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Abstract

We consider distributed learning using constant stepsize SGD over several devices, each
sending a final model update to a central server. In a final step, the local estimates are
aggregated. We prove in the setting of overparameterized linear regression general upper
bounds with matching lower bounds and derive learning rates for specific data generating
distributions. We show that the excess risk is of order of the variance provided the number
of local nodes grows not too large with the global sample size.
We further compare distributed SGD with distributed ridge regression and provide an upper
bound of the excess SGD-risk in terms of the excess RR-risk for a certain range of the sample
size.

1 INTRODUCTION

Deep neural networks possess powerful generalization properties in various machine learning applications,
despite being overparameterized. It is generally believed that the optimization algorithm itself, e.g., stochas-
tic gradient descent (SGD), implicitly regularizes such overparameterized models. This regularizing effect
due to the choice of the optimization algorithm is often referred to as implicit regularization. A refined
understanding of this phenomenon was recently gained in the setting of linear regression (to be considered
as a reasonable approximation of neural network learning) for different variants of SGD. Constant stepsize
SGD (with last iterate or tail-averaging) is investigated in Jain et al. (2018), in Dieuleveut & Bach (2016)
in an RKHS frameowrk and also in Mücke et al. (2019) with additional mini-batching, see also Mücke &
Reiss (2020) for a more general analysis in Hilbert scales. In Zou et al. (2021b;a) it is shown that benign
overfitting also occurs for SGD. Multi-pass SGD is analyzed in Lin et al. (2016); Jain et al. (2016); Lin &
Rosasco (2017); Zou et al. (2022) while last iterate bounds can be found in Jain et al. (2019); Wu et al.
(2022); Varre et al. (2021).

Despite the attractive statistical properties of all these SGD variants, the complexity of computing regression
estimates prevents it from being routinely used in large-scale problems. More precisely, the time complexity
and space complexity of SGD and other regularization methods in a standard implementation scale as O(nα),
α ∈ [2, 3]. Such scalings are prohibitive when the sample size n is large.

Distributed learning (DL) based on a divided-and-conquer approach is an effective way to analyze large scale
data that can not be handled by a single machine. In this paper we study a distributed learning strategy
in linear regression (including both underparameterized and overparameterized regimes) via (tail-) averaged
stochastic gradient descent with constant stepsize (DSGD). The approach is quite simple and communication
efficient: The training data is distributed across several computing nodes where on each a local SGD is run.
In a final step, these local estimates are aggregated (a.k.a. one-shot SGD). Local SGD has become state of
the art in large scale distributed learning, showing a linear speed-up in the number of workers for convex
problems, see e.g. Mcdonald et al. (2009); Zinkevich et al. (2010); Dieuleveut & Patel (2019); Stich (2018);
Spiridonoff et al. (2021) and references therein.

The field of DL has gained increasing attention in statistical learning theory with the aim of deriving
conditions under which minimax optimal rates of convergence can be guaranteed, see e.g. Chen & Xie
(2014), Mackey et al. (2011), Xu et al. (2019), Fan et al. (2019), Shi et al. (2018), Battey et al. (2018), Fan
et al. (2021), Bao & Xiong (2021). Indeed, the learning properties of DL in regression settings over Hilbert
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spaces are widely well understood. The authors in Zhang et al. (2015) analyze distributed (kernel) ridge
regression and show optimal learning rates with appropriate regularization, provided the number of machines
increases sufficiently slowly with the sample size, though under restrictive assumptions on the eigenfunctions
of the kernel integral operator. This has been alleviated in Lin et al. (2017). However, in these works the
number of machines saturates if the target is very smooth, meaning that large parallelization seems not
possible in this regime.

An extension of these works to more general spectral regularization algorithms for nonparametric least square
regression in (reproducing kernel) Hilbert spaces is given in Guo et al. (2017), Mücke & Blanchard (2018),
including gradient descent (Lin & Zhou, 2018) and stochastic gradient descent (Lin & Cevher, 2018). The
recent work Tong (2021) studies DL for functional linear regression.

We finally mention the work of Mücke et al. (2022), where distributed ordinary least squares (DOLS) in over-
parameterized linear regression is studied, i.e. one-shot OLS without any explicit or implicit regularization.
It is shown that the number of workers acts as a regularization parameter itself.

Contributions. We analyze the performance of DSGD with constant stepsize in overparameterized linear
regression and provide upper bounds with matching lower bounds for the excess risk under suitable noise
assumptions. Our results show that optimal rates of convergence can be achieved if the number of local nodes
grows sufficiently slowly with the sample size. The excess risk as a function of data splits remains constant
until a certain threshold is reached. This threshold depends on the structural assumptions imposed on the
problem, i.e. on the eigenvalue decay of the Hessian and the coefficients of the true regression parameter.

We additionally perform a comparison between DSGD and DRR, showing that the excess risk of DSGD is
upper bounded by the excess risk of DRR under an assumption on the sample complexity (SC) of DSGD,
depending on the same structural assumptions. We show that the SC of DSGD remains within constant
factors of the SC of DRR.

Our analysis extends known results in this direction from Zou et al. (2021b;a) for the single machine case to
the distributed learning setting and from DOLS in Mücke et al. (2022) to SGD with implicit regularization.

Organization. In Section 2 we define the mathematical framework needed to present our main results in
Section 3, where we provide a theoretical analysis of DSGD with a discussion of our results. In Section 4 we
compare DSGD with DRR while Section 5 is devoted to showing some numerical illustrations. The proofs a
deferred to the Appendix.

Notation. By L(H1, H2) we denote the space of bounded linear operators between real Hilbert spaces H1,
H2. We write L(H, H) = L(H). For A ∈ L(H) we denote by AT the adjoint operator. By A† we denote
the pseudoinverse of A and for w ∈ H we write ||w||2A := ||A 1

2 w|| for an PSD operator A.

We let [n] = {1, ..., n} for every n ∈ N. For two positive sequences (an)n, (bn)n we write an ≲ bn if an ≤ cbn

for some c > 0 and an ≃ bn if both an ≲ bn and bn ≲ an.

2 SETUP

In this section we provide the mathematical framework for our analysis. More specifically, we introduce
distributed SGD and state the main assumptions on our model.

2.1 SGD and linear regression

We consider a linear regression model over a real separable Hilbert space H in random design. More precisely,
we are given a random covariate vector x ∈ H and a random output y ∈ R following the model

y = ⟨w∗, x⟩ + ϵ , (1)
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where ϵ ∈ R is a noise variable. We will impose some assumptions on the noise model in Section 3. The true
regression parameter w∗ ∈ H minimizes the least squares test risk, i.e.

L(w∗) = min
w∈H

L(w) , L(w) := 1
2E[(y − ⟨w, x⟩)2] ,

where the expectation is taken with respect to the joint distribution P of the pair (x, y) ∈ H × R. More
specifically, we let w∗ be the minimum norm element in the set of all minimizers of L.

To derive an estimator ŵ ∈ H for w∗ we are given an i.i.d. dataset

D := {(x1, y1), ..., (xn, yn)} ⊂ H × R ,

following the above model equation 1, i.e.,

Y = Xw∗ + ε ,

with i.i.d. noise ε = (ε1, ..., εn) ∈ Rn. The corresponding random vector of outputs is denoted as Y =
(y1, . . . , yn)T ∈ Rn and we arrange the data xj ∈ H into a data matrix X ∈ L(H, Rn) by setting (Xv)j =
⟨xj , v⟩ for v ∈ H, 1 ≤ j ≤ n. If H = Rd, then X is a n × d matrix (with row vectors xj). We are particular
interested in the overparameterized regime, i.e. where dim(H) > n.

In the classical setting of stochastic approximation with constant stepsize, the SGD iterates are computed
by the recursion

wt+1 = wt − γ(⟨wt, xt⟩ − yt)xt , t = 1, ..., n ,

with some initialization w1 ∈ H and where γ > 0 is the stepsize. The tail average of the iterates is denoted
by

w̄ n
2 :n := 1

n − n/2

n∑
t=n/2+1

wt , (2)

and where we denote by w̄n := w̄0:n the full (uniform) average.

Various forms of SGD (with iterate averaging, tail averaging, multi passes) in the setting of overparameterized
linear regression has been analyzed recently in Zou et al. (2021b), Wu et al. (2022), Zou et al. (2022),
respectively. In particular, the phenomenon of benign overfitting is theoretically investigated in these works.
It could be shown that benign overfitting occurs in this setting, i.e. the SGD estimator fits training data
very well and still generalizes.

We are interested in this phenomenon for localized SGD, i.e. when our training data is distributed over
several computing devices.

2.2 Local SGD

In the distributed setting, our data are evenly divided into M ∈ N local disjoint subsets

D = D1 ∪ ... ∪ DM

of size |Dm| = n
M , for m = 1, ..., M . To each local dataset we associate a local design matrix Xm ∈ L(H, R

n
M )

(build with local row vectors x
(m)
j ) with local output vector Ym ∈ R

n
M and a local noise vector εm ∈ R

n
M .

The local SGD iterates are defined as

w
(m)
t+1 = w

(m)
t − γ

(〈
w

(m)
t , x

(m)
t

〉
− yt

)
x

(m)
t ,

for t = 1, ..., n
M and m = 1, ..., M . The averaged local iterates w̄

(m)
n
M

are computed according to equation 2.
We are finally interested in the uniform average of the local SGD iterates, building a global estimator:

wM := 1
M

M∑
m=1

w̄
(m)
n
M

.
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Distributed learning in overparameterized linear regression is studied in Mücke et al. (2022) for the ordinary
least squares estimator (OLS), i.e. without any implicit or explicit regularization and with local interpolation.
It is shown that local overfitting is harmless and regularization is done by the number of data splits.

We aim at finding optimal bounds for the excess risk

E
[
L(wM )

]
− L(w∗) ,

of distributed SGD (DSGD) with potential local overparameterization and as function of the number of local
nodes M and under various model assumptions, to be given in the next section.

3 MAIN RESULTS

In this section we present our main results. To do so, we first impose some model assumptions.

Definition 3.1.

1. We define the second moment of x ∼ Px to be the operator H : H → H, given by

H := E[x ⊗ x] = E[⟨·, x⟩x] .

2. The fourth moment operator M : L(H) → L(H) is defined by

M := E[x ⊗ x ⊗ x ⊗ x] ,

with M(A)(w) = E[⟨x, Ax⟩⟨w, x⟩x], for all w ∈ H.

