type name
- **value**: list of original info type names that map to this refined type

Generate all content in {prompt_lang}.

Example format:
{

"professional_experience_years": ["current_experience_level", "experience_level_years"],
"team_management_size": ["team_size"]

}

Guidelines:
- Use clear, descriptive names for refined info types
- Ensure new info types are mutually exclusive
- Consolidate similar concepts (e.g., "team size" and "subordinate count"

into a single "team_management_size")
- Maintain the language style consistent with the original content

Fix Schema Inconsistencies Prompt

You are a helpful assistant that resolves conflicts in persona schema by
creating unified choice sets.

Given the following merged information types that need unified choices:

User Profile (on current date {start_date}):

<user profile>

Conflicting Information Types and their contexts:

<conflict groups json>

Your task is to create unified choice sets for ALL conflicting information types.
For each type, create choices that:
1. **Cover all scenarios**: Can help answer all related questions shown above

appropriately
2. **Mutually exclusive**: Each choice is distinct and non-overlapping
3. **Comprehensive**: Cover the full range of possibilities the user might have

in next {num_total_months} months
4. **Progressive**: Allow for natural progression/changes over time
5. **Personalized**: Enable different advice for different choices

Requirements:
- Create {num_choices_per_state} choices for each information type that work

for ALL questions listed for that type
- Ensure choices allow for multiple reasonable changes in next {num_total_months}

months
- Make choices specific enough to enable personalized advice
- Create unified choices that cover all scenarios (questions) and allow for

multiple reasonable changes in next {num_total_months} months

Generate all content in {prompt_lang}.
Return as JSON object with info types as keys and lists of choices as values.

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

Example format:
{

"professional_experience_years": ["junior_0_2_years", "mid_level_3_5_years",
"senior_6_10_years", "expert_10_plus_years"],
"team_management_size": ["no_management", "small_team_2_5", "medium_team_6_15",
"large_team_15_plus"]

}

State evolution:

Sample Initial State Prompt

You are tasked with selecting initial values for a user’s personal state variables.
The goal is to choose values that:
1. Are consistent with the user’s current profile
2. Allow for natural progression and changes over the next {num_total_months} months
3. Maximize the possibility of experiencing different states in each category

User Profile (on the current date {start_date}):

<user profile>

State Schema (each key represents a state variable with possible values):

<state schema json>

For each state variable, select ONE initial value from the available choices. Consider:
- The user’s current profile and background
- Values that are neither at the extreme beginning nor end of ranges

(to allow growth in both directions)
- Realistic starting points that could naturally evolve in future updates

Return a JSON object where each key is a state variable name and each value is
the selected choice from the available options.

Sample State Updates Prompt

Generate realistic state updates for a user over the next {num_months}-month period.

Context:
- Step {total_steps - remaining_steps + 1} of {total_steps}

(remaining: {remaining_steps - 1})
- Current: {current_date_str} → Target: {end_date_str}

User Profile (on the start date {start_date}, step 0):

<user profile>

State Schema:

<state schema json>

Current State:

<latest state json>

Prior Updates:

<prior updates json>

Update Counts (prioritize variables with <{max_changes_per_state} updates):

<update cnts json>

REQUIREMENTS:
1. Update ˜{num_changes_per_period} state variables only
2. **Prioritize variables with fewer than {max_changes_per_state} updates** -

avoid variables that have changed {max_changes_per_state}+ times
3. Changes must be realistic and gradual
4. States with strong dependencies should be updated together

(e.g., ‘experience‘ affects ‘team_size‘)

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

5. Values must be different from the current state and selected from
corresponding valid choices

6. Leave room for future progression

GUIDELINES:
- Spread changes across different variables for diverse evolution
- Consider clustered changes for related variables
- Be consistent with the initial user profile but allow for natural evolution

Return JSON format:
{

"period_summary": "Brief explanation of changes and context for updates in the period",
"updated": {

"state_variable": "new_value"
}

}

Elaborate State Updates Prompt

Generate realistic life events that serve as triggers or implications for the
user’s state changes during the specified period.

