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Abstract

We propose a referenceless evaluation method001
for machine translation (MT) models by assess-002
ing their performance in translate-train scenar-003
ios across a variety of natural language pro-004
cessing (NLP) tasks. We compare four promi-005
nent MT tools by using them to translate tasks006
from Romanian into English and investigate007
their impact on text summarization, sentiment008
analysis, and authorship identification. Our009
findings demonstrate that while translation sig-010
nificantly boosts performance in summariza-011
tion and sentiment analysis, it adversely affects012
the identification of authorship in poetry. In013
response to the observed performance dispari-014
ties among MT models, we have developed a015
ranking system that aligns closely with human016
preferences. This system avoids reliance on017
professional ground-truth translations, which018
are typically required by traditional MT eval-019
uation metrics like BLEU but can be biased020
by the quality of the reference and the trans-021
lator’s proficiency. Our approach provides a022
more authentic measure of MT quality, reflect-023
ing more accurately how these models perform024
in practical applications.025

1 Introduction026

Reliable evaluation of machine translation (MT)027

methods is a well researched topic of the past years,028

but challenges such as noise introduced by source029

and reference text quality or by human translators030

preferences, expensive acquisition of human trans-031

lation references, and scarcity of varied enough032

evaluation datasets are yet to be overcomed.033

The overwhelming majority of evaluation algo-034

rithms used for MT are based on ground-truth ref-035

erences, as noted by Lee et al. (2023), to either036

compute a similarity metric between the MT out-037

put and the reference or some kind of quality or038

ranking measure which after aggregated at dataset039

level can be used to compare the performance of040

different models.041

As the main use case of evaluation metrics is to 042

provide an insight for researchers about which MT 043

model can be considered better at the system level 044

rather than on individual translation instances, this 045

creates the incentive for evaluation methods which 046

do not require human-made translation references. 047

This paper explores the idea of ranking machine 048

translation models from a source to a target lan- 049

guage using generic mono-lingual NLP datasets by 050

quantifying the performance impact on solving cer- 051

tain NLP tasks after translating the datasets into the 052

target language. We apply our setting on the Ro- 053

manian (source) to English (target) language pair 054

as it was not studied comprehensively in translate- 055

train settings and because Romanian is a relatively 056

low-resource language. 057

The main contributions of the paper are: 058

• We study the translate-train technique on the 059

language pair of Romanian to English, as it 060

was never studied before, with three NLP 061

tasks: sentiment analysis, text summarization, 062

and authorship detection in poetry and discuss 063

which use cases could benefit from a perfor- 064

mance improvement and which could not; 065

• We propose an evaluation method for ma- 066

chine translation models which does not rely 067

on ground-truth references and only needs 068

generic NLP datasets in the source language; 069

• We report the results and their correlation with 070

human judgement of our evaluation method 071

on four popular translators: ChatGPT 3.5 072

Turbo, DeepL, Google Translate, and Mis- 073

tralx7B Instruct v0.2. 074

Structure of the paper. The paper is organized 075

as follows: in Section 2 we describe the required 076

theoretical elements to properly understand and 077

contextualize the paper, in Section 3 we present 078

other referenceless evaluation methods, in Section 079
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4 we propose our novel method for MT reference080

