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Abstract001

Contrastive Language-Image Pre-training002
(CLIP) has become a cornerstone in multi-003
modal intelligence. However, recent studies004
discovered that CLIP can only encode one005
aspect of the feature space, leading to substan-006
tial information loss and indistinctive features.007
To mitigate this issue, this paper introduces008
a novel strategy that fine-tunes a series of009
complementary CLIP models and transforms010
them into a CLIP-MoE. Specifically, we011
propose a model-agnostic Diversified Multi-012
plet Upcycling (DMU) framework for CLIP.013
Instead of training multiple CLIP models from014
scratch, DMU leverages a pre-trained CLIP015
and fine-tunes it into a diverse set with highly016
cost-effective multistage contrastive learning,017
thus capturing distinct feature subspaces018
efficiently. To fully exploit these fine-tuned019
models while minimizing computational020
overhead, we transform them into a CLIP-021
MoE, which dynamically activates a subset of022
CLIP experts, achieving an effective balance023
between model capacity and computational024
cost. Comprehensive experiments demonstrate025
the superior performance of CLIP-MoE026
across various zero-shot retrieval, zero-shot027
image classification tasks, and downstream028
Multimodal Large Language Model (MLLM)029
benchmarks when used as a vision encoder.030

1 Introduction031

Contrastive Language-Image Pre-training (CLIP)032

(Radford et al., 2021) is a strong vision-language033

foundation model that utilizes large-scale datasets034

to learn comprehensive visual representations by035

bridging vision and language via contrastive image-036

text pre-training. It has been broadly applied in037

widespread areas such as image (Wang et al., 2023;038

Zhang et al., 2023), audio (Guzhov et al., 2022),039

and video (Rasheed et al., 2023) understanding,040

cross-modal retrieval (Ma et al., 2022; Zhao et al.,041

2024), multimodal generation (Ramesh et al., 2022;042

Xie et al., 2024), and data filtering (Schuhmann 043

et al., 2022). Recently, CLIP further serves as the 044

vision encoder for various Multimodal Large Lan- 045

guage Models (MLLMs) (Alayrac et al., 2022; Liu 046

et al., 2024b,c; Chen et al., 2024c; Li et al., 2024b). 047

However, existing CLIP models still exhibit in- 048

herent limitations. Recent studies have discov- 049

ered that CLIP merely encodes a portion of the 050

input’s feature space, thus discarding a substantial 051

amount of useful information (Tang et al., 2023; 052

Tong et al., 2024b; Bleeker et al., 2022). For in- 053

stance, when using CLIP as a vision encoder in 054

Multimodal Large Language Models (MLLMs), it 055

frequently produces blind pairs (Tong et al., 2024b), 056

where two semantically different images with sim- 057

ilar visual components are encoded into the same 058

representation. Such indistinctive features severely 059

confuse the reasoning process of MLLM and dam- 060

age downstream tasks. To improve the ability of 061

CLIP to capture more distinguished information, 062

remarkable efforts have been made to improve the 063

quality of training data and scale up model size. 064

However, these works typically train a new CLIP 065

model from scratch (Li et al., 2024a; Ma et al., 066

2024; Xu et al., 2023), which is resource-intensive. 067

Meanwhile, an isolated CLIP model may still only 068

encode partial information. Therefore, a natural 069

question is raised: Can we generate and utilize di- 070

verse complementary CLIP models with minimal 071

overhead, without requiring retraining? 072

To this end, we propose a Diversified Multi- 073

plet Upcycling (DMU) framework for CLIP, which 074

constructs a set of complementary CLIP models 075

at a low cost and integrates them using a sparsely 076

activated Mixture of Experts (MoE) architecture. 077

MoE has proven effective in scaling model capac- 078

ity while maintaining fixed activated parameters, 079

enhancing both performance and robustness (Jiang 080

et al., 2024; Dai et al., 2024; Chen et al., 2024a). In 081

our proposed DMU framework, instead of training 082

from scratch, we first fine-tune the base CLIP to 083
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produce a series of multiplet CLIP models with084

