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Abstract

Contrastive Language-Image Pre-training
(CLIP) has become a cornerstone in multi-
modal intelligence. However, recent studies
discovered that CLIP can only encode one
aspect of the feature space, leading to substan-
tial information loss and indistinctive features.
To mitigate this issue, this paper introduces
a novel strategy that fine-tunes a series of
complementary CLIP models and transforms
them into a CLIP-MoE. Specifically, we
propose a model-agnostic Diversified Multi-
plet Upcycling (DMU) framework for CLIP.
Instead of training multiple CLIP models from
scratch, DMU leverages a pre-trained CLIP
and fine-tunes it into a diverse set with highly
cost-effective multistage contrastive learning,
thus capturing distinct feature subspaces
efficiently. To fully exploit these fine-tuned
models while minimizing computational
overhead, we transform them into a CLIP-
MoE, which dynamically activates a subset of
CLIP experts, achieving an effective balance
between model capacity and computational
cost. Comprehensive experiments demonstrate
the superior performance of CLIP-MoE
across various zero-shot retrieval, zero-shot
image classification tasks, and downstream
Multimodal Large Language Model (MLLM)
benchmarks when used as a vision encoder.

1 Introduction

Contrastive Language-Image Pre-training (CLIP)
(Radford et al., 2021) is a strong vision-language
foundation model that utilizes large-scale datasets
to learn comprehensive visual representations by
bridging vision and language via contrastive image-
text pre-training. It has been broadly applied in
widespread areas such as image (Wang et al., 2023;
Zhang et al., 2023), audio (Guzhov et al., 2022),
and video (Rasheed et al., 2023) understanding,
cross-modal retrieval (Ma et al., 2022; Zhao et al.,
2024), multimodal generation (Ramesh et al., 2022;

Xie et al., 2024), and data filtering (Schuhmann
et al., 2022). Recently, CLIP further serves as the
vision encoder for various Multimodal Large Lan-
guage Models (MLLMs) (Alayrac et al., 2022; Liu
et al., 2024b,c; Chen et al., 2024c; Li et al., 2024b).

However, existing CLIP models still exhibit in-
herent limitations. Recent studies have discov-
ered that CLIP merely encodes a portion of the
input’s feature space, thus discarding a substantial
amount of useful information (Tang et al., 2023;
Tong et al., 2024b; Bleeker et al., 2022). For in-
stance, when using CLIP as a vision encoder in
Multimodal Large Language Models (MLLMs), it
frequently produces blind pairs (Tong et al., 2024b),
where two semantically different images with sim-
ilar visual components are encoded into the same
representation. Such indistinctive features severely
confuse the reasoning process of MLLM and dam-
age downstream tasks. To improve the ability of
CLIP to capture more distinguished information,
remarkable efforts have been made to improve the
quality of training data and scale up model size.
However, these works typically train a new CLIP
model from scratch (Li et al., 2024a; Ma et al.,
2024; Xu et al., 2023), which is resource-intensive.
Meanwhile, an isolated CLIP model may still only
encode partial information. Therefore, a natural
question is raised: Can we generate and utilize di-
verse complementary CLIP models with minimal
overhead, without requiring retraining?

To this end, we propose a Diversified Multi-
plet Upcycling (DMU) framework for CLIP, which
constructs a set of complementary CLIP models
at a low cost and integrates them using a sparsely
activated Mixture of Experts (MoE) architecture.
MoE has proven effective in scaling model capac-
ity while maintaining fixed activated parameters,
enhancing both performance and robustness (Jiang
et al., 2024; Dai et al., 2024; Chen et al., 2024a). In
our proposed DMU framework, instead of training
from scratch, we first fine-tune the base CLIP to



produce a series of multiplet CLIP models with
Multistage Contrastive Learning (MCL) (Zhang
et al., 2024b). Concretely, MCL encodes diversi-
fied information through a multistage clustering
and fine-tuning process, generating a CLIP model
at each stage and capturing different aspects of
the input information. Notably, these generated
CLIP models share all parameters except for the
feed-forward network (FFN) layers during MCL
fine-tuning. In this way, we can easily transform
them into a CLIP-MoE, which dynamically acti-
vates a subset of experts and gets rid of ensembling
the CLIP models. Finally, through fine-tuning the
router in CLIP-MoE, we ensure the full utiliza-
tion of all experts, enabling CLIP-MoE to capture
richer and more distinctive features than the base
model, while leveraging sparsity of MoE to avoid
the explosion of activated parameters.