evaluation evaluation, in Section 5 we describe the081

experimental setup and results of our method on082

multiple datasets, in Section 6 we discuss the ob-083

tained results and their relation with human judge-084

ment, and finally Sections 7 and 8 present the limi-085

tations and main takeaways of the paper.086

2 Background087

In this section we describe a few theoretical notions088

with which the reader should be familiar with for089

an easier understanding of the work.090

Human evaluation of machine translation is a091

wide topic consisting of a multitude of methodolo-092

gies for assessing the quality of the output of MT093

systems in a measurable and systematic way. The094

study of Freitag et al. (2021) highlights the most095

common approaches found among methodologies:096

annotators providing scores on a discrete or contin-097

uous scale at segment or document level for various098

qualities of the test, identifying or rating mistakes099

and errors of multiple kinds from syntax, punc-100

tuation or wording, or less popular ones that use101

gap-filling or reading comprehension to evaluate102

the quality. The authors also note that many scale-103

based methodologies suffer from high variability104

induced by annotator’s subjectivity.105

Reference-based MT evaluation refers to the106

requirement of a ground-truth translation, usually107

crafted by a professional human translator, in or-108

der to provide an evaluation metric for a given109

MT system. We observe that the large majority110

of the metrics mentioned by Lee et al. (2023) are111

referenced-based.112

Quality Estimation (QE) as a metric is a con-113

cept introduced at WMT19, as described by Fon-114

seca et al. (2019), which puts forward the idea of115

using referenceless evaluation techniques for MT116

systems as inspired by QE approaches which his-117

torically revolved around estimating how good a118

given text is according to linguistic criteria.119

Translate-train is a popular technique used to120

boost the performance of machine learning models121

on NLP tasks where models trained on the lan-122

guage at hand suffer from data scarcity. Works of123

Jundi and Lapesa (2022), Artetxe et al. (2023) or124

Jundi and Lapesa (2022) explore the advantages125

and scalability of this technique on various lan-126

guage pairs. When using translate-train, we usually127

have a source language which is low-resource and128

a target language which is high-resource and we129

translate the dataset at hand from the source to 130

target language. Afterwards, we find-tune a mono- 131

lingual or multi-lingual model to solve our desired 132

NLP task. Other works such as the one presented 133

by Yang et al. (2024) use translate-train in a knowl- 134

edge distillation setting to train dual language en- 135

coders from mono-lingual language encoders. 136

3 Related work 137

Shortcomings of automated metrics are well- 138

researched in the literature and serve as a cen- 139

tral argument for metrics which are not solely 140

based on similarity between outputs and references. 141

WMT22 results published by Freitag et al. (2020) 142

observe a low correlation between automatic met- 143

rics and human evaluation on three language pairs 144

with varied structure. They highlight that neural- 145

based evaluations such as COMET introduced by 146

Rei et al. (2020) are superior to classical match- 147

based evaluation. Both Mathur et al. (2020) and 148

Reiter (2018) find an unstable behaviour of match- 149

based metrics similar to BLEU in evaluating high- 150

quality MT models and they are unreliable for com- 151

paring performance in pairwise settings. As noted 152

by Kocmi et al. (2021), the use of inappropriate 153

metrics held back the development of better trans- 154

lation systems for the past years. 155

Impact of reference quality on the correlation 156

between automatic metrics and human judgement 157

is studied by Zouhar and Bojar (2024) by acquiring 158

four groups of translators with varying language 159

expertise (identified by R1 to R4 with increasing 160

expertise) and measuring how the scores of var- 161

ious metrics change across references created by 162

groups. The surprising finding is that the best corre- 163

lation with human judgement is found at the group 164

R3 which is not the highest expertise group. This 165

is against the common understanding that higher 166

quality reference serve a better correlation with 167

evaluation metrics. They also outline that a larger 168

number of references outweighs the advantage of 169

having few but very high quality references. 170

YiSi-2 with Bilingual Mappings, presented by 171

Lo and Larkin (2020), is a referenceless evaluation 172

metric that leverages bilingual mappings of massive 173

multilingual language models. YiSi-2 evaluates 174

MT quality by computing cross-lingual semantic 175

similarity using pretrained multilingual models like 176

BERT (Devlin et al., 2019) and XLM-RoBERTa 177

(Conneau et al., 2020). They found that project- 178

ing source embeddings into the target embedding 179
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space using cross-lingual linear projection signif-180

