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Abstract

Recent advances in Multimodal Entity Link-001
ing (MEL) utilize multimodal information to002
link target mentions to corresponding entities.003
However, existing methods uniformly adopt a004
“one-size-fits-all” approach, ignoring individ-005
ual sample needs and modality-induced noise.006
Also, the commonly used separate large-scale007
visual and text pre-trained models for feature008
extraction do not address inter-modal hetero-009
geneity and the high computational cost of fine-010
tuning. To resolve these two issues, this paper011
introduces a novel approach named Multimodal012
Entity Linking with Dynamic Modality Selec-013
tion and Interactive Prompt Learning (DSMIP).014
First, we design three expert networks that uti-015
lize different subsets of modalities to tackle the016
task and train them individually. In particular,017
for the multimodal expert network, we extract018
multimodal features of entities and mentions019
by updating multimodal prompts and set up a020
coupling function to realize the interaction of021
prompts between modalities. Subsequently, to022
select the best-suited expert network for each023
specific sample, we devise a Modality Selec-024
tion Gating Network to gain the optimal one-025
hot selection vector by applying a specialized026
reparameterization technique and a two-stage027
training. Experimental results on three public028
benchmark datasets demonstrate that our solu-029
tion outperforms the majority of state-of-the-art030
baselines and surpasses all baselines in settings031
with low training resources.032

1 Introduction033

Entity Linking (EL), also known as entity disam-034

biguation, aims to map mentions within unstruc-035

tured data from sources such as social media, news,036

or web content to the correct entities in a structured037

Knowledge Graph (KG), which benefits numerous038

downstream tasks, including information extrac-039

tion (Hoffart et al., 2011), question answering (Yih040

et al., 2015) and semantic search (Hasibi et al.,041

2016). Traditional EL approaches primarily rely on042
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Figure 1: Two examples of Multimodal Entity Link-
ing. On the left are the textual context and image from
a corpus, with the mention word underscored, on the
right are the entity name, attributes, and image from a
knowledge base. In (a), all two modalities are needed
to correctly link the mention "Apple" to the company
"Apple Inc." In (b), the text modality alone suffices to
correctly link to the country "Australia," but adding the
visual modality leads to an erroneous link to the female
basketball player "Suzy Batkovic."

the textual context of mentions to link to the correct 043

knowledge base entities. However, in recent years, 044

there has been an increasing amount of oneline 045

information being conveyed through images, on 046

the other hand, the textual context of mentions of- 047

ten fails to eliminate ambiguity, posing challenges 048

to text-based methods as is shown in Figure 1(a). 049

Therefore, an increasing attention has drawn to the 050

research of Multimodal Entity Linking (MEL). De- 051

spite considerable improvements (Zhu et al., 2024) 052

have been made in MEL, these methods still exhibit 053
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several notable limitations:054