3. The covariance operator of the gradient noise at w∗ is defined as Σ : H → H,

Σ := E[(⟨w∗, x⟩ − y)2 x ⊗ x] .

Assumption 3.2 (Second Moment Condition). We assume that E[y2|x] < ∞ almost surely. Moreover, we
assume that the trace of H is finite, i.e., Tr[H] < ∞.

Assumption 3.3 (Fourth Moment Condition). We assume there exists a positive constant τ > 0 such that
for any PSD operator A, we have

M(A) ⪯ τ Tr[HA]H .

Note that this assumption holds if H−1x is sub-Gaussian, being a standard assumption in least squares
regression, see e.g. Bartlett et al. (2020), Zou et al. (2021b), Tsigler & Bartlett (2020).
Assumption 3.4 (Noise Condition). Assume that

σ2 := ||H− 1
2 ΣH− 1

2 || < ∞ .

This assumption on the noise is standard in the literature about averaged SGD, see e.g. Zou et al. (2021b),
Dieuleveut & Bach (2016).

We introduce some further notation involving the second moment operator H: We denote the eigendecom-
position as

H =
∞∑

j=1
λjvj ⊗ vj ,

where the λ1 ≥ λ2 ≥ ... are the eigenvalues of H and the v′
js are the corresponding eigenvectors. For k ≥ 1,

we let

H0:k :=
k∑

j=1
λjvj ⊗ vj , Hk:∞ :=

∞∑
j=k+1

λjvj ⊗ vj .
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Similarly,

I0:k =
k∑

j=1
vj ⊗ vj , Ik:∞ :=

∞∑
j=k+1

vj ⊗ vj .

A short calculation shows that for all w ∈ H we have

||w||2H†
0:k

=
k∑

j=1

⟨w, vj⟩2

λj
, ||w||2Hk:∞

=
∞∑

j=k+1
λj⟨w, vj⟩2

.

We finally set

Vk(n, M) := k

n
+ γ2 n

M2

∞∑
j=k+1

λ2
j . (3)

3.1 Upper Bound

We now present an upper bound for the averaged local SGD iterates. The proof relies on a bias-variance
decomposition and is given in Appendix A.1.

Theorem 3.5 (DSGD Upper Bound). Suppose Assumptions 3.2, 3.3 and 3.4 are satisfied and let γ < 1
τ Tr[H] ,

w1 = 0. The excess risk for the averaged local SGD estimate satisfies

E
[
L(wM )

]
− L(w∗) ≤ 2Bias(wM ) + 2Var(wM ) ,

where

Bias(wM ) ≤ M2

γ2n2 ||w∗||2H†
0:k∗

+ ||w∗||2Hk∗:∞
+

2τM2(||w∗||2I0:k∗ + γ n
M ||w∗||2Hk∗:∞

)
γn(1 − γτ Tr[H]) · Vk∗(n, M)

and

Var(wM ) ≤ σ2

1 − γτ Tr[H] · Vk∗(n, M) ,

with k∗ = max{k : λk ≥ M
γn }.

The excess risk is upper bounded in terms of the bias and variance. Both terms crucially depend on the
effective dimension k∗ = max{k : λk ≥ M

γn }, dividing the full Hilbert space H into two parts. On the part
associated to the first largest k∗ eigenvalues, the bias may decay faster than on the remaining tail part that
is associated to the smaller eigenvalues, see Zou et al. (2021b) in the context of single machine SGD, Bartlett
et al. (2020); Tsigler & Bartlett (2020), in the context of single machine ridge regression and Mücke et al.
(2022) for distributed ordinary least squares.

Our Theorem 3.5 reveals that the excess risk converges to zero if

||w∗||2Hk∗:∞
→ 0 ,

2M2

γ2n2 ||w∗||2H†
0:k∗

→ 0

and Vk∗(n, M) → 0 as n → ∞. This requires the eigenvalues of H to decay sufficiently fast and to choose
the number of local nodes M = Mn to be a sequence of n. Note that we have to naturally assume Mn ≲ n.
In Subsection 3.3 we provide two specific examples of data distributions with specific choices for (Mn)n∈N

such that the above conditions are met, granting not only convergence but also providing explicit rates of
convergence.
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3.2 Lower Bound

Before we state the lower bounds for the excess risk of the DSGD estimator we need to impose some
assumptions.
Assumption 3.6 (Fourth Moment Lower Bound). We assume there exists a positive constant θ > 0 such
that for any PSD operator A, we have

M(A) − HAH ⪰ θ Tr[HA]H .

Assumption 3.7 (Well-Specified Noise). The second moment operator H is strictly positive definite with
Tr[H] < ∞. Moreover, the noise ϵ in equation 1 is independent of x and satisfies

ϵ ∼ N (0, σ2
noise) .

We now come to the main result whose proof can be found in Appendix A.2.

Theorem 3.8 (DSGD Lower Bound). Suppose Assumptions 3.6 and 3.7 are satisfied. Assume w1 = 0. The
excess risk of the DSGD estimator satisfies

E
[
L(wM )

]
− L(w∗) ≥M(M − 1)

100γ2n2

(
||w∗||2H†

0:k∗
+ γ2n2

M2 ||w∗||2Hk∗:∞

)
+ σ2

noise

100 · Vk∗(n, M) ,

where Vk∗(n, M) is defined in equation 3.

The lower bound for the excess risk also decomposes into a bias part (first term) and a part associated to
the variance (second term). Comparing the bias with the upper bound for the bias from Theorem 3.5 shows
that both are of the same order. Comparing the variances reveals that they are of the same order if

2τM2(||w∗||2I0:k∗ + γ n
M ||w∗||2Hk∗:∞

)
γn(1 − γτ Tr[H]) ≲ 1 .

In the next section, we will provide specific conditions and examples when this is satisfied.

3.3 Fast Rates of convergence for specific distributions

We now consider two particular cases of data distributions, namely the spiked covariance model (with local
overparameterization) and the case where the eigenvalues of the second moment operator H decay polyno-
mially. These are standard assumptions for the model, see e.g. Tsigler & Bartlett (2020); Zou et al. (2021b);
Mücke et al. (2022). In both cases, we determine a range of the number of local nodes Mn depending on
the global sample size such that the bias is dominated by the variance. The final error is then of the order
of the variance, if the number of local nodes grows sufficiently slowly with the sample size. The optimal1
number exactly balances bias and variance.

Corollary 3.9 (Spiked Covariance Model). Suppose all assumptions of Theorem 3.5 are satisfied. Assume
that ||w∗|| ≤ R for some R > 0 and H ∈ Rd×d. Let d =

(
n
M

)q for some q > 1 and d̃ =
(

n
M

)r
< d for some

0 < r ≤ 1. Suppose the spectrum of H satisfies

λj =
{

1
d̃

: j ≤ d̃
1

d−d̃
: d̃ + 1 ≤ j ≤ d .

If

Mn ≤
√

γ(1 − 2γτ)n
R2

1Optimal in the sense of the maximal possible number of local nodes that balances bias and variance.
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then for any n sufficiently large, we have

E
[
L(wMn

)
]

− L(w∗) ≤ c
1

γMn

(
Mn

n

)ν

,

where ν = min{1 − r, q − 1} and for some c < ∞, depending on τ, γ, σ.

Choosing the maximum number of local nodes Mn ≃
√

n gives the fast rate of order

E
[
L(wMn

)
]

− L(w∗) ≲

(
1
n

) ν+1
2

.

for the excess risk.

Corollary 3.10 (Polynomial Decay). Suppose all assumptions of Theorem 3.5 are satisfied with γ <

min
{

1, 1
τ Tr[H]

}
. Assume that ||w∗|| ≤ R for some R > 0. Suppose the spectrum2 of H satisfies for some

r > 0
λj = j−(1+r) .

If

Mn ≤
( γ

R2

) 1+r
2+r · (γn) 1

2+r ,

then for any n sufficiently large, we have

E
[
(wM )

]
− L(w∗) ≤ c

γ

Mn

(
Mn

n

) r
1+r

,

for some c < ∞, depending on τ, γ, σ.

Choosing the maximum number of local nodes Mn ≃ n
1

2+r gives the fast rate of order

E
[
L(wMn

)
]

− L(w∗) ≲

(
1
n

) r+1
r+2

.

for the excess risk.

3.4 Discussion

Comparison to single machine SGD. We compare the DSGD algorithm with the single machine SGD
algorithm, i.e. when M = 1. For this case, we recover the results from Zou et al. (2021b) under the same
assumptions. Our Corollaries 3.9, 3.10 show that the excess risk is dominated by the variance as long as M
grows sufficiently slowly with the sample size. But we can say even more: In the spiked covariance model,
if Mn ≃ nβ for β ∈ [0, 1/2], we see that DSGD performs as good as single machine SGD, provided ν ≤ 1.
Indeed, a direct comparison shows that

1
γMn

(
Mn

n

)ν

≃ 1
γnβ

(
nβ

n

)ν

≃ 1
γ

(
1
n

)ν

,

for any β ∈ [0, 1/2] and ν ≤ 1. Recall that all our bounds are of optimal order, hence the relative efficiency
remains of constant order until the critical threshold for Mn is reached.
However, if Mn is larger than the threshold, i.e. if β ∈ (1/2, 1], then the bias term is dominating. In this
case, the excess risk is of order

2M2

n2 ||w∗||2H†
0:k∗

+ ||w∗||2Hk∗:∞
≃
(

Mn

n

)2−r

+
(

Mn

n

)q

≃
(

nβ

n

)2−r

+
(

nβ

n

)q

,

2Note that the choice λj = j−(1+r) ensures that Tr[H] < ∞.
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being larger than the variance, see the proof of Corollary 3.9, Appendix A.3.
The same observations can be made for the setting in Corollary 3.10 when the eigenvalues are polynomially
decaying. If we let Mn ≃ nβ with β ∈ [0, 1/(2 + r)], then the variance dominates and for all r > 0, the test
error satisfies

1
γMn

(
Mn

n

) r
r+1

≃ 1
γnβ

(
nβ

n

) r
r+1

≃ 1
γ

(
1
n

) r
r+1

.