icantly improved correlation with human assess-181

ments. This approach addresses the language clus-182

tering effect observed in multilingual embeddings,183

thereby enhancing the metric’s accuracy in evaluat-184

ing translation quality across different languages.185

Target-Side Language Model, proposed by186

Zhang et al. (2022), is a metric based on a target-187

side language model for reference-free MT evalu-188

ation. It evaluates translations by calculating sen-189

tence perplexity using a multilingual model like190

XLM-R. Their experiments on WMT19 datasets191

demonstrated that this approach is highly competi-192

tive, achieving strong correlations with human judg-193

ments at both segment and system levels. By focus-194

ing solely on target language fluency, this method195

simplifies the evaluation process and reduces de-196

pendency on source language complexities.197

Implicit Cross-Lingual Word Embedding198

Alignment, introduced by Zhang et al. (2023), is199

a method that implicitly aligns cross-lingual word200

embeddings through multilingual knowledge dis-201

tillation. This technique aligns sentence embed-202

dings of parallel texts, resulting in better cross-203

lingual word embedding alignment. They incor-204

porate this alignment into BERTScore and Word205

Mover’s Distance metrics, achieving competitive206

results in reference-free MT evaluations. This ap-207

proach highlights the effectiveness of using sophis-208

ticated embedding alignments to capture semantic209

equivalence between source and target texts with-210

out direct references.211

COMET-QE developed by Rei et al. (2020),212

is a neural framework for reference-free MT eval-213

uation. COMET-QE encodes segment-level rep-214

resentations of both source and translated texts215

and feeds them into a regressor to predict qual-216

ity scores. This model benefits from fine-tuning217

on human-annotated quality estimation datasets,218

allowing it to learn nuanced quality signals that219

correlate well with human evaluations. This neural220

approach leverages advances in deep learning to221

provide robust and scalable quality estimation.222

4 Proposed referenceless evaluation223

We propose an evaluation method which is able224

to compare the performance of different MT mod-225

els by measuring their impact on the performance226

of transformer-based language models on super-227

vised NLP tasks after applying the translate-train228

approach.229

The proposed method aims to remove the vari- 230

ability of results induced by the quality of refer- 231

ences and reduce the cost of data acquisition nec- 232

essary for comprehensive evaluation, while still 233

maintaining a good correlation with human judge- 234

ment. 235

Let’s consider a fixed language pair (source → 236

target) and a list of n machine translation models, 237

each denoted with Ti, i ∈ 1, n, which should be 238

compared against each other. 239

Instead of the usual translation pair dataset with 240

texts in the source language and reference transla- 241

tions in the target language, we select m datasets 242

in the source language, denoted with Ds
i , i ∈ 1,m, 243

which have supervised NLP tasks associated with 244

them, such as any kind of text classification, sum- 245

marization etc. For each NLP task, a bounded eval- 246

uation function such as ROUGE or F1-score should 247

be available for measuring performance. For sim- 248

plicity’s sake, let’s consider only one NLP task 249

per dataset and denote the evaluation function as- 250

sociated with it fi(y, ŷ), where y is a vector of 251

ground-truth instances and ŷ is a vector of predic- 252

tions. For a simpler notation, we consider that the 253

score associated with a given model M on a given 254

dataset Ds
i to be fDs

i
(M) = fi(M). 255

For each pair of datasets and MT models, we 256

compute its translated version to the target lan- 257

guage. Shortly, for the pair (Ds
i , Tj) we have the 258

translated dataset Dt
ij = Tj(Ds

i ). 259

For each dataset, we select a pair of pre-trained 260

transformed-based language models, one for the 261

source language and one for the target language. 262

It’s preferred that the two models share the same 263

architecture and number of parameters and differ 264

only with respect to the weights. Thus, the per- 265

formance variation induced by the architecture is 266

minimized. We denote this pair of models with 267

(Ms
i ,Mt

ij) for a given Ds
i dataset and correspond- 268

ing translated version Dt
ij = Tj(Ds

i ). 269

Now, consider the proposed evaluation proce- 270

dure for the MT models: 271

1. For each dataset Ds
i , prepare a split suitable 272

for training and evaluating the performance of 273

a given model, such as a classic train/test split 274

or a k-fold split; 275

2. Train and evaluate all source language trans- 276

formers Ms
i on their associated datasets and 277

tasks; 278

3. Train and evaluate all target language trans- 279
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formers Mt
ij on all their translated datasets,280