Firstly, for the real-world data, two obstacles are055

considered the most significant and demanding in056

this task: (1) Mention Ambiguity: Ambiguity exists057

in both text and image for mentions. Textual men-058

tions and contexts are often brief and may contain059

abbreviations, which is common in social media060

and web news. Also the related images might corre-061

spond to more than one entity (e.g. different charac-062

ters played by the same actor). These ambiguities063

make it infeasible to identify the correct entity by064

uni-modal for some complex samples. (2) Noise065

of sample data: For MEL task, context serves as a066

crucial resource for disambiguation and searching067

for the correct entity. However, as text and image068

contexts are typically sourced from the internet, not069

all modalities’ contexts work positively for the task.070

Textual context might contain information irrele-071

vant to the mention word, and low-quality visual072

context can easily act as noise, affecting the accu-073

racy of linking. Figure 1 visually illustrates that074

disparate samples may encounter distinct obstacles:075

for samples like (a), a single textual modality can076

lead to mention ambiguity, whereas multimodal077

data assists the model in learning richer represen-078

tations and linking to the correct entity easier. For079

samples like (b), using the single text modality080

could easily identify the ground-trurh entity due to081

the strong specificity of the mention word, whereas082

the visual modality might be counterproductive.083

Employing a universal model for all samples084

struggles to balance modality-assisted disam-085

biguation and modality-induced noise. Exist-086

ing methods are static in essence, processing all087

instances with a single framework. Therefore, a088

dynamic method is required to select which modal-089

ities to use under different samples, which can both090

filter noisy modal and utilize multimodal informa-091

tion for disambiguation when necessary.092

Secondly, it’s essential to deeply mine the mul-093

timodal information of both mentions and entities094

for MEL. To this end, the model is required to not095

only leverage the semantic information of each but096

also recognize the interrelations between modal-097

ities. The fact that image features and word to-098

ken embeddings reside in their respective spaces099

poses a challenge to construct a unified representa-100

tion, so it is necessary to model the interaction of101

the modalities and enhance the inter-model effect.102

Quite a few recent MEL research, in the feature103

extraction stage, use large-scale pre-trained models104

to extract text and image features, then merge uni-105

modal features and fine-tune the encoder. However, 106

existing methods extract uni-modal features inde- 107

pendently, which can easily overlook the interac- 108

tive clues hidden between modalities. Additionally, 109

fine-tuning pre-trained models also leads to exten- 110

sive computational costs. Using separate large- 111

scale pre-trained models for visual and textual 112

feature extraction fail to tackle inter-modal het- 113

erogeneity and the high computational demands 114

of fine-tuning. Therefore, a method is needed to 115

fully interact and align different modalities’ infor- 116

mation during the feature extraction stage in a cost- 117

effective manner. 118

To tackle the above issues, this paper proposes 119

a novel multi-modal entity linking method Mul- 120

timodal Entity Linking with Dynamic Modal- 121

ity Selection and Interactive Prompt Learning 122

(DSMIP). First, we train three expert networks 123

with different modal subsets for the entity linking 124

task, each of which includes a feature encoding 125

module and a matching score calculation module. 126

To extract a unified multi-modal representation and 127

eliminate heterogeneity between modalities, we 128

introduce low-overhead multi-modal prompt learn- 129

ing for feature encoding in multimodal network. A 130

coupling function is used to establish the interac- 131

tion between textual and visual prompts during the 132

feature extraction stage. Then, to eliminate the am- 133

biguity of mentions, as well as dynamically select 134

the required modalities when calculating the scores 135

for each mention-entity sample pair, we design a 136

modality selection gating network and update it 137

with a reparameterization technique during back- 138

propagation to generate discrete one-hot decisions. 139

Moreover, during the training process, to avoid the 140

dependency of a specific modality and enhance ro- 141

bustness, we adopted a two-stage training strategy 142

and employed contrastive training loss to compute 143

the final matching scores for entity-mention simi- 144

larity. In summary, the contribution of this paper 145

can be summarized as follows: 146

• We propose a dynamic modality selection gating 147

network to solve MEL task, which select the op- 148

timal expert network for each individual sample, 149

flexibly leveraging multimodal data for disam- 150

biguation and filtering out noisy modalities. 151

• Within the multimodal expert network, we adopt 152

a method based on multimodal prompt learning 153

to diminish computational overhead and imple- 154

ment a coupling function for the interaction of 155

prompts across modalities. 156
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• Experimental result on three public MEL datasets157