We refer to Section5 and Section C for some numerical experiments.
Comparison to distributed learning in RKHSs. We emphasize that all our results above hold for
a constant stepsize 0 < γ < min

{
1, 1

τ Tr[H]

}
. In particular, γ does not depend on the number M of local

nodes. This result is line with the results for regularized distributed learning over reproducing kernel Hilbert
spaces, see Zhang et al. (2015); Lin et al. (2017); Mücke & Blanchard (2018) and references therein. In
this setting it is shown for a large class of spectral regularization methods3 that the optimal regularization
parameter λ that leads to minimax optimal bounds, depends on the global sample size only and is of order
n−α, α ∈ (0, 1]. In particular, this parameter is chosen as in the single machine machine setting and each
local subproblem is underregularized. This leads to a roughly constant bias (unchanged by averaging) in
the distributed setting, an increase in variance but averaging reduces the variance sufficiently to obtain
optimal excess risk bounds. The same phenomenon occurs in our DSGD setting. On each local node the
same stepsize γ as for the M = 1 case is applied.

Comparison to distributed ordinary least squares (DOLS). We also compare our results
with those recently obtained in Mücke et al. (2022) for DOLS in random design linear regression. The
general observation in this work is that in the presence of overparameterization, the number of local nodes
acts as a regularization parameter, balancing bias and variance. Recall that this is in contrast to what
we observe for DSGD due to the implicit regularization. The optimal number of splits MOLS

opt depends
on structural assumptions, i.e. eigenvalue decay and decay of the Fourier coefficients of w∗ (a.k.a. source
condition).
For the spiked covariance model, the optimal number MOLS

n of DOLS is of order

MOLS
n ≃

(
dn3/2

d · d̃

)2/5

≃ n
3−2r
5−2r ,

see Corollary 3.14 in Mücke et al. (2022). Comparing with our maximum number for Mn ≃ n1/2 from our
Corollary 3.9 we observe that MOLS

n ≲ MSGD
n if 1

2 ≤ r ≤ 1, i.e., DSGD allows for more parallelization in
this regime.

For polynomially decaying eigenvalues λj ∼ j1+r, r > 0, the optimal number of data splits in Corollary 3.9
(Mücke et al., 2022) scales as MOLS

n ≃ n1/3. Compared to our result from Corollary 3.10 we have

MSGD
n ≃ n

1
2+r ≲ n1/3

for all r ≥ 1. Thus, DOLS seems to allow more data splits under optimality guarantees for fast polynomial
decay, i.e. large r.

4 COMPARISON OF SAMPLE COMPLEXITY OF DSGD AND DRR

In this section we compare the distributed tail-averaged SGD estimator with the distributed Ridge Regression
(RR) estimator (see Zhang et al. (2015); Lin et al. (2017); Mücke & Blanchard (2018); Sheng & Dobriban
(2020) or Tsigler & Bartlett (2020) for RR in the single machine case). Recall that RR reduces to ordinary
least-squares (OLS) if the regularization parameter is set to zero. As a special case, we compare our results
to local OLS from Mücke et al. (2022) and analyze the benefit of implicit regularization of local SGD in the
presence of local overparameterization.

3This class contains, among others, gradient descent and accelerated methods like Heavy ball and Nesterov, ridge regression
or PCA.
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We recall that for any m ∈ [M ], λ ≥ 0, the local RR estimates are defined by

ŵRR
m (λ) = XT

m(XmXT
m + λ)−1Ym .

The average is

wRR
n (λ) = 1

M

M∑
m=1

ŵRR
m .

We aim at showing that the excess risk of DSGD is upper bounded by the excess risk of DRR under suitable
assumptions on the sample complexity. To this end, we first derive a lower bound for DRR to compare with.
The proof follows by combining Proposition B.3 and Proposition B.5 with Lemma B.2.

Assumption 4.1. The variable H−1x is sub-Gaussian and has independent components.

Similarly to the bounds for DSGD, our bounds for DRR depend on the effective dimension

k∗
RR := min

k : λk+1 ≤
M
(

λ +
∑

j>k λj

)
bn

 ,

for λ > 0 and some b > 1.

Theorem 4.2 (Lower Bound Distributed RR). Suppose Assumption 4.1 holds and that H is strictly positive
definite with Tr[H] < ∞. Assume that k∗

RR ≤ n
c′M for some c′ > 1. There exist constants b, c > 1 such that

the excess risk of the averaged RR estimator satisfies

E
[
L(wRR

n (λ))
]

− L(w∗) ≥ ||w∗||2Hk∗
RR:∞

+
M2
(

λ +
∑

j>k∗
RR

λj

)2

cn2 · ||w∗||2H−1
0:k∗

RR

+ σ2

c

(
k∗

RR
n

+ n

M2 ·
∑

j>k∗
RR

λ2
j

(λ +
∑

j>k∗
RR

λj)2

)
.

We do our risk comparison particularly for tail-averaged DSGD and derive a bias-improved upper bound.
The proof is given in Section B.2 and is an extension of Lemma 6.1 in Zou et al. (2021a) to DSGD.

Theorem 4.3 (Upper Bound Tail-averaged DSGD). Suppose Assumption 3.7 is satisfied. Let wMn
denote

the tail-averaged distributed estimator with n training samples and assume γ < 1/ Tr[H]. For arbitrary
k1, k2 ∈ [d]

E
[
L(wM )

]
− L(w∗) = Bias(wM ) + Var(wM )

with

Bias(wM ) ≤ cbM2

γ2n2 ·
∣∣∣∣∣∣exp

(
− n

M
γH
)

w∗
∣∣∣∣∣∣2

H−1
0:k1

+ ||w∗||2Hk1:∞
,

Var(wM ) ≤ cv(1 + R2) · σ2

k2

n
+ nγ2

M2 ·
∑
j>k2

λ2
j

 ,

for some universal constants cb, cv > 0.

To derive the risk comparison we fix a sample size nRR and nSGD for DRR and tail-averaged DSGD, resp.,
and derive conditions on the sample complexities such that individually, the bias and variance of DSGD is
upper bounded by the bias and variance of DRR, respectively. Combining then both of the above theorems
finally leads to the risk comparison result. A detailed computation is given in Section B.3.
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Theorem 4.4 (Comparison DSGD with DRR). Let wMnSGD
denote the tail-averaged distributed estimator

with nSGD training samples. Let further wRR
nRR

(λ) denote the distributed RR estimator with nRR training
samples and with regularization parameter λ ≥ 0. Suppose all assumptions from Theorems 4.2 ,4.3 are
satisfied. There exist constants b, c > 1 and 0 < Lλ,γ ≤ L′

λ,γ such that for C∗ := c
(

1 + ||w∗||2

σ2

)
,

C∗
λ := λ +

∑
j>k∗

RR

λj , γ < min
{

1
Tr[H] ,

1√
cC∗C∗

λ

}
(4)

and
Lλ,γ · nRR ≤ nSGD ≤ L′

λ,γ · nRR

the excess risks of DSGD and DRR satisfy

E
[
L(wM )

]
− L(w∗) ≤ E

[
L(wRR

nRR
(λ))

]
− L(w∗) . (5)

The constants Lλ,γ , L′
λ,γ are explicitly given by

Lλ,γ = max

C∗,

√
c(1 − γλk∗

RR
)

γC∗
λ

 , L′
λ,γ = 1

C∗γ2(C∗
λ)2 .

Note that in the above Theorem, assumption equation 4 on the stepsize ensures that 0 < Lλ,γ ≤ L′
λ,γ .

Our result shows that DSGD performs better than DRR/ DOLS if the sample complexity (SC) of SGD
differs from the SC of RR/OLS by no more than a constant. This constant depends on the amount of
regularization λ, the stepsize γ and the tail behavior of the eigenvalues of the Hessian. We refer to Section
B.3.2 for a more detailed discussion. Our bound slightly differs from Zou et al. (2021a) for the case M = 1 in
two respects: We scale our SC such that the constant in equation 5 is equal to one while Zou et al. (2021a)
show that both risks are of the same order (with a constant larger than one). Second, we also show that the
SC of DSGD is upper bounded by a factor of the SC of DRR/DOLS while Zou et al. (2021a) only derive a
lower bound. However, we remark that nSGD in our Theorem is larger that nRR as the constant Lλ,γ ≥ 1.
A look onto Figure 1 reveals that optimally tuned DSGD may perform better than optimally tuned DRR
even with the same or smaller sample size for certain problem instances. This suggests that our bound may
be refined.

5 NUMERICAL EXPERIMENTS

We illustrate our theoretical findings with experiments on simulated and real data. The reader may find
additional experiments in Section C.

Simulated Data. In a first experiment in Figure 1 (left) we analyze the test error of DSGD as a function
of the local nodes M . We generate n = 500 i.i.d. training data with xj ∼ N (0, H) with mildly overparam-
eterization d = 700. The target w∗ satisfies three different decay conditions w∗

j = j−α, α ∈ {0, 1, 10}. The
eigenvalues of H follow a polynomial decay λj = j−2. The local nodes satisfy Mn = nβ , β ∈ {0, 0.1, ..., 0.9}.
According to Corollary 3.10 we see that a fast decay of w∗

j (i.e. a smaller norm ||w∗||) allows for more
parallelization until the test error blows up.
In a second experiment we compare the sample complexity of optimally tuned tail-averaged DSGD and DRR
for different sources w∗, see Figures 1 (right), 2. Here, the data are generated as above with d = 200, λj = j−2

and w∗
j = j−α, α ∈ {0, 1, 10}. The number of local nodes is fixed at Mn = n1/3 for each n ∈ {100, ..., 6000}.

For this problem instance, DSGD may perform even better than DRR for sparse targets (α = 10), i.e.,
DSGD achieves the same accuracy as DRR with less samples in this regime. For less sparse targets α = 1,
the sample complexities of DSGD and DRR are comparable while for non-sparse targets (α = 0), DRR
outperforms DSGD.

10
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Figure 1: Left: Test error for DSGD with λj = j−2 for different sources w∗ as a function of M .
Right: Comparison of optimally tuned tail-ave DSGD with DRR with λj = j−2, w∗

j = j−10, Mn = n1/3.

Figure 2: Comparison of optimally tuned tail-ave DSGD with DRR with λj = j−2 for different sources w∗,
with λj = j−2 and Mn = n1/3. Left: w∗

j = j−1 Right: w∗
j = 1.

Real Data. To analyze the performance of DSGD on real data, we considered the classification problem of
the Gisette data set4, containing pictures of the digits four and nine. We used the first 3000 samples of the
original train data set for training and the second 3000 samples for evaluation. The feature dimension of one
picture is d = 5000. Hyper-parameters had been fine-tuned on the validation data set to achieve the best
performance. The first experiment in Figure 3(left) again analyzes the test error of DSGD as a function of
the local nodes M . Because the feature dimension is quite large, the optimal stepsize is small (γ ∼ 10−10).
Theorem 3.8 therefore explains why in our example the bias-term and thus the test error grows rather quickly
with the number of local nodes. In Figure 3(right) we compare DRR with tail- and full-averaged DSGD.
We observe that DRR slightly outperforms DSG. According to Theorem 4.4, we need sparsity for w∗ so that
DSGD can keep up with DRR. This might be not the case for the Gisette data set.

