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Abstract

We consider a common case of the combinatorial semi-bandit problem, the m-set
semi-bandit, where the learner exactly selects m arms from the total d arms. In
the adversarial setting, the best regret bound, known to be O(

√
nmd) for time

horizon n, is achieved by the well-known Follow-the-Regularized-Leader (FTRL)
policy. However, this requires to explicitly compute the arm-selection probabilities
via optimizing problems at each time step and sample according to them. This
problem can be avoided by the Follow-the-Perturbed-Leader (FTPL) policy, which
simply pulls the m arms that rank among the m smallest (estimated) loss with
random perturbation. In this paper, we show that FTPL with a Fréchet perturbation
also enjoys the near optimal regret bound O(

√
nm(

√
d log(d) + m5/6)) in the

adversarial setting and approaches best-of-both-world regret bounds, i.e., achieves
a logarithmic regret for the stochastic setting. Moreover, our lower bounds show
that the extra factors are unavoidable with our approach; any improvement would
require a fundamentally different and more challenging method.

1 Introduction

The combinatorial semi-bandit problem [Cesa-Bianchi and Lugosi, 2012] is an important online
decision-making problem with partial information feedback, and has many practical applications
such as in shortest-path problems [Gai et al., 2012], ranking [Kveton et al., 2015a], multi-task bandits
[Cesa-Bianchi and Lugosi, 2012] and recommender systems [Zou et al., 2019]. The semi-bandit
problem is a sequential game that involves a learner and an environment, both interacting over time.
In particular, the problem setup consists of d fixed arms, and at each round t = 1, 2, . . ., the learner
selects a combinatorial action—a subset of arms—from a predefined set A ⊂ {0, 1}d. Simultaneously,
the environment generates a loss vector ℓt ∈ [0, 1]d. The learner then incurs a loss of ⟨At, ℓt⟩, where
At ∈ A is the selected action, and receives semi-bandit feedback ot = At ⊙ ℓt, representing the
losses associated with the selected arms only (here, ⊙ denotes element-wise multiplication).
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In this work, we focus on a common instance of the semi-bandit setting, the m-set semi-bandit
[Kveton et al., 2014], where each action consists of exactly m arms. That is, the action set
is given by A = {a ∈ {0, 1}d : ∥a∥1 = m}, with 1 ≤ m ≤ d. The performance of the
learner is quantified by the pseudo-regret, defined as Regn := E [

∑n
t=1 ⟨At − a⋆, ℓt⟩] , where

a⋆ = argmina∈A E [
∑n

t=1⟨a, ℓt⟩] represents the optimal fixed action in hindsight. The expectation
is taken over the randomness of both the learner’s decisions and the loss. The combinatorial semi-
bandit problem has been studied primarily under two frameworks: the stochastic setting and the
adversarial setting.

In the adversarial setting, no assumptions are made about the generation of the loss vectors ℓt;
they can be chosen arbitrarily, possibly in an adaptive manner [Kveton et al., 2015a, Neu, 2015,
Wang and Chen, 2018]. The optimal regret bound is O(

√
nmd) [Audibert et al., 2014] (when

m ≤ d/2). In the stochastic setting, the losses ℓ1, ℓ2, . . . , ℓn ∈ [0, 1]d are independent and identically
distributed samples drawn from an unknown but fixed distribution D. For each arm i ∈ {1, . . . , d},
the expected loss is denoted by νi = Eℓ∼D[ℓi] ∈ [0, 1]. The suboptimality gap of arm i is expressed
by ∆i := (νi − max

I⊂{1,··· ,d},|I|<m
min
j /∈I

νj)
+ and the minimum gap is ∆ = min

1≤i≤d, 0<∆i

∆i. There are

many algorithms that were shown to achieve logarithmic regrets. For example, Kveton et al. [2015a]
and Wang and Chen [2018] derived O( (d−m) log(n)

∆ ) regrets in m-set semi-bandits.

In real-world scenarios, it is often unclear whether the environment follows a stochastic or adversarial
pattern, making it desirable to design policies that offer regret guarantees in both settings. To address
this challenge, particularly in the classical multi-armed bandit setting, a line of research has focused
on Best-of-Both-Worlds (BOBW) algorithms, which aim to achieve near-optimal performance in
both regimes. A pioneering contribution in this direction was made by Bubeck and Slivkins [2012],
who introduced the first BOBW algorithm. More recently, the well-known Tsallis-INF algorithm
was proposed by Zimmert and Seldin [2019]. In the context of combinatorial semi-bandits, related
advancements have been made by Zimmert et al. [2019], Ito [2021] and Tsuchiya et al. [2023].

However, most existing BOBW algorithms are Follow-the-Regularized-Leader (FTRL) policies
and require to explicitly compute the arm-selection probabilities by solving optimizing problems at
each time step and sample according to it. This problem, particularly in combinatorial semi-bandits
[Neu, 2015], has attracted interest and can be avoided by the Follow-the-Perturbed-Leader (FTPL)
policy, which simply pulls the m arms that rank among the m smallest (estimated) loss with random
perturbation. More precisely, the FTPL algorithm selects the action argmina∈A

〈
L̂t − rt

ηt
, a
〉
, where

rt,i denotes a random perturbation drawn from a specified distribution, ηt is the learning rate, and
L̂t,i is an estimate of the cumulative loss for arm i, defined as Lt,i =

∑t−1
s=1 ℓs,i.

Honda et al. [2023] first proved that FTPL with Fréchet perturbations of shape parameter α = 2
successfully achieves BOBW guarantees in the original bandit setting (i.e., when m = 1), which
was recently generalized by Lee et al. [2024]. They analyzed general Fréchet-type tail distributions
and underscored the effectiveness of the FTPL approach. Nevertheless, in m-set semi-bandits the
arm-selection probabilities wt,i = ϕi(ηtL̂t) are much more complicated compared to the original
setting, making it harder to analyze the regret for FTPL.

1.1 Contribution

In this work, we show that FTPL with Fréchet perturbations achieves O(
√
nm(

√
d log(d) +m5/6))

regret in the adversarial regime and O(
∑

i,∆i>0
log(n)
∆i

) regret in the stochastic regime simultaneously.
This is the first FTPL algorithm to approach the BOBW guarantee in the semi-bandit setting when
m ≤ d/2. Technically, first, we use the standard analysis framework for FTRL algorithms (originally
introduced by Lattimore and Szepesvári [2020]), and extend it to cases where the convex hull of
the action set lacks interior points—i.e., to m-set semi-bandits—thereby simplifying Honda et al.
[2023]’s proof. Second, we generalize Honda et al. [2023]’s analytical techniques and handle the
challenges posed by the complex structure of arm-selection probabilities in m-set semi-bandits.
Moreover, by establishing lower bounds, we demonstrate that our current approach has been pushed
to its limit—namely, the log(d) and m5/6

d1/2 factors cannot be removed. Any further improvement
would likely require adopting a different and more challenging line of analysis.
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1.2 Related Works

FTPL The FTPL algorithm was originally introduced by Gilliland [1969] in game theory and
later rediscovered and formalized by Kalai and Vempala [2005]. FTPL has since gained significant
attention for its computational efficiency and adaptability across various online learning scenarios,
including MAB [Abernethy et al., 2015], linear bandits [McMahan and Blum, 2004], MDP bandits
[Dai et al., 2022], combinatorial semi-bandits [Neu, 2015, Neu and Bartók, 2016] and Differential
Privacy [Wang and Zhu, 2024]. However, in MAB, due to the complicated expression of the arm-
selection probability in FTPL, it remains a open problem [Kim and Tewari, 2019] for a long time that
dose there exist a perturbation achieve the optimal regret bound O(

√
nd) in the adversarial setting,

which had been already achieved by FTRL policies [Audibert and Bubeck, 2009]. Kim and Tewari
[2019] conjectured that the corresponding perturbations should be of Fréchet-type tail distribution
and it was shown to be true by Honda et al. [2023], Lee et al. [2024].

BOBW Following the influential work of Bubeck and Slivkins [2012], a broad line of research has
explored BOBW algorithms across diverse online learning settings. These include, but are not limited
to, MAB [Zimmert and Seldin, 2019], the problem of prediction with expert advice [de Rooij et al.,
2013, Gaillard et al., 2014, Luo and Schapire, 2015], linear bandits [Ito and Takemura, 2023, Kong
et al., 2023], dueling bandits [Saha and Gaillard, 2022], contextual bandits [Kuroki et al., 2024],
episodic Markov decision processes [Jin et al., 2021] and especially, combinatorial semi-bandits [Wei
and Luo, 2018, Zimmert et al., 2019, Ito, 2021, Tsuchiya et al., 2023].

2 Preliminaries

In this section, we formulate the problem and introduce the FTPL policy.

2.1 The Problem Setting and Notation

We consider the m-set combinatorial semi-bandit problem with action set A = {a ∈ {0, 1}d :
∥a∥1 = m}, where each action selects a subset of m arms and d ≥ 2. At each round t = 1, 2, . . .,
the learner chooses an action At ∈ A, while the environment generates a loss vector ℓt ∈ [0, 1]d. The
learner incurs loss ⟨At, ℓt⟩ and observes semi-bandit feedback ot = At ⊙ ℓt, i.e., the losses for the
chosen arms only. The goal is to minimize the pseudo-regret Regn := E [

∑n
t=1⟨At − a⋆, ℓt⟩] , where

a⋆ ∈ argmina∈A E [
∑n

t=1⟨a, ℓt⟩] is the optimal fixed action in hindsight. In the adversarial setting,
the loss vectors ℓt may be arbitrary and adaptive. In the stochastic setting, they are i.i.d. samples from
a fixed but unknown distribution D. Let νi := Eℓ∼D[ℓi] denote the expected loss of arm i. Define the
suboptimality gap of arm i as ∆i :=

(
νi −maxI⊂{1,...,d},|I|<m minj /∈I νj

)+
(A less formal way to

put it is: the gap from the m-th smallest value.), and the minimum gap as ∆ := mini:∆i>0 ∆i. Here
(z)+ = z ∨ 0 := max(z, 0).

To analyze regret, for any λ = (λ1, . . . , λd)
T ∈ Rd, we let λi be the σi(λ)-th smallest among the

λi (ties are broken arbitrarily) and λi := (λi − max
I,|I|<m

min
j /∈I

λj)
+. We denote by Ft the filtration

σ(A1, o1,K1, . . . , At, ot), and by 1 the all-one vector. Let a∧ b = min(a, b) and a∨ b = max(a, b).

2.2 Fréchet distribution

We consider the Fréchet distribution with shape parameter 2 (denoted F2), the density and CDF of
which are

f(x) = 2x−3e−1/x2

, F (x) = e−1/x2

, x ≥ 0,

respectively. In the following, “Fréchet” refers to this distribution without specifying the parameter.
This choice is motivated by a sequence of prior studies on the FTPL algorithm in the MAB setting
[Abernethy et al., 2015, Kim and Tewari, 2019, Honda et al., 2023, Lee et al., 2024].

Briefly speaking, this choice stems from an intuitive probabilistic property of the distribution: if
we draw d independent samples from it, the order of the expectation of the maximum is

√
d, which

corresponds to the optimal regret bound
√
nd in the MAB problem. Our subsequent analysis (Lemma

E.2) shows that this property can be generalized to the case where the order of the expectation of the
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Algorithm 1: FTPL wit geometric resampling for m-set Semi-bandits

Initialization :L̂1 = 0
1 for t = 1, . . . , n do
2 Sample rt = (rt,1, . . . , rt,d) i.i.d. from F2.
3 Play At = argmina∈A⟨L̂t − rt/ηt, a⟩.
4 Observe ot = At ⊙ ℓt.
5 for i = 1, . . . , d do
6 Set Kt,i := 0.
7 repeat
8 Kt,i := Kt,i + 1. // geometric resampling
9 Sample r′ = (r′1, . . . , r

′
d) i.i.d. from F2.