demonstrate that our method surpasses the cur-158

rent baseline models in performance.159

2 Related Work160

An increasing number of MEL methods have been161

proposed in the past few years, which incorporate162

additional multimodal information to help resolve163

the ambiguity of entities. Moon et al. (2018) first164

proposed a multimodal entity linking task. Ad-165

jali et al. (2020) introduced a Twitter dataset for166

social media and learned a dual-branch neural net-167

work to minimize triplet loss. Gan et al. (2021)168

modeled the text-visual mention alignment as a bi-169

partite graph-matching problem and addressed it170

using an optimal transport-based linking method.171

Wang et al. (2022b) presented a novel WIKIDi-172

verse dataset and investigated intra-modal and inter-173

modal attention to better align the two modalities.174

Wang et al. (2022a) leveraged transformers for fine-175

grained cross-modal relation mining in MEL tasks,176

employing gated fusion and contrastive training for177

meaningful multimodal representations. Luo et al.178

(2023) investigated entity-mention feature interac-179

tions across modalities via three interaction units180

of different granularities. Xing et al. (2023) ex-181

plicitly modeled four different types of alignment182

of mention-entity by constructing graph convolu-183

tional networks (GCN). However, the aforemen-184

tioned MEL methods commonly applied a uniform185

framework for all instances, thereby neglecting186

noise present in the modality of certain samples.187

Recently, research on Dynamic Neural Networks188

(Masoudnia and Ebrahimpour, 2014; Han et al.,189

2022) and its multimodal applications (Panda et al.,190

2021; Xue and Marculescu, 2023) has emerged,191

offering valuable insights for sample-targeted dis-192

ambiguation of mentions and entities.193

In recent years, with the advent of large-scale194

pre-trained models such as BERT, ViT, and CLIP,195

which have leveraged the abundant data available196

on the internet to enable the model to learn a wealth197

of knowledge. An increasing number of MEL meth-198

ods have begun to adopt these model for feature199

extraction. Recent works (Luo et al., 2023; Yang200

et al., 2023) commonly used pre-trained BERT to201

extract textual features and pre-trained ViT or CLIP202

visual encoders for visual features, fine-tuning the203

models for multimodal entity linking tasks. Due to204

the high computational resource consumption and205

catastrophic forgetting issues during fine-tuning, re-206

cent studies have proposed language prompt learn- 207

ing (Zhou et al., 2022; Ju et al., 2022; Khattak et al., 208

2023), which involved constructing prompt tokens 209

and automatically updating prompts to adjust the 210

Vision-and-Language Pre-training (VLP) model 211

while keeping the original weights frozen during 212

fine-tuning. From the perspective of MEL, the idea 213

of prompt learning can help reduce the fine-tuning 214

overhead when using pre-trained models to extract 215

multimodal features and also effectively address 216

the heterogeneity problem between text and vision 217

in MEL tasks through the interaction of prompts. 218

3 Methodology 219

3.1 Problem Formulation 220

The task of Multi-modal Entity Linking (MEL) is 221

to link the mention in the corpus dataset to the 222

corresponding entity in the knowledge graph, we 223

use M to denote the n input multi-modal men- 224

tion samples, where each mention sample can be 225

defined as m = (mw,mt,mv), containing three 226

parts: word of mention, text context of mention, 227

and visual context of mention. We use E to repre- 228

sent the knowledge base, which contains millions 229

of entities, where each entity can be denoted as 230

e = (en, ea, ev) , with each element respectively 231

represents the name, attributes and images of entity. 232

Our task can be expressed as follows, 233

e∗(m) = argmax
ei∈E

Score(m; ei) (1) 234

where Score(·) is a score function used to calcu- 235

late the similarity between mentions and entities, 236

and e∗(m) denotes the ground-truth entity with the 237

highest score that is finally selected. In this section, 238

for the same process of mention and entity, we only 239

exhibit the formulas for mention. 240

3.2 Construction Of Three Expert Networks 241

In this subsection, we design three pre-trained ex- 242

pert networks to implement entity linking task, 243

each utilizing a different subset of modalities (only 244

textual modality, only visual modality, and both 245

textual and visual modalities) to calculate the simi- 246

larity scores of mention-entity pairs. The three ex- 247

pert networks are computed independently and are 248

chosen by the selection gating network in Section 249

3.3. We first developed three modules to encode 250

features of mentions and entities as illustrated in 251

Figure 2, then the feature representations obtained 252

are then processed through different scoring units 253
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Figure 2: Overview of our proposed DSMIP framework for Multimodal Entity Linking.

to compute the similarity matching scores between254

mentions and entities. Three encoding modules255

and the scoring computation units of the different256

expert networks will be described in detail below.257

3.2.1 Text-only Encoding Module258

In this module, we first extract the tex-259

tual features of mention and entity using the260

text encoder of CLIP, and make a template261

"[CLS] mention word : text context [SEP ]"262

to integrate the word and text context of263

mention (the sentence where the mention264

is located) as mention’s textual input, and265

make a template "[CLS] entity name :266

entity attributes [SEP ]" to integrate the entity267

name and attributes as the entity’s textual input.268

The CLIP text encoder gains the text word embed-269

ding T
(0)
m and T

(0)
e by tokenizing the textual input,270

T (0)
m = [tc(0)m , t

(0)
m;1, · · · , t

(0)
m;Lm

] ∈ R(Lm+1)×dt

(2)271

Next, the word embedding processed through K272

transformer blocks, the i-th layer always accepts273

the output of the (i− 1)-th layer,274

T (i)
m = TLi(T

(i−1)
m ) i = 1, . . . ,K. (3)275

finally we obtain the text sequence outputs T
(K)
m276

and T
(K)
e , and then a text projection converts the277

last layer cls token tc(K) to a dz dimensional projec- 278

tion space to obtain Tm;z = TProj(tc
(K)
m ) ∈ Rdz 279

and Te;z = TProj(tc
(K)
e ) ∈ Rdz . 280

3.2.2 Visual-only Encoding Module 281

In this module, we use pre-trained vision trans- 282

former (ViT) to extract visual features, for the in- 283

put original RGB image mv, ev ∈ RH×W×3, H 284

and W denote the height and width of the image. 285

We first split the image into Nm = (H ×W )/P 2 286

patches, where the size of each patch is P ×P , and 287

then flatten each patch to get a Nm-dimensional 288

patch embedding. Finally the patch embedding is 289

attached with a cls token as the initial inputs, 290

V (0)
m = [vc(0)m , v

(0)
e;1 , · · · , v

(0)
m;Nm

] ∈ R(Nm+1)×dv

(4) 291

and the input vector passes through K vision trans- 292

former blocks in turn, 293

V (i)
m = V Li(V

(i−1)
m ) i = 1, . . . ,K. (5) 294

then we gain the visiual outputs V (K)
m , V (K)

e and 295

use a visual projection to convert the cls token 296

vc(K) to the dz dimensional projection space to get 297

the final representation, Vm;z = V Proj(vc
(K)
m ) ∈ 298

Rdz and Ve;z = V Proj(vc
(K)
e ) ∈ Rdz . 299
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3.2.3 Prompt-based Multimodal Interaction300