6 Summary

We analyzed the performance of distributed constant stepsize (tail-) averaged SGD for linear regression in
an overparameterized regime. We find that the relative efficiency as a function of the number of workers
remains largely unchanged until a certain threshold is reached. This threshold depends on the structural
assumptions imposed by the problem at hand (eigenvalue decay of the Hessian H and the norm of the
target w∗). This is in contrast to distributed OLS without any implicit or explicit regularization with local
overparameterization, where the number of workers itself acts as a regularization parameter, see Figure 4 in
Appendix C.
We also compared the sample complexity of DSGD and DRR and find that the sample complexity of DSGD
remains within constant factors of the sample complexity of DRR. For some problem instances, tail-averaged

4http://archive.ics.uci.edu/ml/datasets/Gisette
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Figure 3: Left: Test error for DSGD with n = 1000, 2000, 3000 and different M . Right: Comparison of
DSGD with DRR for Mn = n1/4.

SGD may outperform DRR, i.e., achieves the same or better accuracy with less samples. Our bound is not
sharp and may be improved in future research.
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Notation. By L(H1, H2) we denote the space of bounded linear operators between real Hilbert spaces H1,
H2 with operator norm || · ||. We write L(H, H) = L(H). For A ∈ L(H) we denote by AT the adjoint
operator. For two PSD operators on H we write A ⪯ B if ⟨(A − B)v, v⟩ ≥ 0 for all v ∈ H. We further let
⟨A, B⟩op = Tr[AT B].

A PROOFS SECTION 3 (BOUNDS FOR DSGD)

A.1 Proofs Upper Bound

A.1.1 Bias-Variance Decomposition

We will use an iterative bias-variance-decomposition which has been extensively studied before in the non
distributed case (see Jain et al. (2016), Zou et al. (2021b)). First we need a couple of definitions.

-) Centered local iterates: Set η
(m)
t := w

(m)
t − w∗ and

η̄(m)
n := M

n

n/M∑
t=1

η
(m)
t , ¯̄ηM := 1

M

M∑
m=1

η̄(m)
n .

-) Local bias: For m = 1, ..., M we set b
(m)
1 = w1 − w∗,

b
(m)
t := (I − γx

(m)
t ⊗ x

(m)
t )b(m)

t−1 , t = 2, ...,
n

M

b̄(m)
n := M

n

n/M∑
t=1

b
(m)
t , bM := 1

M

M∑
m=1

b̄(m)
n .

-) Local variance: For m = 1, ..., M we set v
(m)
1 = 0 and

v
(m)
t := (I − γx

(m)
t ⊗ x

(m)
t )v(m)

t−1 + γϵ
(m)
t x

(m)
t , t = 2, ...,

n

M
,

v̄(m)
n := M

n

n/M∑
t=1

v
(m)
t , vM := 1

M

M∑
m=1

v̄(m)
n ,

where we let ϵ
(m)
t := y

(m)
t −

〈
x

(m)
t , w∗

〉
.

Note that for any m = 1, ..., M and t ≥ 1 one has

E[b(m)
t+1] = E[E[b(m)

t+1|b(m)
t ]] = E[E[(I − γx

(m)
t+1 ⊗ x

(m)
t+1)b(m)

t |b(m)
t ]] = (I − γH)E[b(m)

t ] . (6)

Moreover, from B.4 in Zou et al. (2021b), we find

E[v(m)
t+1 ] = (I − γH) E[v(m)

t ] = (I − γH)t E[v(m)
1 ] = 0 . (7)

It is easy to see that η
(m)
t = b

(m)
t + v

(m)
t and therefore

¯̄ηM = bM + vM . (8)
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Lemma A.1. Define

Bias(wM ) := 1
2

〈
H, E

[
bM ⊗ bM

]〉
op

, Var(wM ) := 1
2
〈
H, E

[
vM ⊗ vM

]〉
op

.

a) We have the following decomposition for the excess risk,

E
[
L(wM )

]
− L(w∗) ≤

(√
Bias(wM ) +

√
Var(wM )

)2
.

b) Suppose the model noise ϵ
(m)
t is well-specified, i.e., ϵ

(m)
t := y

(m)
t −

〈
x

(m)
t , w∗

〉
and x

(m)
t are indepen-

dent and E[ϵ(m)
t ] = 0, then we have the following equality for the excess risk,

E
[
L(wM )

]
− L(w∗) = Bias(wM ) + Var(wM ) .

Proof of Lemma A.1. The proof strategy is similar to the non distributed case (see Zou et al. (2021b),
Lemma B2 and Lemma C1). For completeness we included it here.
a) By definition of the excess risk we have

L(wM ) − L(w∗) = 1
2

∫
H

⟨wM − w∗, x⟩2 Px(dx)

= 1
2 ⟨H(wM − w∗), wM − w∗⟩

= 1
2∥H 1

2 (wM − w∗)∥2

= 1
2

∥∥∥b + v
∥∥∥2

H
,

where we used (8) for the last equality. Using Cauchy-Schwarz inequality we obtain

E[L(wM ) − L(w∗)] ≤

(√
1
2E
∥∥∥b
∥∥∥2

H
+
√

1
2E
∥∥v
∥∥2

H

)2

=
(√

1
2

〈
H, E

[
bM ⊗ bM

]〉
op

+
√

1
2
〈
H, E

[
vM ⊗ vM

]〉
op

)2

b) Set P
(m)
t = I − γx

(m)
t ⊗ x

(m)
t . Note that we have

b
(m)
t =

t∏
k=1

P
(m)
k b

(m)
0 , v

(m)
t = γ

t∑
i=1

t∏
j=i+1

ϵ
(m)
i P

(m)
j x

(m)
i .

By assumption, we therefore have for all s, t ≤ n/M and m, m′ ≤ M ,

E
[
b(m)

s ⊗ v
(m′)
t

]
= γE

 s∏
k=1

P
(m)
k b

(m)
0 ⊗

t∑
i=1

t∏
j=i+1

ϵ
(m′)
i P

(m′)
j x

(m′)
i


= γ

t∑
i=1

E

 s∏
k=1

P
(m)
k b

(m)
0 ⊗

t∏
j=i+1

P
(m′)
j x

(m′)
i

E[ϵ(m′)
i ] = 0.

This implies

E
[
bM ⊗ vM

]
= 0. (9)
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From (8) we therefore have

E
[¯̄ηM ⊗ ¯̄ηM

]
= E

[
bM ⊗ bM

]
+ E

[
vM ⊗ vM

]
(10)

Finally, by definition of the excess risk we have

E[L(wM ) − L(w∗)] = 1
2E

[∫
H

⟨wM − w∗, x⟩2 Px(dx)
]

= 1
2E
[
⟨H(wM − w∗), wM − w∗⟩

]
= 1

2
〈
H, E

[¯̄ηM ⊗ ¯̄ηM

]〉
op

(11)

= Bias(wM ) + Var(wM ), (12)

where we used (10) for the last equality.

A.1.2 Upper Bound

For the non distributed case Zou et al. (2021b) (see Lemma B.11 and Lemma B.6 ) already established upper
bounds. More precisely we have for the local bias and variance term:

Proposition A.2. Set k∗ = max
{

k : λk ≥ M
nγ

}
. If the step size satisfies γ < 1/(τ tr(H)), we have for every

m ∈ [M ]:

a) Under Assumption 3.2 and 3.3, it holds that

Bias
(

w̄
(m)
n
M

)
:=1

2

〈
H, E

[
b

(m)
t ⊗ b

(m)
t

]〉
op

≤ M2

γ2n2 · ∥w0 − w∗∥2
H−1

0:k∗
+ ∥w0 − w∗∥H2

k∗:∞

+
2τM2

(
∥w0 − w∗∥2

I0:k∗ + n
M γ∥w0 − w∗∥2

Hk∗:∞

)
γn(1 − γτ tr(H)) ·

(
k∗

n
+ n

M2 γ2
∑
i>k∗

λ2
i

)
.

b) Under Assumptions 3.2 - 3.4, it holds that

Var
(

w̄
(m)
n
M

)
:= 1

2

〈
H, E

[
v̄(m)

n ⊗ v̄(m)
n

]〉
op

≤ σ2

1 − γτ tr(H)

(
k∗M

n
+ γ2 n

M
·
∑
i>k∗

λ2
i

)
.

Lemma A.3. Set k∗ = max
{

k : λk ≥ M
nγ

}
. If the step size satisfies γ < 1/(τ tr(H)), we have for every

m ∈ [M ]:

a) Under Assumption 3.2 and 3.3, it holds that

Bias(wM ) ≤ M2

γ2n2 · ∥w0 − w∗∥2
H−1

0:k∗
+ ∥w0 − w∗∥H2

k∗:∞

+
2τM2

(
∥w0 − w∗∥2

I0:k∗ + n
M γ∥w0 − w∗∥2

Hk∗:∞

)
γn(1 − γτ tr(H)) ·

(
k∗

n
+ n

M2 γ2
∑
i>k∗

λ2
i

)
.
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b) Under Assumptions 3.2 - 3.4 , it holds that

Var(wM ) ≤ σ2

1 − γτ tr(H)

(
k∗

n
+ γ2 n

M2 ·
∑
i>k∗

λ2
i

)
.

Proof of Lemma A.3 . a) For the Bias-term we simply use

Bias(wM ) = 1
2E
∥∥∥b
∥∥∥2

H
= 1

2E

∥∥∥∥∥ 1
M

M∑
m=1

¯bM
(m)
n

∥∥∥∥∥
2

H

≤ 1
M

M∑
m=1

1
2E
∥∥∥b̄(m)

n

∥∥∥2

H
= 1

M

M∑
m=1

Bias
(

w̄
(m)
n
M

)
. (13)

Taking the bound of the local Bias-term Bias
(

w̄
(m)
n
M

)
from A.2, proves the claim.

b) First we split the expectation operator as follows

E
[
vM ⊗ vM

]
= 1

M2

M∑
m,m′=1

E
[
v̄(m)

n ⊗ v̄(m′)
n

]

= 1
M2

M∑
m=1

E
[
v̄(m)

n ⊗ v̄(m)
n

]
+ 1

M2

∑
m ̸=m′

E
[
v̄(m)

n ⊗ v̄(m′)
n

]
=: I1 + I2. (14)

Now we prove that the second operator I2 is equal zero. First rewrite I2 as

I2 = 1
M2

∑
m ̸=m′

M2

n2

n
M −1∑
s,t=0

E[v(m)
t ⊗ v(m′)

s ].