We demonstrate that using a small high-quality
image-caption dataset, the MCL-initialized CLIP-
MOoE significantly improves CLIP’s performance.
Notably, on retrieval tasks, CLIP-MoE outperforms
the base OpenAl CLIP model by about 20%, while
incurring minimal additional training overhead—
less than 2% of the total computational cost of
training the base CLIP model from scratch. When
serving as a vision encoder for MLLMs, CLIP-
MokE also shows substantial improvements in most
benchmarks simply by replacing the original vision
encoder. Our experiments show that CLIP-MoE
not only outperforms other fine-tuning baselines
but also surpasses popular MoE-construction meth-
ods such as Sparse Upcycling (Komatsuzaki et al.,
2022).

In summary, the contributions of this work are
as follows: First, we introduce a novel Diversi-
fied Multiplet Upcycling framework, which gen-
erates a set of diversified multiplet CLIP models
from an existing dense CLIP model. This approach
provides a new and efficient pathway to scale the
CLIP foundation model effectively, offering both
practical and computational advantages. Second,
we demonstrate that our Diversified Multiplet Up-
cycling framework effectively generates special-
ized experts, each capturing distinct and diverse
useful information. These experts not only encap-
sulate richer and more nuanced information but
also achieve this with significantly reduced com-
putational costs compared to training from scratch.
Third, we conduct extensive experiments across a
variety of downstream tasks, including retrieval,
classification, and serving as a vision encoder for

multimodal large language models (MLLMs). Our
results show that CLIP-MoE consistently outper-
forms the original CLIP model and other strong
baselines, underscoring its versatility and effective-
ness.

2 Related Works

Contrastive Learning. In contrastive learning, the
core objective is to minimize the distance between
positives and the anchor while maximizing the
distance between negatives and the anchor within
the representation space. This objective compels
the model to effectively encode sufficient informa-
tion of the inputs to distinguish anchors from their
negatives. It has become a central technique in
self-supervised learning, aiming to learn represen-
tations by bringing semantically similar samples
closer in the embedding space while pushing dis-
similar samples apart (Chen et al., 2020; He et al.,
2020). This approach has been particularly success-
ful in multimodal settings, where models like Con-
trastive Language-Image Pre-training (CLIP) (Rad-
ford et al., 2021) have emerged as foundational
tools. CLIP aligns visual and textual representa-
tions by training on vast datasets of paired images
and text, enabling the model to bridge different
modalities effectively.

Despite its success, CLIP is not without its lim-
itations. It lacks the capacity to encode discrim-
inative features adequately, and can only capture
a fraction of the information within the feature
space (Tang et al., 2023; Tong et al., 2024b). To ad-
dress these limitations, recent works mainly focus
on improving the quality of training data (Li et al.,
2024a; Maet al., 2024; Xu et al., 2023; Zhang et al.,
2024a). However, most of these approaches require
retraining the model from scratch, which is com-
putationally expensive, time-consuming, and not
easily extendable when better data becomes avail-
able. In this paper, we introduce Diversified Multi-
plet Upcycling (DMU) for CLIP, which transforms
a dense CLIP model into a CLIP-MoE through
multistage fine-tuning on relatively small datasets.
Without retraining, DMU enables capturing diverse
and discriminative information while significantly
enhancing performance with minimal additional
computational overhead.

Mixture-of-Experts. The Mixture-of-Experts
(MoE) architecture can effectively scale the model
capacity with fixed activation parameters (Fedus
et al., 2022a). For each input token, only top-k



best experts are selected to obtain an aggregated
representation (Shazeer et al., 2017). This spar-
sity allows MoE models to scale to trillions of
parameters while maintaining the computational
efficiency (Lepikhin et al., 2020; Fedus et al.,
2022b). Benefiting from the large model capac-
ity, the model performance can be improved by
large margins (Rajbhandari et al., 2022; Dai et al.,
2024). Besides, specialized experts in MoE models
are good at handling a wide range of tasks (Shen
et al., 2023; Zhu et al., 2024; Lu et al., 2024) with
high robustness (Chen et al., 2024a).

The most important challenge in MoE training is
expert construction. Randomly initializing an MoE
model and training it from scratch requires substan-
tial resource. Recently, Sparse Upcycling (Komat-
suzaki et al., 2022) has been proposed to initialize
MoE models by copying Feed-Forward Networks
(FEN) from dense models as multiple experts. How-
ever, these experts are highly homogeneous, lim-
iting the upper bound of the model’s capabilities
and leading to suboptimal performance (He et al.,
2024).

In this work, we use multi-stage contrastive
learning to initialize the experts for MoE training,
which learn distinctive information at each stage.
In this way, our MoE model can obtain better op-
timization and effectively capture complementary
features.

