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Abstract

Recent advances in Multimodal Entity Link-
ing (MEL) utilize multimodal information to
link target mentions to corresponding entities.
However, existing methods uniformly adopt a
“one-size-fits-all” approach, ignoring individ-
ual sample needs and modality-induced noise.
Also, the commonly used separate large-scale
visual and text pre-trained models for feature
extraction do not address inter-modal hetero-
geneity and the high computational cost of fine-
tuning. To resolve these two issues, this paper
introduces a novel approach named Multimodal
Entity Linking with Dynamic Modality Selec-
tion and Interactive Prompt Learning (DSMIP).
First, we design three expert networks that uti-
lize different subsets of modalities to tackle the
task and train them individually. In particular,
for the multimodal expert network, we extract
multimodal features of entities and mentions
by updating multimodal prompts and set up a
coupling function to realize the interaction of
prompts between modalities. Subsequently, to
select the best-suited expert network for each
specific sample, we devise a Modality Selec-
tion Gating Network to gain the optimal one-
hot selection vector by applying a specialized
reparameterization technique and a two-stage
training. Experimental results on three public
benchmark datasets demonstrate that our solu-
tion outperforms the majority of state-of-the-art
baselines and surpasses all baselines in settings
with low training resources.

1 Introduction

Entity Linking (EL), also known as entity disam-
biguation, aims to map mentions within unstruc-
tured data from sources such as social media, news,
or web content to the correct entities in a structured
Knowledge Graph (KG), which benefits numerous
downstream tasks, including information extrac-
tion (Hoffart et al., 2011), question answering (Yih
et al., 2015) and semantic search (Hasibi et al.,
2016). Traditional EL approaches primarily rely on
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Figure 1: Two examples of Multimodal Entity Link-
ing. On the left are the textual context and image from
a corpus, with the mention word underscored, on the
right are the entity name, attributes, and image from a
knowledge base. In (a), all two modalities are needed
to correctly link the mention "Apple" to the company
"Apple Inc." In (b), the text modality alone suffices to
correctly link to the country "Australia," but adding the
visual modality leads to an erroneous link to the female
basketball player "Suzy Batkovic."

the textual context of mentions to link to the correct
knowledge base entities. However, in recent years,
there has been an increasing amount of oneline
information being conveyed through images, on
the other hand, the textual context of mentions of-
ten fails to eliminate ambiguity, posing challenges
to text-based methods as is shown in Figure 1(a).
Therefore, an increasing attention has drawn to the
research of Multimodal Entity Linking (MEL). De-
spite considerable improvements (Zhu et al., 2024)
have been made in MEL, these methods still exhibit



several notable limitations:

Firstly, for the real-world data, two obstacles are
considered the most significant and demanding in
this task: (1) Mention Ambiguity: Ambiguity exists
in both text and image for mentions. Textual men-
tions and contexts are often brief and may contain
abbreviations, which is common in social media
and web news. Also the related images might corre-
spond to more than one entity (e.g. different charac-
ters played by the same actor). These ambiguities
make it infeasible to identify the correct entity by
uni-modal for some complex samples. (2) Noise
of sample data: For MEL task, context serves as a
crucial resource for disambiguation and searching
for the correct entity. However, as text and image
contexts are typically sourced from the internet, not
all modalities’ contexts work positively for the task.
Textual context might contain information irrele-
vant to the mention word, and low-quality visual
context can easily act as noise, affecting the accu-
racy of linking. Figure 1 visually illustrates that
disparate samples may encounter distinct obstacles:
for samples like (a), a single textual modality can
lead to mention ambiguity, whereas multimodal
data assists the model in learning richer represen-
tations and linking to the correct entity easier. For
samples like (b), using the single text modality
could easily identify the ground-trurh entity due to
the strong specificity of the mention word, whereas
the visual modality might be counterproductive.
Employing a universal model for all samples
struggles to balance modality-assisted disam-
biguation and modality-induced noise. Exist-
ing methods are static in essence, processing all
instances with a single framework. Therefore, a
dynamic method is required to select which modal-
ities to use under different samples, which can both
filter noisy modal and utilize multimodal informa-
tion for disambiguation when necessary.