Therefore it is enough to to prove E[v(m)
t ⊗ v

(m′)
s ] = 0 for any m ̸= m′. Since we assume our data sets to

be independent we have E[v(m)
t ⊗ v

(m′)
s ] = E[⟨., v

(m)
t ⟩]E[v(m′)

s ] = 0, where the last equality follows from (7).
This proves I2 = 0. To sum up we have from (14) for the variance term,

Var(wM ) =1
2
〈
H, E

[
vM ⊗ vM

]〉
op

= 1
M2

M∑
m=1

1
2

〈
H, E

[
v̄(m)

n ⊗ v̄(m)
n

]〉
op

= 1
M2

M∑
m=1

Var
(

w̄
(m)
n
M

)
. (15)

Using the bound of the local variance term from A.2 completes the proof.

Proof of Theorem 3.5. Using lemma A.1 a) we have

E
[
L(wM )

]
− L(w∗) ≤ 2Bias(wM ) + 2Var(wM ).

The claim now follows from lemma A.3.

18
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A.2 Proofs Lower Bound

A.2.1 Lower Bound Bias

Proposition A.4 (Lower Bound Bias). Suppose Assumptions 3.2 and 3.6 are satisfied and let γ < 1
||H|| .

Recall the definition of Bias(wM ) in Lemma A.1. The bias of the distributed SGD estimator satisfies the
lower bound

Bias(wM ) ≥ M(M − 1)
100γ2n2

(
||w1 − w∗||2H†

0:k∗
+ γ2n2

M2 ||w1 − w∗||2Hk∗:∞

)
.

Proof of Proposition A.4. From the definition of the bias in Lemma A.1, we have

Bias(wM ) = 1
2

〈
H, E

[
bM ⊗ bM

]〉
op

= 1
2M2

M∑
m1=1

M∑
m2=1

〈
H, E

[
b̄(m1)

n ⊗ b̄(m2)
n

]〉
op

= 1
2M2

M∑
m=1

〈
H, E

[
b̄(m)

n ⊗ b̄(m)
n

]〉
op

+ 1
2M2

M∑
m1 ̸=m2

〈
H, E

[
b̄(m1)

n ⊗ b̄(m2)
n

]〉
op

. (16)

We show that the first term in the above decomposition can be lower bounded by zero. Indeed, from (C.2)
and (C.4) in Zou et al. (2021b) we have for all m = 1, ..., M the local lower bound

〈
H, E

[
b̄(m)

n ⊗ b̄(m)
n

]〉
op

≥ M2

n2

n
M∑

t=1

n
M∑

k=t

〈
(I − γH)k−tH, E

[
b

(m)
t ⊗ b

(m)
t

]〉
op

≥ M2

γn2

〈
I − (I − γH) n

2M , S(m)
n

2M

〉
op

,

where we set

S(m)
n

2M
:=

n
2M∑
t=1

E
[
b

(m)
t ⊗ b

(m)
t

]
.

Setting B1 = b
(m)
1 ⊗ b

(m)
1 = (w1 − w∗) ⊗ (w1 − w∗) and applying Lemma C.4 from Zou et al. (2021b) gives

then for all m = 1, ..., M

S(m)
n

2M
⪰ θ

4 Tr
[(

I − (I − γH) n
2M

)
B1
]

·
((

I − (I − γH) n
2M

))
︸ ︷︷ ︸

P SD

+
n
M∑

t=1
(I − γH)t · B1 · (I − γH)t

︸ ︷︷ ︸
P SD

⪰ 0 .

Hence,

1
2M2

M∑
m=1

〈
H, E

[
b̄(m)

n ⊗ b̄(m)
n

]〉
op

≥ 1
2M2 · M2

γn2

M∑
m=1

〈
I − (I − γH) n

2M , S(m)
n

2M

〉
op

≥ 0 . (17)
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We now bound the second term in equation 16. Note that by independence of the local nodes and with
equation 6 we may write for any fixed m1 ̸= m2

E
[
b̄(m1)

n ⊗ b̄(m2)
n

]
= M2

n2

n
M∑

t=1

n
M∑

k=1
E
[
b

(m1)
t

]
⊗ E

[
b

(m2)
k

]

= M2

n2

n
M∑

t=1

n
M∑

k=1
(I − γH)t · B1 · (I − γH)k .

Hence,

1
2M2

M∑
m1 ̸=m2

〈
H, E

[
b̄(m1)

n ⊗ b̄(m2)
n

]〉
op

= 1
2M2

M2

n2

M∑
m1 ̸=m2

n
M∑

t=1

n
M∑

k=1

〈
H, (I − γH)t · B1 · (I − γH)k

〉
op

= M(M − 1)
2γn2

〈 n
M∑

k=1
(I − γH)k

(
I − (I − γH) n

M +1), B1

〉
op

= M(M − 1)
2γ2n2

〈(
I − (I − γH) n

M +1)2H−1, B1

〉
op

.

Following now the lines of the proof of Lemma C.5 in Zou et al. (2021b) (adapted to our local setting) gives

1
2M2

M∑
m1 ̸=m2

〈
H, E

[
b̄(m1)

n ⊗ b̄(m2)
n

]〉
op

≥ M(M − 1)
100γ2n2

(
||w1 − w∗||2H†

0:k∗
+ γ2n2

M2 ||w1 − w∗||2Hk∗:∞

)
.

Combining now the last bound with equation 17 and equation 16 finally gives

Bias(wM ) ≥ M(M − 1)
100γ2n2

(
||w1 − w∗||2H†

0:k∗
+ γ2n2

M2 ||w1 − w∗||2Hk∗:∞

)
.

A.2.2 Lower Bound Variance

Proposition A.5 (Lower Bound Variance). Suppose Assumptions 3.2 and 3.6 are satisfied and let n
M ≥ 500,

γ < 1
||H|| . Recall the definition of Var(wM ) in Lemma A.1. The variance of the distributed SGD estimator

satisfies the lower bound

Var(wM ) ≥ σ2
noise

100 ·

k∗

n
+ γ2n

M2

∑
j>k∗

λ2
j

 .

Proof of Proposition A.5. From the definition of the variance in Lemma A.1, we have

Var(wM ) = 1
2
〈
H, E

[
vM ⊗ vM

]〉
op

= 1
2M2

M∑
m1=1

M∑
m2=1

〈
H, E

[
v̄(m1)

n ⊗ v̄(m2)
n

]〉
op

= 1
2M2

M∑
m=1

〈
H, E

[
v̄(m)

n ⊗ v̄(m)
n

]〉
op

+ 1
2M2

M∑
m1 ̸=m2

〈
H, E

[
v̄(m1)

n ⊗ v̄(m2)
n

]〉
op

. (18)
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We first lower bound the first term. By Eq. (C.3) and Lemma C.3 in Zou et al. (2021b) (adapted to our
local setting) we obtain

1
2M2

M∑
m=1

〈
H, E

[
v̄(m)

n ⊗ v̄(m)
n

]〉
op

≥ 1
2M2

M2

n2

M∑
m=1

n
M −1∑
t=0

n
M −1∑
k=t

〈
(I − γH)k−tH, E

[
v

(m)
t ⊗ v

(m)
t

]〉
op

≥ σ2
noise

100M2

M∑
m=1

M

n
k∗ + γ2n

M

∑
j>k∗

λ2
j


= σ2

noise

100 Vk∗(n, M) ,

where

Vk∗(n, M) :=

k∗

n
+ γ2n

M2

∑
j>k∗

λ2
j

 .

To derive the final bound we argue that the second term in equation 18 is zero. Indeed, by independence of
the local nodes we may write for any m1 ̸= m2 with equation 7

E
[
v

(m1)
t ⊗ v

(m2)
k

]
= E

[
v

(m1)
t

]
⊗ E

[
v

(m2)
k

]
= (I − γH)t(v(m1)

0 ⊗ v
(m2)
0 )(I − γH)k

= 0 ,

since v
(m)
0 = 0 for all m = 1, ..., M . Hence,

1
2M2

M∑
m1 ̸=m2

〈
H, E

[
v̄(m1)

n ⊗ v̄(m2)
n

]〉
op

= 0 .

this finishes the proof.

A.3 Proofs Rates of Convergence

Proof of Corollary 3.9. Let the sequence Mn ≤
√

γ(1−2γτ)n
R2 . By definition of k∗ we know that k∗ = d̃ =(

n
Mn

)r

and hence λk∗ =
(

Mn

n

)r. We first bound the bias from Theorem 3.5. Since ||w∗||2 ≤ R by assumption,
we find

||w∗||2H†
0:k∗

≤ ||w∗||22
λk∗

≤ R2
(

n

Mn

)r

. (19)

Similarly, since n
Mn

→ ∞ as n → ∞, there exists n0 ∈ N such that

||w∗||2Hk∗:∞
≤ R2(

n
Mn

)q

−
(

n
Mn

)r ≤ cn0R2
(

Mn

n

)q

, (20)

for any n ≥ n0 and some cn0 < ∞. Using that Tr[H] = 2 and ||w∗||2I0:k∗ ≤ R2, we find for all n ≥ n0, for
some n0 ∈ N, that

2τM2(||w∗|2I0:k
+ γ n

M ||w∗||2Hk:∞

)
γn(1 − γτ Tr[H]) ≤ 4 max{1, cn0} τR2

1 − 2γτ

M2
n

γn
.