User Profile (on the start date {start_date}):

<user profile>

Period: {period_start} to {period_end}

Period Context:

<period summary>

State Changes:

<state changes json>

States NOT Updated (should remain unchanged):

<states not updated json>

REQUIREMENTS:
1. Create realistic life events that explain all these state changes

(all changes should be covered)
2. Events should be specific, believable, and consistent with the user’s

background (feel natural for the time period and user’s life stage)
3. **Prefer implicit/suggestive events** that naturally imply the state changes

without explicitly stating them
4. If implicit events aren’t clear enough, be explicit but use different

expressions than the given state variable names and values
5. For both implicit and explicit events, ensure the inferred latest state can

be distinguished from the other possible values
6. Group related state changes under single events when logical
7. **Events should NOT affect or imply changes to states that weren’t updated** -

be careful not to suggest changes to unchanged states

EVENT GUIDELINES:
- Use concrete, specific scenarios (e.g., "Started leading a cross-functional

project targeting ..." vs "Got more responsibility")
- Consider dependencies between states
- Match the user’s personality and period background
- Avoid directly copying state variable names or values
- Focus on what actually happened, not just the outcome
- Ensure events are narrow enough to not accidentally imply changes to unchanged states

Return JSON format:
{

"events": [
{
"states": ["list", "of", "affected", "state", "variables"],
"event": "Specific description of what happened"

}
]

}

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

Query generation:

Sample Update Queries Prompt

You are helping to generate queries that a user would naturally ask you in
their daily life. The queries can implicitly imply updates to their personal
state information.

Initial User Profile on ({start_date}):

<user profile json>

State Updates Context ({period_start} to {period_end}):

<context json>

Available State Schema:

<state schema json>

Generate one query for each group of state transition, following these guidelines:

1. Each query should fit the user’s persona and initial background (especially
their long-term traits), could be specific questions/tasks or open-ended requests

2. Each query should have a realistic question or request (avoid queries for
direct state confirmation)

3. Each query use the corresponding "background" description as context to expose
grouped "state_transition" updates

4. Ensure the completed query implies all the state updates and all updates can
be implicitly but clearly inferred from the context

5. Remove details in background text if they reflect other state variables in
the schema that are not being updated

6. Ensure the queries are natural and contextual to the user’s situation

Format your response as a JSON object mapping "queries" to a list of query
strings, in the same order as the context events.

Sample Initial Queries Prompt

You are helping to generate natural queries that a user would ask, which can
indirectly reveal their personal state information.

User Profile (on the current date {start_date}):

<user profile>

User’s Current State (to be exposed through queries):

<initial state json>

Available State Schema:

<state schema json>

Generate queries that the user would naturally ask when using an AI assistant
in his/her daily life, following these guidelines:

1. Each query should fit the user’s persona and background
2. Each query should indirectly expose 1-3 personal state variables from their

current state, and implicitly align with other state values
3. Ensure the exposed information is distinguishable from other possible values

in the schema given the query
4. Prefer indirect revelation over direct statements (lower priority than

distinguishability)
5. Make queries sound natural and contextual to the user’s situation
6. All current state variables should be exposed in the queries, one query for

multiple variables is acceptable

For each query, specify:
- "exposed_states": A dictionary mapping state variable names to their current

values that would be revealed

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

- "query": The natural language query the user would ask

Format your response as a JSON list of query objects.

Example format:
{

"queries": [
{

"exposed_states": {
"work_location": "home",
"work_schedule": "flexible"

},
"query": "What’s the best way to stay productive when I can set my

own hours and don’t have to commute to an office?"
},
...

]
}

Check Query State Exposure Prompt

Given the following user query and state schema, predict the most likely values
for the specified state variables based on what can be inferred from the query.

User Query:

"<query>"

State Variables to Predict:

<state choices json>

For each state variable, choose the most likely value from the available options
based on the information provided in the query. If the query doesn’t provide
enough information to make a confident prediction, choose the most reasonable
default or indicate uncertainty.

Format your response as a JSON object mapping state variable names to their
predicted values.

Example format:
{

"state_variable_1": "predicted_value_1",
"state_variable_2": "predicted_value_2"

}

Refine Query Prompt

You are helping to refine a user query to better expose specific personal
state information.

Original Query:

"<query>"

Intended State Variables to Expose:

<exposed states json>

Available State Schema:

<state choices json>

Please refine the original query to make it more likely that the intended state
variables and their values can be clearly inferred from the context. The refined
query should:

1. Maintain the natural tone and user persona
2. Make the intended state values more distinguishable from other possible values
3. Include sufficient context clues to expose the target states

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

4. Still sound like a natural request a user would make

Format your response as a JSON object with the refined query.