Secondly, it’s essential to deeply mine the mul-
timodal information of both mentions and entities
for MEL. To this end, the model is required to not
only leverage the semantic information of each but
also recognize the interrelations between modal-
ities. The fact that image features and word to-
ken embeddings reside in their respective spaces
poses a challenge to construct a unified representa-
tion, so it is necessary to model the interaction of
the modalities and enhance the inter-model effect.
Quite a few recent MEL research, in the feature
extraction stage, use large-scale pre-trained models
to extract text and image features, then merge uni-

modal features and fine-tune the encoder. However,
existing methods extract uni-modal features inde-
pendently, which can easily overlook the interac-
tive clues hidden between modalities. Additionally,
fine-tuning pre-trained models also leads to exten-
sive computational costs. Using separate large-
scale pre-trained models for visual and textual
feature extraction fail to tackle inter-modal het-
erogeneity and the high computational demands
of fine-tuning. Therefore, a method is needed to
fully interact and align different modalities’ infor-
mation during the feature extraction stage in a cost-
effective manner.

To tackle the above issues, this paper proposes
a novel multi-modal entity linking method Mul-
timodal Entity Linking with Dynamic Modal-
ity Selection and Interactive Prompt Learning
(DSMIP). First, we train three expert networks
with different modal subsets for the entity linking
task, each of which includes a feature encoding
module and a matching score calculation module.
To extract a unified multi-modal representation and
eliminate heterogeneity between modalities, we
introduce low-overhead multi-modal prompt learn-
ing for feature encoding in multimodal network. A
coupling function is used to establish the interac-
tion between textual and visual prompts during the
feature extraction stage. Then, to eliminate the am-
biguity of mentions, as well as dynamically select
the required modalities when calculating the scores
for each mention-entity sample pair, we design a
modality selection gating network and update it
with a reparameterization technique during back-
propagation to generate discrete one-hot decisions.
Moreover, during the training process, to avoid the
dependency of a specific modality and enhance ro-
bustness, we adopted a two-stage training strategy
and employed contrastive training loss to compute
the final matching scores for entity-mention simi-
larity. In summary, the contribution of this paper
can be summarized as follows:

* We propose a dynamic modality selection gating
network to solve MEL task, which select the op-
timal expert network for each individual sample,
flexibly leveraging multimodal data for disam-
biguation and filtering out noisy modalities.

* Within the multimodal expert network, we adopt
a method based on multimodal prompt learning
to diminish computational overhead and imple-
ment a coupling function for the interaction of
prompts across modalities.



» Experimental result on three public MEL datasets
demonstrate that our method surpasses the cur-
rent baseline models in performance.

2 Related Work

An increasing number of MEL methods have been
proposed in the past few years, which incorporate
additional multimodal information to help resolve
the ambiguity of entities. Moon et al. (2018) first
proposed a multimodal entity linking task. Ad-
jali et al. (2020) introduced a Twitter dataset for
social media and learned a dual-branch neural net-
work to minimize triplet loss. Gan et al. (2021)
modeled the text-visual mention alignment as a bi-
partite graph-matching problem and addressed it
using an optimal transport-based linking method.
Wang et al. (2022b) presented a novel WIKIDi-
verse dataset and investigated intra-modal and inter-
modal attention to better align the two modalities.
Wang et al. (2022a) leveraged transformers for fine-
grained cross-modal relation mining in MEL tasks,
employing gated fusion and contrastive training for
meaningful multimodal representations. Luo et al.
(2023) investigated entity-mention feature interac-
tions across modalities via three interaction units
of different granularities. Xing et al. (2023) ex-
plicitly modeled four different types of alignment
of mention-entity by constructing graph convolu-
tional networks (GCN). However, the aforemen-
tioned MEL methods commonly applied a uniform
framework for all instances, thereby neglecting
noise present in the modality of certain samples.
Recently, research on Dynamic Neural Networks
(Masoudnia and Ebrahimpour, 2014; Han et al.,
2022) and its multimodal applications (Panda et al.,
2021; Xue and Marculescu, 2023) has emerged,
offering valuable insights for sample-targeted dis-
ambiguation of mentions and entities.