Multistage Contrastive Learning (MCL) (Zhang085

et al., 2024b). Concretely, MCL encodes diversi-086

fied information through a multistage clustering087

and fine-tuning process, generating a CLIP model088

at each stage and capturing different aspects of089

the input information. Notably, these generated090

CLIP models share all parameters except for the091

feed-forward network (FFN) layers during MCL092

fine-tuning. In this way, we can easily transform093

them into a CLIP-MoE, which dynamically acti-094

vates a subset of experts and gets rid of ensembling095

the CLIP models. Finally, through fine-tuning the096

router in CLIP-MoE, we ensure the full utiliza-097

tion of all experts, enabling CLIP-MoE to capture098

richer and more distinctive features than the base099

model, while leveraging sparsity of MoE to avoid100

the explosion of activated parameters.101

We demonstrate that using a small high-quality102

image-caption dataset, the MCL-initialized CLIP-103

MoE significantly improves CLIP’s performance.104

Notably, on retrieval tasks, CLIP-MoE outperforms105

the base OpenAI CLIP model by about 20%, while106

incurring minimal additional training overhead—107

less than 2% of the total computational cost of108

training the base CLIP model from scratch. When109

serving as a vision encoder for MLLMs, CLIP-110

MoE also shows substantial improvements in most111

benchmarks simply by replacing the original vision112

encoder. Our experiments show that CLIP-MoE113

not only outperforms other fine-tuning baselines114

but also surpasses popular MoE-construction meth-115

ods such as Sparse Upcycling (Komatsuzaki et al.,116

2022).117

In summary, the contributions of this work are118

as follows: First, we introduce a novel Diversi-119

fied Multiplet Upcycling framework, which gen-120

erates a set of diversified multiplet CLIP models121

from an existing dense CLIP model. This approach122

provides a new and efficient pathway to scale the123

CLIP foundation model effectively, offering both124

practical and computational advantages. Second,125

we demonstrate that our Diversified Multiplet Up-126

cycling framework effectively generates special-127

ized experts, each capturing distinct and diverse128

useful information. These experts not only encap-129

sulate richer and more nuanced information but130

also achieve this with significantly reduced com-131

putational costs compared to training from scratch.132

Third, we conduct extensive experiments across a133

variety of downstream tasks, including retrieval,134

classification, and serving as a vision encoder for135

multimodal large language models (MLLMs). Our 136

results show that CLIP-MoE consistently outper- 137

forms the original CLIP model and other strong 138

baselines, underscoring its versatility and effective- 139

ness. 140

2 Related Works 141

Contrastive Learning. In contrastive learning, the 142

core objective is to minimize the distance between 143

positives and the anchor while maximizing the 144

distance between negatives and the anchor within 145

the representation space. This objective compels 146

the model to effectively encode sufficient informa- 147

tion of the inputs to distinguish anchors from their 148

negatives. It has become a central technique in 149

self-supervised learning, aiming to learn represen- 150

tations by bringing semantically similar samples 151

closer in the embedding space while pushing dis- 152

similar samples apart (Chen et al., 2020; He et al., 153

2020). This approach has been particularly success- 154

ful in multimodal settings, where models like Con- 155

trastive Language-Image Pre-training (CLIP) (Rad- 156

ford et al., 2021) have emerged as foundational 157

tools. CLIP aligns visual and textual representa- 158

tions by training on vast datasets of paired images 159

and text, enabling the model to bridge different 160

modalities effectively. 161

Despite its success, CLIP is not without its lim- 162

itations. It lacks the capacity to encode discrim- 163

inative features adequately, and can only capture 164

a fraction of the information within the feature 165

space (Tang et al., 2023; Tong et al., 2024b). To ad- 166

dress these limitations, recent works mainly focus 167

on improving the quality of training data (Li et al., 168

2024a; Ma et al., 2024; Xu et al., 2023; Zhang et al., 169

2024a). However, most of these approaches require 170

retraining the model from scratch, which is com- 171

putationally expensive, time-consuming, and not 172

easily extendable when better data becomes avail- 173

able. In this paper, we introduce Diversified Multi- 174

plet Upcycling (DMU) for CLIP, which transforms 175

a dense CLIP model into a CLIP-MoE through 176

multistage fine-tuning on relatively small datasets. 177

Without retraining, DMU enables capturing diverse 178

and discriminative information while significantly 179

enhancing performance with minimal additional 180

computational overhead. 181

Mixture-of-Experts. The Mixture-of-Experts 182

(MoE) architecture can effectively scale the model 183

capacity with fixed activation parameters (Fedus 184

et al., 2022a). For each input token, only top-k 185
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best experts are selected to obtain an aggregated186