Encoding Module301

In this module, unlike the previous methods of ex-302

tracting features separately with the text and visual303

encoders mentioned above and then performing304

simple concatenation to get the final multi-modal305

representation, inspired by (Khattak et al., 2023),306

we use a coupling function to build a bridge be-307

tween the textual and visual prompts in order to308

interactive information from the two modalities in309

the process of transformer processing.310

Text-side prompt learning: Based on the origi-311

nal text word embedding, we add two sets of learn-312

able tokens P
(0)
m and P

(0)
e with length r as text313

prompts for mention and entity respectively,314

P (0)
m = [p

(0)
m;1, p

(0)
m;2, · · · , p

(0)
m;r] ∈ Rr×dt (6)315

new text inputs with prompt is generated, which316

can be denoted as [P (0)
m , T

(0)
m ] and [P

(0)
e , T

(0)
e ].317

In the transformer learning process, for the first318

J layers, new prompt tokens are imported to each319

layer, and for the (J+1) to K layers, no new prompt320

tokens will be imported while the prompts from321

previous layer will be processed instead,322

[−, T (i)
m ] = TLi([⋇Pm

(i−1), T (i−1)
m ])

i = 1, . . . , J.

[P (i)
m , T (i)

m ] = TLi([Pm
(i−1), T (i−1)

m ])

i = J + 1, . . . ,K.

(7)323

then we get the output of the last layer [P (K)
m , T

(K)
m ]324

, [P (K)
e , T

(K)
e ]. Same as the text-only module, T ′

m;z325

and T ′
e;z are obtained from a text projection.326

Visual-side prompt learning: To ensure a327

more profound interaction between two modali-328

ties, rather than learning the visual prompt inde-329

pendently, we project the text prompt token to the330

visual space through a coupling function F , to ob-331

tain the visual prompt in the first J layers, and332

then remaining layers process the prompt from the333

previous layers like text-side,334

[−, V (i)
m ] = V Li([F(⋇Pm

(i−1)), V (i−1)
m ])

i = 1, . . . , J.

[P̂m
(i)
, V (i)

m ] = V Li([P̂m
(i−1)

, V (i−1)
m ])

i = J + 1, . . . ,K.
(8)335

during this process, the two sides achieve full inter-336

action through the mutual propagation of gradients.337

We eventually obtain the output representations 338

[P̂m
(i)
, V

(i)
m ], [P̂e

(i)
, V

(i)
e ] for mention and entity 339

and the visual projection mapped V ′
m;z , V ′

e;z . 340

3.2.4 Similarity Matching Score Calculation 341

Upon acquiring the three sets of features from 342

the previous modules, we calculate the similarity 343

matching scores between the mention and each 344

candidate entity using the three feature interaction 345

score units as proposed in (Luo et al., 2023), which 346

has been proved effective in exploring both inter- 347

modal and intra-modal similarity at different gran- 348

ularities. In our model, similarity matching scores 349

for mention-entity pairs are computed separately 350

for each of the three expert networks. For Text Ex- 351

pert and Visual Expert, we use the hidden features 352

learned from the last transformer layer as local fea- 353

ture and the cls token transformed by a projection 354

function as global feature, then fed them into the 355

text scoring unit and visual scoring unit separately, 356

Stext = UT (Tm, Tm;z, Te, Te;z) (9) 357

Svisual = UV (Vm, Vm;z, Ve, Ve;z) (10) 358

here, we omit the state symbol (K). As for the 359

Multi-modal Expert, we input the features obtained 360

from Section 3.2.3 into all three units, calculate 361

three scores, and take the average value as the final 362

score according to the following formula. 363

ST = UT ([Pm, Tm], T ′
m;z, [Pe, Te], T

′
e;z) (11) 364

SV = UV ([P̂m, Vm], V ′
m;z, [P̂e, Ve], V

′
e;z) (12) 365

SC = UC([[Pm, Tm], T ′
m;z, [P̂m, Vm], V ′

m;z

[Pe, Te], T
′
e;z, [P̂e, Ve], V

′
e;z)

(13) 366

367

Smm =
ST + SV + SC

3
(14) 368

3.3 Modality Selection Gating Network 369

In this subsection, for input data with O modalities, 370

samples of either mentions or entities can be repre- 371

sented as x = (x1, ......, xO), inspired by the Mix- 372

ture of Experts (MoE) (Masoudnia and Ebrahim- 373

pour, 2014), specialized expert networks can be 374

designed for each subset of M modalities to accom- 375

plish the task. In our multi-modal entity linking 376

(MEL), since there are two modalities, we construct 377

three expert networks, Expert(xt), Expert(xv), 378

and Expert(xt, xv), which use the textual, visual, 379

and multi-modal information of the entity-mention 380

pairs respectively to solve the entity linking task. 381

The number of expert networks in the selectable 382
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list is set to B. To determine the selection of the ap-383