In recent years, with the advent of large-scale
pre-trained models such as BERT, ViT, and CLIP,
which have leveraged the abundant data available
on the internet to enable the model to learn a wealth
of knowledge. An increasing number of MEL meth-
ods have begun to adopt these model for feature
extraction. Recent works (Luo et al., 2023; Yang
et al., 2023) commonly used pre-trained BERT to
extract textual features and pre-trained ViT or CLIP
visual encoders for visual features, fine-tuning the
models for multimodal entity linking tasks. Due to
the high computational resource consumption and
catastrophic forgetting issues during fine-tuning, re-

cent studies have proposed language prompt learn-
ing (Zhou et al., 2022; Ju et al., 2022; Khattak et al.,
2023), which involved constructing prompt tokens
and automatically updating prompts to adjust the
Vision-and-Language Pre-training (VLP) model
while keeping the original weights frozen during
fine-tuning. From the perspective of MEL, the idea
of prompt learning can help reduce the fine-tuning
overhead when using pre-trained models to extract
multimodal features and also effectively address
the heterogeneity problem between text and vision
in MEL tasks through the interaction of prompts.

3 Methodology

3.1 Problem Formulation

The task of Multi-modal Entity Linking (MEL) is
to link the mention in the corpus dataset to the
corresponding entity in the knowledge graph, we
use M to denote the n input multi-modal men-
tion samples, where each mention sample can be
defined as m = (my,, my, m,), containing three
parts: word of mention, text context of mention,
and visual context of mention. We use F to repre-
sent the knowledge base, which contains millions
of entities, where each entity can be denoted as
e = (en, €q, €y) , With each element respectively
represents the name, attributes and images of entity.
Our task can be expressed as follows,

e*(m) = arg maxScore(m;e;) (1)
e, €F

where Score(-) is a score function used to calcu-
late the similarity between mentions and entities,
and e*(m) denotes the ground-truth entity with the
highest score that is finally selected. In this section,
for the same process of mention and entity, we only
exhibit the formulas for mention.

3.2 Construction Of Three Expert Networks

In this subsection, we design three pre-trained ex-
pert networks to implement entity linking task,
each utilizing a different subset of modalities (only
textual modality, only visual modality, and both
textual and visual modalities) to calculate the simi-
larity scores of mention-entity pairs. The three ex-
pert networks are computed independently and are
chosen by the selection gating network in Section
3.3. We first developed three modules to encode
features of mentions and entities as illustrated in
Figure 2, then the feature representations obtained
are then processed through different scoring units
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Figure 2: Overview of our proposed DSMIP framework for Multimodal Entity Linking.

to compute the similarity matching scores between
mentions and entities. Three encoding modules
and the scoring computation units of the different
expert networks will be described in detail below.

3.2.1 Text-only Encoding Module

In this module, we first extract the tex-
tual features of mention and entity using the
text encoder of CLIP, and make a template
"[CLS] mention word : text context [SEP]"
to integrate the word and text context of
mention (the sentence where the mention
is located) as mention’s textual input, and
make a template "[CLS] entity name

entity attributes [SEP]" to integrate the entity
name and attributes as the entity’s textual input.
The CLIP text encoder gains the text word embed-

ding T,E? ) and Te(o) by tokenizing the textual input,

| e R (Em+1)xd:

2
Next, the word embedding processed through K
transformer blocks, the i-th layer always accepts
the output of the (¢ — 1)-th layer,

TO = [t O ... O

m;Lm,

L =TL(TE™Y) i=1. K Q)

)

, and then a text projection converts the

finally we obtain the text sequence outputs T,S@K

and Te(K)

last layer cls token ¢tc(*) to a d, dimensional projec-

tion space to obtain T},,, = TProj(tc%()) € Ré-
and T,.. = TProj(tct™)) € Ré=,

3.2.2 Visual-only Encoding Module

In this module, we use pre-trained vision trans-
former (ViT) to extract visual features, for the in-
put original RGB image m,, e, € RTXW>3 p
and W denote the height and width of the image.
We first split the image into N,,, = (H x W) /P>
patches, where the size of each patch is P x P, and
then flatten each patch to get a N,,,-dimensional
patch embedding. Finally the patch embedding is
attached with a cls token as the initial inputs,

0) ,,0) (0)

Ny +1)xd
[UC'ErL ’Ue;l’ e ’Um;Nm] € R( m)xdy

“)
and the input vector passes through K vision trans-
former blocks in turn,

V(0 —

m

VO —vL,viYy i=1,....K. (5
then we gain the visiual outputs ,(nK) , Ve(K) and

use a visual projection to convert the cls token
ve¥) to the d., dimensional projection space to get
the final representation, V;,,.. = V Proj (vc%( )) €

R% and V,., = VProj(vc((gK)) € R,



3.2.3 Prompt-based Multimodal Interaction
Encoding Module

In this module, unlike the previous methods of ex-
tracting features separately with the text and visual
encoders mentioned above and then performing
simple concatenation to get the final multi-modal
representation, inspired by (Khattak et al., 2023),
we use a coupling function to build a bridge be-
tween the textual and visual prompts in order to
interactive information from the two modalities in
the process of transformer processing.