representation (Shazeer et al., 2017). This spar-187

sity allows MoE models to scale to trillions of188

parameters while maintaining the computational189

efficiency (Lepikhin et al., 2020; Fedus et al.,190

2022b). Benefiting from the large model capac-191

ity, the model performance can be improved by192

large margins (Rajbhandari et al., 2022; Dai et al.,193

2024). Besides, specialized experts in MoE models194

are good at handling a wide range of tasks (Shen195

et al., 2023; Zhu et al., 2024; Lu et al., 2024) with196

high robustness (Chen et al., 2024a).197

The most important challenge in MoE training is198

expert construction. Randomly initializing an MoE199

model and training it from scratch requires substan-200

tial resource. Recently, Sparse Upcycling (Komat-201

suzaki et al., 2022) has been proposed to initialize202

MoE models by copying Feed-Forward Networks203

(FFN) from dense models as multiple experts. How-204

ever, these experts are highly homogeneous, lim-205

iting the upper bound of the model’s capabilities206

and leading to suboptimal performance (He et al.,207

2024).208

In this work, we use multi-stage contrastive209

learning to initialize the experts for MoE training,210

which learn distinctive information at each stage.211

In this way, our MoE model can obtain better op-212

timization and effectively capture complementary213

features.214

3 Preliminaries215

Multistage Contrastive Learning (MCL).216

MCL (Zhang et al., 2024b) is designed to obtain217

a series of contrastive models, each capturing218

different and complementary information from the219

input data through multiple cluster-and-contrastive220

processes. Specifically, at each stage, the learned221

representations are clustered. In the following222

stage, for each anchor, negative samples are drawn223

only from the same accumulated cluster from the224

previous stages. In this way, the model learns225

new information beyond what was captured in226

earlier stages. For example, consider a dataset227

that contains objects with varying shapes, colors,228

and textures. In the first stage, the contrastive229

model might focus on learning color information.230

After clustering, samples within the same cluster231

will share the same color. In the second stage,232

since the anchor and its negative samples share the233

same color, the model is compelled to learn other234

features, such as texture, to differentiate between235

them. After clustering in the second stage, samples 236

in the same accumulated cluster will now share 237

both color and texture. Consequently, in the third 238

stage, the model must focus on other attributes, 239

such as shape, to distinguish between samples. 240

After three stages, we obtain three contrastive 241

models, each encoding distinct information: color, 242

texture, and shape. 243

Formally, let X = {xi}Mi=1 represent a dataset. 244

After training the encoder in the first stage, we ob- 245

tain encoded representations Z0 = {f0(xi)}Mi=1. 246

By clustering Z0, we obtain cluster assignments 247

Y 0 = {y(i,0)}Mi=1. In the jth stage, after the 248

cluster-and-contrastive process, each sample xi 249

is assigned to an accumulated cluster ŷ(i,j) = 250

[y(i,0), · · · ,y(i,j−1)]. The objective at the jth stage 251

is: 252

L =Ex,x+,{x−
i |ŷj=ŷ−

(i,j)
}mi=1

253[
− log

es(z,z
+)/τ

es(z,z+)/τ +
∑m

i=1 e
s(z,z−i )/τ

]
, (1) 254

where ŷj represents the accumulated cluster as- 255

signment of the anchor x at the jth stage; ŷ−
(i,j) 256

denotes the accumulated cluster assignment of the 257

negative sample x−
i at the jth stage; and s(·, ·) de- 258

notes cosine similarity. In our proposed Diversified 259

Multiplet Upcycling, we leverage the MCL frame- 260

work to fine-tune a base model and extract a series 261

of experts for the MoE, whereas the original MCL 262

results in a series of standalone CLIP models. 263

Mixture of Experts (MoE). Mixture of Experts 264

(MoE) is an efficient architecture designed to 265

scale large models by dynamically routing inputs 266

through a subset of specialized sub-models, or “ex- 267

perts”. This structure allows the model to maintain 268

high overall capacity while only utilizing a frac- 269

tion of its parameters for any given input, thereby 270

optimizing both computational efficiency and per- 271

formance. 272

In the context of Transformer, an MoE 273

layer (Jiang et al., 2024) typically replaces the 274

standard feed-forward network (FFN) with a set 275

{Ei}Ni=1 of N experts, each of which is an indepen- 276

dent FFN. Given an input token representation x, it 277

first passes through a gating network Wr to obtain 278

the logits corresponding to each expert, then the 279

largest Top-K experts will be chosen, and finally, 280

the probabilities of these selected experts are nor- 281

malized using Softmax. In this way, we can obtain 282
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the probability R(x) of selected experts among all283