propriate expert network, we devise a Multimodal384

Selection Gating Network, which ultimately out-385

puts a one-hot B-dimensional vector to guide the386

choice of the expert network.387

Specifically, we concat the text token embed-388

ding and the 4096-dimensional visual feature ex-389

tract by VGG to obtain fm = concat(fmt , fmv)390

and fe = concat(fet , fev) as the original input of391

the two identical MLPs. As is showen in Figure392

2, each MLP network has two-layers with each393

layer consisting of an FC layer, a LeakyRelu layer,394

and a Dropout layer. After obtaining he and hm395

by two MLPs, an expansion operation and a con-396

catenation operation are performed before entering397

the final MLP, which consists of a FC layer and398

a RELU layer. This final MLP ultimately outputs399

a B-dimensional categorical vector π ∈ RB , a400

continuous distribution vector for modal selection.401

Since we want to generate a discrete decision, this402

selection process, however, is not directly micro-403

scopic. To solve this issue, we introduce the Cate-404

gorical Reparameterization with Gumbel-Softmax405

technique (Jang et al., 2016) (Xue and Marculescu,406

2023) for training. Specifically, we firstly apply407

the Gumbel-Max trick, which samples a series of408

interpolated noises, g1, ..., gB , from Gumbel(0, 1)409

to enhance the robustness of the model, and with410

the following formula to draw samples z from a411

categorical distribution with class probabilities π,412

z = Onehot(argmax
i

[gi + log πi]) (15)413

[z1, . . . zB] obtained by this formulation should be414

used for modal selection, however, because of the415

discrete non-fracturable problem, we use the soft-416

max function as the continuous differentiable ap-417

proximation of an argmax during the training pro-418

cess and generate a B-dimensional continuous vec-419

tor z̃ which can be computed in back-propagation,420

z̃i =
exp(log(πi) + gi)/τ∑B
j=1 exp(log(πj) + gj)/τ

i = 1, . . . , B

(16)421

τ denotes the temperature of the softmax, when τ422

is closer to 0, Gumbel-softmax approximates to the423

discrete distribution, while as τ increases, Gumbel-424

softmax is closer to the uniform distribution. We425

use z̃ in the back-propagation process of training426

and z in the forward-propagation process and in-427

ference process. Since ▽z̃ ≈ ▽z, we can not only428

achieve modal selection during inference, but also429

update the model during training with this method.430

3.4 Optimization and Training Strategy 431

Due to the potential issue that early-stage training 432

optimization of our modality selection gating net- 433

work could lead to some expert networks being 434

less likely chosen, we adopt a two-stage training 435

strategy. This strategy, along with the test stage, 436

will be detailed as follows. 437

Expert Network Training Stage: In this stage, 438

B expert networks are trained independently using 439

the dataset to make them reach their optimal per- 440

formance. After obtaining the similarity scores, a 441

contrastive training loss function is applied to each 442

batch, which aims to bring positive mention-entity 443

pairs closer and distance negative pairs, 444

L(S(·)) = − log
exp(S(m, e))∑
i exp(S(m, ēi))

(17) 445

S(·) indicates the used score function, e and ē re- 446

spectively denotes the positive and negative entities 447

in current batch. 448

Gating Selector Learning and Expert Net- 449

work Fine-Tuning Stage: In this stage, we freeze 450

the feature encoding module with relatively high 451

parameter cost, which have been trained in the first 452

stage, only fine-tune the similarity computation 453

module. In addition, the selection gating network 454

is integrated into the optimization process, for each 455

mention-entity pair, the one-hot selection vector z 456

obtained from the gating network is used to deter- 457

mine the score function to be utilized, 458

S = [z1, . . . , zB] · [S1, . . . , SB]
T (18) 459

Si indicates the score function of Expert Network 460

i, then we apply Equation 17 to derive final loss L. 461

Testing Stage: During the testing stage, we use 462

z to select one of the branches to compute the final 463

score S. The entity with the highest score is then 464

chosen as the final selection for the mention. 465

4 Experiment 466

4.1 Experimental Setup 467

Datasets: We validate the effectiveness of our pro- 468

posed method on three datasets: RichpediaMEL 469

and WikiMEL which were proposed by Wang et al. 470

(2022a), and WikiDiverse which is proposed by 471

Wang et al. (2022b) The statistical data, and the di- 472

vision methods for the three datasets are presented 473

in Appendix A.1. 474

Baselines: We compare our method against two 475

categories of models: (1) Entity Linking based 476
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Dataset RichpediaMEL WikiMEL WikiDiverse
Method