Text-side prompt learning: Based on the origi-
nal text word embedding, we add two sets of learn-
able tokens Prsn? ) and Pe(o) with length r as text
prompts for mention and entity respectively,

Pr(n?) = [ 57231?271(2;)2’ e >p$7??r] S RTth (6)
new text inputs with prompt is generated, which
can be denoted as [Pr(r? ) 1 )] and [Pe(o), Te(o)].

In the transformer learning process, for the first
J layers, new prompt tokens are imported to each
layer, and for the (J+1) to K layers, no new prompt
tokens will be imported while the prompts from
previous layer will be processed instead,

(= T) = TLi([% Py, T 1))
i=1,...,J.
[P, T = TLi([P, ), T )
i=J+1,... K.

)

then we get the output of the last layer [PT(,LK), T7(nK)]
, [Pe(K), Te(K)}. Same as the text-only module, 77,
and T;., are obtained from a text projection.

Visual-side prompt learning: To ensure a
more profound interaction between two modali-
ties, rather than learning the visual prompt inde-
pendently, we project the text prompt token to the
visual space through a coupling function F, to ob-
tain the visual prompt in the first J layers, and
then remaining layers process the prompt from the
previous layers like text-side,

[, V] = VLi([F(%P, V), Vi)

i=1,...,J.
15,7 v = v, Y, vi-D)

1=J4+1,... K.
(®)
during this process, the two sides achieve full inter-
action through the mutual propagation of gradients.

We eventually obtain the output representations
[ﬁm(z), n(f )], []36(1), Ve(l)] for mention and entity

and the visual projection mapped V! _, V!

m;z> Vez *
3.2.4 Similarity Matching Score Calculation

Upon acquiring the three sets of features from
the previous modules, we calculate the similarity
matching scores between the mention and each
candidate entity using the three feature interaction
score units as proposed in (Luo et al., 2023), which
has been proved effective in exploring both inter-
modal and intra-modal similarity at different gran-
ularities. In our model, similarity matching scores
for mention-entity pairs are computed separately
for each of the three expert networks. For Text Ex-
pert and Visual Expert, we use the hidden features
learned from the last transformer layer as local fea-
ture and the cls token transformed by a projection
function as global feature, then fed them into the
text scoring unit and visual scoring unit separately,

Stext — UT(Tm7 Tm;za Te, Te;z) (9)
guisual _ UV(Vma Vm;zv Ve, ‘/e;z) (10)

here, we omit the state symbol (K). As for the
Multi-modal Expert, we input the features obtained
from Section 3.2.3 into all three units, calculate
three scores, and take the average value as the final
score according to the following formula.

ST == UT([PmaTm]vTrln;z7 [PevTe]aTé;z) (11)
SV = UV([pm’Vm]erln;z?[Ptfvve]vvvc!;z) (12)
SC = UC([[Pmmi]yTéuza [pfm Vm]v Vrgw;z (13)
[Pev Te]aTe/;z7 [Peﬂ ‘/6]7 ‘/6/;2)
St + Sy + Sc
gmm — 2T T OV T OC 14
3 (14)

3.3 Modality Selection Gating Network

In this subsection, for input data with O modalities,
samples of either mentions or entities can be repre-
sented as x = (1, ...... , o), inspired by the Mix-
ture of Experts (MoE) (Masoudnia and Ebrahim-
pour, 2014), specialized expert networks can be
designed for each subset of M/ modalities to accom-
plish the task. In our multi-modal entity linking
(MEL), since there are two modalities, we construct
three expert networks, Expert(z;), Expert(z,),
and Fxpert(xy, x,), which use the textual, visual,
and multi-modal information of the entity-mention
pairs respectively to solve the entity linking task.
The number of expert networks in the selectable



list is set to B. To determine the selection of the ap-
propriate expert network, we devise a Multimodal
Selection Gating Network, which ultimately out-
puts a one-hot B-dimensional vector to guide the
choice of the expert network.