namely the translate-train technique for each281

pair of datasets and MT models;282

4. For each dataset Ds
i and available translator283

Tj , compute performance difference between284

the baseline transformer model in the source285

language and each model in the target lan-286

guage:287

∆(Ds
i , Tj) = fi(Ms

i )− fi(Mt
ij); (1)288

5. For each fixed MT model Tj , sum the differ-289

ences between the baseline and translate-train290

performance across all datasets, and compute291

its final score:292

S(Tj) = Σi ∆(Ds
i , Tj). (2)293

The performance differences described by Equa-294

tion 1 represent the impact of the MT system out-295

put’s quality on the NLP task and may be used296

to rank translators in a specific domain capabil-297

ity. Summing all the performance differences as298

described by Equation 2 should provide an accu-299

rate relative-ranking score for MT systems which300

should benefit from using more datasets.301

5 Translate-train on Romanian to English302

In this section we dive deep into the technical as-303

pects of the translate-train technique as a part of304

the proposed referenceless evaluation method. We305

describe the three Romanian datasets used and their306

associated NLP tasks and evaluation metrics. We307

also discuss the usage of the four MT models used:308

ChatGPT3.5 Turbo 1, DeepL 2, Google Translate309
3 and Mistralx7B Instruct v0.2 (Jiang et al., 2023)310

and, the training and evaluation setup of each exper-311

iment, and finally the results and their implications.312

The entire code base for the training setup will be313

made available as a supplement to the paper.314

5.1 Datasets315

Selection criteria. We reviewed available Roma-316

nian datasets associated with a plethora of different317

NLP tasks such as sentiment analysis, text summa-318

rization, fake news detection, dialect identification,319

named entity recognition, and others. The selec-320

tion was based on the two main criteria: the dataset321

1https://openai.com/index/chatgpt/
2https://www.deepl.com/translator
3https://cloud.google.com/translate

should have an associated NLP task solvable after 322

translating to English, and the dataset should have 323

more than ten thousands samples. Due to the first 324

criterion, datasets with tasks such as named entity 325

recognition were not selected, because mapping 326

the labels from Romanian to English is non-trivial. 327

We ended up by selecting three datasets described 328

in the following paragraphs. 329

RoSent (Dumitrescu et al., 2020) is a movie and 330

product reviews dataset with 28,000 samples, col- 331

lected from unspecified web sources, which was 332

manually annotated with positive or negative labels 333

regarding the sentiment it communicates. Unfortu- 334

nately, there is no information available about the 335

data acquisition and labeling procedure provided by 336

the authors. A stratified by label random subsample 337

of 4,000 instances was selected for experiments. 338

RoTextSummarization (Niculescu et al., 2022) 339

is a dataset consisting of new articles scraped from 340

the Romanian news websites in the period of 2020 341

to 2022. The dataset contains around 72,000 ar- 342

ticles alongside their summaries. A subsample 343

stratified by the genre of each article was selected 344

consisting of 8,000 instances. 345

Rupert 4 is Romanian poetry dataset with liter- 346

ary works of classic to contemporary authors with 347

over 17,000 samples. The corpus contains over 500 348

authors, some of which have only one poem in the 349

dataset, thus we decided to keep only the first 25 350

authors with respect to the number of poems they 351

written. As the dataset is small and texts usually 352

short, we selected a larger subsample percentage- 353

wise of 5,000 instances stratified by each text’s 354

author. 355

Subsampling. To accommodate for our limited 356

computational budget, we decided that for each 357

dataset a random subsample of roughly 10 to 30% 358

of the data, stratified where classes are present. 359

Another cost taken into account was the cost of 360

translation when using private translation models 361

as they are quite expensive. 362

5.2 Tasks and metrics 363

Sentiment analysis was the associated task of 364

RoSent. For each instance, we should predict the 365

perceived positive or negative sentiment by a sup- 366

posed reader. There was no class imbalance and 367

we decided to choose F1-Macro score as our evalu- 368

ation metric. 369

4The Rupert dataset is available at https://huggingface.
co/datasets/littlewho/Rupert.