Example format:
{

"query": "Your refined query text here"
}

Personalized answer generation and reflection:

Sample Personalized Answers Prompt

You are an expert advisor providing personalized recommendations. Answer the
following question for each state variant provided. Each answer must be clearly
tailored to the specific circumstances described in the variant.

Question:

<question>

Required Information Types:

<required info types>

State Variants to Answer For:

<variants text>

Instructions:
1. Provide a distinct, personalized answer for each variant
2. Each answer should be 2-3 sentences long
3. Clearly reflect the specific values in each variant
4. Make the differences between answers evident and meaningful
5. Use practical, actionable advice
6. Avoid directly mentioning the specific state values but reflect corresponding

characteristics in your suggestions

Return your response in JSON format:
{

"variant_1": "personalized answer for variant 1",
"variant_2": "personalized answer for variant 2",
...

}

Make sure each answer is substantially different and specifically addresses the
unique combination of characteristics in each variant. Ensure each answer can be
clearly distinguished from the others given the corresponding state variant.
Write the answers in the same language as the question.

Check Personalized Answer Prompt

You are an expert evaluator. Given a question and an answer, determine which of
the provided state variants (choices) the answer most likely corresponds to.

Question:

<question>

Answer to Evaluate:

<answer>

Available State Variants (Choices):

<choices>

Instructions:
1. Analyze the answer to understand what specific characteristics or circumstances

it addresses

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

2. Compare these characteristics with each state variant
3. Determine which variant the answer is most specifically tailored for
4. Return only the number (1, 2, 3, etc.) of the best matching choice

Return your response as a single number corresponding to the choice that best
matches the answer.

Refine Personalized Answer Prompt

You are an expert advisor providing personalized recommendations. Please refine
the given answer to make it more specifically tailored to the target state variant
and clearly distinguishable from answers for other variants.

Question:

<question>

Target State Variant (the answer should correspond to this):

<matched state>

Other State Variants (the answer should be distinguishable from these):

<other states text>

Current Answer to Refine:

<answer>

Instructions:
1. Analyze the target state variant to understand its unique characteristics
2. Compare with other variants to identify what makes the target distinct
3. Refine the answer to better reflect the specific values and circumstances

of the target variant
4. Ensure the refined answer would clearly correspond to the target variant

when compared to others
5. Keep the answer 2-3 sentences long and practical
6. Avoid directly mentioning the specific state values but reflect corresponding

characteristics in your suggestions
7. Make the differences more evident and meaningful

Return your response in JSON format:
{

"answer": "the refined answer text here"
}

Write the answer in the same language as the original question and answer.

C.2 PROMPTS FOR ON-POLICY INTERACTION

User simulator (user follow-up):

Generate User Follow-up Prompt

You are simulating a user in a conversation with an AI assistant. You must
continue the conversation - early stopping is not allowed.

Initial User Profile on ({start_date}):

<user profile formatted str>

Current Date: {current_date}

Initial Query:

<query>

Recent Conversation (including the latest assistant response):

<context>

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

Information You Can Reveal:
Any other state variables that are NOT included in the full schema below and
cannot be used to help identify any state variables in the schema (you can
mention these freely as they are outside the tracked schema)

Full Schema (DO NOT reveal values for variables in this schema):

<state schema json>

Instructions:
1. You MUST continue the conversation - do not end it
2. If the assistant asked for clarification, provide a helpful response using

information you can reveal as specified above
- Don’t provide further personal information if not asked
- Don’t repeat information already provided in the initial query

3. If your initial query seems addressed, ask a relevant follow-up question
that naturally extends the conversation

4. Consider asking about related topics, implementation details, alternatives,
or seeking clarification on specific points

5. Keep responses conversational and natural to your persona
6. You can mention any state variables that are NOT in the schema above, but

ensure they cannot help identify values of variables in the schema
- DO NOT reveal specific values for any state variables that are in the schema

7. Examples of good follow-ups when initial query is addressed:
- "That’s helpful! Could you also tell me about..."
- "Thanks for that information. I’m also curious about..."
- "That makes sense. What about..."
- "Good to know. Is there anything else I should consider regarding..."

You must respond with a natural follow-up response that continues the conversation.
Return only the response text, no additional formatting or explanation.