3 Preliminaries

Multistage Contrastive Learning (MCL).
MCL (Zhang et al., 2024b) is designed to obtain
a series of contrastive models, each capturing
different and complementary information from the
input data through multiple cluster-and-contrastive
processes. Specifically, at each stage, the learned
representations are clustered. In the following
stage, for each anchor, negative samples are drawn
only from the same accumulated cluster from the
previous stages. In this way, the model learns
new information beyond what was captured in
earlier stages. For example, consider a dataset
that contains objects with varying shapes, colors,
and textures. In the first stage, the contrastive
model might focus on learning color information.
After clustering, samples within the same cluster
will share the same color. In the second stage,
since the anchor and its negative samples share the
same color, the model is compelled to learn other
features, such as texture, to differentiate between

them. After clustering in the second stage, samples
in the same accumulated cluster will now share
both color and texture. Consequently, in the third
stage, the model must focus on other attributes,
such as shape, to distinguish between samples.
After three stages, we obtain three contrastive
models, each encoding distinct information: color,
texture, and shape.

Formally, let X = {x;}}, represent a dataset.
After training the encoder in the first stage, we ob-
tain encoded representations Zo = {fo(x;)}M,.
By clustering Z, we obtain cluster assignments
Yo = {yuo}ti,. Inthe j' stage, after the
cluster-and-contrastive process, each sample x;
is assigned to an accumulated cluster y(; ;) =

[y(i,0)7 e ay(i,j—l)]‘ The objective at the jth stage
is:
L=y xr (x7 19,295,
es(z,z+)/7
—log , (D
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where y; represents the accumulated cluster as-
signment of the anchor x at the j* stage; y@j)
denotes the accumulated cluster assignment of the
negative sample x; at the j" stage; and s(, -) de-
notes cosine similarity. In our proposed Diversified
Multiplet Upcycling, we leverage the MCL frame-
work to fine-tune a base model and extract a series
of experts for the MoE, whereas the original MCL
results in a series of standalone CLIP models.
Mixture of Experts (MoE). Mixture of Experts
(MoE) is an efficient architecture designed to
scale large models by dynamically routing inputs
through a subset of specialized sub-models, or “ex-
perts”. This structure allows the model to maintain
high overall capacity while only utilizing a frac-
tion of its parameters for any given input, thereby
optimizing both computational efficiency and per-
formance.

In the context of Transformer, an MOoE
layer (Jiang et al., 2024) typically replaces the
standard feed-forward network (FFN) with a set
{E;}X, of N experts, each of which is an indepen-
dent FFN. Given an input token representation x, it
first passes through a gating network W,. to obtain
the logits corresponding to each expert, then the
largest Top-K experts will be chosen, and finally,
the probabilities of these selected experts are nor-
malized using Softmax. In this way, we can obtain



the probability R(x) of selected experts among all
N experts.

N

Xout = »_ R(x); - Ei(x), )
i=1

R(x) = Softmax(TopK(x - W,.)). 3)

where R(x); denotes the i-th routing weight vec-
tor produced by the router network W.

To ensure that all experts are utilized effectively
and prevent the model from overfitting to a small
subset of experts, a load balancing loss (Fedus et al.,
2022b) is often added to the primary loss function.
This loss penalizes unbalanced expert usage by
encouraging a more uniform distribution of input
tokens across all experts.

4 Diversified Multiplet Upcycling for
CLIP

Expert Extraction. We begin by extracting a se-
ries of Feed-Forward Network (FFN) layers utiliz-
ing Multistage Contrastive Learning (MCL) to fine-
tune a pre-trained base CLIP model for multiple
stages. During fine-tuning, we freeze all parame-
ters of the base CLIP model except for the FFN
layers within each transformer block in both the
image and text encoders. Because the distributions
of contrastive negative samples in different MCL
stages are distinct, the FFN layers at each stage will
learn diversified and complementary information
distinct from previous stages. For clarity, we use
superscripts to index the transformer blocks and
subscripts to index the MCL stages or MoE experts.
Suppose we are fine-tuning a transformer-based
CLIP model, where the image encoder contains A
transformer blocks and the text encoder contains B
transformer blocks. The FFN layers in the original
base model are denoted as {E(()z)}fle . As illus-
trated in Figure 1, the base model might initially
focus on color-related information. During MCL
Stage 1, only the FFN layers are fine-tuned. Af-
ter the cluster-and-contrast process in MCL, the
FFN layers {EY)};:EB in the fine-tuned model
learn new information beyond color, such as tex-
ture. In MCL Stage 2, the model further fine-tunes
the FFN layers, resulting in {Eéz) }?:JEB , which now
encodes additional features such as shape. Through
two stages of MCL, we obtain FFN layers where
{E(()i)}?le focus on color, {EY) 1445 on texture,
and {E{"}245 on shape.