4

https://openai.com/index/chatgpt/
https://www.deepl.com/translator
https://cloud.google.com/translate
https://huggingface.co/datasets/littlewho/Rupert
https://huggingface.co/datasets/littlewho/Rupert


Text summarization was the associated task of370

RoTextSummarization dataset and requires gener-371

ating a text sample as close as possible to the refer-372

ence summary of an article. The evaluation metric373

was chosen to be the popular ROUGE-L metric as374

it is widely used by summarization studies.375

Authorship identification was selected as the376

associated NLP task for Rupert. This can be con-377

sidered a classic text classification problem, but378

where stylistic features of the text at hand matter379

more than in usual scenarios. We also chose the380

F1-Macro score as the evaluation metric of this381

task.382

5.3 Machine translation models383

DeepL and Google Translate are one of the most384

used MT models on the market and they are spe-385

cialized to provide high quality translations on a386

large number of language pairs. Both models were387

used via their API to translate the selected dataset388

subsamples at a cost of 20 euros, for each 500,000389

characters. Each text was translated individually,390

not concatenated into a batch.391

ChatGPT3.5 Turbo introduced by OpenAI and392

Mistralx7B Instruct v0.2 introduced by Jiang et al.393

(2023) are both LLMs which can be successfully394

used in translation with decent results as noted by395

Kocmi et al. (2023). ChatGPT3.5 Turbo was in-396

structed via a simple zero-shot prompt: Translate397

from Romanian to English: <source text> and it398

was entirely compliant and shown no significant399

hallucinations. On the other hand, due to compu-400

tational constraints, Mistralx7B Instruct v0.2 was401

ran in a 16-bit quantized mode and required a few402

sentences of pre-programming to reduce halluci-403

nations and non-conforming output formats: You404

are a helpful professional translator. You will be405

prompted with texts to translate. You will respond406

only with the translation. You will receive prompts407

with the format: "Translate from Romanian to En-408

glish: [Romanian text]". You will respond with:409

"Translation: [English text]. Translate from Ro-410

manian to English: <source text>. Using the411

engineered prompt we obtained only 0.5% non-412

conforming outputs with hallucinations. We did413

not quantify textual hallucinations that did conform414

with the output format.415

5.4 Transformer models416

BERT was used for the two classification tasks417

of sentiment analysis and authorship identification418

in two variants, the Base Cased BERT introduced419

by Devlin et al. (2019), with English pre-training 420

on a corpus of around 60 GiB , and the Romanian 421

Cased BERT, which is a fine-tuned version of the 422

base with additional pre-training on a Romanian 423

language corpus of around 15 GiB by (Dumitrescu 424

et al., 2020). The selected model has 110 million 425

trainable parameters. 426

BART was used for the text summarization task, 427

because it is a sequence-to-sequence model out-of- 428

the-box. We used the base variant introduced by 429

Lewis et al. (2020) which was pre-trained ona 160 430

GiB corpus, and a public Romanian variant 5 which 431

was pre-trained from scratch on a 50 GiB Roma- 432

nian corpus. Both models used have 140 million 433

trainable parameters and a maximum output size 434

of 1024 tokens. 435

The multilingual variant of BERT was also 436

used to provide an additional interesting baseline 437

for our experiments. Unfortunately, we did not 438

find a multi-lingual variant of BART, so we pro- 439

ceeded with the Flan-T5-Small model which was 440

developed by Chung et al. (2022). 441

5.5 Training setup 442

Training data for each NLP task was split into 5 443

folds and each training experiment was performed 444

in a leave-one-out manner. Take note that the same 445

folds were used in both the Romanian-only training 446

and in the translate-train setting with the texts trans- 447

lated to English, so the results could be compared. 448

The texts in the training data were tokenized and 449

trimmed to a number of tokens which represents 450

the 95th length percentile across the entire dataset 451

to reduce the computational resources needed to 452

perform the experiments. In general, the 95th per- 453

centile trimming guaranteed a reduction of dataset 454

size of almost 50%. 455

We used the suitable transformer model for each 456

task as described above and fine-tuned it for 10 457

epochs with all layers not frozen. We made sure 458

that the number of epochs is enough for the re- 459

ported loss to converge for all experiments. We 460

used the Huggingface framework to perform train- 461

ing with its default parameters, which in our case 462

came in the form of AdamW optimizer with a learn- 463

ing rate of 5 · 10−5, β1 = 0.9, β2 = 0.999, and 464

no weight decay. The batch sizes were 8 for the 465

RoTextSummarization dataset, 16 for the Rupert 466

dataset, and 32 for the RoSent dataset. The batch 467

5The Romanian BART model can be found at the
following address https://huggingface.co/Iulian277/
ro-bart-1024.
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RoSent RoTextSummarization Rupert
f1-macro baseline diff rouge-l baseline diff f1-macro baseline diff

Translate-Train with English results
ChatGPT3.5 92.33±00.69 +01.08 30.33±00.60 +06.07 65.28±01.71 -05.78
GTranslate 91.82±00.49 +00.57 30.32±00.27 +06.06 64.88±01.98 -06.18

DeepL 92.35±00.98 +01.11 29.23±00.51 +04.97 63.66±03.00 -07.40
Mistralx7B 90.34±00.49 -00.91 28.08±00.64 +03.82 58.17±01.28 -12.89

Romanian results
Romanian 91.24±00.30 - 24.26±00.43 - 71.06±01.19 -

Multilingual 87.61±00.81 -03.63 24.33±00.26 +00.07 62.32±01.67 -08.74

Table 1: Training and evaluation results of baseline and translate-train experiments for each dataset in combination
with each Machine Translation model. Scores are in range [0, 100] and represent the average over a 5-fold cross-
validation run for each result having their standard deviations also reported.