10 A′
t = argmina∈A⟨L̂t − r′/ηt, a⟩.

11 until A′
t,i = 1

12 Set ŵ−1
t,i := Kt,i, ℓ̂t,i = ot,iŵ

−1
t,i , and L̂t+1,i := L̂t,i + ℓ̂t,i.

13 end
14 end

sum of the top-m results is
√
md, which likewise suggests the effectiveness of this distribution in the

m-set semi-bandits problem.

2.3 FTPL Policy

We study the Follow-The-Perturbed-Leader (FTPL) algorithm (Algorithm 1), which selects actions
based on a perturbed cumulative estimated loss L̂t =

∑t−1
s=1 ℓ̂s. At round t, the learner pulls the m

arms that rank among the m smallest estimated loss with random perturbation rt/ηt, where rt ∈ Rd

has i.i.d. components drawn from the Fréchet distribution F2, and ηt = O(t−1/2) is the learning rate.
The probability of selecting arm i given L̂t is wt,i = ϕi(ηtL̂t), where for λ ∈ Rd,

ϕi(λ) = P{ri − λi is among the top m largest values in r1 − λ1, . . . , rd − λd}. (1)

Then by Lemma C.3, we have ϕi(λ) = 2Vi,3(λ), where

Vi,N (λ) :=

∫ ∞

−λi

e−1/(x+λi)
2

(x+λi)N

m−1∑
s=0

∑
I⊆{1,...,d}\{i},|I|=s

[∏
q∈I

(1−F (x+λq))
∏

q/∈I,q ̸=i

F (x+λq)

]
dx.

We denote the true cumulative loss as Lt =
∑t−1

s=1 ℓs. For convenience, we also denote the vector
function ϕ as (ϕ1, · · · , ϕd) and wt as (wt,1, · · · , wt,d).

Geometric Resampling In FTRL policies, Importance Weighted (IW) estimators are commonly
used, where ℓ̂t,i =

ℓt,iAt,i

wt,i
, for i = 1, . . . , d. However, in FTPL algorithms, the action probabilities

wt,i are often hard to compute directly. To address this, the geometric resampling technique [Neu
and Bartók, 2016] is frequently employed. This method replaces w−1

t,i with an unbiased estimator

ŵ−1
t,i . Specifically, after selecting action At and observing outcome ot, for each i = 1, . . . , d, we

repeatedly resample r′ = (r′1, . . . , r
′
d) i.i.d. from F2 and compute A′

t = argmina∈A⟨L̂t − r′/ηt, a⟩
until A′

t,i = 1, i.e., arm i is “selected”. Let Kt,i be the number of such resamples; then by the

properties of the geometric distribution, E[Kt,i] =
1

wt,i
, so we define ŵ−1

t,i := Kt,i. To reduce
computation, we only need to compute Kt,i for arms actually selected by At [Honda et al., 2023].
Since At,i = 0 implies ℓ̂t,i = 0, the remaining estimates can be omitted.
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Viewing as Mirror Descent FTPL can be interpreted as Mirror Descent [Abernethy et al., 2015,
Lattimore and Szepesvári, 2020]. For all λ ∈ Rd, let

Φ(λ) =E[max
a∈A

⟨r + λ, a⟩]

=

d∑
i=1

E[(ri + λi) · 1{ ri + λi is among the top m largest values in r1 + λ1, . . . , rd + λd }].
(2)

Then, by exchanging expectation and the derivation (or see Lemma C.1), it is clear that ∇Φ(λ) =
ϕ(−λ) and Φ(λ) is convex. Consider the Fenchel dual of Φ, Φ∗(u) = supx∈Rd⟨x, u⟩ − Φ(x). Then
FTPL can be regarded as Mirror Descent with potential Φ∗, because wt = ϕ(ηtL̂t) = ∇Φ(−ηtL̂t).

However, it is worth noting that ∇Φ∗(wt) = −ηtL̂t generally does not hold in this case, because for
all t ∈ R, ϕ(λ+ t1) = ϕ(λ) by its definition, and then ∇Φ is obviously not invertible.

3 Main Results

In this section, we present our main theoretical results, including the regret bounds and our new
analyses of the regret decomposition.

Theorem 3.1. In the adversarial setting, Algorithm 1 with learning rate ηt = 1/
√
t satisfies

Regn = O
(√

nm(
√

d log(d) +m5/6)
)
.

The proof is given in Section 4.3. Furthermore, Appendix C.3 provides lower bounds showing that
our current method (Section 4.1) is essentially tight—indicating that the log(d) and m5/6

d1/2 factors are
inherent to our analysis. Thus, removing them would likely require fundamentally different and more
sophisticated techniques.

In the stochastic setting, we assume that there are at most m arms with ∆i = 0. In other words, we
assume the uniqueness of the optimal action a⋆. This is a common assumption in BOBW problems
[Zimmert and Seldin, 2019, Zimmert et al., 2019, Honda et al., 2023].
Theorem 3.2. In the stochastic setting, if the optimal action is unique, then Algorithm 1 with learning
rate ηt = 1/

√
t satisfies

Regn = O

 ∑
i,∆i>0

log(n)

∆i

+O
(

1

∆
(m2d log(d) +m

11
3 +md2)

)
,

where ∆ := mini,∆i>0 ∆i.

Its proof can be found in Appendix A. Therefore, FTPL with Fréchet perturbations approaches
BOBW when m ≤ d/2. In addition, similar to Zimmert and Seldin [2019], Zimmert et al. [2019],
our algorithm adopts a simple time-decaying learning rate schedule ηt = 1/

√
t. Our results can be

readily extended to a more general setting with ηt = c/
√
t for any c > 0.

3.1 Regret Decomposition

We follow the standard FTRL analysis framework for FTPL, originally by Lattimore and Szepesvári
[2020, Theorem 30.4], extending it to m-set semi-bandits where the convex hull of the action set A
has no interior points and hence ∇Φ and ∇Φ∗ are not inverses of each other. For convenience, in the
following, let η0 = +∞. Then the regret can be decomposed in the following way:
Lemma 3.3.

Regn ≤E

[
n∑

t=1

⟨ℓ̂t, ϕ(ηtL̂t)− ϕ(ηtL̂t+1)⟩

]
︸ ︷︷ ︸

Stability Term

+

n∑
t=1

(
1

ηt
− 1

ηt−1

)
E [Φ∗(a⋆)− Φ∗(wt)]︸ ︷︷ ︸

Penalty Term

.

Its proof is deferred in Appendix B.1. For the penalty term, we need the following result, whose
proof can be found in Appendix E.1.
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Lemma 3.4. For all λ ∈ Rd, let a = ∇Φ(λ). Then Φ∗(a) = −E[⟨r,A⟩], where A =
argmaxa∈A⟨r + λ, a⟩. Furthermore, for all a ∈ A, we have Φ∗(a) ≤ −E[⟨r, a⟩].

Combining Lemmas 3.3 and 3.4, we have

Regn ≤E

[
n∑

t=1

⟨ℓ̂t, ϕ(ηtL̂t)− ϕ(ηtL̂t+1)⟩

]
︸ ︷︷ ︸

Stability Term

+

n∑
t=1

(
1

ηt
− 1

ηt−1

)
E [⟨rt, At − a⋆⟩]︸ ︷︷ ︸

Penalty Term

.

It is worth noting that in the decomposition of Honda et al. [2023] (see Lemmas 3 and 4 therein) and
of Lee et al. [2024]) (see Lemmas 7 and 8 therein), the stability term is

E

[
n∑

t=1

⟨ℓ̂t, ϕ(ηtL̂t)− ϕ(ηt+1L̂t+1)⟩

]
,

which is further decomposed into

E

[
n∑

t=1

⟨ℓ̂t, ϕ(ηtL̂t)− ϕ(ηtL̂t+1)⟩

]
(i.e., the stability term in our decomposition) and

E

[
n∑

t=1

⟨ℓ̂t, ϕ(ηtL̂t+1)− ϕ(ηt+1L̂t+1)⟩

]
.

Therefore, these two terms both need to be controlled in their analysis. More specifically, the second
term is bounded by O(η1) in Honda et al. [2023], while it is bounded by O

(
log
(

η1

ηn+1

))
in Lee et al.

[2024]. In contrast, our decomposition does not require controlling the second term. Moreover, our
penalty term is almost the same as theirs. Consequently, on the one hand, we simplify their proof; on
the other hand, our bound is tighter. This also further demonstrates the superiority of the FTRL-based
analysis framework.

Remark 3.1. Furthermore, by Generalized Pythagoras Identity (Lemma G.2), for the stability term,
one can obtain a tighter upper bound

∑n
t=1

1
ηt
E[DΦ(−ηtL̂t+1,−ηtL̂t)], which is more popular

in the analyses of FTRL policies and usually approximated by the sum of ηtE[∥ℓ̂t∥2∇2Φ(−ηtL̂t)
].

However, such an approximate relationship is difficult to establish in FTPL because ∇2Φ(−ηtL̂t+1)

and ∇2Φ(−ηtL̂t) may not be close enough.

4 Proof Outline

This section begins with analyses for the stability term and the penalty term, followed by a proof for
Theorem 3.1 and a sketch for Theorem 3.2, whose details can be found in Appendix A. Although our
analysis follows the framework in Honda et al. [2023], directly applying their approach fails in the
m-set semi-bandit setting due to the intricate structure of the arm selection probabilities.

4.1 Stability Term

For the stability terms, informally, we will show that

Et−1[⟨ℓ̂t, ϕ(ηtL̂t)− ϕ(ηtL̂t+1)⟩] ≲ ηt

d∑
i=1

− ∂
∂λi

ϕi(ηtL̂t)

ϕi(ηtL̂t)
,

and hence, the key component of the analysis lies in bounding the quantity −
∂

∂λi
ϕi(λ)

ϕi(λ)
, which, by

the definition, is upper bounded by 3Vi,4(λ)
Vi,3(λ)

. However, each Vi,N (λ) is a sum over many terms. To
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effectively bound this ratio, our strategy is to apply a union bound over all individual terms
V I
i,4(λ)

V I
i,3(λ)

such that |I| < m and i /∈ I, where we define

V I
i,N (λ) :=

∫ ∞

−λi

1

(x+ λi)N
e−1/(x+λi)

2 ∏
q∈I

(1− F (x+ λq))
∏

q/∈I, q ̸=i

F (x+ λq) dx. (3)

To this end, we require the following generalization of Honda et al. [2023]’s result, whose proof can
be found in Appendix C.1.
Lemma 4.1. For any I ⊆ {1, · · · , d}, i /∈ I, λ ∈ Rd such that λi ≥ 0 and any N ≥ 3, let

Ji,N,I(λ) :=

∫ ∞

0

1

(x+ λi)N

∏
q∈I

(1− F (x+ λq))
∏
q/∈I

F (x+ λq) dx.

Then for all k > 0, Ji,N+k,I(λ)
Ji,N,I(λ)

is increasing on λq ≥ 0 for q /∈ I.

In the MAB setting (i.e., the case m = 1), there are no 1−F terms, and we can leverage monotonicity
to let certain λq tend to infinity, making the corresponding F terms approach 1, which greatly
simplifies the form of the ratio. However, for general m, removing 1−F terms would require sending
the corresponding λq to negative infinity. This is not feasible, as the monotonicity does not hold
generally. To address this difficulty, we rely on the following result:
Lemma 4.2. For all µ ≥ 0, K ≥ 1, N ≥ 3 and M ≥ 1, let µi ∈ R for all 1 ≤ i ≤ M , and define

HN =

∫ +∞

0

(x+ µ)−Ne
− K

(x+µ)2

M∏
i=1

(1− F (x+ µi)) dx.