Initialization of Mixture of Experts. Once a se-
ries of FFN layers {E]@ }éV:O have been obtained
through N stages of MCL, we utilize these FFNs as
the experts in a Mixture of Experts (MoE) model,
as depicted in Figure 1. According to Equation 2, in
the 7" transformer block of the base CLIP model,
the original FFN layer is replaced with a randomly
initialized router and a set of experts:

N
xS =y ROD); - BV x@), @)
j=0

R (x™) = Softmax(TopK(x") - W1)). (5)

where R (x); denotes the j-th component of
the routing weight vector produced by the router
network W in the i*" transformer block. This
setup results in a CLIP-MoE model where different
experts within different transformer blocks special-
ize in distinct aspects of the input.
Continuous Fine-Tuning of CLIP-MOoE. To en-
able the model to learn optimal routing strategies
while preserving the information learned by the
FEN layers during MCL, we further fine-tune the
routers while freezing all other parameters. We
apply the standard contrastive learning loss while
incorporating an auxiliary load balancing loss, fol-
lowing the approach from Fedus et al. (2022b), to
encourage a balanced load across experts. Given
N + 1 experts indexed by 7 = 0 to NV, and a batch
B with T tokens, the load balancing loss for the 7"
transformer block is defined as:

N
Ebalance =N- Z fj ’ P] (6)
j=0
1
fy =7 > Wargmaxp(x) = j}, (D)
z€eB
1
Pj= = (). ®)
zeB

where f; is the fraction of tokens assigned to ex-
pert j, and p(z) is the logit output from the router
network; P; represents the fraction of router prob-
ability allocated to expert 7, which is the mean of
pj(x), the probability of routing token x to expert
j. For simplicity, we omit the transformer block
index i in the equation. Since f; and P; are posi-
tive and both their sums are equal to 1, Lygiancing
is minimized if and only if f; = 7, P; = 7. This
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Figure 1: Overview of Diversified Multiplet Upcycling: Our approach involves three key steps. (a) Fine-tuning the
base CLIP model using the MCL framework while freezing all parameters except for the FFEN layers. This process
yields a new set of FFN layers at each stage of MCL. (b) Using the obtained FFN layers as experts to initialize a
CLIP-MoE. (c) Continuously fine-tuning the CLIP-MoE using both contrastive learning loss and a router balancing
loss to optimize the routers. The terms ‘color’, ‘shape’, and ‘texture’ are metaphorical representations of abstract

features.

balancing loss encourages not only a uniform dis-
tribution of actual tokens routed to each expert (i.e.,
ensuring that all experts have equal importance),
but also a uniform distribution of router confidence
across tokens (i.e., preventing the router from being
overly confident for some tokens and underconfi-
dent for others). With this auxiliary load balancing
loss, the total loss is given by:

1 A+B ()
L=Lcorip+ a- - ; Ly iiance- (9

Following (Fedus et al., 2022b), we set o = 0.01
by default. By applying MoE-Packing to CLIP, we
obtain a CLIP-MoE model that is capable of captur-
ing more useful information than the base model,
with minimal computational overhead, resulting in
a robust and efficient enhancement of CLIP.

5 Experiments

5.1 Datasets

To fully showcase the potential of our MCL-
initialized CLIP-MoE, we implement our experi-
ments on the following two image-caption datasets
respectively.

Recap-DataComp. Recap-DataComp-1B (Li
et al., 2024a) is a large-scale dataset comprising
1.3 billion high-quality image-caption pairs. This

dataset is derived from the original DataComp-
1B dataset, with all images re-captioned using a
fine-tuned LLaVA-1.5 model powered by LLaMA-
3 (Dubey et al., 2024). (Li et al., 2024a) utilized
this dataset to train CLIP models from scratch,
resulting in significant improvements in retrieval
performance. Due to computational constraints,
our experiments use a randomly sampled subset
of 1 million pairs from Recap-DataComp-1B, re-
ferred to as Recap-DataComp-1M, to demonstrate
the data efficiency of our proposed pipeline.
ShareGPT4V. ShareGPT4V (Chen et al., 2023)
is a high-quality image-text dataset containing 1.2
million highly descriptive captions. The captions
are generated by a Multimodal Large Language
Model (MLLM) fine-tuned on 100k image-text
pairs produced by GPT4YV, resulting in well-aligned
image-text pairs.

5.2 Baselines

We compare against three approaches: (1) Direct
fine-tuning to isolate the performance impact of ad-
ditional data; (2) Sparse Upcycling (Komatsuzaki
et al., 2022), a popular method to efficiently ini-
tializes MoE models from dense checkpoints; (3)
Long-CLIP (Zhang et al., 2024a) that aligns image
features with paired short/long captions, though
limited to datasets with this specific structure and



requiring substantial computation. We also eval-
uate CLIP-MoE as a vision encoder for LLaVA-
1.5 (Liu et al., 2024a), a standard MLLM baseline
using a CLIP-to-LLM projection, where we replace
its vision encoder with our CLIP-MoE to evaluate
representation quality under identical fine-tuning
protocols.