N experts.284

xout =
N∑
i=1

R(x)i · Ei(x), (2)285

R(x) = Softmax(TopK(x ·Wr)). (3)286

where R(x)i denotes the i-th routing weight vec-287

tor produced by the router network Wr.288

To ensure that all experts are utilized effectively289

and prevent the model from overfitting to a small290

subset of experts, a load balancing loss (Fedus et al.,291

2022b) is often added to the primary loss function.292

This loss penalizes unbalanced expert usage by293

encouraging a more uniform distribution of input294

tokens across all experts.295

4 Diversified Multiplet Upcycling for296

CLIP297

Expert Extraction. We begin by extracting a se-298

ries of Feed-Forward Network (FFN) layers utiliz-299

ing Multistage Contrastive Learning (MCL) to fine-300

tune a pre-trained base CLIP model for multiple301

stages. During fine-tuning, we freeze all parame-302

ters of the base CLIP model except for the FFN303

layers within each transformer block in both the304

image and text encoders. Because the distributions305

of contrastive negative samples in different MCL306

stages are distinct, the FFN layers at each stage will307

learn diversified and complementary information308

distinct from previous stages. For clarity, we use309

superscripts to index the transformer blocks and310

subscripts to index the MCL stages or MoE experts.311

Suppose we are fine-tuning a transformer-based312

CLIP model, where the image encoder contains A313

transformer blocks and the text encoder contains B314

transformer blocks. The FFN layers in the original315

base model are denoted as {E(i)
0 }A+B

i=1 . As illus-316

trated in Figure 1, the base model might initially317

focus on color-related information. During MCL318

Stage 1, only the FFN layers are fine-tuned. Af-319

ter the cluster-and-contrast process in MCL, the320

FFN layers {E(i)
1 }A+B

i=1 in the fine-tuned model321

learn new information beyond color, such as tex-322

ture. In MCL Stage 2, the model further fine-tunes323

the FFN layers, resulting in {E(i)
2 }A+B

i=1 , which now324

encodes additional features such as shape. Through325

two stages of MCL, we obtain FFN layers where326

{E(i)
0 }A+B

i=1 focus on color, {E(i)
1 }A+B

i=1 on texture,327

and {E(i)
2 }A+B

i=1 on shape.328

Initialization of Mixture of Experts. Once a se- 329

ries of FFN layers {E(i)
j }Nj=0 have been obtained 330

through N stages of MCL, we utilize these FFNs as 331

the experts in a Mixture of Experts (MoE) model, 332

as depicted in Figure 1. According to Equation 2, in 333

the ith transformer block of the base CLIP model, 334

the original FFN layer is replaced with a randomly 335

initialized router and a set of experts: 336

x
(i)
out =

N∑
j=0

R(i)(x(i))j · E(i)
j (x(i)), (4) 337

R(i)(x(i)) = Softmax(TopK(x(i) ·W(i)
r )). (5) 338

where R(i)(x)j denotes the j-th component of 339

the routing weight vector produced by the router 340

network W
(i)
r in the ith transformer block. This 341

setup results in a CLIP-MoE model where different 342

experts within different transformer blocks special- 343

ize in distinct aspects of the input. 344

Continuous Fine-Tuning of CLIP-MoE. To en- 345

able the model to learn optimal routing strategies 346

while preserving the information learned by the 347

FFN layers during MCL, we further fine-tune the 348

routers while freezing all other parameters. We 349

apply the standard contrastive learning loss while 350

incorporating an auxiliary load balancing loss, fol- 351

lowing the approach from Fedus et al. (2022b), to 352

encourage a balanced load across experts. Given 353

N + 1 experts indexed by j = 0 to N , and a batch 354

B with T tokens, the load balancing loss for the ith 355

transformer block is defined as: 356

Lbalance = N ·
N∑
j=0

fj · Pj , (6) 357

fj =
1

T

∑
x∈B

1{argmax p(x) = j}, (7) 358

Pj =
1

T

∑
x∈B

pj(x). (8) 359

where fj is the fraction of tokens assigned to ex- 360

pert j, and p(x) is the logit output from the router 361

network; Pj represents the fraction of router prob- 362

ability allocated to expert j, which is the mean of 363

pj(x), the probability of routing token x to expert 364

j. For simplicity, we omit the transformer block 365

index i in the equation. Since fj and Pj are posi- 366

tive and both their sums are equal to 1, Lbalancing 367

is minimized if and only if fj = 1
T , Pi =

1
T . This 368
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Figure 1: Overview of Diversified Multiplet Upcycling: Our approach involves three key steps. (a) Fine-tuning the
base CLIP model using the MCL framework while freezing all parameters except for the FFN layers. This process
yields a new set of FFN layers at each stage of MCL. (b) Using the obtained FFN layers as experts to initialize a
CLIP-MoE. (c) Continuously fine-tuning the CLIP-MoE using both contrastive learning loss and a router balancing
loss to optimize the routers. The terms ‘color’, ‘shape’, and ‘texture’ are metaphorical representations of abstract
features.

balancing loss encourages not only a uniform dis-369

tribution of actual tokens routed to each expert (i.e.,370

ensuring that all experts have equal importance),371

but also a uniform distribution of router confidence372

across tokens (i.e., preventing the router from being373

overly confident for some tokens and underconfi-374

dent for others). With this auxiliary load balancing375

loss, the total loss is given by:376

L = LCLIP + α · 1

A+B

A+B∑
i=1

L(i)
balance. (9)377

Following (Fedus et al., 2022b), we set α = 0.01378

by default. By applying MoE-Packing to CLIP, we379

obtain a CLIP-MoE model that is capable of captur-380

ing more useful information than the base model,381

with minimal computational overhead, resulting in382

a robust and efficient enhancement of CLIP.383

5 Experiments384

5.1 Datasets385

To fully showcase the potential of our MCL-386

initialized CLIP-MoE, we implement our experi-387

ments on the following two image-caption datasets388

respectively.389

Recap-DataComp. Recap-DataComp-1B (Li390

et al., 2024a) is a large-scale dataset comprising391

1.3 billion high-quality image-caption pairs. This392

dataset is derived from the original DataComp- 393

1B dataset, with all images re-captioned using a 394

fine-tuned LLaVA-1.5 model powered by LLaMA- 395

3 (Dubey et al., 2024). (Li et al., 2024a) utilized 396

this dataset to train CLIP models from scratch, 397

resulting in significant improvements in retrieval 398

performance. Due to computational constraints, 399

our experiments use a randomly sampled subset 400

of 1 million pairs from Recap-DataComp-1B, re- 401

ferred to as Recap-DataComp-1M, to demonstrate 402

the data efficiency of our proposed pipeline. 403

ShareGPT4V. ShareGPT4V (Chen et al., 2023) 404

is a high-quality image-text dataset containing 1.2 405

million highly descriptive captions. The captions 406

are generated by a Multimodal Large Language 407

Model (MLLM) fine-tuned on 100k image-text 408

pairs produced by GPT4V, resulting in well-aligned 409

image-text pairs. 410

5.2 Baselines 411

We compare against three approaches: (1) Direct 412

fine-tuning to isolate the performance impact of ad- 413

ditional data; (2) Sparse Upcycling (Komatsuzaki 414

et al., 2022), a popular method to efficiently ini- 415

tializes MoE models from dense checkpoints; (3) 416

Long-CLIP (Zhang et al., 2024a) that aligns image 417

features with paired short/long captions, though 418

limited to datasets with this specific structure and 419
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requiring substantial computation. We also eval-420

uate CLIP-MoE as a vision encoder for LLaVA-421

1.5 (Liu et al., 2024a), a standard MLLM baseline422

using a CLIP-to-LLM projection, where we replace423

its vision encoder with our CLIP-MoE to evaluate424

representation quality under identical fine-tuning425

protocols.426

5.3 Training Setup427

By default, we use OpenAI CLIP-ViT-L/14 (Rad-428

ford et al., 2021) as the base model for our Di-429

versified Multiplet Upcycling approach. During430

the clustering process at each stage of MCL, we431

cluster the image features into 3 clusters and the432

text features into 3 clusters, resulting in 9 clusters433

per stage (the Cartesian product of the image and434

text feature clusters). To accommodate longer text435

inputs, we interpolate the positional embeddings436

following the approach in (Zhang et al., 2024a).437

The global batch size is maintained at 800 unless438

otherwise specified. To balance performance and439

computational cost, we set the number of experts440

to 4 and use top-2 activation.441

Table 1: Performance of different experts across various
attributes in MMVP. The highest value for each attribute
is highlighted.