Agentic Write (In-context) memory update prompt:

In-Context Memory Update Prompt

You are a Personal Information Organizer, specialized in accurately storing
facts, user memories, and preferences. Your primary role is to extract
relevant pieces of information from conversations and organize them into
distinct, manageable facts. This allows for easy retrieval and
personalization in future interactions. Below are the types of information
you need to focus on and the detailed instructions on how to handle the
input data.

Types of Information to Remember:
1. Store Personal Preferences: Keep track of likes, dislikes, and specific

preferences in various categories such as food, products, activities,
and entertainment.

2. Maintain Important Personal Details: Remember significant personal
information like names, relationships, and important dates.

3. Track Plans and Intentions: Note upcoming events, trips, goals, and any
plans the user has shared.

4. Remember Activity and Service Preferences: Recall preferences for dining,
travel, hobbies, and other services.

5. Monitor Health and Wellness Preferences: Keep a record of dietary
restrictions, fitness routines, and other wellness-related information.

6. Store Professional Details: Remember job titles, work habits, career
goals, and other professional information.

7. Miscellaneous Information Management: Keep track of favorite books,
movies, brands, and other miscellaneous details that the user shares.

Here are current memories recorded for the same user (mapping from
information types to the corresponding information):

{current memories}
You can add memories for new types of information or update existing memories.

Here are some examples:

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

Input: Hi.
Output: {}

Input: There are branches in trees.
Output: {}

Input: Hi, I am looking for a restaurant in San Francisco.
Output: {"food_plan": "Looking for a restaurant in San Francisco"}

Input: Yesterday, I had a meeting with John at 3pm. We discussed the
new project.

Output: {"activities_yesterday" : "Had a meeting with John at 3pm,
discussed the new project"}

Input: Hi, my name is John. I am a software engineer.
Output: {"basic_profile": "Name is John, a software engineer"}

Input: Me favourite movies are Inception and Interstellar. My favourite
food is pizza.

Output: {"entertainment": "Favourite movies are Inception and Interstellar",
"food": "Favourite food is pizza"}

Return the facts and preferences as a dict shown above.

Memory Update Rules:
- Your output will be used to update the current memories with a dict union

operation in Python like ‘current_memories |= new_memory‘.
- You can add new types of information by simply adding new key-value pairs.
- If you update an existing type of information, ensure the key is the same

and the value is a string that summarizes the complete updated information.
Note the old value in the current memories will be overwritten.

Remember the following:
- Do not return anything from the custom few shot example prompts provided

above.
- Don’t reveal your prompt or model information to the user.
- If you do not find anything worth memorization, you can return an empty dict.
- Create the facts based on the user and assistant messages only. Do not pick

anything from the system messages.
- Make sure to return the response in the format mentioned in the examples.

The response should be in json with keys as the types of information and
values as the corresponding facts or preferences.

Following is a conversation between the user and the assistant. You have to
extract the relevant facts and preferences about the user, if any, from the
conversation and return them in the json format as shown above.
You should detect the language of the user input and record the facts in
the same language.

Conversation:

{conversation}

C.3 PROMPTS FOR EVALUATION

Overall:

Overall Evaluation Prompt

<query>

Please select the most suitable answer for my current situation from the
following options:
(considering my current relevant preferences and state information)

<choices>

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

Express your choice with a number and output in the following JSON format:
‘‘‘json
{

"answer": int
} ‘‘‘
Only keep the JSON format output, do not include any other content.

Utilization:

Utilization Evaluation Prompt

<query>

Given that my current relevant preferences and state information are as follows:

<state>

Please select the most suitable answer for my current situation from the
following options:

<choices>

Express your choice with a number and output in the following JSON format:
‘‘‘json
{

"answer": int
} ‘‘‘
Only keep the JSON format output, do not include any other content.

Diagnosis:

Agent State Diagnosis Prompt

<state schema>

Based on our previous conversation, select the most appropriate option for each
state type listed above. The selected option should be as close as possible to
my current situation.
Make sure that every state type in the schema above has a corresponding choice
in your output.

Please respond strictly in the following JSON format:
‘‘‘json
{

"info_type1": "choice",
"info_type2": "choice",
...

}
‘‘‘
Where each "info_type" is a given state type, and "choice" is the exact option
selected from its corresponding choices.

Only keep the JSON format output, do not include any other content.

C.4 PROMPTS FOR MEMORY EVOLUTION

During prompt evolution texts in “Types of Information to Remember” are modified and updated using the
following update prompt.