For all k ∈ N+, we have
HN+k

HN
≤ CN,k

((
M

K

)k/3

∧ µ−k

)
,

where CN,k is a positive constant only depending on N and k. Furthermore, if K ≥ M , then we
have

H4

H3
≤ C

((
M

K
log

(
K

M
+ 1

))1/2

∧ µ−1

)
,

where C is a positive constant.

The proof of this lemma is tedious; it constitutes the most difficult part of the stability term analysis.
Therefore, we defer it to Appendix C.2. We also have lower bounds in Appendix C.3, showing that
the logarithmic term and Mk/3 are inevitable. Based on Lemma 4.2, we have the following result,
whose proof is deferred in Appendix D.1.
Lemma 4.3. There exists C > 0 such that for all t ≥ 1 and 1 ≤ i ≤ d,

E
[
ℓ̂t,i

(
ϕi(ηtL̂t)− ϕi(ηtL̂t+1)

)
| Ft−1

]
≤ C · L̂

−1

t,i ∧ ηt

{√
m log(d)

σi(L̂t)−m
σi(L̂t) > 2m

m1/3 σi(L̂t) ≤ 2m.

Note that by the definition in Section 2.1, L̂
−1

t,i = +∞ when σi(L̂t) ≤ m. As a direct corollary, we
have:
Lemma 4.4. There exists C > 0 such that for all t ≥ 1,

E
[
⟨ℓ̂t, ϕ(ηtL̂t)− ϕ(ηtL̂t+1)⟩ | Ft−1

]
≤ Cηt(

√
md log(d) +m4/3).

Proof. By Lemma 4.3, the left-hand side is less than

Cηt

2m4/3 +
∑

i,σi(L̂t)>2m

√
m log(d)

σi(L̂t)−m

 ≤ C ′ηt(
√
md log(d) +m4/3).
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Finally, we also need a different upper bound making use of L̂t in the stochastic environment and the
proof can be found in Appendix D.2, which used a new technique compared to Honda et al. [2023].
Their proof relies on the uniqueness of the optimal arm, while there are m in the m-set semi-bandits.

Lemma 4.5. If
d∑

i=m+1

(ηtL̂t,i)
−2 < 1

2m , then

E
[
⟨ℓ̂t, ϕ(ηtL̂t)− ϕ(ηtL̂t+1)⟩ | Ft−1

]
≤ C

d∑
i=m+1

(
L̂
−1

t,i + ηtdwt,i

)
+m2−

1
2ηtd ,

where C is an absolute positive constant.

4.2 Penalty Term

Then we present our analyses for the penalty term.
Lemma 4.6. For all λ ∈ Rd, we have

Φ∗(a)− Φ∗(ϕ(λ)) ≤ 5
√
md.

Furthermore, if a = argmina′∈A⟨a′, λ⟩, then

Φ∗(a)− Φ∗(ϕ(λ)) ≤ 2
∑

1≤i≤d,σi(λ)>m

λ−1
i .

The proof is given in Appendix E.2. It is worth noting that the first part of the result stems from a key
observation: if one draws d i.i.d. samples from the Fréchet distribution, then the expected sum of the
top m largest values among them can be upper bounded by O(

√
md). Then clearly, we have:

Lemma 4.7. For all t ≥ 1, we have

E [Φ∗(a⋆)− Φ∗(wt)] ≤ 5
√
md.

Furthermore, if max
1≤i≤m

L̂t,i ≤ min
m+1≤i≤d

L̂t,i and a⋆ = (1, · · · , 1︸ ︷︷ ︸
m of 1

, 0, · · · , 0︸ ︷︷ ︸
d−m of 0

), then

E [Φ∗(a⋆)− Φ∗(wt) | Ft−1] ≤ 2η−1
t

d∑
i=m+1

L̂
−1

t,i .

4.3 Proof for Theorem 3.1

Combining Lemmas 3.3, 4.4 and 4.7 with ηt = 1/
√
t, we have

Regn ≤ C

n∑
t=1

ηt(
√
md log(d)+m4/3)+5

n∑
t=1

(
1

ηt
− 1

ηt−1

)√
md ≤ C ′√nm(

√
d log(d)+m5/6),

where we applied Lemma G.5.

4.4 Proof Sketch for Theorem 3.2

W.L.O.G., we assume that ν1 ≤ ν2 ≤ · · · ≤ νd and then a⋆ = (1, · · · , 1︸ ︷︷ ︸
m of 1

, 0, · · · , 0︸ ︷︷ ︸
d−m of 0

). We apply the

technique by Honda et al. [2023] and hence define the event At = {
d∑

i=m+1

(ηtL̂t,i)
−2 < 1

2m}. On

one hand, by Lemma 4.4, 4.5 and 4.7, one can show that

Regn ≤O

(
n∑

t=1

E

[
1{At} ·

d∑
i=m+1

L̂
−1

t,i + 1{Ac
t}

√
m

t
(
√
d log(d) +m5/6)

])
︸ ︷︷ ︸

I

+O

(
n∑

t=1

E

[
d∑

i=m+1

dwt,i√
t

])
︸ ︷︷ ︸

II

+O
(
md2

)
.
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On the other hand, using the fact that

Regn ≥
n∑

t=1

E

[
d∑

i=m+1

∆iwt,i

]
≥ ∆

n∑
t=1

E

[
d∑

i=m+1

wt,i

]
︸ ︷︷ ︸

IV

,

in Appendix A we will show that

Regn ≥ Ω

(
n∑

t=1

E

[
1{At} · t

d∑
i=m+1

∆iL̂
−2

t,i + 1{Ac
t} ·

∆

m

])
︸ ︷︷ ︸

III

.

Hence, with Regn = 3Regn −2Regn ≤ (3I − III) + (3II − IV ) + O
(
md2

)
, one can get the

logarithmic result by noting that L̂
−1

t,i − t∆iL̂
−2

t,i = O( 1
t∆i

) and
√

m
t (
√
d log(d) +m5/6) and dwt,i√

t

are less than ∆
m and ∆wt,i respectively when t is large enough. Details can be found in Appendix A.
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Figure 1: Comparisons of our algorithm FTPL and several existing algorithms. The left side is in
linear scale and the right is in log-log scale.

5 Experiments

In this section, we evaluate the empirical performance of FTPL and several benchmark algorithms on
the m-set semi-bandit problem. We compare our method against five established baselines: for the
stochastic setting, we include COMBUCB [Kveton et al., 2015b] and THOMPSON SAMPLING
[Gopalan et al., 2014]; for the adversarial setting, we use EXP2 [Audibert et al., 2014] and LOGBAR-
RIER [Luo et al., 2018], corresponding to FTRL with generalized Shannon entropy and log-barrier
regularizers, respectively. We also compare against the BOBW algorithm—FTRL with a hybrid
regularizer (hereafter referred to as “hybrid”) [Zimmert et al., 2019]—in both settings.
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Following [Zimmert et al., 2019], we run experiments on a specific instance of the m-set semi-bandit
with parameters d = 10, m = 5, and n = 107. The loss for arm i at time t has mean νti, and the
realized loss is 0 with probability 1− νti and 1 with probability νti, independently across arms and
time. In the stochastic environment, the losses are generated from a stationary distribution where
the mean loss for arm i at time t is given by νti =

1
2 −∆ if i ≤ 5, and νti =

1
2 +∆ otherwise, with

∆ = 0.1. In the adversarial environment, we employ the adversarial setting detailed in Zimmert et al.
[2019], a framework with numerous practical applications. This setting divides the time horizon into
phases: 1, . . . , n1, n1 + 1, . . . , n2, . . . , nk−1, . . . , n. The duration of phase s is Ns = 1.6s, and the
mean losses are configured as follows:

νti =

{
1
2 − ∆

4 ± ( 12 − ∆
4 ) if i ≤ 5,

1
2 + ∆

4 ± ( 12 − ∆
4 ) otherwise,

where ∆ = 0.1 and in ±, + is used if time t falls within an odd-numbered phase, and − otherwise. We
sample a sequence of n loss vectors from the above setting and fix it as our adversarial environment,
then run the algorithms to be compared on this fixed sequence. Across all experiments, we estimated
the pseudo-regret using 20 repetitions. The resulting average pseudo-regret for each algorithm over
time is presented in Figure 1. Our experiments are conducted on a server with 4 NVIDIA RTX 4090
GPUs and Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz.

6 Concluding Remarks

To summarize, we have shown that FTPL with Fréchet perturbations achieves both
O(

√
nm(

√
d log(d) + m5/6)) regret in the adversarial regime and O(

∑
i,∆i>0

log(n)
∆i

) regret in
the stochastic regime. This makes it the first FTPL algorithm to approach the Best-of-Both-Worlds
(BOBW) guarantee in the m-set semi-bandit setting when m ≤ d/2. Our analysis has been built
upon the standard FTRL framework, which we extend to accommodate the lack of interior points in
the convex hull of the m-set action space. In doing so, we simplify and partially extend the arguments
of Honda et al. [2023], and attempt to address the technical challenges arising from the intricate
structure of arm-selection probabilities in the semi-bandit setting.

An important open question is whether a sharper upper bound on V4,i

V3,i
can be established to eliminate

the log(d) and m5/6

d1/2 factors in the regret bound, thereby enabling FTPL to achieve the BOBW
guarantee. Appendix C.3 suggests that Lemma 4.2 is already tight, meaning that these factors
cannot be removed. Therefore, obtaining a tighter bound on V4,i

V3,i
is not possible through bounding

the term-wise ratio; instead, one must analyze the ratio of the full summations directly, which is
substantially more challenging [Chen and Honda, 2025]. Moreover, it has been shown that FTRL
algorithms [Zimmert et al., 2019] can achieve the BOBW guarantee even in the regime where
m ≥ d/2. Whether there exists an FTPL algorithm capable of matching this performance remains an
intriguing open problem. Promising future directions include extending our analysis to more general
Fréchet distributions [Lee et al., 2024], investigating broader classes of the semi-bandit settings, or
removing the assumption of the uniqueness of optimal actions (our additional experiments suggest
that the assumption may be not essential).
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A Proof for Theorem 3.2

W.L.O.G., we assume that ν1 ≤ ν2 ≤ · · · ≤ νd and then a⋆ = (1, · · · , 1︸ ︷︷ ︸
m of 1

, 0, · · · , 0︸ ︷︷ ︸
d−m of 0

). Define the event

At = {
d∑

i=m+1

(ηtL̂t,i)
−2 < 1

2m} and wt
⋆ = P{At = a⋆ | Ft−1}.

Our plan is to apply the self-bounding constrain technique by Honda et al. [2023], Zimmert and
Seldin [2019]. We first derive the upper bound. On the one hand, if L̂t satisfies At, which implies that
max

1≤i≤m
L̂t,i ≤ min

m+1≤i≤d
L̂t,i, then combining Lemma 3.3, 4.5 and 4.7, the regret in round t should be

bounded by

C

d∑
i=m+1

L̂
−1

t,i + C

d∑
i=m+1

dwt,i√
t

+m2−
√
t/2d, (4)

where we used that η−1
t+1 − η−1

t =
√
t+ 1−

√
t ≤ 1

2
√
t
= ηt/2 for the penalty term. On the other

hand, if L̂t doesn’t satisfy At, similarly, by Lemma 3.3, 4.4 and 4.7, the regret in round t is less than

C

√
m

t
(
√
d log(d) +m5/6). (5)

Putting Eq. (4) and Eq. (5) together, one can get

Regn ≤ C

n∑
t=1

E

[
1{At} ·

d∑
i=m+1

L̂
−1

t,i + 1{Ac
t}

√
m

t
(
√

d log(d) +m5/6)

]
︸ ︷︷ ︸

I

+C

n∑
t=1

E

[
d∑

i=m+1

dwt,i√
t

]
︸ ︷︷ ︸

II

+Cmd2,

where we applied Lemma G.6 for the last term.