Attribute Expert0 Expert1 Expert2 Expert3

O&D 40 33.3 46.7 46.7
PSF 33.3 26.7 26.7 13.3
S&C 20 40 53.3 40
Q&C 60 46.7 40 40
P&R 46.7 33.3 40 26.7
C&A 26.7 13.3 6.7 6.7
S&P 26.7 46.7 40 33.3
Texts 26.7 40 46.7 40
V&P 53.3 46.7 40 60

5.4 Training Cost442

We use 8 A100 GPUs for training. To train the443

CLIP-MoE model with four experts, we intro-444

duce three additional MCL fine-tuning stages, each445

trained for 1 epoch. When using the ShareGPT4V446

dataset, each MCL stage takes approximately 0.5447

hours, and the router fine-tuning stage also takes448

about 0.5 hours. In total, the training time is449

less than 2.5 hours. In comparison, Long-CLIP450

training under the same conditions takes around451

6 hours, making our approach significantly more452

efficient. Our maximum GPU memory usage453

is 8×65955MB, which is comparable to Long-454

CLIP’s 8×63581MB. When training on the Recap-455

DataComp-1M dataset, the training cost is even456

lower. During inference, with top-2 activation, the 457

activated parameter size of our CLIP-MoE is ap- 458

proximately 1.7 times that of the base model (Ope- 459

nAI CLIP-ViT-L/14). 460

5.5 Evaluation 461

We begin by evaluating whether different experts 462

do capture different usefult information as we ex- 463

pected. Then we evaluate the performance of CLIP- 464

MoE on Zero-Shot Image-Text Retrieval, a key task 465

for assessing whether the CLIP model can capture 466

rich fine-grained information, following (Zhang 467

et al., 2024a). All baselines are trained and com- 468

pared using the Recap-DataComp-1M (Recap-DC) 469

and ShareGPT4V (ShareGPT) datasets, with the 470

exception of Long-CLIP. Long-CLIP is incompat- 471

ible with the Recap-DataComp dataset, as it re- 472

quires both a short and long caption for each image, 473

whereas Recap-DataComp provides only one cap- 474

tion per image. Next, we assess the effectiveness 475

of CLIP-MoE as a vision encoder within LLaVA- 476

1.5, a representative Multimodal Large Language 477

Model (MLLM). LLaVA-1.5 serves as an effective 478

visual representation evaluator, helping to mitigate 479

potential biases present in traditional evaluation 480

tasks (Tong et al., 2024a). Finally, we test CLIP- 481

MoE on traditional Zero-Shot Image Classification 482

tasks, which rely more on coarse-grained features. 483

Specialization of Experts. To investigate whether 484

different experts learn distinct features, we evalu- 485

ate each expert’s performance individually on the 486

MMVP Benchmark (Tong et al., 2024b). MMVP 487

requires the CLIP model to select the correct im- 488

age based on a textual statement from a pair of 489

visually similar images. The evaluation data are 490

carefully filtered into nine distinct attributes by 491

human annotators. The results in Table 1 clearly 492

show that different experts specialize in different 493

attributes. For example, Expert0 performs best on 494

attributes such as Presence of Specific Features, 495

Quantity and Count, Color and Appearance, and 496

Viewpoint and Perspective. Expert1 excels in Struc- 497

tural and Physical Characteristics. Expert2 focuses 498

on Orientation and Direction, State and Condition, 499

and Texts, while Expert3 specializes in Orientation 500

and Direction, as well as Viewpoint and Perspec- 501

tive. These results highlight the effectiveness of 502

our proposed Diversified Multiplet Upcycling, as 503

it successfully generates experts that specialize in 504

capturing diverse and complementary information. 505

Zero-Shot Image-Text Retrieval. Following the 506

methodology outlined in (Zhang et al., 2024a), 507
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Table 2: Performance comparison on image-to-text (I2T) and text-to-image (T2I) retrieval tasks using the COCO
and Flickr30k datasets. The models were trained and evaluated on the Recap-DataComp-1M (Recap-DC) and
ShareGPT4V (ShareGPT) datasets, respectively. The best performance for each dataset is highlighted in bold. Our
CLIP-MoE consistently outperforms all baselines across all tasks.