Note that we also use that Mn ≤ n and hence
(

Mn

n

)q−1 ≤ 1, since q > 1. Since

Mn ≤
√

γ(1 − 2γτ)n
R2

21
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we have
τR2

1 − 2γτ

M2
n

γn
≤ 1

and hence

2τM2
n

(
||w∗|2I0:k

+ γ n
M ||w∗||2Hk:∞

)
γn(1 − γτ Tr[H]) ≤ 4 max{1, cn0} . (21)

We further observe that by the definition of the spectrum of H

∑
j>k∗

λ2
l =

d∑
j=d̃

1
d − d̃

= 1(
n

Mn

)q

−
(

n
Mn

)r ≤ cn0

(
Mn

n

)q

,

for any n sufficiently large, by using the argumentation as above. Hence,

Vk∗(n, Mn) := k∗

n
+ γ2 n

M2
n

∞∑
j=k∗+1

λ2
j

≤ max{1, cn0} 1
Mn

·

( (
Mn

n

)1−r

+ γ2
(

Mn

n

)q−1
)

. (22)

Combining (19), (20), (21) and (22), we find for the bias term

Bias(Mn) ≤ R2

γ2(n/Mn)2

(
n

Mn

)r

+ cn0R2
(

Mn

n

)q

+ 4 max{1, cn0}Vk∗(n, Mn)

≤ max{1, cn0} R2

(
1
γ2

(
Mn

n

)2−r

+
(

Mn

n

)q
)

+ (23)

4 max{1, cn0}2 1
Mn

·

( (
Mn

n

)1−r

+ γ2
(

Mn

n

)q−1
)

. (24)

We now turn to the bound of the variance term. From equation 22 we have

Var(Mn) ≤ max{1, cn0}
(

σ2

1 − γτ Tr[H]

)
· 1

Mn
·

( (
Mn

n

)1−r

+ γ2
(

Mn

n

)q−1
)

.

Combining the bounds for bias and variance leads to the total error bound

E
[
L(wMn

)
]

− L(w∗) ≤

2c̃n0 · cγ,τ,σ ·

(
R2

(
1
γ2

(
Mn

n

)2−r

+
(

Mn

n

)q
)

+ · 1
Mn

·

((
Mn

n

)1−r

+ γ2
(

Mn

n

)q−1
))

,

with
cγ,τ,σ := 1 + σ2

1 − γτ Tr[H] , c̃n0 = 4 max{1, cn0}2 ,

holding for any n sufficiently large. We proceed by further simplifying the right hand side of the above
inequality. Since τ ≥ 1 and 1 − γτ Tr[H] < 1, the assumption on Mn implies that

M2
n ≤ nγ

R2 ,

further implying that
R2

γ

(
Mn

n

)2−r

≤ 1
Mn

(
Mn

n

)1−r
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and
R2
(

Mn

n

)q

≤ γ

Mn

(
Mn

n

)q−1
.

As a result, applying Theorem 3.5, the excess risk can be bounded by

E
[
L(wMn

)
]

− L(w∗) ≤ 4c̃n0 · cγ,τ,σ · 1
Mn

((
1
γ

+ 1
)(

Mn

n

)1−r

+ (γ + γ2)
(

Mn

n

)q−1
)

≤ 4c̃n0 · cγ,τ,σ · 1
γMn

((
Mn

n

)1−r

+
(

Mn

n

)q−1
)

.

In the last step we use that γ < 1
2τ < 1

2 .

Proof of Corollary 3.10. Assume the sequence (Mn)n satisfies Mn/n → 0 as n → ∞. We use Theorem 3.5
to bound the excess risk and find estimates for bias and variance. By the definition of k∗ we have

k∗ = max
{

k ∈ N : k ≤
(

γn

Mn

) 1
1+r

}
=
⌊(

γn

Mn

) 1
1+r

⌋
.

Hence, there exists n0 ∈ N such that for all n ≥ n0

cn0

(
γn

Mn

) 1
1+r

≤ k∗ ≤ Cn0

(
γn

Mn

) 1
1+r

,

for some constants 0 < cn0 ≤ Cn0 . Therefore,

λk∗ = (k∗)−(1+r) ≤
(

1
cn0

)1+r

· Mn

γn

and
1

λk∗
= (k∗)1+r ≤ C1+r

n0
· n

γMn
.

We therefore get for the first two terms of the bias

M2
n

γ2n2 · ||w∗||2H†
0:k∗

≤ R2M2
n

γ2n2λk∗
(25)

≤ C1+r
n0

R2

γ
· Mn

n
. (26)

and

||w∗||2Hk∗:∞
≤ R2λk∗ ≤ R2

(
1

cn0

)1+r

· Mn

γn
. (27)

We now bound the last term of the bias. To this end, we apply a well known bound for sums over decreasing
functions, i.e., ∑

j≥k

f(j) ≤
∫ ∞

k

f(x)dx .

This gives

∑
j>k∗

λ2
j ≤

∫ ∞

k∗
x−2(r+1)dx ≤ 1

2r + 1(k∗)−(2r+1) ≤ 1
2r + 1c−(2r+1)

n0

(
Mn

γn

)1+ r
1+r

.
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Thus,

Vk∗(n, Mn) = k∗

n
+ γ2 n

M2

∞∑
j=k∗+1

λ2
j

≤ 1
n

Cn0

(
γn

Mn

) 1
1+r

+ γ2 n

M2
n

c
−(2r+1)
n0

2r + 1

(
Mn

γn

)1+ r
1+r

≤ c′
r,n0

(
1
n

(
γn

Mn

) 1
1+r

+ γ

Mn

(
Mn

γn

) r
1+r

)

≤ 2c′
r,n0

· γ

Mn

(
Mn

γn

) r
1+r

, (28)

with

c′
r,n0

= max
{

Cn0 ,
c

−(2r+1)
n0

2r + 1

}
.

Moreover,

2τM2
n

(
||w∗||2I0:k∗ + γ n

Mn
||w∗||2Hk∗:∞

)
γn(1 − γτ Tr[H]) ≤ 2τM2

n

γn(1 − γτ Tr[H])

(
R2 + R2γ

n

Mn
λk∗

)
≤ c′′

n0

2τM2
n

γn(1 − γτ Tr[H])R2
(

1 + γ
n

Mn

Mn

γn

)
≤ 2c′′

n0

2τ

(1 − γτ Tr[H]) · R2M2
n

γn
,

with

c′′
n0

= max
{

1,

(
1

cn0

)1+r
}

.

Hence, combining this with equation 28 and choosing

Mn ≤
√

γn

R
(29)

leads to

2τM2
n

(
||w∗||2I0:k∗ + γ n

Mn
||w∗||2Hk∗:∞

)
γn(1 − γτ Tr[H]) · Vk∗(n, Mn)

≤ 2c′′
n0

2τ

(1 − γτ Tr[H]) · R2M2
n

γn
· 2c′

r,n0
· γ

Mn

(
Mn

γn

) r
1+r

≤ cr,n0

τ

(1 − γτ Tr[H]) · R2M2
n

γn
· γ

Mn

(
Mn

γn

) r
1+r

≤ cr,n0

τ

(1 − γτ Tr[H]) · γ

Mn

(
Mn

γn

) r
1+r

, (30)

where cr,n0 = 8c′′
n0

· c′
r,n0

. Combining (26), (27) and (30), we find for all n ≥ n0

Bias(Mn) ≤ c̃r,n0 · R2

γ
· Mn

n
+ cr,n0

τ

(1 − γτ Tr[H]) · γ

Mn

(
Mn

γn

) r
1+r

, (31)

where we set

c̃r,n0 = 2 max
{

C1+r
n0

,

(
1

cn0

)1+r
}

.
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We now turn to bounding the variance. Using equation 28 once more, the variance can be bounded by

Var(Mn) ≤ σ2

1 − γτ Tr[H] · 2c′
r,n0

· γ

Mn

(
Mn

γn

) r
1+r

.

Combining the bias bound equation 31 with the variance bound, we obtain for the excess risk

E
[
L(wMn)

]
− L(w∗) ≤ cr,n0,τ,σ

(
R2

γ
· Mn

n
+ γ

Mn

(
Mn

γn

) r
1+r

)
.

cr,n0,τ,σ := max
{

c̃r,n0 , 2cr,n0 · c′
r,n0

· max{τ, σ2}
1 − γτ Tr[H]

}
.

Note that the choice
Mn ≤

( γ

R2

) 1+r
2+r · (γn) 1

2+r (32)

leads to a dominating variance part, i.e.

R2

γ
· Mn

n
≤ γ

Mn

(
Mn

γn

) r
1+r

and

E
[
L(wMn

)
]

− L(w∗) ≤ 2cr,n0,τ,σ
γ

Mn

(
Mn

γn

) r
1+r

.

Note that the choice equation 32 is compatible with the choice equation 29, i.e.,

Mn ≤
( γ

R2

) 1+r
2+r · (γn) 1

2+r ≤
√

γn

R
,

following from the fact that r > 0, provided that n is sufficiently large.

B PROOFS SECTION 4 ( COMPARISON OF SAMPLE COMPLEXITY OF DSGD
AND DRR)

B.1 Lower Bound for distributed ridge regression

In this section we derive a lower bound for the distributed RR estimator. We adopt the following notation
and assumptions from Tsigler & Bartlett (2020).

• H−1/2x, where x ∈ Rd is sub-Gaussian with independent components

• X = (
√

λ1z1, ...,
√

λdzd) with zj being sub-Gaussian with independent components

• A := XXT + λIn, Am := XmXT
m + λIn

• A−j =
∑

i ̸j λiziz
T
i + λIn

Crucial for our analysis is the following quantity, called the local effective dimension for the RR problem:

k∗
RR := min

k : λk+1 ≤
M
(

λ +
∑

j>k λj

)
bn

 . (33)
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B.1.1 Bias-Variance Decomposition DRR

Definition B.1 (Bias and Variance of Distributed RR). Let

Πm(λ) :=
(
XT

mXm + λ
)−1XT

mXm − Id ,

B̂ias(wRR
n (λ)) :=

∣∣∣∣∣
∣∣∣∣∣H1/2

(
1

M

M∑
m=1

Πm(λ)w∗

)∣∣∣∣∣
∣∣∣∣∣
2

,

V̂ar(wRR
n (λ)) :=

∣∣∣∣∣
∣∣∣∣∣H1/2

(
1

M

M∑
m=1

(XT
mXm + λ)−1XT

mϵm

)∣∣∣∣∣
∣∣∣∣∣
2

.

We call

Bias(wRR
n (λ)) = E

[
B̂ias(wRR

n (λ))
]

the (expected) bias of the distributed RR estimator and

Var(wRR
n (λ)) = E

[
V̂ar(wRR

n (λ))
]

the (expected) variance.

We immediately obtain:

Lemma B.2. The excess risk satisfies

E
[
||H1/2(wRR

n (λ) − w∗)||2
]

= Bias(wRR
n (λ)) + Var(wRR

n (λ)) .