Specifically, we concat the text token embed-
ding and the 4096-dimensional visual feature ex-
tract by VGG to obtain f,,, = concat(fm,, fm.,)
and f. = concat(f.,, f.,) as the original input of
the two identical MLPs. As is showen in Figure
2, each MLP network has two-layers with each
layer consisting of an FC layer, a LeakyRelu layer,
and a Dropout layer. After obtaining h. and h,,
by two MLPs, an expansion operation and a con-
catenation operation are performed before entering
the final MLP, which consists of a FC layer and
a RELU layer. This final MLP ultimately outputs
a B-dimensional categorical vector 7 € RE, a
continuous distribution vector for modal selection.
Since we want to generate a discrete decision, this
selection process, however, is not directly micro-
scopic. To solve this issue, we introduce the Cate-
gorical Reparameterization with Gumbel-Softmax
technique (Jang et al., 2016) (Xue and Marculescu,
2023) for training. Specifically, we firstly apply
the Gumbel-Max trick, which samples a series of
interpolated noises, g1, ..., g5, from Gumbel (0, 1)
to enhance the robustness of the model, and with
the following formula to draw samples z from a
categorical distribution with class probabilities 7,

z = Onehot(arg max [g; + log m;]) (15)
7
[21, . ..2p] obtained by this formulation should be
used for modal selection, however, because of the
discrete non-fracturable problem, we use the soft-
max function as the continuous differentiable ap-
proximation of an argmax during the training pro-
cess and generate a B-dimensional continuous vec-
tor Z which can be computed in back-propagation,

exp(log(mi) +gi)/T
Zle exp(log(m;) + g5)/T

i=1,....B

P =

(16)
7 denotes the temperature of the softmax, when 7
is closer to 0, Gumbel-softmax approximates to the
discrete distribution, while as 7 increases, Gumbel-
softmax is closer to the uniform distribution. We
use z in the back-propagation process of training
and z in the forward-propagation process and in-
ference process. Since Yz ~ /z, we can not only
achieve modal selection during inference, but also
update the model during training with this method.

3.4 Optimization and Training Strategy

Due to the potential issue that early-stage training
optimization of our modality selection gating net-
work could lead to some expert networks being
less likely chosen, we adopt a two-stage training
strategy. This strategy, along with the test stage,
will be detailed as follows.

Expert Network Training Stage: In this stage,
B expert networks are trained independently using
the dataset to make them reach their optimal per-
formance. After obtaining the similarity scores, a
contrastive training loss function is applied to each
batch, which aims to bring positive mention-entity
pairs closer and distance negative pairs,

exp(S(m,e))
>_iexp(S(m, €))

S(-) indicates the used score function, e and € re-
spectively denotes the positive and negative entities
in current batch.

Gating Selector Learning and Expert Net-
work Fine-Tuning Stage: In this stage, we freeze
the feature encoding module with relatively high
parameter cost, which have been trained in the first
stage, only fine-tune the similarity computation
module. In addition, the selection gating network
is integrated into the optimization process, for each
mention-entity pair, the one-hot selection vector z
obtained from the gating network is used to deter-
mine the score function to be utilized,

L(5(:)) = —log (17)

S=la,....z8] [S1,....86]"  (18)

S; indicates the score function of Expert Network
1, then we apply Equation 17 to derive final loss L.
Testing Stage: During the testing stage, we use
z to select one of the branches to compute the final
score S. The entity with the highest score is then
chosen as the final selection for the mention.

4 Experiment

4.1 Experimental Setup

Datasets: We validate the effectiveness of our pro-
posed method on three datasets: RichpediaMEL
and WikiMEL which were proposed by Wang et al.
(2022a), and WikiDiverse which is proposed by
Wang et al. (2022b) The statistical data, and the di-
vision methods for the three datasets are presented
in Appendix A.1.

Baselines: We compare our method against two
categories of models: (1) Entity Linking based