We then show the lower bound. Clearly, we have

Regn ≥
n∑

t=1

E

[
d∑

i=m+1

∆iwt,i

]
≥

n∑
t=1

E

[
1{At} ·

d∑
i=m+1

∆iwt,i + 1{Ac
t} ·∆(1− wt

⋆)

]
, (6)

where we applied Lemma F.3 for the second term. Then by Lemma F.1 and Lemma F.2, we have

Regn ≥ C ′
n∑

t=1

E

[
1{At} · t

d∑
i=m+1

∆iL̂
−2

t,i + 1{Ac
t} ·

∆

m

]
︸ ︷︷ ︸

III

,

where C ′ is an absolute positive constant. Besides, similar to Eq. (6), we also have

Regn ≥ ∆

n∑
t=1

E

[
d∑

i=m+1

wt,i

]
︸ ︷︷ ︸

IV

.

Hence,
Regn = 3Regn −2Regn ≤ (3I − III) + (3II − IV ) + Cmd2.

For 3I − III, it equals

n∑
t=1

E

[
1{At} ·

(
3C

d∑
i=m+1

L̂
−1

t,i − C ′t

d∑
i=m+1

∆iL̂
−2

t,i

)]
+

n∑
t=1

E
[
1{Ac

t} ·
(
3C

√
m

t
(
√
d log(d) +m5/6)− C ′∆

m

)]
.

For the first term, since ax− bx2 ≤ a2/4b for b > 0, then there exists C ′′ > 0 such that

3C

d∑
i=m+1

L̂
−1

t,i − C ′t

d∑
i=m+1

∆iL̂
−2

t,i ≤
d∑

i=m+1

C ′′

t∆i
.
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Note that 3C
√

m
t (
√

d log(d) +m5/6) ≤ C ′ ∆
m after

√
t ≥ 3Cm

3
2 (
√

d log(d)+m5/6)

C′∆ , then we have

3I − III ≤
n∑

t=1

d∑
i=m+1

C ′′

t∆i
+

9C2m3(
√

d log(d)+m5/6)2

C′2∆2∑
t=1

3C

√
m

t
(
√
d log(d) +m5/6)

≤
d∑

i=m+1

C1 log(n)

∆i
+

C2m
2(d log(d) +m5/3)

∆
,

(7)

where C1 and C2 are absolute positive constants and we used (x+ y)2 ≤ 2(x2 + y2) for positive x
and y.

Then it suffices to bound 3II − IV , which equals
n∑

t=1

E

[
d∑

i=m+1

(
3Cdwt,i√

t
−∆wt,i

)]
.

Similarly, 3Cdwt,i√
t

≤ ∆wt,i after
√
t ≥ 3Cd

∆ . Hence,

n∑
t=1

E

[
d∑

i=m+1

(
3Cdwt,i√

t
−∆wt,i

)]
≤ m

9C2d2

∆2∑
t=1

3Cd√
t

≤ C3md2

∆
,

where C3 is an absolute positive constant and we used that
∑d

i=1 wt,i = m by Lemma C.2. We
complete the proof by putting everything together.

B Decomposition

In this section, we give the detailed proof for the regret decomposition.
Lemma B.1. Let ℓ1, · · · , ℓn ∈ Rd and at = ϕ(ηtLt), where (ηt)

n
t=0 is decreasing with η0 = +∞

and Lt :=
t−1∑
s=1

ℓs. Then for all a ∈ A,

n∑
t=1

⟨at − a, ℓt⟩ ≤
n∑

t=1

⟨ℓt, ϕ(ηtLt)− ϕ(ηtLt+1)⟩+
n∑

t=1

(
1

ηt
− 1

ηt−1

)
(Φ∗(a)− Φ∗(at)) .

Proof. For convenience, let ηn+1 = ηn and an+1 = ϕ(ηnLn+1). Note that at = ∇Φ(−ηtLt), then
by Lemma G.1,−ηtLt ∈ ∂Φ∗(at), which implies that at ∈ argminx∈Rd Φ∗

t (x), where Φ∗
t (x) :=

Φ∗(x)
ηt

+ ⟨x, Lt⟩. We then have
n∑

t=1

⟨at − a, ℓt⟩ =
n∑

t=1

⟨at − at+1, ℓt⟩+
n∑

t=1

⟨at+1, ℓt⟩ −
n∑

t=1

⟨a, ℓt⟩

=

n∑
t=1

⟨at − at+1, ℓt⟩+
n∑

t=1

(
Φ∗

t+1(at+1)−
Φ∗(at+1)

ηt+1
−
[
Φ∗

t (at+1)−
Φ∗(at+1)

ηt

])

−
n∑

t=1

(
Φ∗

t+1(a)−
Φ∗(a)

ηt+1
−
[
Φ∗

t (a)−
Φ∗(a)

ηt

])

=

n∑
t=1

⟨at − at+1, ℓt⟩+
n∑

t=1

(Φ∗
t (at)− Φ∗

t (at+1)) +

n∑
t=1

(
1

ηt
− 1

ηt−1

)
(Φ∗(a)− Φ∗(at))

+ Φ∗
n+1(an+1)− Φ∗

n+1(a).

Since for all a ∈ A, Φ∗
n+1(an+1) ≤ Φ∗

n+1(a), we have
n∑

t=1

⟨at−a, ℓt⟩ ≤
n∑

t=1

(⟨at − at+1, ℓt⟩+Φ∗
t (at)− Φ∗

t (at+1))+

n∑
t=1

(
1

ηt
− 1

ηt−1

)
(Φ∗(a)− Φ∗(at)) .
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Then by the definition,

Φ∗
t (at)− Φ∗

t (at+1) = − 1

ηt
(Φ∗(at+1)− Φ∗(at)− ⟨at+1 − at,−ηtLt⟩) = − 1

ηt
DΦ(−ηtLt,−ηt+1Lt+1),

where we used Lemma G.3 by noting that ∇Φ(−ηtLt) = at and ∇Φ(−ηt+1Lt+1) = at+1. Finally,
by Lemma G.2 (taking x = −ηtLt+1, y = −ηt+1Lt+1 and z = −ηtLt), we have

⟨at − at+1, ℓt⟩ −
1

ηt
DΦ(−ηtLt,−ηt+1Lt+1) ≤ ⟨ℓt,∇Φ(−ηtLt)−∇Φ(−ηtLt+1)⟩,

since DΦ(x, y) +DΦ(z, x) ≥ 0. We complete the proof by putting them together.

Remark B.1. The overall proof framework is based on Lattimore and Szepesvári [2020, Exercise
28.12], with the latter part inspired by Zimmert and Lattimore [2019, Lemma 3].

B.1 Proof for Lemma 3.3

Proof. Noting that E[At | Ft−1] = ϕ(ηtL̂t), we have

Regn = E

[
n∑

t=1

〈
ϕ(ηtL̂t)− a⋆, ℓt

〉]
= E

[
n∑

t=1

〈
ϕ(ηtL̂t)− a⋆, ℓ̂t

〉]
.

Then it suffices to apply Lemma B.1.

C Important Facts

In this section, we present some important facts to be used in our analyses.
Lemma C.1. For all λ ∈ Rd, we have ∇Φ(λ) = ϕ(−λ) and Φ(λ) is convex over Rd.

Proof. By Eq. (2), since for all 1 ≤ i ≤ d, E|ri| < +∞, one can exchange expectation and the
derivative, then we have

∂

∂λi
Φ(λ) = E

[
1{ ri + λi is among the top m largest values in r1 + λ1, · · · , rd + λd }

]
= ϕi(−λ),

because
∂

∂λi
1{ ri + λi is among the top m largest values in r1 + λ1, · · · , rd + λd } = 0, a.s.

This shows that ∇Φ(λ) = ϕ(−λ). For convexity, it suffices to note that taking maximum and
expectation keeps convexity.

Lemma C.2. For all λ ∈ Rd, we have
∑d

i=1 ϕi(λ) = m.

Proof. By the definition, we have
d∑

i=1

ϕi(λ) = E

[
d∑

i=1

1{ ri − λi is among the top m largest values in r1 − λ1, · · · , rd − λd }

]
= m.

Lemma C.3. ϕi(λ) = 2Vi,3(λ)

Proof. Because

ϕi(λ) = Eri [P{there exist at most m− 1 of r1 − λ1, · · · , ri−1 − λi−1,

ri+1 − λi+1, · · · , rd − λd that are larger than x | ri − λi = x}],
then it suffices to note that the conditional probability inside is just

m−1∑
s=0

∑
I⊆{1,...,d}\{i},|I|=s

∏
q∈I

(1− F (x+ λq))
∏

q/∈I,q ̸=i

F (x+ λq)

 .
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C.1 Proof for Lemma 4.1

Proof. We follow the proof by Honda et al. [2023]. Let Q(x) = h(x)(x+ λi)
−N
∏

q∈I(1− F (x+

λq))
∏

q/∈I F (x+ λq). If q /∈ I, then

∂

∂λq
Ji,N,I(λ) = 2

∫ +∞

0

(x+ λq)
−3Q(x) dx := 2Jq

i,N,I(λ).

Hence,
∂

∂λq

Ji,N+k,I(λ)

Ji,N,I(λ)
= 2 ·

Jq
i,N+k,I(λ)Ji,N,I(λ)− Ji,N+k,I(λ)J

q
i,N,I(λ)

Ji,N,I(λ)2
.

Note that

Jq
i,N+k,I(λ)Ji,N,I(λ) =

∫ ∫
x,y≥0

(x+ λq)
−3(x+ λi)

−kQ(x)Q(y) dx dy

=
1

2

∫ ∫
x,y≥0

Q(x)Q(y)
[
(x+ λq)

−3(x+ λi)
−k + (y + λq)

−3(y + λi)
−k
]
dx dy,

and similarly,

Ji,N+k,I(λ)J
q
i,N,I(λ) =

1

2

∫ ∫
x,y≥0

Q(x)Q(y)
[
(y + λq)

−3(x+ λi)
−k + (x+ λq)

−3(y + λi)
−k
]
dx dy,

then we have Jq
i,N+k,I(λ)Ji,N,I(λ)− Ji,N+k,I(λ)J

q
i,N,I(λ) =

1

2

∫ ∫
x,y≥0

Q(x)Q(y)
[
(x+ λq)

−3(x+ λi)
−k + (y + λq)

−3(y + λi)
−k

−(y + λq)
−3(x+ λi)

−k − (x+ λq)
−3(y + λi)

−k
]
dx dy

=
1

2

∫ ∫
x,y≥0

Q(x)Q(y)
[
(x+ λq)

−3 − (y + λq)
−3
] [

(x+ λi)
−k − (y + λi)

−k
]
dx dy ≥ 0,

which implies that Ji,N+k,I(λ)
Ji,N,I(λ)

increases with λq ≥ 0.

C.2 Proof for Lemma 4.2

We divide the proof into two parts. Recall that for all µ ≥ 0, K,M ≥ 1, N ≥ 3 and µi ∈ R for all
1 ≤ i ≤ M , we defined

HN =

∫ +∞

0

(x+ µ)−Ne
− K

(x+µ)2

M∏
i=1

(1− F (x+ µi)) dx.

Lemma C.4. For all k ∈ N+, we have

HN+k

HN
≤ CN,k

((
M

K

)k/3

∧ µ−k

)
,

where CN,k is a positive constant only depending on N and k.