Proof of Lemma B.2. We split the excess risk as

||H1/2(wRR
n (λ) − w∗)||2 =

∣∣∣∣∣
∣∣∣∣∣H1/2

(
1

M

M∑
m=1

ŵRR
m (λ) − w∗

)∣∣∣∣∣
∣∣∣∣∣
2

=
∣∣∣∣∣
∣∣∣∣∣H1/2

(
1

M

M∑
m=1

(XT
mXm + λ)−1XT

mYm − w∗

)∣∣∣∣∣
∣∣∣∣∣
2

=
∣∣∣∣∣
∣∣∣∣∣H1/2

(
1

M

M∑
m=1

(XT
mXm + λ)−1XT

m(Xmw∗ + ϵm) − w∗

)∣∣∣∣∣
∣∣∣∣∣
2

= B̂ias(wRR
n (λ)) + V̂ar(wRR

n (λ))

+ 2
M2

M∑
m=1

M∑
m′=1

〈
H Πm(λ)w∗, (XT

mXm + λ)−1XT
mϵm

〉
.

We argue that the expectation with respect to the noise (i.e. conditioned on X) of the last term is equal to
zero. Indeed, by linearity and since ϵm is centered (conditioned on Xm) for all m ∈ [M ], we find

Eϵm

[〈
H Πm(λ)w∗, (XT

mXm + λ)−1XT
mϵm

〉]
=
〈
H Πm(λ)w∗, (XT

mXm + λ)−1XT
mEϵm

[ϵm]
〉

= 0 .

Hence,
E
[
||H1/2(wRR

n (λ) − w∗)||2
]

= E
[
B̂ias(wRR

n (λ))
]

+ E
[
V̂ar(wRR

n (λ))
]

.
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B.1.2 Lower Bound of Bias for DRR

Proposition B.3 (Lower Bound of Bias for local RR). Assume H is strictly positive definite with Tr[H] < ∞.
There exist absolute constants b > 1, c > 1 such that

Bias(wRR
n (λ)) ≥ M − 1

cM
·

M2
(

λ +
∑

j>k∗
RR

λj

)2

n2 · ||w∗||2H−1
0:k∗

RR

+ ||w∗||2Hk∗
RR:∞

 ,

where k∗
RR is defined in equation 33.

For proving this Proposition we need the following Lemma.
Lemma B.4. Let X̃ ∈ Rn×d be an independent copy of X ∈ Rn×d and set Ã = X̃X̃T + λ. Define further
the operator

B := (Id − XT A−1X)H(Id − X̃T Ã−1X̃) .

1. For any i ̸= j, we have
EX,X̃[Bij ] = 0 .

2. The diagonal elements satisfy for any k

EX,X̃[Bii] ≥ 1
c

· λi(
1 + λi

λk+1
· n

ρk

)2 ,

for some absolute constant c > 1 and where we define

ρk =
λ +

∑
j>k λj

λk+1
.

Proof of Lemma B.4. Recall that H = diag{λ1, ..., λd}j and

X = (
√

λ1z1, ...,
√

λdzd) , X̃ = (
√

λ1z̃1, ...,
√

λdz̃d) .

1. Let i ̸= j. We expand

Bij = ⟨ei, Hej⟩︸ ︷︷ ︸
=0

−
√

λi

〈
ej , HXT A−1zi

〉
−
√

λj

〈
ei, HX̃T Ã−1z̃j

〉
+ √

zizj

〈
zi, A−1XHX̃T Ã−1z̃j

〉
= −λj

√
λiλj

〈
zj , A−1zi

〉
− λi

√
λiλj

〈
z̃i, Ã−1z̃j

〉
+
√

λiλj

〈
zi, A−1XHX̃T Ã−1z̃j

〉
.

We define the map F (zj) :=
〈
zj , A−1zi

〉
. Following the lines of the proof of Lemma C.7 in Zou

et al. (2021a) shows that Ezj [F (zj)] = 0. Using similar arguments, the same is true for the second
and last term, showing the result.

2. We expand

Bii =
〈

H(ei −
√

λiXT A−1zi), ei −
√

λiX̃T Ã−1z̃i

〉
= ⟨Hei, ei⟩︸ ︷︷ ︸

=λi

+λi

〈
HXT A−1zi, X̃T Ã−1z̃i

〉
−
√

λi

〈
Hei, X̃T Ã−1z̃i

〉
−
√

λi

〈
Hei, XT A−1zi

〉
= λi

[
1 − λi

(〈
zi, A−1zi

〉
+
〈
z̃i, Ã−1z̃i

〉)]
+ λi

〈
HXT A−1zi, X̃T Ã−1z̃i

〉
.

Setting
ai :=

〈
zi, A−1zi

〉
, ãi :=

〈
z̃i, Ã−1z̃i

〉
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we further find that

λi

〈
HXT A−1zi, X̃T Ã−1z̃i

〉
= λi

d∑
j=1

λj(XT A−1zi)j · (X̃T Ã−1z̃i)j

= λi

d∑
j=1

λ2
j

〈
zj , A−1zi

〉
·
〈
z̃j , Ã−1zi

〉
= λ3

i · ai · ãi + λi

∑
j ̸=i

λ2
j

〈
zj , A−1zi

〉
·
〈
z̃j , Ã−1zi

〉
.

By independence, the last term is non-negative in expectation, i.e.

EX,X̃

λi

∑
j ̸=i

λ2
j

〈
zj , A−1zi

〉
·
〈
z̃j , Ã−1zi

〉
= λi

∑
j ̸=i

λ2
jEX

[〈
zj , A−1zi

〉]
· EX̃

[〈
z̃j , Ã−1zi

〉]
= λi

∑
j ̸=i

λ2
j · EX

[〈
zj , A−1zi

〉]2
≥ 0 .

Hence, for deriving a lower bound in expectation it is sufficient to lower bound the expression

λi · [1 − λi(ai + ãi)] + λ3
i · ai · ãi = λi · (1 − λiai) · (1 − λiãi) .

Using independence once more we find

EX,X̃[Bii] ≥ λi · EX,X̃[(1 − λiai) · (1 − λiãi)] .

We proceed as in the proof of Lemma C.7 in Zou et al. (2021a). Recall that

(1 − λiai) = 1
1 + λi

〈
zi, A−1

−i zi

〉
and for all k 〈

zi, A−1
−i zi

〉
≤ c · n

λk+1ρk
,

for some c > 0, with high probability. Concluding as in Zou et al. (2021a) and using independence
finishes the proof.

Proof of Proposition B.3. Setting wm(λ) = H1/2Πm(λ)w∗ (see Definition B.1), we decompose the bias as

Bias(wRR
n (λ)) = E

[
B̂ias(wRR

n (λ))
]

= E

∣∣∣∣∣
∣∣∣∣∣ 1
M

M∑
m=1

wm(λ)
∣∣∣∣∣
∣∣∣∣∣
2

= 1
M2 E

[
Tr
[(

M∑
m=1

wm(λ)
)

⊗

(
M∑

m′=1
wm′(λ)

)]]

= 1
M2

M∑
m=1

E[Tr[wm(λ) ⊗ wm(λ)]] + 1
M2

∑
m̸=m′

E[Tr[wm(λ) ⊗ wm′(λ)]] . (34)
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We aim to find a lower for the above expression. Since

M∑
m=1

E[Tr[wm(λ) ⊗ wm(λ)]] ⪰ 0

we proceed to lower bound the second term in equation 34 . Setting

Bm,m′ := Πm(λ) ◦ H ◦ Πm′(λ)

for m, m′ ∈ [M ] we may write

Bias(wRR
n (λ)) ≥ 1

M2

∑
m ̸=m′

E[Tr[wm(λ) ⊗ wm′(λ)]]

= 1
M2

∑
m ̸=m′

E[⟨H ◦ Πm(λ)w∗, Πm′(λ)⟩]

= 1
M2

∑
m ̸=m′

E[⟨Bm,m′w∗, w∗⟩]

= 1
M2

∑
m ̸=m′

∑
i

E[(Bm,m′)ii](w∗
i )2 + 2

∑
i>j

E[(Bm,m′)ij ]w∗
i · w∗

j

 . (35)

We now apply Lemma B.4 and follow the lines of the proof of Theorem C.8 in Zou et al. (2021a) to obtain
for every k

Bias(wRR
n (λ)) ≥ 1

M2

∑
m ̸=m′

∑
i

E[(Bm,m′)ii](w∗
i )2

≥ 1
cM2

∑
m ̸=m′

∑
i

λi · (w∗
i )2(

1 + λi

λk+1
· n

Mρk

)2

= M − 1
cM

∑
i

λi · (w∗
i )2(

1 + λi

λk+1
· n

Mρk

)2

≥ M − 1
cM

·

M2
(

λ +
∑

j>k∗
RR

λj

)2

n2 · ||w∗||2H−1
0:k∗

RR

+ ||w∗||2Hk∗
RR:∞

 , (36)

for some c > 1.

B.1.3 Lower Bound of Variance for DRR

Proposition B.5 (Lower Bound of Bias for local RR). Suppose k∗
RR < n

c′M , for some universal constant
c′ > 1. There exist constants b, c > 1 such that

Var(wRR
n (λ)) ≥ σ2

c

k∗
RR
n

+ n

M2 · (λ +
∑

j>k∗
RR

λj) ·
∑

j>k∗
RR

λ2
j

 ,

where k∗
RR is defined in equation 33.
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Proof of Proposition B.5. By definition of the variance, we may write

Var(wRR
n (λ)) = E

[
V̂ar(wRR

n (λ))
]

= E

∣∣∣∣∣
∣∣∣∣∣H1/2

(
1

M

M∑
m=1

(XT
mXm + λ)−1XT

mϵm

)∣∣∣∣∣
∣∣∣∣∣
2

= 1
M2

M∑
m,m′=1

EX

[
Tr
[
H1/2(XT

mXm + λ)−1XT
mEϵm

[ϵm ⊗ ϵm′ ]Xm(XT
m′Xm′ + λ)−1H1/2

]]

= σ2

M2

M∑
m=1

EX

[
Tr
[
H1/2(XT

mXm + λ)−1XT
mXm(XT

mXm + λ)−1H1/2
]]

= 1
M2

M∑
m=1

Var(ŵRR
m (λ)) ,

where the local variance is given by

Var(ŵRR
m (λ)) = σ2EX

[
Tr
[
H1/2(XT

mXm + λ)−1XT
mXm(XT

mXm + λ)−1H1/2
]]

.