‘ Dataset ‘ RichpediaMEL ‘ WikiMEL ‘ WikiDiverse

Method | Metric | He1t H@3t H@S5? MR| |H@I? H@3? H@S5! MR| |H@I? H@3t H@S51 MR|
Pre(T) BERT (Devlinetal.,2019) | 59.55 81.12 87.16 278.08 | 74.82 86.79 9047 5123 | 5577 7573 83.11 373.96
Pre(V+T) | CLIP (Radford etal.,2021) | 67.78 8522 90.04 107.16 | 83.23  92.1 9451 17.6 | 61.21 79.63 85.18 313.35
Pre(V+T) ALBEF (Li et al., 2021) 65.17 82.84 8828 122.3 | 78.64 88.93 9175 4795 | 60.59 7559 813 291.17
EL(T) BLINK (Wu et al., 2020) 58.47 8151 88.09 178.57 | 74.66 86.63 90.57 51.48 | 57.14 78.04 8532 332.03
MEL(V+T) | DZMNED (Moon et al., 2018) | 68.16  82.94 87.33 313.85 | 78.82 90.02 92.62 15258 | 569 7534 8141 563.26
MEL(V+T) | JMEL (Adjali et al., 2020) | 48.82 66.77 73.99 4709 | 64.65 79.99 8434 285.14 | 3738 5423 61  996.63
MEL(V+T) | GHMFC (Wang et al., 2022a) | 72.92 86.85 90.6 214.64 | 76,55 884 9201 5475 | 6027 79.4  84.74 628.87
MEL(V+T) | MIMIC (Luo et al., 2023) 81.02 91.77 9438 55.11 | 87.98 9507 9637 11.02 | 63.51 81.04 8643 227.08
ours* | DSMIP | 8503 9289 9497 2124 | 8897 957 96.86 10.37 | 6246 80.6  86.92  222.9

Table 1: Performance comparison of different methods on three MEL datasets.(T: using textual modality, V: using
visual modality, Pre: pre-training model, EL: entity linking method, MEL: multi-modal entity liking method).

Methods: This includes EL methods that utilize
solely text information, such as BLINK, and MEL
methods DZMNED, JIMEL, GHMFC, and MIMIC.
(2) Pre-trained Model based Methods: This encom-
passes models that are purely text-based pretrained,
such as BERT, as well as V-L pretrained models
including CLIP and ALBEF. A detailed description
of the baselines is provided in Appendix A.2.
Metrics: We evaluate above methods using
H@k and MR. The specific computation for each
metric is provided in Appendix A.3. H@k denotes
the hit rate of the ground-truth entity within the
top-k ranked entities. MR represents the average
rank of the ground-truth entity across all entities.
Implementation Details: Our proposed method
is implemented using the PyTorch framework and
trained on NVIDIA GeForce GTX4090 GPU, set-
ting up Ubuntu 16.04 operating system and has an
Intel(R) Xeon(R) Gold 6226R CPU. We find the
optimal hyperparameter through grid search. The
maximum length for text inputs is set to 77. The
dimensions for the text and visual hidden layers,
as well as the projection space, are set to 512, 768,
and 512, respectively. The prompt length is set to
2, with a prompt depth update of 9. The gated net-
work’s hidden layer dimension is set to 512, with a
softmax temperature of 0.1. Training is conducted
using the Adam optimizer with a fixed number of
epochs set at 20, a batch size of 128, and a learn-
ing rate of 5e~*. We deploy three expert networks
with B = 3 on WikiMEL. Due to the underper-
formance of the visual expert network, we utilize
only the text and multimodal expert networks on
RichpediaMEL and WikiDiverse with B = 2.

4.2 Main Experimental Results

Our comparative experiment is conducted to evalu-
ate the effectiveness of our model. Table 1 presents
the results of all models in terms of H@1, H@3,

H@5, and MR metrics, where a higher value sig-
nifies better performance for all metrics except for
MR.

Firstly, the pre-trained model based methods out-
perform most specialized MEL approaches, and
those employing large-scale pretraining models for
feature extraction, such as GHMFC and MIMIC,
also surpass the others, fully demonstrating the effi-
cacy of large-scale pretrained models in MEL tasks.
Notably, CLIP performs exceptionally well, which
substantiates our selection of CLIP as the origi-
nal pretrained encoder for feature extraction. Sur-
prisingly, text-based approaches achieve favorable
results on these datasets, surpassing several MEL
methods across numerous metrics, inadvertently
reflects the fact that incorporating visual informa-
tion can sometimes contribute noise and in some
cases even negatively impact the performance. Ul-
timately, the experimental results confirm that our
DSMIP achieves state-of-the-art performance. On
RichpediaMEL and WikiMEL, DSMIP surpasses
all baseline methods in every metric, with the most
notable gains in Hit@ 1—the most demanding met-
ric. While our method lags slightly behind MIMIC
on some metrics on WikiDiverse, it achieves better
performance in low-resource settings, which are
more reflective of real-world scenarios, as will be
discussed in Section 4.3.