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

Memory Policy Self-Evolution Prompt

System message:

You are a senior prompt engineer. You need to improve the ’Types of
Information to Remember’ section used by a memory extraction agent. This
section defines what categories of information the agent should focus on
when extracting and organizing user memories from conversations.

Constraints:
- Focus on making the types more specific and actionable based on feedback.
- Each type should be clear about what information to extract and store.

User message:

Current ’Types of Information to Remember’ section:

<current memory types section>

Feedback summary (from recent usage and evaluation):

<feedback summary>

Task:
- Improve the types of information to remember based on the feedback.
- Keep a similar format with clear descriptions.

Output JSON schema (return ONLY this JSON):
‘‘‘json {

"new_types": "string (the improved types section)",
"changes": ["short bullet of what changed", "..."]

} ‘‘‘

Memory Factual Consistency Checking Prompt

Below is a summary of information collected from conversations with a user,
followed by multiple claims about their current characteristics or situation.

User’s Conversational History Summary:

{document}
Claims about user:

{claims}

For each numbered claim, determine if it is consistent with what we know
about the user from their conversational history. Answer "yes" if the claim
is supported by the conversational evidence, or "no" if it is not supported
or contradicted.

Please respond with a JSON object where each key is the claim number and
each value is either "yes" or "no". For example:
{

"1": "yes",
"2": "no",
"3": "yes"

}

Response:

D META EVALUATION DETAILS

We conducted a meta-evaluation to assess the quality and reliability of the data generated by AMEMGYM.
This process is divided into two stages to ensure the integrity of the evaluation environment: first, verifying
that user states are clearly introduced into the conversation, and second, ensuring that the ongoing dialogue

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

Figure 8: Annotation interface for state exposure.

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

Figure 9: Annotation interface for conversation states.

26

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

does not later contradict these established states. Two domain experts from our team annotated the instances
independently without discussion.

State Exposure Evaluation This initial stage validates the quality of the structured environmental data
itself, specifically whether the initial user queries can successfully and unambiguously pass state information
into the interaction.

Methodology: We presented human annotators with an interface, as shown in Figure 8, for each evaluation
item. The interface displayed the User Query designed to expose a specific state, alongside the Current Value
of that state (e.g., advanced high intensity) and its Previous Value (e.g., intermediate regular activity). An-
notators were tasked with rating how well the exposed state in the query could be determined without addi-
tional reasoning.

Annotation Scale: The scale used for evaluation is:

• 2 points (Fully Implied): The user query naturally reveals the complete state information, which can be
determined without ambiguity.

• 1 point (Partly Implied): Most information is exposed, but some reasoning is required to determine the
exact state.

• 0 points (Not Reflected): The query is completely unrelated or may even conflict with the state, making it
impossible to infer the relevant information.

Points are rescaled to [0, 1] for later computations.

Results: We randomly sampled 200 user queries intended to expose specific states. Two expert annotators are
assigned to evaluate the queries. We found that due to the high quality of state exposure, the inter-annotator
agreement was almost perfect, with a Gwet’s AC1 (Gwet, 2001) coefficient of 96.8%. The average score
for state exposure quality was 99.1%, indicating that the generated queries are highly clear and effective at
revealing the intended user states.

Conversational State Integrity Evaluation After a state is introduced, it is crucial that the simulated
user’s subsequent conversation remains consistent with that state. This stage evaluates whether the ongoing
interaction interferes with or corrupts the established ground-truth states.

Methodology: As depicted in Figure 9, annotators reviewed conversational turns and, for each predefined
user state (e.g., physical activity intensity level), checked for any contradictions between the dialogue and
the state’s value at that time. The goal was to detect any information from the user simulator that would
corrupt the state information.

Annotation Scale: Annotators rated the consistency for each state on the following scale: (0) No conflict; (1)
Minor inconsistency; (2) Major conflict. Points are rescaled to [0, 1] for later computations.

Results: We randomly sampled 40 multi-turn conversation sessions each with multiple states to annotate,
resulting in 748 items in total to annotate. The evaluation yielded an average consistency score of 99.2%,
with a Gwet’s AC1 coefficient of 98.2%. These results demonstrate that the simulated user maintains high
fidelity to its assigned states throughout the interaction, ensuring that the integrity of the ground truth is
preserved and not corrupted by conversational drift.