To lower bound the variance we utilize Theorem C.5 from Zou et al. (2021a) (see also Bartlett et al. (2020))
and obtain

Var(wRR
n (λ)) ≥ σ2

cM2

M∑
m=1

M · k∗
RR

n
+ n

M · (λ +
∑

j>k∗
RR

λj) ·
∑

j>k∗
RR

λ2
j


= σ2

c

k∗
RR
n

+ n

M2 · (λ +
∑

j>k∗
RR

λj) ·
∑

j>k∗
RR

λ2
j

 ,

provided k∗
RR < n

c′M , for some universal constants c, c′ > 1.

B.1.4 Proof of Theorem 4.2

The proof follows by combining Proposition B.3 and Proposition B.5 with Lemma B.2.

B.2 Upper Bound Excess Risk Tail-Averaged DSGD

Theorem B.6 (Upper Bound Tail-averaged DSGD). Suppose Assumption 3.7 is satisfied. Let wMn
denote

the tail-averaged distributed estimator with n training samples and assume γ < 1/ Tr[H]. For arbitrary
k1, k2 ∈ [d]

E
[
L(wM )

]
− L(w∗) = Bias(wM ) + Var(wM )

with

Bias(wM ) ≤ cbM2

γ2n2 ·
∣∣∣∣∣∣exp

(
− n

M
γH
)

w∗
∣∣∣∣∣∣2

H−1
0:k1

+ ||w∗||2Hk1:∞
,

Var(wM ) ≤ cv(1 + R2) · σ2

k2

n
+ nγ2

M2 ·
∑
j>k2

λ2
j

 ,

for some universal constants cb, cv > 0.
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Proof of Theorem B.6. Utilizing equation 13 and Lemma 6.1 in Zou et al. (2021a), we have

Bias(wM ) = 1
M

M∑
m=1

Bias
(

w̄
(m)
n
M

)
≤ 1

M

M∑
m=1

cbM2

γ2n2 ·
∣∣∣∣∣∣exp

(
− n

M
γH
)∣∣∣∣∣∣2

H−1
0:k1

+ ||w∗||2Hk1:∞

= cbM2

γ2n2 ·
∣∣∣∣∣∣exp

(
− n

M
γH
)

w∗
∣∣∣∣∣∣2

H−1
0:k1

+ ||w∗||2Hk1:∞
,

for some universal constant cb > 0.

For the variance, we utilize equation 15 and Lemma 6.1 in Zou et al. (2021a) once more to obtain

Var(wM ) ≤ 1
M2

M∑
m=1

Var
(

w̄
(m)
n
M

)

≤ cv
(1 + R2) · σ2

M2

M∑
m=1

k2M

n
+ nγ2

M
·
∑
j>k2

λ2
j


= cv(1 + R2) · σ2

k2

n
+ nγ2

M2 ·
∑
j>k2

λ2
j

 ,

for some universal constant cv > 0.

B.3 Comparing DSGD with DRR

B.3.1 Proof of Theorem 4.4

To prove Theorem 4.4 we derive conditions on nRR and nSGD such that the upper bound for the excess risk
of wM for DSGD from Theorem 4.3 can be upper bounded by the lower bound of wRR

n (λ) for DRR from
Theorem 4.2, i.e. such that

cbM2

γ2n2
SGD

·
∣∣∣∣∣∣exp

(
−nSGD

M
γH
)

w∗
∣∣∣∣∣∣2

H−1
0:k∗

RR

+ ||w∗||2Hk∗
RR:∞

≤
M2
(

λ +
∑

j>k∗
RR

λj

)2

cn2
RR

· ||w∗||2H−1
0:k∗

RR

+ ||w∗||2Hk∗
RR:∞

(37)

and

cv

(
1 + ||w∗||2

σ2

)
· σ2

 k∗
RR

nSGD
+ nSGDγ2

M2 ·
∑

j>k∗
RR

λ2
j

 ≤ σ2

c

(
k∗

RR
nRR

+ nRR

M2 ·
∑

j>k∗
RR

λ2
j

(λ +
∑

j>k∗
RR

λj)2

)
. (38)

We start with equation 38. For

cv

(
1 + ||w∗||2

σ2

)
· σ2 k∗

RR
nSGD

≤ σ2

c

k∗
RR

nRR

to hold we need that
C∗nRR ≤ nSGD , C∗ := cv · c ·

(
1 + ||w∗||2

σ2

)
. (39)
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To

cv

(
1 + ||w∗||2

σ2

)
· σ2 nSGDγ2

M2 ·
∑

j>k∗
RR

λ2
j ≤ σ2

c

nRR

M2 ·
∑

j>k∗
RR

λ2
j

(λ +
∑

j>k∗
RR

λj)2

to hold we need
nSGD ≤ nRR

C∗ · (C∗
λ)2γ2 , C∗

λ := λ +
∑

j>k∗
RR

λj . (40)

Finally, from equation 37 we need

cbM2

γ2n2
SGD

·
∣∣∣∣∣∣exp

(
−nSGD

M
γH
)

w∗
∣∣∣∣∣∣2

H−1
0:k∗

RR

≤ M2(C∗
λ)2

cn2
RR

· ||w∗||2H−1
0:k∗

RR

. (41)

To ensure this, note that∣∣∣∣∣∣exp
(

−nSGD

M
γH
)

w∗
∣∣∣∣∣∣2

H−1
0:k∗

RR

≤ e
− nSGD

M γλk∗
RR · ||w∗||2H−1

0:k∗
RR

≤ (1 − γλk∗
RR

) · ||w∗||2H−1
0:k∗

RR

.

Hence, equation 41 is implied if
cb

γ2n2
SGD

(1 − γλk∗
RR

) ≤ (C∗
λ)2

cn2
RR

,

being equivalent to √
ccb(1 − γλk∗

RR
)

γC∗
λ

nRR ≤ nSGD . (42)

Combining conditions equation 39, equation 40 and equation 42 we need

max

C∗,

√
ccb(1 − γλk∗

RR
)

γC∗
λ

 · nRR ≤ nSGD ≤ 1
C∗ · (C∗

λ)2γ2 · nRR .

A short calculation shows that the condition

γ < min
{

1
Tr[H] ,

1√
cC∗C∗

λ

}
implies that

max

C∗,

√
ccb(1 − γλk∗

RR
)

γC∗
λ

 ≤ 1
C∗ · (C∗

λ)2γ2 .

This finishes the proof.

B.3.2 Discussion

We give a more detail discussion about the sample complexities (SCs) of DSGD and DRR. In particular, we
derive conditions under which the SCs are of the same order to ensure that

E
[
L(wMnSGD

)
]

− L(w∗) ≤ E
[
L(wRR

nRR
(λnRR))

]
− L(w∗) .

Recall that in order to achieve this bound we would need

LλnRR ,γ · nRR ≤ nSGD ≤ L′
λnRR ,γ · nRR ,

for a suitable choice of the regularization parameter λnRR and number of machines MnSGD .
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To ensure that nRR ≲ nSGD we need to require that

1 ≲ LλnRR ,γ = max

C∗,

√
c(1 − γλk∗

RR
)

γC∗
λnRR

 ,

with C∗
λ := λ +

∑
j>k∗

RR
λj . Recall that

γ < min
{

1
Tr[H] ,

1√
cC∗C∗

λnRR

}
,

and that 1 − γλk∗
RR

< 1. A short calculation shows that

1 ≲

√
c(1 − γλk∗

RR
)

γC∗
λnRR

if

γ

λnRR +
∑

j>k∗
RR

λj

 ≲ 1 .

Furthermore, to ensure that nSGD ≲ nRR we have to require that

L′
λnRR ,γ = 1

C∗γ2(C∗
λnRR

)2 ≲ 1 .

This is satisfied if

1 ≲ γ · C∗
λnRR

= γ

λnRR +
∑

j>k∗
RR

λj

 .

We summarize our finding the following
Corollary B.7. Suppose all assumptions of Theorem 4.4 are satisfied. If

γ

λnRR +
∑

j>k∗
RR

λj

 ≃ 1 (43)

holds, then the sample complexities of DSGD and DRR are of the same order, i.e.

nSGD ≃ nRR

and
E
[
L(wMnSGD

)
]

− L(w∗) ≤ E
[
L(wRR

nRR
(λnRR))

]
− L(w∗) .

Example B.8 (Spiked Covariance Model). We show that condition equation 43 is satisfied in the spiked
covariance model from Corollary 3.9 under a suitable choice for λnRR and MnSGD . Here, we assume that
with

MnSGD = MnRR ≃ n
3−2r
5−2r

RR ,

for 1/2 ≤ r ≤ 1, see our discussion in Section 3.4 (comparison with DOLS). A short calculation shows that

k∗
RR ≃ d̃ ≃

(
nRR

MnRR

)r

≃ n
2r

5−2r

RR .
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Moreover, for λnRR ≃ n−ζ
RR, ζ ≥ 0 and γ = const. , we have

γ

λnRR +
∑

j>k∗
RR

λj

 ≃ γ
(

n−ζ
RR + 1

)
≃ 1 .

Hence, for a wide range of regularization, the condition equation 43 is met and the SCs of DSGD and DRR
in the spiked covariance model are of the same order.

C FURTHER NUMERICAL EXPERIMENTS

In this Section we collect further experimental results conducted on simulated data from Section 5.

Figure 4: Test error for distributed ridgeless regression with λj = j−2 for different sources w∗ as a function
of M = nα, α ∈ {0, 0.1, ..., 0.9}. The number of local nodes acts as a regularization parameter. We generate
n = 500 i.i.d. training data with xj ∼ N (0, H) with mildly overparameterization d = 700.

We compare the sample complexity of optimally tuned full-averaged DSGD, tail-averaged DSGD and last-
iterate DSGD with optimally tuned DRR for different sources w∗, see Figures 5, 6 and 6. Here, the data are
generated as in Section 5 with d = 200, λj = j−2 and w∗

j = j−α, α ∈ {0, 1, 10}. The number of local nodes
is fixed at Mn = n1/3 for each n ∈ {100, ..., 6000}.

34



Under review as submission to TMLR

Figure 5: Left: λj = j−10, w∗
j = 1 Middle: λj = j−10, w∗

j = j−1 Right: λj = j−10, w∗
j = j−10
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Figure 6: Left: λj = j−2, w∗
j = 1 Middle: λj = j−2, w∗

j = j−1 Right: λj = j−2, w∗
j = j−10
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Figure 7: Left: λj = j−1, w∗
j = 1 Middle: λj = j−1, w∗

j = j−1 Right: λj = j−1, w∗
j = j−10
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