Proof. The upper bound of µ−k is obvious because (x+ µ)−N−k ≤ µ−k(x+ µ)−N and hence, in
the following we assume that µ−1 ≥ C ′

N

(
M
K

)1/3
, where C ′

N = 8
√
N − 2. Let u = 1

x+µ and

g(u) = uN−2e−Ku2
M∏
i=1

(
1− F

(
1

u
+ µi − µ

))
/Λ, u ≥ 0,

where Λ is a constant such that
∫ µ−1

0
g(u) du = 1. Consider a random variable U with pdf g(u), then

clearly,
HN+k

HN
= E[Uk].
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Our plan is to find some u0 > 0 such that g(u) decays rapidly after u0, then we expect that the order
of E[Uk] is roughly uk

0 .

Let ℓ(u) = log g(u) and yi =
1
u + µi − µ for all 1 ≤ i ≤ M , then when u ≥ 0,

dℓ

du
(u) =

N − 2

u
− 2Ku+ 2

M∑
i=1

1{yi≥0}

u2y3i

(
e

1

y2
i − 1

) .

Then it suffices to show that when u ≥ u0 := C ′
N

(
M
K

)1/3
/2, dℓ

du (u) ≤ −Ku/2. Because note that
u0 ≥ 4K−1/3 ≥ 4K−1/2 and µ−1 ≥ 2u0, then by Lemma G.10, we have

E[Uk] ≤ uk
0 + E[Uk

1{µ−1≥U≥u0}] ≤ (1 + 2k!!)uk
0 .

Note that supx≥0
1

x3

(
e

1
x2 −1

) < 1, then we have

dℓ

du
(u) ≤ N − 2

u
− 2Ku+

2M

u2
.

When u ≥ u0, clearly, since CN is large enough, we have

2M

u2
≤ Ku

2
.

Also, since u0 >
√

N−2
K , when u ≥ u0, we have N−2

u ≤ Ku. Therefore, when u ≥ u0, dℓ
du (u) ≤

−Ku/2, which completes our proof.

Lemma C.5. If K ≥ M , then we have

H4

H3
≤ C

((
M

K
log

(
K

M
+ 1

))1/2

∧ µ−1

)
,

where C is a positive constant.

Proof. We still use the definition of g and U in the proof of Lemma C.4 (N = 3 and k = 1). Let
u0 =

(
M
K log

(
K
M + 1

))1/2
. When K ≤ 32M , by Lemma C.4, the result holds clearly when C is

large enough. Hence we then assume that K > 32M . Then u0 < 1/3. Similarly, in the following,
we also assume that µ−1 ≥ C ′u0, where C ′ > 3 is a large constant to be chosen and is not depending
on K and M .

Similarly, our plan is still to find some u0 > 0 such that g(u) decays rapidly after u0. We will first
compute the ratio g(su0)

g(u0)
for s ≥ 1, and then find a suitable choice of u0 such that this ratio decays at

a rate comparable to the Gaussian tail.

However, the challenge is that we also need to ensure that g(u0) is not too large in order to concretely
control the decay rate of g(su0). To illustrate this, we will use a simple fact: if we choose u0 large
enough so that g(u) starts decreasing after u0

3 , then the values of g(u) over the interval [u0

3 , 2u0

3 ]
should all be larger than g(u0). Since g(u) is a probability density function, we then have

1 ≥
∫ 2u0

3

u0
3

g(u) du ≥ g(u0) ·
u0

3
,

which naturally gives an upper bound on g(u0). For the convenience of presentation, in the following
formal proof, we scaled u0 to 3u0.

For all s ≥ t ≥ 1, we have

g(su0)

g(tu0)
=

s

t
e−Ku2

0(s
2−t2)

M∏
i=1

1− F
(

1
su0

+ µi − µ
)

1− F
(

1
tu0

+ µi − µ
) .
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If 1 ≤ t ≤ 3, then tu0 < 1. Hence, by Lemma G.7, we have

g(su0)

g(tu0)
≤ s

t
e−Ku2

0(s
2−t2)

(
8

t2u2
0

)M

≤ se−Ku2
0(s

2−t2)

(
8

u2
0

)M

. (8)

Then on the one hand, for all t ∈ [1, 2], we have

g(3u0)

g(tu0)
≤ 3e−5Ku2

0

(
8

u2
0

)M

≤ 3e−5M log(K
M +1)

(
8K

M

)M

,

where we used the definition of u0 in the last inequality. Since K
M > 8, we have

g(3u0)

g(tu0)
≤ 3e−5M log(K

M +1)+2M log(K
M ) < 1.

Then since C ′ ≥ 2,

1 ≥
∫ µ−1

u0

g(u) du ≥
∫ 2u0

u0

g(u) du ≥ u0g(3u0),

which implies that g(3u0) ≤ u−1
0 .

On the other hand, by Eq. (8), for all s ≥ 3, we have

g(su0)

g(3u0)
≤ se−Ku2

0(s
2−9)

(
8

u2
0

)M

≤ elog(s)−M log(K
M +1)(s2−9)+M log(8)+M log(K

M ).

Then since K > 32M ≥ 32, one can find C ′′ > 3 that is not depending on K and M and large
enough (one can then pick an C ′ larger than C ′′) such that for all s ≥ C ′′, we have

g(su0)

g(3u0)
≤ e−

M
2 log(K

M +1)s2 .

Therefore,∫ µ−1

u0

C′′
sg(su0) ds ≤g(3u0)

∫ +∞

C′′
se−M log(K

M +1)s2/2 ds ≤ u−1
0

∫ +∞

C′′
se−M log(K

M +1)s2/2 ds

=u−1
0

(
M log

(
K

M
+ 1

))−1

e−C′′2M log(K
M +1)/2 ≤ u−1

0 .

Then we have

E[U ] ≤ C ′′u0 +

∫ µ−1

C′′u0

ug(u) du = C ′′u0 + u2
0

∫ µ−1

u0

C′′
sg(su0) ds ≤ (C ′′ + 1)u0.

C.3 Lower Bounds

In this section, we will prove lower bounds for Lemma 4.2, showing that the logarithmic term and
M1/3 are inevitable.

Lemma C.6. For all µ ∈ R, K ≥ 1, and N ≥ 3, define

UN (µ) =

∫ +∞

0

x−Ne−
K
x2 (1− F (x+ µ)) dx.

Then there exists C > 0 such that for all K ≥ 2, we have

sup
µ∈R

U4(µ)

U3(µ)
≥ C

√
log(K)

K
.
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Proof. Let w = e−
K
x2 , then x(w) =

√
K

− logw and

UN (µ) =
1

2
K−N−1

2

∫ 1

0

(− logw)
N−3

2 (1− F (x(w) + µ)) dw,

which implies that

√
K

U4(µ)

U3(µ)
=

∫ 1

0
(− logw)

1
2 (1− F (x(w) + µ)) dw∫ 1

0
[1− F (x(w) + µ)] dw

= E[(− log(W ))1/2],

where W is a random variable with p.d.f. proportional to (1− F (x(w) + µ))1{w∈[0,1]}.

An intuitive understanding of this result is that the pdf of W , given by 1 − F (x(w) + µ), is

monotonically decreasing on [0, 1] and clearly exhibits a sharp drop at e−
K
µ2 : the pdf is equal to 1

before this point and then gradually decays afterward. Our calculation will show that most of the
density is concentrated in the first half of the interval, and thus the expectation of (− log(W ))1/2

is of a larger order than simply substituting W = e
− K

µ2 . Thus, by choosing µ = −
√

2K
log(K) , the

desired lower bound follows.

Clearly, for all s ≥ 0, we have

E[(− log(W ))1/2] ≥
√
sP(W ≤ e−s). (9)

Let µ = −
√

2K
log(K) and s = K

µ2 = log(K)
2 . Then when w ≤ e−s, one can see that x(w) + µ ≤ 0,

which implies that ∫ e−s

0

[
1− F (x(w) + µ)

]
dw = e−s = K−1/2.

Then it suffices to show that∫ 1

e−s

[
1− F (x(w) + µ)

]
dw = e−s = O(K−1/2), (10)

since then we have

P(W ≤ e−s) =
K−1/2

K−1/2 +O(K−1/2)
≥ C,

where C is a positive constant. Combining Eq. (9) and Eq. (10) leads to the desired result.

To show Eq. (10), one should note that when w ≥ e−(K−1/4+s−1/2)−2

,

1− F (x(w) + µ) = 1− e
− 1

(x(w)+µ)2 ≤ 1

(x(w) + µ)2
=

1

K
(√

1
− logw −

√
1
s

)2 ≤ K−1/2,

where we used that 1− e−x ≤ x for all x ∈ R. Then∫ 1

e−(K−1/4+s−1/2)−2

[
1− F (x(w) + µ)

]
dw ≤ K−1/2.

Finally, since

e−(K−1/4+s−1/2)−2

− e−s = e−s ·
(
es−s(K−1/4s1/2+1)−2

− 1
)
,

and noting that, by s = log(K)
2 ,

s− s(K−1/4s1/2 + 1)−2 =
s(K−1/2s+ 2K−1/4s1/2)

(K−1/4s1/2 + 1)2
= o(1),

we then have∫ e−(K−1/4+s−1/2)−2

e−s

[
1− F (x(w) + µ)

]
dw ≤ e−(K−1/4+s−1/2)−2

− e−s = o(e−s) = o(K−1/2),

where we used that eo(1) − 1 = o(1). It suffices to put everything together.
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Lemma C.7. For all µ ∈ R, M,K ≥ 1, and N ≥ 3, define

RN (µ) =

∫ +∞

0

x−Ne−
K
x2 (1− F (x+ µ))

M
dx.

Then there exists C > 0 such that for all M ≥ 2K, we have

sup
µ∈R

R4(µ)

R3(µ)
≥ C

(
M

K

)1/3

.

Proof. We still use the definition of g and U in the proof of Lemma C.4 (N = 3 and k = 1). Our plan
is to show that that exists µ ∈ R and corresponding C > 0 such that when 0 ≤ u ≤ u0 := C

(
M
K

)1/3
,

dℓ
du (u) ≥ 0, which implies that g(u) increases with u when u ≤ u0. Then we have

P
(
U ≤ u0

2

)
=

∫ u0
2

0

g(u) du ≤
∫ u0

u0
2

g(u) du,

which implies that P
(
U ≤ u0

2

)
≤ 1

2 . Then by Markov’s inequality, we have

E[U ] ≥ u0

2
P
(
U >

u0

2

)
≥ u0

4
,

which is just the desired result.

To this end, let µ = 1 > 0 and y = 1
u + 1, then

dℓ

du
(u) =

1

u
− 2Ku+

2M

u2y3
(
e

1
y2 − 1

) =
1

u
+ 2Ku

 M/K

u3y3
(
e

1
y2 − 1

) − 1

 .

Since 1 ≤ y, when u ≤
(
M
K

) 1
3 (e− 1)−

1
3 − 1, we have

M/K

u3y3
(
e

1
y2 − 1

) =
M/K

(u+ 1)3
(
e

1
y2 − 1

) ≥ M/K

(u+ 1)3 (e− 1)
≥ 1.

Take C = (e − 1)−
1
3 − 2−

1
3 > 0 and then one can see that when M ≥ 2K, u0 := C

(
M
K

)1/3 ≤(
M
K

) 1
3 (e− 1)−

1
3 − 1. Then when 0 ≤ u ≤ u0 := C

(
M
K

)1/3
, dℓ
du (u) ≥ 0.

D Stability Term

In this section, we provide our results related to the stability term. We start with showing some
important properties for Vi,N .
Lemma D.1. For all I ⊂ {1, · · · , d} such that |I| < m and i /∈ I, where 1 ≤ i ≤ d, we have

V I
i,N (λ) =

∫ ∞

−min
j /∈I

λj

1

(x+ λi)N

∏
q∈I

(1− F (x+ λq))
∏
q/∈I

F (x+ λq) dx.