5.3 Training Setup

By default, we use OpenAl CLIP-ViT-L/14 (Rad-
ford et al., 2021) as the base model for our Di-
versified Multiplet Upcycling approach. During
the clustering process at each stage of MCL, we
cluster the image features into 3 clusters and the
text features into 3 clusters, resulting in 9 clusters
per stage (the Cartesian product of the image and
text feature clusters). To accommodate longer text
inputs, we interpolate the positional embeddings
following the approach in (Zhang et al., 2024a).
The global batch size is maintained at 800 unless
otherwise specified. To balance performance and
computational cost, we set the number of experts
to 4 and use top-2 activation.

Table 1: Performance of different experts across various
attributes in MM VP. The highest value for each attribute
is highlighted.

Attribute Expert0 Expertl Expert2 Expert3
0&D 40 333 46.7 46.7
PSF 33.3 26.7 26.7 133
S&C 20 40 53.3 40
Q&C 60 46.7 40 40
P&R 46.7 333 40 26.7
C&A 26.7 13.3 6.7 6.7
S&P 26.7 46.7 40 333
Texts 26.7 40 46.7 40
V&P 533 46.7 40 60

5.4 Training Cost

We use 8 A100 GPUs for training. To train the
CLIP-MoE model with four experts, we intro-
duce three additional MCL fine-tuning stages, each
trained for 1 epoch. When using the ShareGPT4V
dataset, each MCL stage takes approximately 0.5
hours, and the router fine-tuning stage also takes
about 0.5 hours. In total, the training time is
less than 2.5 hours. In comparison, Long-CLIP
training under the same conditions takes around
6 hours, making our approach significantly more
efficient. Our maximum GPU memory usage
is 8x65955MB, which is comparable to Long-
CLIP’s 8x63581MB. When training on the Recap-
DataComp-1M dataset, the training cost is even

lower. During inference, with top-2 activation, the
activated parameter size of our CLIP-MoE is ap-
proximately 1.7 times that of the base model (Ope-
nAl CLIP-ViT-L/14).

5.5 Evaluation

We begin by evaluating whether different experts
do capture different usefult information as we ex-
pected. Then we evaluate the performance of CLIP-
MoE on Zero-Shot Image-Text Retrieval, a key task
for assessing whether the CLIP model can capture
rich fine-grained information, following (Zhang
et al., 2024a). All baselines are trained and com-
pared using the Recap-DataComp-1M (Recap-DC)
and ShareGPT4V (ShareGPT) datasets, with the
exception of Long-CLIP. Long-CLIP is incompat-
ible with the Recap-DataComp dataset, as it re-
quires both a short and long caption for each image,
whereas Recap-DataComp provides only one cap-
tion per image. Next, we assess the effectiveness
of CLIP-MoE as a vision encoder within LLaVA-
1.5, a representative Multimodal Large Language
Model (MLLM). LLaVA-1.5 serves as an effective
visual representation evaluator, helping to mitigate
potential biases present in traditional evaluation
tasks (Tong et al., 2024a). Finally, we test CLIP-
MoE on traditional Zero-Shot Image Classification
tasks, which rely more on coarse-grained features.
Specialization of Experts. To investigate whether
different experts learn distinct features, we evalu-
ate each expert’s performance individually on the
MMVP Benchmark (Tong et al., 2024b). MM VP
requires the CLIP model to select the correct im-
age based on a textual statement from a pair of
visually similar images. The evaluation data are
carefully filtered into nine distinct attributes by
human annotators. The results in Table 1 clearly
show that different experts specialize in different
attributes. For example, Expert0 performs best on
attributes such as Presence of Specific Features,
Quantity and Count, Color and Appearance, and
Viewpoint and Perspective. Expert1 excels in Struc-
tural and Physical Characteristics. Expert2 focuses
on Orientation and Direction, State and Condition,
and Texts, while Expert3 specializes in Orientation
and Direction, as well as Viewpoint and Perspec-
tive. These results highlight the effectiveness of
our proposed Diversified Multiplet Upcycling, as
it successfully generates experts that specialize in
capturing diverse and complementary information.
Zero-Shot Image-Text Retrieval. Following the
methodology outlined in (Zhang et al., 2024a),



Table 2: Performance comparison on image-to-text (I2T) and text-to-image (T2I) retrieval tasks using the COCO
and Flickr30k datasets. The models were trained and evaluated on the Recap-DataComp-1M (Recap-DC) and
ShareGPT4V (ShareGPT) datasets, respectively. The best performance for each dataset is highlighted in bold. Our
CLIP-MoE consistently outperforms all baselines across all tasks.