Metric H@1↑ H@3↑ H@5↑ MR↓ H@1↑ H@3↑ H@5↑ MR↓ H@1↑ H@3↑ H@5↑ MR↓

Pre(T) BERT (Devlin et al., 2019) 59.55 81.12 87.16 278.08 74.82 86.79 90.47 51.23 55.77 75.73 83.11 373.96
Pre(V+T) CLIP (Radford et al., 2021) 67.78 85.22 90.04 107.16 83.23 92.1 94.51 17.6 61.21 79.63 85.18 313.35
Pre(V+T) ALBEF (Li et al., 2021) 65.17 82.84 88.28 122.3 78.64 88.93 91.75 47.95 60.59 75.59 81.3 291.17

EL(T) BLINK (Wu et al., 2020) 58.47 81.51 88.09 178.57 74.66 86.63 90.57 51.48 57.14 78.04 85.32 332.03
MEL(V+T) DZMNED (Moon et al., 2018) 68.16 82.94 87.33 313.85 78.82 90.02 92.62 152.58 56.9 75.34 81.41 563.26
MEL(V+T) JMEL (Adjali et al., 2020) 48.82 66.77 73.99 470.9 64.65 79.99 84.34 285.14 37.38 54.23 61 996.63
MEL(V+T) GHMFC (Wang et al., 2022a) 72.92 86.85 90.6 214.64 76.55 88.4 92.01 54.75 60.27 79.4 84.74 628.87
MEL(V+T) MIMIC (Luo et al., 2023) 81.02 91.77 94.38 55.11 87.98 95.07 96.37 11.02 63.51 81.04 86.43 227.08

ours* DSMIP 85.03 92.89 94.97 21.24 88.97 95.7 96.86 10.37 62.46 80.6 86.92 222.9

Table 1: Performance comparison of different methods on three MEL datasets.(T: using textual modality, V: using
visual modality, Pre: pre-training model, EL: entity linking method, MEL: multi-modal entity liking method).