Then for all 1 ≤ i ≤ d such that σi(λ) > m, we have

Vi,N (λ) =

∫ ∞

− max
I,|I|<m

min
j /∈I

λj

1

(x+ λi)N
e−1/(x+λi)

2
m−1∑
s=0

∑
I⊆{1,...,d}\{i},|I|=s

∏
q∈I

(1− F (x+ λq))
∏

q/∈I,q ̸=i

F (x+ λq)

dx.

Proof. For the first result, it suffices to note that F (x) = 0 when x ≤ 0, then when x ≤ −min
j /∈I

λj ,

the integrand in Eq. (3) is just 0. For the second result, recall that

Vi,N (λ) =

m−1∑
s=0

∑
I⊆{1,...,d}\{i},|I|=s

V I
i,N (λ)

22



and note that for all I ⊂ {1, · · · , d} such that |I| < m and i /∈ I,

− max
I,|I|<m

min
j /∈I

λj = min
I,|I|<m

(
−min

j /∈I
λj

)
≤ −min

j /∈I
λj ,

then the result follows from that for every V I
i,N (λ), the lower limit of the integral can be further

reduced to − max
I,|I|<m

min
j /∈I

λj .

Lemma D.2. The followings hold:

1. For all N ≥ 2, Vi,N (λ) ≤ λ1−N
i

N−1 .

2. For all 1 ≤ i ≤ d and N ≥ 3, Vi,N (λ) is increasing in all λj , j ̸= i and decreasing in λi.

3. V̄i,N (λ) :=
Γ(N−1

2 )

2 − Vi,N (λ) =∫ ∞

−λi

1

(x+ λi)N
e−1/(x+λi)

2
d−1∑
s=m

∑
I⊆{1,...,d}\{i},|I|=s

∏
q∈I

(1− F (x+ λq))
∏

q/∈I,q ̸=i

F (x+ λq)

 dx ≥ 0.

Proof. For the first result, obviously, it suffices to consider the case when σi(λ) > m. By Lemma
D.1, we have

Vi,N (λ) =

∫ ∞

− max
I,|I|<m

min
j /∈I

λj

1

(x+ λi)N
e−1/(x+λi)

2
m−1∑
s=0

∑
I⊆{1,...,d}\{i},|I|=s

∏
q∈I

(1− F (x+ λq))
∏

q/∈I,q ̸=i

F (x+ λq)

dx

≤
∫ ∞

− max
I,|I|<m

min
j /∈I

λj

1

(x+ λi)N
dx =

∫ ∞

0

1

(z + λi)
N

dz =
λ1−N
i

N − 1
,

where in the inequality, we upper bound the conditional probability inside (see Lemma C.3) by 1.

For the rest results, consider a random variable r′i with density

g(x) =
x−Ne−1/x2

1{x>0}∫ +∞
0

x−Ne−1/x2 dx
=

2

Γ(N−1
2 )

x−Ne−1/x2

1{x>0}.

Then similar to Eq. (1),

Vi,N (λ) =
Γ(N−1

2 )

2
P(there exist at most m− 1 of r1 − λ1, · · · , ri−1 − λi−1, ri+1 − λi+1, · · · ,

rd − λd that are larger than r′i − λi),

where r1, · · · , ri−1, ri+1, · · · , rd
i.i.d.∼F2. Then these properties hold obviously.

Lemma D.3. For all 1 ≤ i ≤ d, we have

Vi,4(λ)

Vi,3(λ)
≤ λ−1

i ∧ C

{√
m log(d)
σi(λ)−m σi(λ) > 2m

m1/3 σi(λ) ≤ 2m,

where C is a positive constant.

Proof. For any I ⊆ {1, · · · , d} such that |I| < m and i /∈ I, by Lemma D.1, we have

V I
i,N (λ) =

∫ ∞

−min
j /∈I

λj

1

(x+ λi)N

∏
q∈I

(1− F (x+ λq))
∏
q/∈I

F (x+ λq) dx

=

∫ ∞

0

1

(z + λI
i )

N

∏
q∈I

(1− F (z + λI
q ))
∏
q/∈I

F (z + λI
q ) dz,

(11)
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where we denoted that λI
q := λq −min

j /∈I
λj for all 1 ≤ q ≤ d and we denoted that z = x+min

j /∈I
λj .

Then, clearly,
V I
i,4(λ)

V I
i,3(λ)

≤ (λI
i )

−1, which implies that

Vi,4(λ)

Vi,3(λ)
≤ max

I,|I|<m,i/∈I
(λI

i )
−1 = (λi − max

I,|I|<m,i/∈I
min
j /∈I

λj)
−1 ≤ λ−1

i .

For the second part, by Eq. (11) and Lemma 4.1, we have

V I
i,4(λ)

V I
i,3(λ)

=
Ji,4,I(λ

I)

Ji,N,I(λ
I)

≤ Ji,4,I(λ
⋆)

Ji,N,I(λ⋆)
=

∫∞
0

1
(z+λI

i )
4 e

− σ′
i(λ)

(z+λI
i
)2
∏

q∈I(1− F (z + λ⋆
q)) dz∫∞

0
1

(z+λI
i )

3 e
−

σ′
i
(λ)

(z+λI
i
)2
∏

q∈I(1− F (z + λ⋆
q)) dz

, (12)

where we denoted that

λ⋆
q =


+∞ q /∈ I and λq ≥ λi

λI
i q /∈ I and λq ≤ λi

λI
q q ∈ I,

and λi is the σ′
i(λ)-th smallest in {λq}q/∈I . To apply Lemma 4.2, one should note that here K = σ′

i(λ)
and M = |I|. If σi(λ) > 2m, then K ≥ σi(λ)−m ≥ m ≥ M , then by the second result in Lemma
4.2, there exists C > 0 such that the right hand in Eq. (12)

≤ C

√
M

K
log

(
K

M
+ 1

)
≤ C

√
m log(d)

σi(λ)−m
.

If σi(λ) ≤ 2m, similarly, by the first result in Lemma 4.2, the right hand in Eq. (12) is less than

C

(
M

K

) 1
3

≤ m1/3.

Lemma D.4. For all 1 ≤ i ≤ d, N ≥ 3 and k ≥ 1, we have

V̄i,N+k(λ)

V̄i,N (λ)
≤ CN,kd

k
3 ,

where CN,k is a positive constant.

Proof. Recall that in Lemma D.2 we have∫ ∞

−λi

1

(x+ λi)N
e−1/(x+λi)

2
d−1∑
s=m

∑
I⊆{1,...,d}\{i},|I|=s

∏
q∈I

(1− F (x+ λq))
∏

q/∈I,q ̸=i

F (x+ λq)

dx ≥ 0,

then the proof follows from the case σi(λ) ≤ 2m in Lemma D.3 by noting that |I| ≤ d.

Lemma D.5. There exists C > 0 such that for all a ∈ [0, d−1] and 1 ≤ i ≤ d,

V̄i,6(λ+ aei)

V̄i,6(λ)
≤ C.

Proof. It suffices to show that ∂
∂λi

log(V̄i,6(λ)) is upper bounded by Cd. By the definition,

∂

∂λi
log(V̄i,6(λ)) =

∂
∂λi

V̄i,6(λ)

V̄i,6(λ)
,

where

∂

∂λi
V̄i,6(λ) =

∫ ∞

−λi

∂

∂λi

(
1

(x+ λi)6
e−1/(x+λi)

2

) d−1∑
s=m

∑
I⊆{1,...,d}\{i},|I|=s

∏
q∈I

(1− F (x+ λq))
∏

q/∈I,q ̸=i

F (x+ λq)

dx,
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since lim
x→−λi

1
(x+λi)6

e−1/(x+λi)
2

= 0 . Note that ∂
∂λi

(
1

(x+λi)6
e−1/(x+λi)

2
)
≤ 2

(x+λi)9
e−1/(x+λi)

2

,

then it’s clear that ∂
∂λi

V̄i,6(λ) ≤ 2V̄i,9(λ). Hence, by Lemma D.4, there exits C > 0 such that
∂

∂λi
log(V̄i,6(λ)) ≤ Cd.

Then we show our the results about the continuity of ϕ.
Lemma D.6. There exists C > 0 such that for all 1 ≤ i ≤ d, a > 0 and λ ∈ Rd, if w = ϕi(λ) and
w′ = ϕi(λ+ aei), then the followings hold:

1. w − w′ ≤ Cwa · λ−1
i ∧

{√
m log(d)
σi(λ)−m σi(λ) > 2m

m1/3 σi(λ) ≤ 2m.

2. w − w′ ≤ Cd(1− w)a, if a ≤ d−1.

Proof. For the first result, note that for all t ∈ [0, 1]

d

dt
ϕi(λ+ (1− t)aei) = −a

∂ϕi

∂λi
(λ+ (1− t)aei).

Then,

−∂ϕi

∂λi
(λ+(1−t)aei) = 6Vi,4(λ+(1−t)aei)−4Vi,6(λ+(1−t)aei) ≤ 6Vi,4(λ+(1−t)aei) ≤ 6Vi,4(λ),

where we used Lemma D.2 in the final inequality. Recall that w = ϕi(λ) = 2Vi,3(λ), then by Lemma
D.3,

−∂ϕi

∂λi
(λ+ (1− t)aei) ≤ C ′w · λ−1

i ∧

{√
m log(d)
σi(λ)−m σi(λ) > 2m

m1/3 σi(λ) ≤ 2m.

Therefore,

w − w′ =

∫ 1

0

d

dt
ϕi(λ+ (1− t)aei) dt ≤ C ′wa · λ−1

i ∧

{√
m log(d)
σi(λ)−m σi(λ) > 2m

m1/3 σi(λ) ≤ 2m.
(13)

For the second result, let ϕ̄ = 1−ϕ, then w−w′ = ϕ̄i(λ+ aei)− ϕ̄i(λ). Similarly, for all t ∈ [0, 1],

d

dt
ϕ̄i(λ+ taei) = a

∂ϕ̄i

∂λi
(λ+ taei).

Since now ϕ̄i(λ) = 2V̄i,3(λ), then clearly,

∂ϕ̄i

∂λi
(λ) = −6V̄i,4(λ) + 4V̄i,6(λ) ≤ 4V̄i,6(λ).

Hence, combing Lemma D.5 and Lemma D.4, we have

∂ϕ̄i

∂λi
(λ+ taei) ≤ 4V̄i,6(λ+ taei) ≤ CV̄i,6(λ) ≤ C ′dV̄i,3(λ) = C ′′d(1− w).

Finally, one can obtain the result by the way similar to Eq. (13).

D.1 Proof for Lemma 4.3

Proof. By Lemma D.2,
ϕi(ηtL̂t+1) ≥ ϕi(ηtL̂t + ηtℓ̂t,i · ei),

then
ℓ̂t,i

(
ϕi(ηtL̂t)− ϕi(ηtL̂t+1)

)
≤ ℓ̂t,i

(
ϕi(ηtL̂t)− ϕ(ηtL̂t + ηtℓ̂t,i · ei)

)
.

Denote that

Λ = L̂
−1

t,i ∧ ηt

{√
m log(d)

σi(L̂t)−m
σi(L̂t) > 2m

m1/3 σi(L̂t) ≤ 2m.
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Hence, by Lemma D.6
ℓ̂t,i(w − w′) ≤ CΛwℓ̂2t,i ≤ CΛwK2

t,iAt,i,

where we denoted that w = ϕi(ηtL̂t) and w′ = ϕi(ηtL̂t + ηtℓ̂t,i · ei). By Lemma G.4, E[K2
t,i |

Ft−1, At] ≤ 2w−2. Then

E[ℓ̂t,i(w − w′) | Ft−1, At] ≤ 2CΛ · w−1At,i.

Hence, since E[At,i | Ft−1] = w, then

E[ℓ̂t,i(w − w′) | Ft−1] ≤ 2CΛ.