COCO I2T COCO T21 Flickr I2T Flickr T2I

Dataset Model @1 @5 @10| @1 @5 @10 @1 @5 @10| @1 @5 @10
| OpenAl | 56.1 79.5 86.8 | 354 60.1 702 | 485 726 80.8 | 280 493 587

Direct FT 589 815 885 | 443 695 788 | 41.6 665 76.1 | 37.2 604 69.5

Recap-DC | Upcycling 592 81.7 887 | 458 709 799 | 421 673 770 | 394 629 71.7
CLIP-MoE | 640 851 90.8 | 452 702 794 | 568 80.1 87.0 | 408 638 725

Direct FT 633 849 91.0 | 445 700 789 | 505 744 823 | 385 613 699

ShareGPT | Upcycling 629 84.6 908 | 452 70.6 79.6 | 49.6 738 82.1 | 395 624 71.1
Long-CLIP | 62.8 85.1 912 | 463 70.8 79.8 | 534 775 853 | 412 641 726

CLIP-MoE | 65.0 86.0 92.0 | 468 71.7 804 | 60.5 823 888 | 421 647 732

Table 3: Performance comparison between OpenAl CLIP and CLIP-MoE as vision encoders in LLaVA1.5. The best

performance for each dataset is highlighted in bold.

Method MME POPE MMBench MM-Vet VisWis MMStar OCRBench VQAv2 TextVQA GQA
OpenAI CLIP 1510.7 859 64.3 30.6 544 333 31.2 78.5 46.1 62.0
CLIP-MoE 1486.2 86.4 66.1 31.5 56.5 34.1 31.8 79.2 46.8 62.6
OpenAI CLIP 15226 859 67.7 353 56.7 36.1 33.6 80.0 48.7 63.2
CLIP-MoE 1560.1 86.5 69.3 39.5 59.2 36.7 344 80.0 48.3 63.8

we evaluate text-to-image (T2I) and image-to-text
(I2T) retrieval on the Sk COCO validation set (Lin
et al., 2014) and the 30k Flickr30k (Young et al.,
2014) dataset. The results are presented in Ta-
ble 2. Given that both Recap-DataComp-1M and
ShareGPT4V datasets offer higher caption quality
and longer average caption lengths compared to
web datasets, Direct Fine-Tuning, Sparse Upcy-
cling, and CLIP-MoE demonstrate superior perfor-
mance over the original OpenAl model across most
tasks, including COCO I2T, COCO T2I, and Flickr
T2I. However, for Flickr 12T, Sparse Upcycling,
and Direct Fine-Tuning show significant perfor-
mance degradation on the Recap-DC dataset. In
this fine-tuning context, Sparse Upcycling only pro-
vides a limited advantage over Direct Fine-Tuning.
Although Long-CLIP clearly outperforms both Di-
rect Fine-Tuning and Sparse Upcycling, it is incom-
patible with the Recap-DataComp dataset, because
it requires each image to have both a short and
a long caption. In contrast, our proposed CLIP-
MOoE surpasses all baselines on most tasks across
two datasets, maintaining consistent performance
by leveraging the diverse information extracted by
MOoE experts.

Performance in LLaVA-1.5. We further eval-
uate CLIP-MoE as the vision encoder within
the LLaVA-1.5 model. The original vision en-

coder for LLaVA-1.5 is OpenAl’s CLIP-ViT-
L/14@336px (Radford et al., 2021), which is
trained on images with a resolution of 336x336 pix-
els. To ensure a fair comparison, we use OpenAl’s
CLIP-ViT-L/14@336px as the base model for MCL
and train our CLIP-MoE on the ShareGPT4V
dataset at the same 336x336 resolution. After
obtaining CLIP-MoE, we freeze it as the vision
encoder and follow the same two-stage training
procedure as LLaVA-1.5, using Vicuna (Chiang
et al., 2023) as the base LLM. We evaluate the
MLLMs on ten popular independent MLLM bench-
marks (Hudson and Manning, 2019; Liu et al.,
2025; Fu et al., 2023; Chen et al., 2024b; Yu et al.,
2023; Liu et al., 2024d; Li et al., 2023; Gurari et al.,
2018; Singh et al., 2019; Goyal et al., 2017). As
shown in Table 3, simply replacing the vision en-
coder with CLIP-MOoE yields notable performance
improvements across most downstream tasks, with
particularly strong gains on MMBench (+1.6), MM-
Vet (+4.2), and VizWiz (+2.5). Interestingly, the
13B model even exhibits a larger performance
boost than the 7B model, suggesting that larger
base LLMs can better leverage the discriminative
information captured by CLIP-MoE. These results
strongly support the conclusion that CLIP-MoE
extracts richer, more distinctive information from
image inputs and encodes higher-quality visual rep-



Table 4: Ablation study on the impact of MCL expert extraction in CLIP-MoE performance.

ImageNet COCO I2T COCO T21 Flickr 12T Flickr T2I
Method Top-1 @ @5 @10 @1 @5 @10 @1 @5 @10 @1 @5 @10
w/o MCL 75.4 62.6 842 903 434 683 77.8 564 793 863 37.6 603 693
CLIP-MoE 74.6 65.0 86.0 92.0 46.8 71.7 80.4 60.5 82.3 88.8 42.1 64.7 73.2

resentations, ultimately enhancing the performance
of MLLMs.