Methods: This includes EL methods that utilize477

solely text information, such as BLINK, and MEL478

methods DZMNED, JMEL, GHMFC, and MIMIC.479

(2) Pre-trained Model based Methods: This encom-480

passes models that are purely text-based pretrained,481

such as BERT, as well as V-L pretrained models482

including CLIP and ALBEF. A detailed description483

of the baselines is provided in Appendix A.2.484

Metrics: We evaluate above methods using485

H@k and MR. The specific computation for each486

metric is provided in Appendix A.3. H@k denotes487

the hit rate of the ground-truth entity within the488

top-k ranked entities. MR represents the average489

rank of the ground-truth entity across all entities.490

Implementation Details: Our proposed method491

is implemented using the PyTorch framework and492

trained on NVIDIA GeForce GTX4090 GPU, set-493

ting up Ubuntu 16.04 operating system and has an494

Intel(R) Xeon(R) Gold 6226R CPU. We find the495

optimal hyperparameter through grid search. The496

maximum length for text inputs is set to 77. The497

dimensions for the text and visual hidden layers,498

as well as the projection space, are set to 512, 768,499

and 512, respectively. The prompt length is set to500

2, with a prompt depth update of 9. The gated net-501

work’s hidden layer dimension is set to 512, with a502

softmax temperature of 0.1. Training is conducted503

using the Adam optimizer with a fixed number of504

epochs set at 20, a batch size of 128, and a learn-505

ing rate of 5e−4. We deploy three expert networks506

with B = 3 on WikiMEL. Due to the underper-507

formance of the visual expert network, we utilize508

only the text and multimodal expert networks on509

RichpediaMEL and WikiDiverse with B = 2.510

4.2 Main Experimental Results511

Our comparative experiment is conducted to evalu-512

ate the effectiveness of our model. Table 1 presents513

the results of all models in terms of H@1, H@3,514

H@5, and MR metrics, where a higher value sig- 515

nifies better performance for all metrics except for 516

MR. 517

Firstly, the pre-trained model based methods out- 518

perform most specialized MEL approaches, and 519

those employing large-scale pretraining models for 520

feature extraction, such as GHMFC and MIMIC, 521

also surpass the others, fully demonstrating the effi- 522

cacy of large-scale pretrained models in MEL tasks. 523

Notably, CLIP performs exceptionally well, which 524

substantiates our selection of CLIP as the origi- 525

nal pretrained encoder for feature extraction. Sur- 526

prisingly, text-based approaches achieve favorable 527

results on these datasets, surpassing several MEL 528

methods across numerous metrics, inadvertently 529

reflects the fact that incorporating visual informa- 530

tion can sometimes contribute noise and in some 531

cases even negatively impact the performance. Ul- 532

timately, the experimental results confirm that our 533

DSMIP achieves state-of-the-art performance. On 534

RichpediaMEL and WikiMEL, DSMIP surpasses 535

all baseline methods in every metric, with the most 536

notable gains in Hit@1—the most demanding met- 537

ric. While our method lags slightly behind MIMIC 538

on some metrics on WikiDiverse, it achieves better 539

performance in low-resource settings, which are 540

more reflective of real-world scenarios, as will be 541

discussed in Section 4.3. 542

4.3 Low Resource Experiment 543

In this subsection, we evaluate our model in low- 544

resource settings, which is crucial for real-world ap- 545

plication scenarios where data labeling is resource- 546

intensive. We maintain the validation and test sets 547

unchanged and use only 10% of training data. 548

Figure 3 and 4 illustrate the performance of multi- 549

modal methods in these settings and their relative 550

decline from high-resource setting, respectively. 551

Most methods show a significant decline in per- 552
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Figure 3: Low-Resource Performance Comparison.
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Figure 4: Performance Decline in Low vs. High Re-
source Settings.

formance with fewer training resources. However,553

large-scale pre-trained V-L models like CLIP and554

ALBEF show less degradation, especially on Rich-555

pediaMEL, proving that abundant knowledge and556

language comprehension can be gained from large-557

scale pretraining, where even a limited amount of558

target task data can effectively guide model fine-559

tuning for MEL. However, their overall efficacy is560

still limited. Notably, our approach slightly trails561

MIMIC on WikiDiverse in high-resource setting,562

mainly due to its effective inter-modal and intra-563

modal interaction. However, we surpasses it in564

low-resource settings and achieves the least per-565

formance decline on this dataset. In summary,566

our method outperforms all baseline methods and567

achieves a small performance decline, fully demon-568

strating DPMIS’s adaptability and superiority in569

low-resource scenarios.570

4.4 Ablation Experiments571

To investigate the effectiveness of our proposed572

Prompt-based Multimodal Interaction Encoding573

Module and the impact of the three expert networks,574

we conducted ablation studies on the WikiMEL,575

with the results shown in Table 2.576

Firstly, it was observed that all single expert net-577

works exhibited a performance gap compared to578

the complete model, validating our modality se-579

lection network. The multimodal network saw the580

least drop, with a 3% decrease in Hit@1. For the581

single modality expert networks, the Text Expert582

Network did not show much decline, but the Visual583

Expert Network underperformed significantly, indi-584

cating the potential for visual noise to misguide the585

Model H@1↑ H@3↑ H@5↑

DSMIP 88.97 95.7 96.86

w/ Experttext 65.31 79.35 84.13
w/ Expertimage 31.51 37.57 40.64

w/ Expertmultimodal 86.26 94 95.85
w/o Interactive Prompt 78.6 88.93 91.97

Table 2: Ablation studies on WikiMEL.

Trainable params (M)

w/ CLIP encoder 153
w/ Interacticve prompt encoder 7.6

Table 3: Trainable parameters Comparison: Multimodal
Expert Network across two encoder configurations.

model. Further experiment with a non-interactive 586

CLIP model, in place of interactive prompts, led 587

to a notable drop in performance, affirming the 588

utility of prompts and the coupling function for 589

modality integration, thus justifying our adoption 590

of prompt-based learning. 591

4.5 Computational Cost Analysis 592

To validate the computational savings of our 593

prompt interactive expert network, we evaluated 594

the number of trainable parameters of the multi- 595

modal expert network in two manners: (a) fine- 596

tuning the CLIP pre-trained encoder and (b) using 597

the interactive prompt learning encoder proposed 598

in this study. 599

As shown in Table 3, it is evident that our prompt 600

learning encoder reduces trainable parameters from 601

153M to 7.6M. This reduction confirms the mod- 602

ule’s effectiveness in facilitating modal interactions 603

with substantial computational savings. 604

5 Conclusion 605

In this paper, we propose a novel DSMIP for Mul- 606

timodal Entity Linking. Our method designs three 607

expert networks for different subsets of modalities, 608

and devises a gating network that generates a one- 609

hot vector to select the optimal Expert Network 610

for each modality-entity pair, thereby overcoming 611

the mention ambiguity and modality-induced noise. 612

Moreover, we update multimodal prompts to ex- 613

tract features of mentions and entities within the 614

multimodal expert networks and establish a cou- 615

pling function to enable interaction between the 616

modalities, thereby reducing modality heterogene- 617

ity and saving the training overhead. Experimental 618

results demonstrate that our model outperforms 619

other state-of-the-art methods. 620
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6 Limitations621

The limitations of our method are as follows:622

• Our proposed modality selection network uses623

the same expert network for both the mention and624

entity within a sample pair. While this approach625

can choose the most suitable modality for the626

current sample pair, it does not consider cross-627

modality interactions between the mention and628

entity during the selection process, potentially629

leading to the loss of some cross-modal informa-630

tion. Thus, designing a cross-modal interaction631

expert network for mention-entity pairs, allowing632

the different choice, is an important direction for633

our improvement.634

• Our method compute contrastive training loss635

by comparing mentions with all entities in the636

knowledge base, a process that can be time-637

consuming. However, previous studies employ-638

ing a pre-selection of candidate entities before639

ranking have been less time-intensive but less640

effective. Balancing the two and finding a more641

efficient method for candidate entity selection642

remains an area for further exploration.643
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A Appendix802