COCO I2T COCO T2I Flickr I2T Flickr T2I
Dataset Model @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10

OpenAI 56.1 79.5 86.8 35.4 60.1 70.2 48.5 72.6 80.8 28.0 49.3 58.7

Recap-DC
Direct FT 58.9 81.5 88.5 44.3 69.5 78.8 41.6 66.5 76.1 37.2 60.4 69.5
Upcycling 59.2 81.7 88.7 45.8 70.9 79.9 42.1 67.3 77.0 39.4 62.9 71.7
CLIP-MoE 64.0 85.1 90.8 45.2 70.2 79.4 56.8 80.1 87.0 40.8 63.8 72.5

ShareGPT
Direct FT 63.3 84.9 91.0 44.5 70.0 78.9 50.5 74.4 82.3 38.5 61.3 69.9
Upcycling 62.9 84.6 90.8 45.2 70.6 79.6 49.6 73.8 82.1 39.5 62.4 71.1
Long-CLIP 62.8 85.1 91.2 46.3 70.8 79.8 53.4 77.5 85.3 41.2 64.1 72.6
CLIP-MoE 65.0 86.0 92.0 46.8 71.7 80.4 60.5 82.3 88.8 42.1 64.7 73.2

Table 3: Performance comparison between OpenAI CLIP and CLIP-MoE as vision encoders in LLaVA1.5. The best
performance for each dataset is highlighted in bold.

Method MME POPE MMBench MM-Vet VisWis MMStar OCRBench VQAv2 TextVQA GQA

OpenAI CLIP 1510.7 85.9 64.3 30.6 54.4 33.3 31.2 78.5 46.1 62.0
CLIP-MoE 1486.2 86.4 66.1 31.5 56.5 34.1 31.8 79.2 46.8 62.6

OpenAI CLIP 1522.6 85.9 67.7 35.3 56.7 36.1 33.6 80.0 48.7 63.2
CLIP-MoE 1560.1 86.5 69.3 39.5 59.2 36.7 34.4 80.0 48.3 63.8

we evaluate text-to-image (T2I) and image-to-text508

(I2T) retrieval on the 5k COCO validation set (Lin509

et al., 2014) and the 30k Flickr30k (Young et al.,510

2014) dataset. The results are presented in Ta-511

ble 2. Given that both Recap-DataComp-1M and512

ShareGPT4V datasets offer higher caption quality513

and longer average caption lengths compared to514

web datasets, Direct Fine-Tuning, Sparse Upcy-515

cling, and CLIP-MoE demonstrate superior perfor-516

mance over the original OpenAI model across most517

tasks, including COCO I2T, COCO T2I, and Flickr518

T2I. However, for Flickr I2T, Sparse Upcycling,519

and Direct Fine-Tuning show significant perfor-520

mance degradation on the Recap-DC dataset. In521

this fine-tuning context, Sparse Upcycling only pro-522

vides a limited advantage over Direct Fine-Tuning.523

Although Long-CLIP clearly outperforms both Di-524

rect Fine-Tuning and Sparse Upcycling, it is incom-525

patible with the Recap-DataComp dataset, because526

it requires each image to have both a short and527

a long caption. In contrast, our proposed CLIP-528

MoE surpasses all baselines on most tasks across529

two datasets, maintaining consistent performance530

by leveraging the diverse information extracted by531

MoE experts.532

Performance in LLaVA-1.5. We further eval-533

uate CLIP-MoE as the vision encoder within534

the LLaVA-1.5 model. The original vision en-535

coder for LLaVA-1.5 is OpenAI’s CLIP-ViT- 536

L/14@336px (Radford et al., 2021), which is 537

trained on images with a resolution of 336x336 pix- 538

els. To ensure a fair comparison, we use OpenAI’s 539

CLIP-ViT-L/14@336px as the base model for MCL 540

and train our CLIP-MoE on the ShareGPT4V 541

dataset at the same 336x336 resolution. After 542

obtaining CLIP-MoE, we freeze it as the vision 543

encoder and follow the same two-stage training 544

procedure as LLaVA-1.5, using Vicuna (Chiang 545

et al., 2023) as the base LLM. We evaluate the 546

MLLMs on ten popular independent MLLM bench- 547

marks (Hudson and Manning, 2019; Liu et al., 548

2025; Fu et al., 2023; Chen et al., 2024b; Yu et al., 549

2023; Liu et al., 2024d; Li et al., 2023; Gurari et al., 550

2018; Singh et al., 2019; Goyal et al., 2017). As 551

shown in Table 3, simply replacing the vision en- 552

coder with CLIP-MoE yields notable performance 553

improvements across most downstream tasks, with 554

particularly strong gains on MMBench (+1.6), MM- 555

Vet (+4.2), and VizWiz (+2.5). Interestingly, the 556

13B model even exhibits a larger performance 557

boost than the 7B model, suggesting that larger 558

base LLMs can better leverage the discriminative 559

information captured by CLIP-MoE. These results 560

strongly support the conclusion that CLIP-MoE 561

extracts richer, more distinctive information from 562

image inputs and encodes higher-quality visual rep- 563

7



Table 4: Ablation study on the impact of MCL expert extraction in CLIP-MoE performance.

ImageNet COCO I2T COCO T2I Flickr I2T Flickr T2I

Method Top-1 @1 @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10

w/o MCL 75.4 62.6 84.2 90.3 43.4 68.3 77.8 56.4 79.3 86.3 37.6 60.3 69.3
CLIP-MoE 74.6 65.0 86.0 92.0 46.8 71.7 80.4 60.5 82.3 88.8 42.1 64.7 73.2

resentations, ultimately enhancing the performance564

of MLLMs.565

Table 5: Performance comparison on zero-shot image
classification. The models were trained and evaluated on
the Recap-DC and ShareGPT4V datasets, respectively.
The best performance for each dataset is highlighted in
bold.