Table 5: Performance comparison on zero-shot image
classification. The models were trained and evaluated on
the Recap-DC and ShareGPT4V datasets, respectively.
The best performance for each dataset is highlighted in
bold.

Dataset | Model | ImgNet | ImgNetO | ImgNetV2 | Cifar10 | Cifar100
|OpenAl | 755 | 319 | 699 | 954 | 768
Direct FT 57.0 32.8 51.3 91.6 68.7

Recap-DC |Upcycling | 61.1 | 32.3 553 | 936 | 710
CLIP-MoE | 74.3 322 68.7 95.5 79.3
Direct FT 59.8 34.5 53.3 87.8 63.1

ShareGPT | Upcycling | 62.5 344 56.5 91.3 67.5
Long-CLIP| 73.5 33.7 67.9 95.3 78.5
CLIP-MoE | 74.6 335 68.5 95.7 79.6

Zero-Shot Image Classification. For a more com-
prehensive study, we evaluate our CLIP-MoE on
the zero-shot image classification accuracy on Ima-
geNet (Deng et al., 2009), ImageNet-O (Hendrycks
et al., 2021), ImageNet-V2 (Recht et al., 2019),
CIFAR-10 (Krizhevsky et al., 2009), and CIFAR-
100 (Krizhevsky et al., 2009). The results, pre-
sented in Table 5, reveal that no model signifi-
cantly surpasses OpenAl CLIP in classification ac-
curacy. We attribute this to two key reasons. First,
data limitations: both the Recap-DataComp and
ShareGPT4V datasets contain roughly 1M sam-
ples, significantly smaller than the 400M samples
used to train OpenAl CLIP. This scale difference
contributes to overfitting and limited generalization.
Second, the nature of classification tasks: coarse-
grained features play a dominant role in classifica-
tion, whereas the fine-grained information captured
by the model does not always translate to improved
classification accuracy and, in some cases, may
even degrade performance. For instance, Long-
CLIP, which learns more fine-grained representa-
tions from enhanced and lengthier image captions,
improves retrieval performance but exhibits a per-
formance drop on ImageNet and ImageNet-V2.
However, CLIP-MoE mitigates this degradation
more effectively than Long-CLIP, which explic-

itly incorporates short captions to preserve coarse-
grained feature encoding. Moreover, CLIP-MoE
even surpasses OpenAl CLIP on ImageNet-O and
CIFAR, suggesting that our proposed DMU ap-
proach not only enhances the model’s ability to
capture fine-grained information but also maintains
coarse-grained feature extraction, ultimately im-
proving overall representation quality.

Ablation Study on MCL Expert Extraction. To
further evaluate the effectiveness of expert ex-
traction via MCL in Diversified Multiplet Up-
cycling, we conducted an ablation study on the
ShareGPT4V dataset. Specifically, we integrated
the original OpenAl CLIP and a CLIP model with
FEN layers directly fine-tuned on ShareGPT4V
into a vanilla MoE model with two experts. As
shown in Table 4, CLIP-MoE consistently outper-
forms the vanilla MoE model (without MCL expert
extraction) on retrieval tasks. This highlights the
effectiveness of MCL stages in producing experts
that capture more meaningful and diverse informa-
tion. The slight decrease in ImageNet zero-shot
classification performance is expected, as not all
additional information learned through MCL bene-
fits classification tasks, which tend to depend more
on coarse-grained features (Zhang et al., 2024a).

6 Conclusion

In this paper, We propose a novel Diversified Multi-
plet Upcycling framework to construct CLIP-MoE,
leveraging multi-stage contrastive learning to ex-
tract diverse, complementary experts with mini-
mal computation overhead. Instead of ensembling,
these experts are integrated through an MoE archi-
tecture, capturing richer and more distinctive in-
formation from the inputs, while maintaining fixed
activation parameters. By fine-tuning an off-the-
shelf CLIP with a small, high-quality dataset, our
method enhances performance without the cost of
training from scratch. Our approach is easy to ap-
ply, model-agnostic, and provides a new path to
scale and improve CLIP foundation models.



Limitations

First, the current experiments are constrained to
image and text modalities. While these modalities
provide a strong foundation, we aim to expand our
method to encompass additional modalities, such
as audio and video, to explore its versatility in mul-
timodal learning scenarios. Second, our evaluation
is currently limited to fine-tuning settings. To better
understand the scalability and robustness of Diver-
sified Multiplet Upcycling, we plan to experiment
with larger datasets and investigate large-scale con-
tinuous training regimes. Such experiments will
help us further delineate the performance bound-
aries and practical applicability of our approach.
Finally, although we have successfully tested CLIP-
MOoE as a vision encoder for multimodal language
models (MLLMs), its potential as a text encoder
in generative tasks remains underexplored. For
instance, integrating CLIP-MoE into frameworks
like stable diffusion could open new avenues for
improving text-driven generation tasks.
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A Appendix
A.1 Case Study.