sizes were selected such that the available VRAM468

is entirely used.469

All training and evaluation was performed in470

single-GPU setups on NVIDIA GeForce RTX 4090471

GPUs consisting of about 150 hours of total com-472

pute time for all the experiments.473

5.6 Results474

In Table 1 we report the results of the experiments475

on all datasets with Romanian, multilingual, and476

English transformers paired with each translator.477

The baseline diff column contains the results as478

described by Equation 1 in our proposed evaluation479

procedure for the MT models. In the following480

paragraphs, we discuss the main takeaways.481

Performance boost on basic tasks. We observe482

that the translate-train approach improved the re-483

sults in 3 out of 4 cases for the sentiment analysis484

task on RoSent, and in all cases for the text sum-485

marization task on RoTextSummarization. We ac-486

knowledge that results on the summarization task487

may be overly optimistic because we translated488

also the ground-truth summaries, and due to the489

behaviour of ROUGE-L metric on the Engish lan-490

guage.491

The findings are consistent with investigations492

on other languages such as those presented by Jundi493

and Lapesa (2022), who performed experiments on494

14 languages: Arabic, Bulgarian, German, Greek,495

Spanish, French, Hindi, Russian, Swahili, Thai,496

Turkish, Urdu, Vietnamese, and Chinese. We con-497

clude that Romanian NLP tasks could benefit of per-498

formance improvements on tasks which do not re-499

quire complex textual competency, a finding which500

was confider on other languages by (Artetxe et al.,501

2023).502

Performance degradation on poetry. No trans-503

lator was able to improve the performance of au-504

thorship identification in the translate-train settings. 505

We hypothesize that the stylistic features specific 506

to poems are of great importance for solving this 507

NLP task, and those features are most likely lost in 508

translations. Similar findings are described again 509

by Artetxe et al. (2023), the authors explaining how 510

tasks which require a deeper textual understanding 511

have a hard time benefiting out of the translate-train 512

method. 513

The MT system which performs the best varies 514

across the NLP tasks. We interpret this as differ- 515

ent MT systems having strong and weak points in 516

separate capabilities. 517

6 Results of MT models evaluation 518

In Table 2, we report the scores assigned to each 519

MT system according to Equation 2 as described 520

earlier in our evaluation procedure. Their scores are 521

the sum of the NLP task performance difference be- 522

tween each MT system in the translate-train setting 523

and the baseline result provided by the Romanian 524

transformer. Detailed results of the translate-train 525

experiments were presented in the earlier Table 1. 526

In the following paragraphs, we present how we 527

collected human judgements for a subsample of 528

translations taken from the three NLP datasets we 529

used. We used those judgements to analyse the 530

correlation between our referenceless evaluation 531

methodology and human assessment. 532

6.1 Human-judgement data acquisition 533

To validate that our evaluation method is in line 534

with human judgement we decided to collect hu- 535

man feedback in the form of translation preferences 536

between alternative translations generated by dif- 537

ferent MT systems. Each user was presented with a 538

series of questions, each question presenting a Ro- 539

6



Translator Our score
ChatGPT3.5 +01.37
GTranslate +00.45

DeepL -01.32
Mistral7xB -09.98

Table 2: Cumulative scores for all MT systems by
considering their performance difference between the
translate-train result and the baseline result in Romanian
language.

manian text taken from one of our NLP datasets and540

two alternative translation to English of the given541