Dataset Model ImgNet ImgNetO ImgNetV2 Cifar10 Cifar100

OpenAI 75.5 31.9 69.9 95.4 76.8

Recap-DC
Direct FT 57.0 32.8 51.3 91.6 68.7
Upcycling 61.1 32.3 55.3 93.6 71.0
CLIP-MoE 74.3 32.2 68.7 95.5 79.3

ShareGPT
Direct FT 59.8 34.5 53.3 87.8 63.1
Upcycling 62.5 34.4 56.5 91.3 67.5
Long-CLIP 73.5 33.7 67.9 95.3 78.5
CLIP-MoE 74.6 33.5 68.5 95.7 79.6

Zero-Shot Image Classification. For a more com-566

prehensive study, we evaluate our CLIP-MoE on567

the zero-shot image classification accuracy on Ima-568

geNet (Deng et al., 2009), ImageNet-O (Hendrycks569

et al., 2021), ImageNet-V2 (Recht et al., 2019),570

CIFAR-10 (Krizhevsky et al., 2009), and CIFAR-571

100 (Krizhevsky et al., 2009). The results, pre-572

sented in Table 5, reveal that no model signifi-573

cantly surpasses OpenAI CLIP in classification ac-574

curacy. We attribute this to two key reasons. First,575

data limitations: both the Recap-DataComp and576

ShareGPT4V datasets contain roughly 1M sam-577

ples, significantly smaller than the 400M samples578

used to train OpenAI CLIP. This scale difference579

contributes to overfitting and limited generalization.580

Second, the nature of classification tasks: coarse-581

grained features play a dominant role in classifica-582

tion, whereas the fine-grained information captured583

by the model does not always translate to improved584

classification accuracy and, in some cases, may585

even degrade performance. For instance, Long-586

CLIP, which learns more fine-grained representa-587

tions from enhanced and lengthier image captions,588

improves retrieval performance but exhibits a per-589

formance drop on ImageNet and ImageNet-V2.590

However, CLIP-MoE mitigates this degradation591

more effectively than Long-CLIP, which explic-592

itly incorporates short captions to preserve coarse- 593

grained feature encoding. Moreover, CLIP-MoE 594

even surpasses OpenAI CLIP on ImageNet-O and 595

CIFAR, suggesting that our proposed DMU ap- 596

proach not only enhances the model’s ability to 597

capture fine-grained information but also maintains 598

coarse-grained feature extraction, ultimately im- 599

proving overall representation quality. 600

Ablation Study on MCL Expert Extraction. To 601

further evaluate the effectiveness of expert ex- 602

traction via MCL in Diversified Multiplet Up- 603

cycling, we conducted an ablation study on the 604

ShareGPT4V dataset. Specifically, we integrated 605

the original OpenAI CLIP and a CLIP model with 606

FFN layers directly fine-tuned on ShareGPT4V 607

into a vanilla MoE model with two experts. As 608

shown in Table 4, CLIP-MoE consistently outper- 609

forms the vanilla MoE model (without MCL expert 610

extraction) on retrieval tasks. This highlights the 611

effectiveness of MCL stages in producing experts 612

that capture more meaningful and diverse informa- 613

tion. The slight decrease in ImageNet zero-shot 614

classification performance is expected, as not all 615

additional information learned through MCL bene- 616

fits classification tasks, which tend to depend more 617

on coarse-grained features (Zhang et al., 2024a). 618

6 Conclusion 619

In this paper, We propose a novel Diversified Multi- 620

plet Upcycling framework to construct CLIP-MoE, 621

leveraging multi-stage contrastive learning to ex- 622

tract diverse, complementary experts with mini- 623

mal computation overhead. Instead of ensembling, 624

these experts are integrated through an MoE archi- 625

tecture, capturing richer and more distinctive in- 626

formation from the inputs, while maintaining fixed 627

activation parameters. By fine-tuning an off-the- 628

shelf CLIP with a small, high-quality dataset, our 629

method enhances performance without the cost of 630

training from scratch. Our approach is easy to ap- 631

ply, model-agnostic, and provides a new path to 632

scale and improve CLIP foundation models. 633
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Limitations634

First, the current experiments are constrained to635

image and text modalities. While these modalities636

provide a strong foundation, we aim to expand our637

method to encompass additional modalities, such638

as audio and video, to explore its versatility in mul-639

timodal learning scenarios. Second, our evaluation640

is currently limited to fine-tuning settings. To better641

understand the scalability and robustness of Diver-642

sified Multiplet Upcycling, we plan to experiment643

with larger datasets and investigate large-scale con-644

tinuous training regimes. Such experiments will645

help us further delineate the performance bound-646

aries and practical applicability of our approach.647

Finally, although we have successfully tested CLIP-648

MoE as a vision encoder for multimodal language649

models (MLLMs), its potential as a text encoder650

in generative tasks remains underexplored. For651

instance, integrating CLIP-MoE into frameworks652

like stable diffusion could open new avenues for653

improving text-driven generation tasks.654
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Figure 2: Example cases comparing the performance of CLIP-MoE and OpenAI CLIP on the MMVP-VLM
Benchmark, illustrating differences in their ability to capture fine-grained semantic information.
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Figure 3: Proportion of tokens assigned to each expert on the COCO and ImageNet validation dataset. Here, we
consider experts that are either selected as a first or second choice by the router.