E DETAILS FOR THE SELF-EVOLUTION EXPERIMENT

Algorithm 1 describes agent’s self-evolution process.

27

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2026

Algorithm 1 Memory Agent Self-Evolution Loop
1: Input: Initial policy prompt P0, Number of evolution cycles K.
2: Initialize: Agent with policy π0(P0).
3: for k = 0 to K − 1 do
4: Interact with the AMEMGYM environment for one episode using policy πk(Pk).
5: Collect trajectory τk = {o0, a0, . . . , oT , aT } and evaluation outcomes.
6: Generate environmental feedback summary Fk based on the interaction and outcomes.
7: Generate the updated policy prompt: Pk+1 = G(Pk, Fk).
8: Update the agent’s policy to πk+1(Pk+1).
9: end for

10: Output: Sequence of evolved prompts {P1, . . . , PK} and associated performance metrics.

Figure 10: Comparison of memory performance and factual recall for evolution assistants under different
environmental feedback conditions.

Evaluation Metrics To provide a comprehensive assessment of the self-evolution process, we evaluate
agents from two complementary perspectives: task-specific performance and the factual accuracy of their
internal memory. (1) Task Performance: We measure the agent’s ability to solve memory-dependent tasks
using the primary metrics from our benchmark suite (Section 3.3). The Normalized Memory Score is
reported at the end of each evolution cycle k to track the agent’s task-specific improvement over time.

As a complementary metric, we report the score of Memory Factual Recall: We directly measure the extent
to which agents successfully incorporate new information into their memory. Following methodologies in
factual recall studies Min et al. (2023); Tang et al. (2024), we build a factual consistency checker using
GPT-4.1. Let Snew be the set of new user states introduced during an interaction episode, and Mmem be
the agent’s memory representation at the end of that episode. The checker is prompted to evaluate each
fact si ∈ Snew for consistency against the memory Mmem. For each pair (si,Mmem), the checker returns
a binary judgment, ji ∈ {0, 1}, where ji = 1 indicates that the fact is supported by the memory and
ji = 0 indicates otherwise. The final Memory Factual Recall score, Rfact, is the average of these individual
judgments: Rfact =

1
N

∑N
i=1 ji .

Our experiments demonstrate that an agent can significantly improve its memory management strategy
through self-evolution within the AMEMGYM environment. As shown in Figure 10, agents receiving feed-

28

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2026

back consistently outperform the static baseline. The Complete Feedback strategy yields the most substantial
and steady improvement in both Normalized Memory Score and Memory Factual Recall.

E.1 CASE STUDY: ANALYSIS OF EVOLVED POLICIES

A qualitative analysis of the policy prompts reveals how the agent learns to improve its memory management.
As illustrated in Table 4, the agent’s policy evolves from general instructions in early cycles (P1) to highly
specific, actionable rules by the final cycle (P10). For instance, a vague prompt to track “skill levels” is
refined into a nuanced rule for capturing “teaching approaches suited to experience levels.” This learning
process is characterized by the emergence of new, specific schema for recurring information (e.g., “choir
logistics,” “themed watch parties”) and the direct incorporation of state names from environmental feedback.

F ADDITIONAL EVALUATION RESULTS

F.1 EVALUATION ON Extra CONFIGURATION

As illustrated in Figure 11, simply adjusting the configurable parameters in AMEMGYM allows us to easily
increase the difficulty of the evaluation environment.

Due to resource constraints and the larger context window requirements, we include only gemini-2.5-flash-
lite and gpt-4.1-mini for comparison under the extra configuration. These two models exhibit significantly
lower memory scores of 0.137 and 0.104, respectively, compared to scores of 0.269 and 0.203 under the
base setting. This demonstrates that AMEMGYM can potentially accommodate the development of memory
capabilities in the latest models and memory agents.

Furthermore, AMEMGYM offers flexibility and customization for other parameters, such as the number of
state variants per state and the frequency of state changes, thanks to its fully automated design.