4.3 Low Resource Experiment

In this subsection, we evaluate our model in low-
resource settings, which is crucial for real-world ap-
plication scenarios where data labeling is resource-
intensive. We maintain the validation and test sets
unchanged and use only 10% of training data.
Figure 3 and 4 illustrate the performance of multi-
modal methods in these settings and their relative
decline from high-resource setting, respectively.
Most methods show a significant decline in per-
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Figure 4: Performance Decline in Low vs. High Re-
source Settings.

formance with fewer training resources. However,
large-scale pre-trained V-L models like CLIP and
ALBEEF show less degradation, especially on Rich-
pediaMEL, proving that abundant knowledge and
language comprehension can be gained from large-
scale pretraining, where even a limited amount of
target task data can effectively guide model fine-
tuning for MEL. However, their overall efficacy is
still limited. Notably, our approach slightly trails
MIMIC on WikiDiverse in high-resource setting,
mainly due to its effective inter-modal and intra-
modal interaction. However, we surpasses it in
low-resource settings and achieves the least per-
formance decline on this dataset. In summary,
our method outperforms all baseline methods and
achieves a small performance decline, fully demon-
strating DPMIS’s adaptability and superiority in
low-resource scenarios.

4.4 Ablation Experiments

To investigate the effectiveness of our proposed
Prompt-based Multimodal Interaction Encoding
Module and the impact of the three expert networks,
we conducted ablation studies on the WikiMEL,
with the results shown in Table 2.

Firstly, it was observed that all single expert net-
works exhibited a performance gap compared to
the complete model, validating our modality se-
lection network. The multimodal network saw the
least drop, with a 3% decrease in Hit@ 1. For the
single modality expert networks, the Text Expert
Network did not show much decline, but the Visual
Expert Network underperformed significantly, indi-
cating the potential for visual noise to misguide the

Model H@lt H@3T H@57

DSMIP 88.97 957  96.86

w/ Expertiext 65.31 7935 84.13

w/ Expertimage 31.51 3757 40.64

w/ Expert puitimodal 86.26 94 95.85
w/o Interactive Prompt  78.6 88.93 9197

Table 2: Ablation studies on WikiMEL.

Trainable params (M)

w/ CLIP encoder 153
w/ Interacticve prompt encoder 7.6

Table 3: Trainable parameters Comparison: Multimodal
Expert Network across two encoder configurations.

model. Further experiment with a non-interactive
CLIP model, in place of interactive prompts, led
to a notable drop in performance, affirming the
utility of prompts and the coupling function for
modality integration, thus justifying our adoption
of prompt-based learning.

4.5 Computational Cost Analysis

To validate the computational savings of our
prompt interactive expert network, we evaluated
the number of trainable parameters of the multi-
modal expert network in two manners: (a) fine-
tuning the CLIP pre-trained encoder and (b) using
the interactive prompt learning encoder proposed
in this study.

As shown in Table 3, it is evident that our prompt
learning encoder reduces trainable parameters from
153M to 7.6M. This reduction confirms the mod-
ule’s effectiveness in facilitating modal interactions
with substantial computational savings.

5 Conclusion

In this paper, we propose a novel DSMIP for Mul-
timodal Entity Linking. Our method designs three
expert networks for different subsets of modalities,
and devises a gating network that generates a one-
hot vector to select the optimal Expert Network
for each modality-entity pair, thereby overcoming
the mention ambiguity and modality-induced noise.
Moreover, we update multimodal prompts to ex-
tract features of mentions and entities within the
multimodal expert networks and establish a cou-
pling function to enable interaction between the
modalities, thereby reducing modality heterogene-
ity and saving the training overhead. Experimental
results demonstrate that our model outperforms
other state-of-the-art methods.



6 Limitations

The limitations of our method are as follows:

* Our proposed modality selection network uses
the same expert network for both the mention and
entity within a sample pair. While this approach
can choose the most suitable modality for the
current sample pair, it does not consider cross-
modality interactions between the mention and
entity during the selection process, potentially
leading to the loss of some cross-modal informa-
tion. Thus, designing a cross-modal interaction
expert network for mention-entity pairs, allowing
the different choice, is an important direction for
our improvement.