A Appendix964

A.1 Case Study.965

We demonstrate the comparison between CLIP-966

MoE and OpenAI CLIP on samples from the967

MMVP-VLM Benchmark (Tong et al., 2024b).968

MMVP-VLM contains manually filtered image969

pairs with different semantics that are difficult to970

distinguish using the vanilla OpenAI CLIP. We task971

the models with matching the corresponding state-972

ment to the image. As shown in Figure 2, OpenAI973

CLIP struggles to distinguish fine-grained details974

in these image pairs. In cases like the alarm clock,975

OpenAI CLIP matches both images to the state-976

ment “hour hand points at 10.” In other cases, such977

as the rabbit pair, OpenAI CLIP completely misin-978

terprets the information and matches the opposite979

statement. However, CLIP-MoE captures more980

fine-grained details and makes the correct match in981

most cases. It can accurately capture camera per-982

spectives, as seen in the coffee example, orientation983

information in the rabbit example, and it demon-984

strates a superior ability to distinguish relations985

between objects, such as differentiating between986

“animal inside the basket” and “animal outside the987

basket.” 988

A.2 Computation and Data Efficiency. 989

We compare the performance gains of our CLIP- 990

MoE, trained on a 1M randomly sampled subset of 991

Recap-DataComp-1B, to the CLIP-ViT-L-16-HTxt- 992

Recap (Li et al., 2024a), which was trained from 993

scratch on the entire Recap-DataComp-1B dataset. 994

The activated parameter size of our CLIP-MoE, 995

with 4 experts and top-2 routing, is 0.69B, which is 996

comparable to the 0.64B parameter size of CLIP- 997

ViT-L-16-HTxt-Recap. Thanks to MoE-Packing 998

and leveraging the OpenAI CLIP dense checkpoint, 999

our total training computation cost is less than 2% 1000

of that for CLIP-ViT-L-16-HTxt-Recap. As shown 1001

in Table 6, CLIP-MoE demonstrates comparable 1002

performance gains on retrieval tasks relative to 1003

CLIP-Recap, with even superior text-to-image re- 1004

trieval performance on the Flickr30k dataset, high- 1005

lighting the efficiency of our proposed Diversified 1006

Multiplet Upcycling for CLIP. It is worth noting 1007

that CLIP-Recap uses an even larger text encoder. 1008
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Table 6: Performance gain of CLIP-MoE and CLIP-
Recap compared to the OpenAI CLIP-ViT-L-14 on re-
trieval tasks.

COCO I2T COCO T2I Flickr I2T Flickr T2I
Model @1 @5 @1 @5 @1 @5 @1 @5

CLIP-MoE +7.9 +5.6 +9.8 +10.1 +8.3 +7.5 +12.8 +14.5
CLIP-Recap +10.8 +7.7 +12.3 +12.3 +10.9 +8.3 +11.9 +12.9

A.3 Routing analysis1009

To evaluate whether all the experts learned through1010

MCL are utilized by CLIP-MoE, we perform an1011

analysis of the routing strategy. We use the CLIP-1012

MoE model with 4 experts and top-2 routing1013

trained on ShareGPT4V, and compute the propor-1014

tion of tokens assigned to each expert. For retrieval1015

tasks, we use the COCO validation dataset, and1016

for zero-shot image classification, we use the Ima-1017

geNet validation dataset. The analysis results are1018

presented in Figure 3. From the results, we observe1019

that for experts from each MCL stage (represented1020

by each column in the heatmap), there are con-1021

sistently yellow areas (indicating heavily utilized1022

experts). No column is entirely dark blue, which1023

indicates that all MCL stages contribute useful ex-1024

perts to CLIP-MoE. This further validates the ef-1025

fectiveness of our Diversified Multiplet Upcycling.1026

A.4 Artifact Documentation1027

We used the pre-trained CLIP model (Radford et al.,1028

2021) strictly for research purposes, adhering to1029

its original license restrictions. The primary scien-1030

tific artifact of this work is the Diversified Multi-1031

plet Upcycling framework, a novel methodolog-1032

ical contribution for scaling CLIP-based models.1033

While this work does not release new datasets or1034

pre-trained models, the framework itself consti-1035

tutes a reusable and well-documented artifact de-1036

signed for cross-modal learning tasks. The frame-1037

work is applicable to domains such as image-text1038

retrieval, classification, and vision encoding for1039

multimodal large language models (MLLMs), in-1040

heriting the language support of the original CLIP1041

model (e.g., English) and extending compatibility1042

to text inputs in multiple languages if the base CLIP1043

supports them. It is validated on tasks including1044

zero-shot classification, image-text retrieval, and1045

MLLM vision encoding (e.g., for stable diffusion).1046

The framework is designed for research purposes1047

only and must adhere to the licensing terms of1048

the original CLIP model, with derivative works1049

(e.g., fine-tuned CLIP-MoE models) required to1050

comply with the same restrictions. Key hyperpa- 1051

rameters, such as contrastive learning stages and 1052

MoE routing strategies, are described in Section 5, 1053

and the modular design ensures reproducibility by 1054

following the architectural and training guidelines 1055

provided. 1056
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