D.2 Proof for Lemma 4.5

Proof. By Lemma 4.3, it’s clear that
d∑

i=m+1

E
[
ℓ̂t,i

(
ϕi(ηtL̂t)− ϕi(ηtL̂t+1)

)
| Ft−1

]
≤ C

d∑
i=m+1

L̂
−1

t,i ,

then it suffices to tackle the sum for 1 ≤ i ≤ m. By Lemma D.6 and following the same argument in
Lemma 4.3, for all 1 ≤ i ≤ m, we have

E
[
1{ηtKt,i≤d−1}ℓ̂t,i

(
ϕi(ηtL̂t)− ϕi(ηtL̂t+1)

)
| Ft−1

]
≤ Cηtdw

−1
t,i (1− wt,i),

where we denoted that wt = ϕ(ηtL̂t) and we used the fact that ηtℓ̂t,i ≤ d−1 when ηtKt,i ≤ d−1.

Note that by Lemma F.1, when
d∑

i=m+1

(ηtL̂t,i)
−2 < 1

2m , for all 1 ≤ i ≤ m,

wt,i ≥ w⋆ ≥ 1/2. (14)

Hence,
m∑
i=1

E
[
1{ηtKt,i≤d−1}ℓ̂t,i

(
ϕi(ηtL̂t)− ϕi(ηtL̂t+1)

)
| Ft−1

]
≤ 2Cηtd

m∑
i=1

(1−wt,i) = 2Cηtd

d∑
i=m+1

wt,i,

where we used that
d∑

i=1

wt,i = m by Lemma C.2. Finally, for all 1 ≤ i ≤ m,

E
[
1{ηtKt,i>d−1}ℓ̂t,i

(
ϕi(ηtL̂t)− ϕi(ηtL̂t+1)

)
| Ft−1

]
≤ E

[
1{ηtKt,i>d−1}At,iKt,i | Ft−1

]
= E

[
1{ηtKt,i>d−1}wt,iKt,i | Ft−1

]
,

which, by Lemma G.4, is less than

(1− wt,i)
⌊d−1η−1

t ⌋ ≤ (1− wt,i)
1

2ηtd ≤ 2−
1

2ηtd ,

where we used Eq. (14) in the final inequality. It suffices to combine everything together naively.

E Penalty Term

In this section, we present our results related to the penalty term.
Lemma E.1. If r ∼ F2, then for all x ≥ 1, we have

E[ r | r ≥ x] ≤ 4x.

Proof. By the definition, we have

E[ r | r ≥ x] =

∫ +∞
x

uf(u) du

1− F (x)
≤ 2x2

∫ +∞

x

uf(u) du ≤ 2x2

∫ +∞

x

2u−2 du = 4x,

where the first inequality used that 1− e−x ≥ x/2 when 0 ≤ x ≤ 1 and the second inequality used
that e−1/u2 ≤ 1.
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Lemma E.2. Consider r1, · · · , rd
i.i.d.∼F2 with r(k) as the kth order statistic for all 1 ≤ k ≤ d.

Then for all m ≤ d, the expectation of the largest m numbers, say E
[∑d

k=d−m+1 r(k)

]
, is less than

5
√
md.

Proof. Clearly,

E

[
d∑

k=d−m+1

r(k)

]
≤

√
md+E

[
d∑

k=d−m+1

r(k) · 1{
r(k)≥

√
d/m

}
]
≤

√
md+

d∑
k=1

E
[
rk · 1{

rk≥
√

d/m
}] .

Then it suffices to note that, by Lemma E.1, we have

E
[
rk · 1{

rk≥
√

d/m
}] ≤ 4

√
d/mP

(
rk ≥

√
d/m

)
= 4
√
d/m

(
1− e−m/d

)
≤ 4
√
m/d,

where the final inequality used that 1− e−x ≤ x.

E.1 Proof for Lemma 3.4

Proof. If a = ∇Φ(λ), which implies that a ∈ ∂Φ(λ), then by Lemma G.1, we have

Φ∗(a) = ⟨λ, a⟩ − Φ(λ) = E[⟨λ,A⟩]− Φ(λ) = E[⟨λ,A⟩]− E[⟨r + λ,A⟩] = −E[⟨r,A⟩],

where we used that E[A] = ϕ(−λ) = a in the second equality and the third equality follows from the
definition of Φ. If a ∈ A, for all x ∈ Rd, we have Φ(x) ≥ E[⟨r + x, a⟩], which implies that

Φ∗(a) ≤ sup
x∈Rd

⟨x, a⟩ − E[⟨r + x, a⟩] = −E[⟨r, a⟩].

E.2 Proof for Lemma 4.6

Proof. By Lemma 3.4,
Φ∗(a)− Φ∗(ϕ(λ)) ≤ E[⟨r,A− a⟩], (15)

where A = argmaxa∈A⟨r + λ, a⟩. Then for the first result, since r ∈ R+d,

Φ∗(a)− Φ∗(ϕ(λ)) ≤ E[max
a′∈A

⟨r, a′⟩],

which is less than 5
√
md by Lemma E.2.

For the second result, W.L.O.G., we assume that λ1 ≤ · · · ≤ λd, then a = (1, · · · , 1︸ ︷︷ ︸
m of 1

, 0, · · · , 0︸ ︷︷ ︸
d−m of 0

) and

by Eq. (15),

Φ∗(a)− Φ∗(ϕ(λ)) ≤
d∑

i=m+1

E[ri1{Ai=1}].

By the definition of A, for all i > m, we have

E[ri1{Ai=1}] =Eri [riE[1{Ai=1} | ri = x+ λi]]

=

∫ ∞

−λi

2(x+ λi)

(x+ λi)3
e−1/(x+λi)

2
m−1∑
s=0

∑
I⊆{1,...,d}\{i},|I|=s

∏
q∈I

(1− F (x+ λq))
∏

q/∈I,q ̸=i

F (x+ λq)

dx

=2Vi,2(λ) ≤ 2λ−1
i ,

where we used Lemma D.2 in the final inequality. This completes our proof.
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F Probability of the Best Action

In this section, we present our results related to the lower bound for the regret.
Lemma F.1. For all λ ∈ Rd, let

w⋆ = P{ min
1≤i≤m

(ri − λi) ≥ max
m+1≤i≤d

(ri − λi)},

where r1, · · · , rd
i.i.d.∼F2. Then, we have the followings:

1. If
d∑

i=m+1

λ−2
i < 1

2m , then w⋆ ≥ 1
2 .

2. If
d∑

i=m+1

λ−2
i ≥ 1

2m , then w⋆ ≤ 1− 1
16m .

Proof. If
d∑

i=m+1

λ−2
i = +∞, then there exists 1 ≤ i ≤ m < j ≤ d such that λi ≥ λj . W.L.O.G.,

we assume that λm ≥ λm+1. Denote that Xi = ri − λi for all 1 ≤ i ≤ d, then clearly,
w⋆ =P{X1, · · · , Xm are the m largest values among X1, · · · , Xd}

≤P{X1, · · · , Xm−1, Xm+1 are the m largest values among X1, · · · , Xd} := w′
⋆.

Note that w⋆ + w′
⋆ ≤ 1, then we have w⋆ ≤ 1/2 ≤ 1− 1

16m .

Then we assume that
d∑

i=m+1

λ−2
i < +∞, which implies that max

1≤i≤m
λi < max

m+1≤i≤d
λi. W.L.O.G., we

assume that λ1 ≤ · · · ≤ λm < λm+1 ≤ · · · ≤ λd. Hence, max
I,|I|<m

min
j /∈I

λj = λm and λi = λi − λm

for all i > m. By the definition of w⋆,

w⋆ = 2

∫ +∞

−λm+1

d∑
i=m+1

(x+λi)
−3e

−
d∑

j=m+1
(x+λj)

−2 ∏
1≤k≤m

(
1− e−(x+λk)

−2

1{x+λk≥0}

)
dx. (16)

We first prove the lower bound for w⋆. Since for all k ≤ m, λk ≤ λm, then

w⋆ ≥ 2

∫ +∞

−λm+1

d∑
i=m+1

(x+ λi)
−3e

−
d∑

j=m+1
(x+λj)

−2 (
1− e−(x+λm)−2

1{x+λm≥0}

)m
dx.

Then by Bernoulli’s inequality, we have

w⋆ ≥2

∫ +∞

−λm+1

d∑
i=m+1

(x+ λi)
−3e

−
d∑

j=m+1
(x+λj)

−2 (
1−me−(x+λm)−2

1{x+λm≥0}

)
dx

=2

∫ +∞

−λm+1

d∑
i=m+1

(x+ λi)
−3e

−
d∑

j=m+1
(x+λj)

−2

dx− 2m

∫ +∞

−λm

d∑
i=m+1

(x+ λi)
−3e

−
d∑

j=m+1
(x+λj)

−2−(x+λm)−2

dx

=1−m

1−
∫ +∞

−λm

2(x+ λm)−3e
−

d∑
j=m+1

(x+λj)
−2−(x+λm)−2

dx


=1−m

1−
∫ +∞

0

2z−3e
−

d∑
j=m+1

(z+λj)
−2−z−2

dz


≥1−m

1− e
−

d∑
j=m+1

λ−2
j

∫ +∞

0

2z−3e−z−2

dz


=1−m

1− e
−

d∑
j=m+1

λ−2
j

 ,
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where in the third line we used that d

e
−

d∑
j=m+1

(x+λj)
−2

 = 2
d∑

i=m+1

(x+ λi)
−3e

−
d∑

j=m+1
(x+λj)

−2

and in the fourth line we used that λi = λi − λm for all i > m. Hence, when
d∑

i=m+1

λ−2
i < 1

2m , by

that −1 + e−x ≥ x, we have

w⋆ ≥ 1− m

2m
=

1

2
.

We then show the upper bounds. By Eq. (16), clearly,

w⋆ ≤2

∫ +∞

−λm+1

d∑
i=m+1

(x+ λi)
−3e

−
d∑

j=m+1
(x+λj)

−2 (
1− e−(x+λm)−2

1{x+λm≥0}

)
dx

=1− 2

∫ +∞

−λm

d∑
i=m+1

(x+ λi)
−3e

−
d∑

j=m+1
(x+λj)

−2−(x+λm)−2

dx

=1−
∫ +∞

0

2

d∑
i=m+1

(z + λi)
−3e

−
d∑

j=m+1
(z+λj)

−2−z−2

dz

≤1−
∫ +∞

λm+1

2

d∑
i=m+1

(z + λi)
−3e

−
d∑

j=m+1
(z+λj)

−2−z−2

dz.

(17)

If
d∑

i=m+1

λ−2
i ≥ 1

2m , note that when z ≥ λm+1, 1
z2 ≤ 4

(z+λm+1)
2 , then

d∑
j=m+1

(z + λj)
−2 + z−2 ≤ 5

d∑
j=m+1

(z + λj)
−2.

Hence, by Eq. (17),

w⋆ ≤1−
∫ +∞

λm+1

2

d∑
i=m+1

(z + λi)
−3e

−5
d∑

j=m+1
(z+λj)

−2

dz

=1− 1

5

1− e
−5

d∑
j=m+1

(λm+1+λj)
−2


≤1− 1

5

1− e
− 5

4

d∑
j=m+1

λ−2
j


≤1− 1

5

(
1− e−

5
8m

)
≤ 1− 1

16m
,

where we used that 1− e−x ≥ x
2 when x ∈ [0, 1] in the final inequality.

Lemma F.2. If
d∑

i=m+1

λ−2
i < 1

2m , then for all m < i ≤ d, ϕi(λ) ≥ 1
4eλ

−2
i .