A.1 Datasets Details803

The introductions for the three datasets are as fol-804

lows:805

(1) RichpediaMEL (Wang et al., 2022a): It pos-806

sessing more than 17,000 multimodal samples. The807

entities were gathered from Richpedia and corre-808

sponding multimodal information retrieved from809

Wikipedia.810

(2) WikiMEL (Wang et al., 2022a): This dataset811

comprises over 22,000 multimodal samples, con-812

structed by collecting entities from Wikidata and813

subsequently extracting textual and visual descrip-814

tions for each entity from Wikipedia.815

(3) WikiDiverse (Wang et al., 2022b): It con-816

tains over 8,000 diverse context topics and entity817

types sourced from Wikinews, using Wikipedia,818

which hosts more than 16 million entities, as the819

corresponding knowledge base.820

Table 4 presents detailed data statistics for the821

three datasets, and Table 5 shows the partition-822

ing of the datasets. Here, we utilize the original823

splits for the three datasets. For RichpediaMEL824

and WikiMEL, we allocate the (train, valid, test)825

split as (70%, 10%, 20%), while for WikiDiverse,826

the division is set at (80%, 10%, 10%).827

A.2 Baselines Details828

The baseline methods employed in the experimen-829

tal section are described as follows:830

(1) BERT (Devlin et al., 2019): A foundational831

model in natural language processing that employs832

a series of Transformer encoders. It leverages ex-833

tensive pre-training over a large textual corpus and834

demonstrates proficiency across diverse language835

understanding tasks.836

(2) CLIP (Radford et al., 2021): A large pre-837

trained approach that learns visual concepts from838

textual annotations and trained on a wide variety of839

image-text pairs. It is proficient in recognizing and840

classifying images based on textual descriptions,841

even with limited training examples.842

(3) ALBEF (Li et al., 2021): An advanced pre-843

trained visual-language technique that align the844

visual and textual modalities by contrastive loss845

before fuse them via a multimodal Transformer en-846

coder. It also incorporates momentum distillation847

to enhance robustness against noisy datasets.848

(4) BLINK (Wu et al., 2020): A two-stage zero-849

shot linking algorithm where entities are defined850

solely by brief textual descriptions. The first stage851

Dataset Mentions Samples
Img of

Mentions
Entites

Img of
Entities

RichpediaMEL 17805 17724 15853 160935 86769
WikiMEL 25846 22070 22136 109976 67195

WikiDiverse 15093 7405 6697 132460 67309

Table 4: Summary statistics for the datasets.

Dataset Mentions Entity

RichpediaMEL-train 12463
160935RichpediaMEL-valid 1780

RichpediaMEL-test 3562

WikiMEL-train 18092
109976WikiMEL-valid 2585

WikiMEL-test 2078

WikiDiverse-train 11351
132460WikiDiverse-valid 1664

WikiDiverse-test 2078

Table 5: Data Division for Three Datasets.

involves retrieval candidates in a dense space de- 852

fined by a bi-encoder and the second stage re- 853

ranked them using a cross-encoder. 854

(5) DZMNED (Moon et al., 2018): A deep zero- 855

shot multimodal network which is the first MEL 856

method. It extracts context from text and images 857

and predicts the correct entity in a knowledge graph 858

embedding space, enabling zero-shot disambigua- 859

tion of entities not seen in the training set. 860

(6) JMEL (Adjali et al., 2020): A MEL method 861

designed for tweets that trains a dual-branch feed 862

forward neural network to minimize a triplet loss 863

that defines an implicit joint feature space, and 864

projects each modality into this space via its re- 865

spective branches. 866

(7) GHMFC (Wang et al., 2022a): A method that 867

incorporates a transformer to explore fine-grained 868

cross-modal relationships for MEL task, learning 869

meaningful multimodal mention representations 870

through gated fusion and contrastive training. 871

(8) MIMIC (Luo et al., 2023): A advanced 872

approach that proposes a multi-granularity mul- 873

timodal interaction network, establishing three in- 874

teraction units to comprehensively explore intra- 875

modal interactions and inter-modal fusion between 876

entity and mention features. 877

A.3 Metrics Details 878

The calculation formula of the metrics is defined 879

as follows: 880
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(1) H@k881

H@k =
1

N

∑N
i I(rank(i) < k) (19)882

where N denotes the total number of samples, and883

I is an indicator function. I is set to 1 when the884

acceptance condition is met, and 0 otherwise.885

(2) MR886

MR =
1

N

∑N
i rank(i) (20)887
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