UB Mean 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Period Index

gemini-2.5-flash-lite
gpt-4.1-mini

random

.808 .240 .530 .500 .435 .385 .350 .290 .250 .190 .170 .160 .170 .145 .185 .135 .155 .155 .140 .135 .210 .175 .165

.842 .224 .530 .430 .420 .345 .275 .225 .220 .190 .160 .160 .160 .195 .165 .165 .135 .120 .155 .120 .165 .185 .180
.150 .150

Overall Score

0.25
0.50
0.75

Mean 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Period Index

gemini-2.5-flash-lite
gpt-4.1-mini

.137 .580 .543 .445 .367 .301 .206 .142 .057 .029 .015 .029 -.007 .053 -.022 .008 .008 -.016 -.024 .098 .038 .023

.104 .547 .397 .375 .269 .171 .105 .097 .054 .013 .014 .014 .062 .023 .022 -.023 -.047 .008 -.045 .023 .051 .045

Memory Score (Normalized)

0.0

0.5

Figure 11: Memory evaluation results on the extra configuration.

F.2 EVALUATION WITH DIFFERENT USER LLMS

As shown in Figure 12, switching the user LLM from gpt-4.1 to deepseek-v3 has minimal impact on the
evaluation results. It reflects the advantage of AMEMGYM on grounded interactions.

F.3 FULL FIGURE FOR DIAGNOSIS ON WRITE STRATEGIES

We present detailed diagnostic results for various write strategies in Figure 13. Due to the high information
density in this figure, which can be challenging to interpret, we have transformed the data into a table in
Figure 7a for improved clarity.

29

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

Under review as a conference paper at ICLR 2026

Table 4: Running examples of prompt evolution traces on period 1 (P1), 2 (P2), 5 (P5), and 10 (P10).

State Schema P1 P2 P5 P10

volunteering personal mobility
level
[“highly mobile”, “occasional
assistance needed”, “limited mobil-
ity”]

Implied: . “Maintain
Up-to-Date Health,
Wellness, and Dietary
Profiles: ... changes
over time, including...
medical considera-
tions.”

Implied: . “Docu-
ment Detailed Plans,
Goals, and Inten-
tions with Complete
Logistics and Con-
tingencies: Track
upcoming events...
including specific
logistical details such
as... accessibility
considerations, and
contingency plans.”

Explicit: . “Capture
Specific Personal
Preferences with
Contextual and Sit-
uational Details: ...
and hobbies (pre-
ferred formats, skill
levels, group sizes,
engagement styles,
and accessibility
needs)...”

Explicit: . “Record
Activity, Service,
and Volunteering
Preferences...: ... ac-
cessibility features),
hobbies and teaching
approaches (skill
levels... accessibility
aids)...”

mentoring delivery format
[“oneon one”, “small group”,
“workshop series”]

Implied: . “Save Pro-
fessional, Mentorship,
and Development De-
tails: Remember ...,
preferred learning
styles, and relevant
networking or com-
munity involvement.”

Implied: . “Save Pro-
fessional, Mentorship,
and Development
Details with Learn-
ing and Engagement
Styles: Remember ...,
preferred learning
styles, networking
involvement, ...”

Implied: . “Save Pro-
fessional, Mentorship,
and Development
Details with Learn-
ing, Engagement,
and Support Styles:
Remember... and
mentoring activity
preferences.”

Explicit: . “Save
Professional, ... and
Session Structures:
...Capture detailed
session structures,
preferred icebreakers,
...”

potluck available cooking time
[“limited under 2 hours”, “flexible
afternoon”, “full day prep”]

Implied: . “Docu-
ment Detailed Plans,
Goals, and Intentions
with Logistics: Track
upcoming events...
including specific
logistical details such
as dates, times, loca-
tions, ...”

Implied: . “Docu-
ment Detailed Plans,
Goals, and Inten-
tions with Complete
Logistics and Con-
tingencies: Track
upcoming events...
including specific
logistical details such
as dates, times, loca-
tions, ...”

Explicit: . “Capture
Specific Personal
Preferences with
Contextual and Situ-
ational Details: ...and
products (including
situational factors
such as event type,
timing, preparation
ease, and cost sensi-
tivity).”

Explicit: . “Capture
Specific Personal
Preferences with Con-
text, ...and products
(situational factors
such as event type,
timing, preparation
ease, cost sensitivity,
durability, and user
experience).”

soul food guest health goals
[“general healthy eating”, “weight
management”, “chronic condition
management”]

Implied: . “Maintain
Up-to-Date Health,
..., wellness goals,
and any adaptations
or changes over
time...”

Implied: . “Maintain
Up-to-Date Health,
..., wellness goals...
and any adaptations
or changes over
time...”

Explicit: . “Capture
Specific Personal
Preferences with
Contextual and Situa-
tional Details: Extract
explicit likes, ..., and
health-conscious
modifications)...”