Proof. By the definition of ϕi in Eq. (1), clearly, for all m < i ≤ d,

ϕi(λ) ≥P{ ri − λi is the largest in rm − λm, · · · , rd − λd }

=

∫ ∞

− min
m≤j≤d

λj

2

(z + λi)
3 exp

−
d∑

j=m

1

(z + λj)
2

 dz.
(18)
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Since
d∑

i=m

λ−2
i < 1

2m , similar to Lemma F.1, W.L.O.G., we assume that λ1 ≤ · · · ≤ λm < λm+1 ≤

· · · ≤ λd. Hence, max
I,|I|<m

min
j /∈I

λj = λm and λi = λi − λm for all i > m. Therefore, by Eq. (18),

we have

ϕi(λ) ≥
∫ ∞

0

2

(z + λi)
3 exp

−
d∑

j=m

1(
z + λj

)2
 dz

≥
∫ ∞

λm+1

2

(z + λi)
3 exp

−
d∑

j=m

1(
z + λj

)2
dz.

Note that when z ≥ λm+1,

d∑
j=m

1(
z + λj

)2 =

d∑
j=m+1

(z + λj)
−2 + z−2 ≤

d∑
j=m+1

λ−2
j + λ−2

m+1 ≤ 2

d∑
j=m+1

λ−2
j <

1

m
≤ 1,

then by Eq. (17),

ϕi(λ) ≥ e−1

∫ +∞

λm+1

2(z + λi)
−3 dz = e−1

(
λi + λm+1

)−2 ≥ 1

4e
λ−2
i ,

where in the final inequality we used that λm+1 ≤ λi for all i ≥ m+ 1.

Lemma F.3. Use the definition of w⋆ in Lemma F.1, then we have

1− w⋆ ≤
d∑

i=m+1

ϕi(λ).

Proof. Clearly,

1− w⋆ =P{ min
1≤i≤m

(ri − λi) < max
m+1≤i≤d

(ri − λi)}

=P

{
d⋃

i=m+1

{ri − λi is among the top m largest values in r1 − λ1, · · · , rd − λd }

}

≤
d∑

i=m+1

ϕi(λ).

G Auxiliary Lemma

Lemma G.1 (Theorem 23.5 in Pryce [1973]). For any continuous convex function g and any vector
x, the following conditions on a vector x∗ are equivalent to each other:

1. x∗ ∈ ∂g(x).

2. x ∈ ∂g∗(x∗).

3. g(x) + g∗(x∗) = ⟨x, x∗⟩.
Lemma G.2 (Generalized Pythagoras Identity).

DΦ(x, y) +DΦ(z, x)−DΦ(z, y) = ⟨∇Φ(x)−∇Φ(y), x− z⟩.

Proof. It suffices to expand the left hand by the definition that

DΦ(x, y) = Φ(x)− Φ(y)− ⟨x− y,∇Φ(y)⟩.
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Lemma G.3. If u = ∇Φ(x) and v = ∇Φ(y), then

DΦ(y, x) = Φ∗(u)− Φ∗(v)− ⟨u− v, y⟩.

Remark G.1. Informally, this is just the folklore that DΦ(y, x) = DΦ∗(u, v). However, it remains
unproven whether Φ∗ is differentiable everywhere, making it inconvenient to discuss its Bregman
divergence directly.

Proof. By Lemma G.1, we have

Φ∗(u) = ⟨u, x⟩ − Φ(x),Φ∗(v) = ⟨v, y⟩ − Φ(y).

Then the right hand equals

Φ(y)− Φ(x)− ⟨u, y − x⟩ = Φ(y)− Φ(x)− ⟨∇Φ(x), y − x⟩ = DΦ(y, x).

Lemma G.4. If K is sampled from the Geometric distribution with parameter p ∈ (0, 1), then
E[K2] ≤ 2

p2 . Furthermore, for all n ∈ N+, E[K −K ∧ n] = p−1(1− p)n.

Proof. For the first result,

E[K2] = E[K]2 +Var(K) =
1

p2
+

1− p

p2
≤ 2

p2
.

For the second result, by direct calculation, we have

E[K −K ∧ n] =

+∞∑
k=n+1

P(K ≥ k) =

+∞∑
k=n+1

(1− p)k−1 = p−1(1− p)n.

Lemma G.5. For all n ∈ N+,
n∑

k=1

1√
k
≤ 2

√
n.

Proof.
n∑

k=1

1√
k
≤ 1 +

∫ n

1

1√
x
dx ≤ 2

√
n.

Lemma G.6. For all x ∈ (0, 1], let f(x) =
+∞∑
t=1

2−
√
tx, then there exists C > 0 such that f(x) ≤ C

x2 .

Proof. It suffices to note that

f(x) ≤
∫ +∞

0

2−
√
tx dt = 2

∫ +∞

0

u2−ux du =
2

x2

∫ +∞

0

v2−v dv.

Lemma G.7. For all µ ∈ R and y ≥ x > 0, if y ≥ 1, then we have

1− F (x+ µ)

1− F (y + µ)
≤ 8y2.
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Proof. If x+ µ ≤ y, then
1− F (x+ µ)

1− F (y + µ)
≤ 1

1− F (y + µ)
.

When y + µ ≤ 0, the right hand equals 1 and is clearly less than 8y2. Otherwise, y + µ > 0 and then
it suffices to note that

1− F (y + µ) = 1− e−(y+µ)−2

≥ 1− e−y−2/4 ≥ y−2/8,

where we used y + µ ≤ y + x+ µ ≤ 2y in the first inequality and 1− e−x ≥ x/2 when 0 ≤ x ≤ 1
in the second inequality.

If x+ µ > y, then y + µ ≥ x+ µ > y ≥ 1 and similarly,

1− F (y + µ) = 1− e−(y+µ)−2

≥ (y + µ)−2/2.

Also, since for all x ≥ 0, 1− e−x ≤ x, we then have

1− F (x+ µ) = 1− e−(x+µ)−2

≤ (x+ µ)−2.

Therefore,
1− F (x+ µ)

1− F (y + µ)
≤ 2

(
y + µ

x+ µ

)2

< 2

(
y + y − x

y

)2

≤ 8 ≤ 8y2.

Lemma G.8 (Theorem 1.2.6 in Durrett [2019]). For x > 0,(
x−1 − x−3

)
exp(−x2/2) ≤

∫ ∞

x

exp(−y2/2) dy ≤ x−1 exp(−x2/2).

Lemma G.9. If Y ∼ N (0, σ2) and µ ≥ σ > 0, then for all k ∈ N , we have

E[Y k
1{Y≥µ}] ≤ k!! · σµk−1e−

µ2

2σ2 /
√
2π,

where we define that 0!! = 1.

Proof. If k = 0, by Lemma G.8, we have

E[1{Y≥µ}] = E[1{Y
σ ≥µ

σ }] ≤
σ

µ
e−

µ2

2σ2 /
√
2π.

If k = 1,

E[Y 1{Y≥µ}] =
1√
2πσ2

∫ +∞

µ

ye−
y2

2σ2 dy =
1√
2πσ2

σ2e−
µ2

2σ2 .

Assume that the statement holds for all integers 0, 1, . . . , k − 1, then

E[Y k
1{Y≥µ}] =

1√
2πσ2

∫ +∞

µ

yke−
y2

2σ2 dy =
σ2

√
2πσ2

∫ +∞

µ

yk−1 d

(
−e−

y2

2σ2

)
=

σ2

√
2πσ2

µk−1e−
µ2

2σ2 + (k − 1)σ2E[Y k−2
1{Y≥µ}].

Then it suffices to note that σ ≤ µ and 1 + (k − 1) · (k − 2)!! ≤ k · (k − 2)!! = k!!.

Lemma G.10. For any random variable X , let its density be denoted by f(x). If there exist
µ ≥ 2σ > 0 and µ′ > µ such that

d log f

dx
(x) ≤ −x/σ2, ∀µ′ ≥ x ≥ µ,

then for all k ∈ N+, if µ′ ≥ 2µ, we have

E[Xk
1{µ′≥X≥µ}] ≤ 2k!! · µk.
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Proof. Consider Y ∼ N (0, σ2), then we will show that

E[Xk
1{µ′≥X≥µ}] ≤ E[Y k |µ′ ≥ Y ≥ µ], (19)

which just equals

E[Y k
1{µ′≥Y≥µ}]

P(µ′ ≥ Y ≥ µ)
≤

E[Y k
1{Y≥µ}]

P(µ′ ≥ Y ≥ µ)
=

√
2πE[Y k

1{Y≥µ}]∫ µ′
σ

µ
σ

e−
x2

2 dx
≤ k!! · σµk−1e−

µ2

2σ2∫ µ′
σ

µ
σ

e−
x2

2 dx
, (20)

where we applied Lemma G.9 in the last inequality. By Lemma G.8, we have∫ µ′
σ

µ
σ

e−
x2

2 dx ≥
(
σ

µ
− σ3

µ3

)
e−

µ2

2σ2 − σ

µ′ e
− µ′2

2σ2 ≥
(
σ

µ
− σ3

µ3

)
e−

µ2

2σ2 − σ

2µ
e−

2µ2

σ2 , (21)

where we used µ′ ≥ 2µ in the last inequality. Since µ ≥ σ, we have e−
2µ2

σ2 ≤ 1
2e

− µ2

2σ2 . Hence,
combining Eq. (20) and Eq. (21), we have

E[Y k |µ′ ≥ Y ≥ µ] ≤ k!! · σµk−1e−
µ2

2σ2(
3σ
4µ − σ3

µ3

)
e−

µ2

2σ2

≤ 2k!! · µk

3
2 − 2σ2

µ2

.

The right hand is clearly less than 2µk when µ ≥ 2σ. To show Eq. (19), it suffices to show that for all
0 ≤ t ≤ µ′,

P(X 1{µ′≥X≥µ} ≥ t) ≤ P(Y ≥ t|µ′ ≥ Y ≥ µ), (22)
which holds when t ≤ µ because the right hand becomes 1 by the definition. In fact, we can prove a
stronger result: for all µ′ ≥ t > µ,

P(X 1{µ′≥X≥µ} ≥ t)

P(X 1{µ′≥X≥µ} ≥ µ)
≤ P(Y ≥ t|µ′ ≥ Y ≥ µ)

P(Y ≥ µ|µ′ ≥ Y ≥ µ)
. (23)

If there exists t0 > µ that violates Eq. (23), then we have
P(X 1{µ′≥X≥µ}≥t0)

P(X 1{µ′≥X≥µ}≥µ) > P(Y≥t0|µ′≥Y≥µ)
P(Y≥µ|µ′≥Y≥µ) ,

which is equivalent to

P(X 1{µ′≥X≥µ} ≥ t0)

P(µ ≤ X 1{µ′≥X≥µ} < t0)
>

P(Y ≥ t0|µ′ ≥ Y ≥ µ)

P(Y < t0|µ′ ≥ Y ≥ µ)
,

because x
x+1 increases with positive x. Then we have∫ µ′

t0
f(x) dx∫ t0

µ
f(x) dx

>

∫ µ′

t0
e−

x2

2σ2 dx∫ t0
µ

e−
x2

2σ2 dx
. (24)

By homogeneity, we may assume f(t0) = e−
t20
2σ2 . Now since for all µ′ ≥ x ≥ µ, we have

d log f(x)
dx ≤ −x/σ2, then for all x ≥ t0, f(x) ≤ e−

x2

2σ2 ; for all µ ≤ x < t0, f(x) ≥ e−
x2

2σ2 , which
contradicts with Eq. (24).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The theoretical assumptions in our paper are well-established and supported
by a substantial body of existing literature, with relevant references duly cited. Moreover,
we discuss potential directions for improvement in the concluding remarks.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Our paper presents a complete set of assumptions along with a fully self-
contained proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose all details of experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code in supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We disclose all details of experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We consider and report the statistical significance of our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide full information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research confirms with the NeurIPS Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our paper only focuses on the theory of bandits, and there is no societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper only focuses on the theory of bandits, and there is no societal impact.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly use and cite these assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in our paper does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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