* Our method compute contrastive training loss
by comparing mentions with all entities in the
knowledge base, a process that can be time-
consuming. However, previous studies employ-
ing a pre-selection of candidate entities before
ranking have been less time-intensive but less
effective. Balancing the two and finding a more
efficient method for candidate entity selection
remains an area for further exploration.
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A Appendix
A.1 Datasets Details

The introductions for the three datasets are as fol-
lows:

(1) RichpediaMEL (Wang et al., 2022a): It pos-
sessing more than 17,000 multimodal samples. The
entities were gathered from Richpedia and corre-
sponding multimodal information retrieved from
Wikipedia.

(2) WikiMEL (Wang et al., 2022a): This dataset
comprises over 22,000 multimodal samples, con-
structed by collecting entities from Wikidata and
subsequently extracting textual and visual descrip-
tions for each entity from Wikipedia.

(3) WikiDiverse (Wang et al., 2022b): It con-
tains over 8,000 diverse context topics and entity
types sourced from Wikinews, using Wikipedia,
which hosts more than 16 million entities, as the
corresponding knowledge base.

Table 4 presents detailed data statistics for the
three datasets, and Table 5 shows the partition-
ing of the datasets. Here, we utilize the original
splits for the three datasets. For RichpediaMEL
and WikiMEL, we allocate the (train, valid, test)
split as (70%, 10%, 20%), while for WikiDiverse,
the division is set at (80%, 10%, 10%).

A.2 Baselines Details

The baseline methods employed in the experimen-
tal section are described as follows:

(1) BERT (Devlin et al., 2019): A foundational
model in natural language processing that employs
a series of Transformer encoders. It leverages ex-
tensive pre-training over a large textual corpus and
demonstrates proficiency across diverse language
understanding tasks.

(2) CLIP (Radford et al., 2021): A large pre-
trained approach that learns visual concepts from
textual annotations and trained on a wide variety of
image-text pairs. It is proficient in recognizing and
classifying images based on textual descriptions,
even with limited training examples.

(3) ALBEF (Li et al., 2021): An advanced pre-
trained visual-language technique that align the
visual and textual modalities by contrastive loss
before fuse them via a multimodal Transformer en-
coder. It also incorporates momentum distillation
to enhance robustness against noisy datasets.

(4) BLINK (Wu et al., 2020): A two-stage zero-
shot linking algorithm where entities are defined
solely by brief textual descriptions. The first stage
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Dataset Mentions  Samples Img. of Entites Img 0 f
Mentions Entities

RichpediaMEL 17805 17724 15853 160935 86769
WikiMEL 25846 22070 22136 109976 67195
WikiDiverse 15093 7405 6697 132460 67309

Table 4: Summary statistics for the datasets.

Dataset Mentions  Entity
RichpediaMEL-train 12463
RichpediaMEL-valid 1780 160935
RichpediaMEL-test 3562

WikiMEL-train 18092

WikiMEL-valid 2585 109976

WikiMEL-test 2078
WikiDiverse-train 11351
WikiDiverse-valid 1664 132460
WikiDiverse-test 2078

Table 5: Data Division for Three Datasets.

involves retrieval candidates in a dense space de-
fined by a bi-encoder and the second stage re-
ranked them using a cross-encoder.

(5) DZMNED (Moon et al., 2018): A deep zero-
shot multimodal network which is the first MEL
method. It extracts context from text and images
and predicts the correct entity in a knowledge graph
embedding space, enabling zero-shot disambigua-
tion of entities not seen in the training set.

(6) IMEL (Adjali et al., 2020): A MEL method
designed for tweets that trains a dual-branch feed
forward neural network to minimize a triplet loss
that defines an implicit joint feature space, and
projects each modality into this space via its re-
spective branches.

(7) GHMFC (Wang et al., 2022a): A method that
incorporates a transformer to explore fine-grained
cross-modal relationships for MEL task, learning
meaningful multimodal mention representations
through gated fusion and contrastive training.

(8) MIMIC (Luo et al., 2023): A advanced
approach that proposes a multi-granularity mul-
timodal interaction network, establishing three in-
teraction units to comprehensively explore intra-
modal interactions and inter-modal fusion between
entity and mention features.

A.3 Metrics Details

The calculation formula of the metrics is defined
as follows:



(1) Hek
1 .

HQk = szv I(rank(i) <k)  (19)
where N denotes the total number of samples, and
I is an indicator function. [ is set to 1 when the
acceptance condition is met, and O otherwise.

(2) MR

MR = %zf rank(i) (20)
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