text. The translations were generated with one of542

the four evaluated MT systems and the system used543

was not disclosed to the user. Text samples and544

the order in which translations were shown to the545

user were randomized to reduce the risk of bias.546

Each user had to use a slider to choose which al-547

ternative translation prefers, choices ranging from548

left/right being slightly or much better, or choosing549

a tie between the two.550

Each user was presented a questionnaire of 60551

texts randomly sampled of a pool of 240 texts se-552

lected for evaluation. Each user received its own553

random version of the questionnaire to reduce the554

possible bias by a certain selection of texts.555

Figure 1: Matrix of pairwise Pearson correlation co-
efficient between the votes the questioned users. The
columns were re-ordered to highlight correlation clus-
ters.

We successfully collected about 900 judgements556

from 15 volunteering students and professors spe-557

cialized in the fields of computer science, law, and558

foreign languages. All respondents were native559

Romanian speakers with an estimated language560

competency of at least B2 for English.561

To rank the evaluated MT systems based on the562

votes, we used a simple scoring scheme: both sys- 563

tems received 0.5 points if the user voted tie or 1 564

full point to the system which received a favourable 565

vote. We also tried having 0.5/1.0/1.5 scoring 566

scheme as our votes had two possible values for 567

favouring one system over the other, but we did not 568

see any significance in the results we present be- 569

low, so we stuck with the simpler scoring scheme. 570

The results after aggregating the user votes can be 571

observed in Table 3 along our automatic evaluation 572

to highlight the agreement between the two. 573

6.2 Correlation between our evaluation and 574

human judgement 575

To assure the reader of the consistency of human 576

judgements across different persons, in Figure 1 we 577

present a heatmap of pairwise Pearson correlation 578

coefficients between the votes of the users. We 579

observe the tendency of cluster formation and the 580

existence of at least one outlier, namely User 3, but 581

overall the results present a positive correlation. 582

In terms of descriptive statistics for the corre- 583

lations above, we report a mean of 0.6159, a me- 584

dian of 0.6926, and a standard deviation of 0.3001. 585

The interquartile range (IQR) contains values be- 586

tween 0.4391 and 0.8455, which further empha- 587

sizes a moderate to strong correlation between hu- 588

man judgements. The standard deviation is ex- 589

pected to be high for human answers. 590

In Table 4, we present the Pearson correlation be- 591

tween the results of our proposed evaluation metric 592

and the results of human judgements for all datasets 593

and at the system level aggregating all results. We 594

observe a strong correlation at the system level of 595

0.88, which should improve by selecting more and 596

higher quality datasets. 597

The lowest correlation observed is for the 598

RoSent dataset, which may suggest that datasets 599

of lower complexity are worse for evaluating high- 600

quality MT systems. This is consistent with the 601

fact that the dataset with the highest textual com- 602

plexity, Rupert, which contains poetry, it’s best 603

correlated with human judgement. We may con- 604

clude that harder datasets better estimate how well 605

a MT system behaves. 606

7 Limitations 607

In spite of the high correlation with human judge- 608

ment of our proposed evaluation method, we must 609

acknowledge a series of limitations of our approach 610

which we hope to overcome in future works. 611
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Translator RoSent RoTextSummarization Rupert Total Our evaluation
ChatGPT3.5 81.5 135 73.5 288 +01.37
GTranslate 64 97.5 71.5 227 +00.45