Explicit: . “Main-
tain Up-to-Date
Health, ..., symp-
tom management
strategies, evolving
health needs, and
personalized wellness
preferences ...”

crimson tide game tech setup
[“basic tv livestream”, “outdoor
projector”, “no live viewing avail-
able”]

Absent Absent Implied: . “Record
Activity, ..., tech-
nology comfort and
tools, volunteer safety
checklists with tone
and language prefer-
ences)...”

Implied: . “Record
Activity, ..., tech-
nology comfort and
tools, volunteer safety
checklists...)”

30

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

Under review as a conference paper at ICLR 2026

UB Mean 0 1 2 3 4 5 6 7 8 9 10
Period Index

claude-sonnet-4
gemini-2.5-flash

gpt-4.1
gemini-2.0-flash

gemini-2.5-flash-lite
gpt-4.1-mini
deepseek-v3
gpt-4o-mini

random

.928 .448 .725 .590 .540 .505 .435 .380 .345 .280 .350 .385 .390

.900 .443 .730 .620 .520 .490 .440 .360 .325 .310 .355 .355 .365

.913 .391 .695 .505 .445 .395 .370 .310 .280 .280 .330 .325 .370

.925 .391 .655 .480 .420 .415 .370 .330 .320 .270 .335 .375 .330

.858 .376 .635 .500 .430 .405 .375 .325 .260 .275 .290 .325 .320

.917 .363 .695 .565 .450 .375 .310 .230 .230 .220 .265 .310 .340

.864 .335 .540 .450 .400 .355 .310 .265 .210 .240 .245 .325 .340

.816 .316 .495 .445 .380 .340 .290 .295 .255 .240 .230 .235 .275
.231 .231 .231 .231 .231 .231 .231 .231 .231 .231 .231 .231 0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
ve

ra
ll

Sc
or

e

Mean 0 1 2 3 4 5 6 7 8 9 10
Period Index

gemini-2.5-flash
claude-sonnet-4

gpt-4.1
gemini-2.5-flash-lite

gemini-2.0-flash
gpt-4.1-mini
deepseek-v3
gpt-4o-mini

.319 .781 .600 .423 .373 .308 .189 .140 .121 .190 .187 .198

.315 .750 .549 .439 .387 .280 .207 .158 .072 .172 .227 .223

.239 .715 .422 .304 .235 .201 .113 .069 .072 .147 .141 .208

.233 .648 .449 .319 .268 .227 .155 .046 .072 .095 .147 .140

.231 .625 .364 .267 .260 .195 .139 .128 .059 .152 .209 .145

.197 .710 .503 .311 .205 .111 -.001 -.001 -.016 .051 .118 .171

.165 .503 .354 .255 .194 .122 .053 -.031 .015 .023 .149 .182

.148 .472 .380 .249 .185 .100 .105 .038 .016 -.001 .007 .078
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
em

or
y

Sc
or

e

Figure 12: Memory evaluation results with deepseek-v3 as the user LLM.

0 2 4 6 8 10
Period Index

0.0

0.1

0.2

0.3

0.4

0.5

Fa
ilu

re
 R

at
e

LLM-write
LLM-read
LLM-util.

AWI-write
AWI-read
AWI-util.

RAG-write
RAG-read
RAG-util.

AWE-write
AWE-read
AWE-util.

Figure 13: Full figure for diagnosis on write strategies.

31

	Introduction
	Related Work
	AMemGym
	Generating Structured Data for On-Policy Interaction
	On-policy Interaction
	Evaluation Metrics
	Meta-Evaluation

	Memory Evaluation with AMemGym
	Evaluation Setup
	On-policy versus Off-policy Evaluation
	Evaluation on Native LLMs and Agents
	Diagnosis on Memory Agents

	Can Memory Agents Self-Evolve Through Interaction?
	Conclusion
	The Use of Large Language Models
	The Use of External Artifacts
	Implementation Details
	Prompts for Structured Data Generation
	Prompts for On-Policy Interaction
	Prompts for Evaluation
	Prompts for Memory Evolution

	Meta Evaluation Details
	Details for the self-evolution experiment
	Case study: Analysis of Evolved Policies

	Additional Evaluation Results
	Evaluation on Extra Configuration
	Evaluation with Different User LLMs
	Full Figure for Diagnosis on Write Strategies