We demonstrate the comparison between CLIP-
MoE and OpenAl CLIP on samples from the
MMVP-VLM Benchmark (Tong et al., 2024b).
MMVP-VLM contains manually filtered image
pairs with different semantics that are difficult to
distinguish using the vanilla OpenAI CLIP. We task
the models with matching the corresponding state-
ment to the image. As shown in Figure 2, OpenAl
CLIP struggles to distinguish fine-grained details
in these image pairs. In cases like the alarm clock,
OpenAl CLIP matches both images to the state-
ment “hour hand points at 10.” In other cases, such
as the rabbit pair, OpenAl CLIP completely misin-
terprets the information and matches the opposite
statement. However, CLIP-MoE captures more
fine-grained details and makes the correct match in
most cases. It can accurately capture camera per-
spectives, as seen in the coffee example, orientation
information in the rabbit example, and it demon-
strates a superior ability to distinguish relations
between objects, such as differentiating between
“animal inside the basket” and “animal outside the
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basket.”

A.2 Computation and Data Efficiency.

We compare the performance gains of our CLIP-
Mok, trained on a 1M randomly sampled subset of
Recap-DataComp-1B, to the CLIP-ViT-L-16-HTxt-
Recap (Li et al., 2024a), which was trained from
scratch on the entire Recap-DataComp-1B dataset.
The activated parameter size of our CLIP-MoE,
with 4 experts and top-2 routing, is 0.69B, which is
comparable to the 0.64B parameter size of CLIP-
ViT-L-16-HTxt-Recap. Thanks to MoE-Packing
and leveraging the OpenAl CLIP dense checkpoint,
our total training computation cost is less than 2%
of that for CLIP-ViT-L-16-HTxt-Recap. As shown
in Table 6, CLIP-MoE demonstrates comparable
performance gains on retrieval tasks relative to
CLIP-Recap, with even superior text-to-image re-
trieval performance on the Flickr30k dataset, high-
lighting the efficiency of our proposed Diversified
Multiplet Upcycling for CLIP. It is worth noting
that CLIP-Recap uses an even larger text encoder.



Table 6: Performance gain of CLIP-MoE and CLIP-
Recap compared to the OpenAl CLIP-ViT-L-14 on re-
trieval tasks.

Flickr T2I

COoCo 12T
@1 @5

COCO T2I
@l @5

Flickr I2T
@1 @5

Model @1 @5

+83 +75
+109 +8.3

+12.8 +14.5
+11.9 +12.9

CLIP-MoE
CLIP-Recap

+79 +5.6
+10.8 +7.7

+9.8  +10.1
+12.3 +12.3

A.3 Routing analysis

To evaluate whether all the experts learned through
MCL are utilized by CLIP-MoE, we perform an
analysis of the routing strategy. We use the CLIP-
MoE model with 4 experts and top-2 routing
trained on ShareGPT4YV, and compute the propor-
tion of tokens assigned to each expert. For retrieval
tasks, we use the COCO validation dataset, and
for zero-shot image classification, we use the Ima-
geNet validation dataset. The analysis results are
presented in Figure 3. From the results, we observe
that for experts from each MCL stage (represented
by each column in the heatmap), there are con-
sistently yellow areas (indicating heavily utilized
experts). No column is entirely dark blue, which
indicates that all MCL stages contribute useful ex-
perts to CLIP-MoE. This further validates the ef-
fectiveness of our Diversified Multiplet Upcycling.

A.4 Artifact Documentation

We used the pre-trained CLIP model (Radford et al.,
2021) strictly for research purposes, adhering to
its original license restrictions. The primary scien-
tific artifact of this work is the Diversified Multi-
plet Upcycling framework, a novel methodolog-
ical contribution for scaling CLIP-based models.
While this work does not release new datasets or
pre-trained models, the framework itself consti-
tutes a reusable and well-documented artifact de-
signed for cross-modal learning tasks. The frame-
work is applicable to domains such as image-text
retrieval, classification, and vision encoding for
multimodal large language models (MLLMs), in-
heriting the language support of the original CLIP
model (e.g., English) and extending compatibility
to text inputs in multiple languages if the base CLIP
supports them. It is validated on tasks including
zero-shot classification, image-text retrieval, and
MLLM vision encoding (e.g., for stable diffusion).
The framework is designed for research purposes
only and must adhere to the licensing terms of
the original CLIP model, with derivative works
(e.g., fine-tuned CLIP-MoE models) required to
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comply with the same restrictions. Key hyperpa-
rameters, such as contrastive learning stages and
MOoE routing strategies, are described in Section 5,
and the modular design ensures reproducibility by
following the architectural and training guidelines
provided.
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