DeepL 57.5 90 54.5 202 -01.32
Mistral 7B 27 89.5 28.5 153 -09.98

Table 3: Scores allotted to each MT system by using the 0.5p/1p scoring scheme for user votes. The last column
contains the scores proposed by our evaluation strategy to highlight the agreement with human judgement.

Dataset Pearson Correlation
RoSent 0.4756

RoTextSummarization 0.6423
Rupert 0.9769

All 0.8741

Table 4: Pearson correlation between the human
judged scores and our proposed referenceless evaluation
method. Results are presented per-dataset and for all
datasets combined.

Only one language pair. In all the experiments612

we used only one language pair in only one di-613

rection, Romanian to English, which may pose a614

threat to the generality of the proposed methodol-615

ogy. The results may not reproduce in scenarios of616

high-resource to high-resources or high-resource617

to low-resource languages.618

Small pool of human evaluators. The num-619

ber of volunteers we used to judge translations620

is small and may not be representative for larger621

populations. We also acknowledge as highlighted622

by other works such as (Freitag et al., 2021), that623

crowd-sourced volunteers may not output judge-624

ments in line with the judgements of professional625

translators.626

Translate-train is limited. Trainslate-train is627

limited to a certain subset of NLP tasks, some of628

them being harder or almost impossible to solve in629

such a settings, such as named-entity recognition630

(NER) or question answering. This reduces the631

available datasets that can be used and also the ca-632

pabilities of the MT systems that can be evaluated633

with our approach.634

Relative ranking is not entirely accurate. Our635

approach tends to rank MT systems much closer636

to each other than the human judgements, which637

may suggest that we cannot properly distinguish be-638

tween the performance of high-quality MT systems.639

This may be due to dataset quality and complexity640

or the approach in itself.641

8 Conclusions 642

We presented a novel referenceless evaluation 643

method for assessing machine translation models 644

by leveraging their performance impact in translate- 645

train settings across various natural language pro- 646

cessing tasks. By translating Romanian texts into 647

English and subsequently evaluating the impact 648

on text summarization, sentiment analysis, and au- 649

thorship identification, we demonstrated significant 650

improvements in the first two tasks while noting a 651

performance decline in the latter. This highlights 652

that while MT can enhance certain NLP applica- 653

tions, tasks requiring nuanced textual comprehen- 654

sion, such as poetry authorship identification, may 655

suffer from translation-induced distortions. 656

The proposed evaluation approach circumvents 657

the need for professional ground-truth translations, 658

traditionally required by metrics like BLEU, thus 659

reducing potential biases and costs. By relying on 660

generic NLP datasets in the source language, this 661

method provides a more authentic reflection of MT 662

model performance in practical applications. The 663

findings also revealed variability in MT model per- 664

formance across different NLP tasks, suggesting 665

that different MT systems possess distinct strengths 666

and weaknesses depending on the domain of the 667

text. The developed ranking system, which aligns 668

closely with human preferences, further validates 669

the robustness and reliability of the proposed refer- 670

enceless evaluation method. 671

In conclusion, the study’s innovative approach 672

offers a cost-effective alternative for MT model 673

evaluation, addressing some of the longstanding 674

challenges in the field. While the methodology 675

showed high correlation with human judgments, 676

especially in more complex datasets, it also high- 677

lighted the need for further exploration across di- 678

verse language pairs and additional NLP tasks to 679

fully generalize its applicability. This work paves 680

the way for more accurate and scalable MT evalua- 681

tions, fostering advancements in machine transla- 682

tion technologies. 683
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