
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FINGERPRINTING DEEP NEURAL NETWORKS FOR OWN-
ERSHIP PROTECTION: AN ANALYTICAL APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial-example-based fingerprinting approaches, which leverage the decision
boundary characteristics of deep neural networks (DNNs) to craft fingerprints,
has proven effective for protecting model ownership. However, a fundamental
challenge remains unresolved: how far a fingerprint should be placed from the
decision boundary to simultaneously satisfy two essential properties—robustness
and uniqueness—required for effective and reliable ownership protection. Despite
the importance of the fingerprint-to-boundary distance, existing works offer no
theoretical solution and instead rely on empirical heuristics to determine it, which
may lead to violations of either robustness or uniqueness properties.
We propose AnaFP, an analytical fingerprinting scheme that constructs fingerprints
under theoretical guidance. Specifically, we formulate the fingerprint generation
task as the problem of controlling the fingerprint-to-boundary distance through a
tunable stretch factor. To ensure both robustness and uniqueness, we mathemati-
cally formalize these properties that determine the lower and upper bounds of the
stretch factor. These bounds jointly define an admissible interval within which
the stretch factor must lie, thereby establishing a theoretical connection between
the two constraints and the fingerprint-to-boundary distance. To enable practical
fingerprint generation, we approximate the original (infinite) sets of pirated and
independently trained models using two finite surrogate model pools and employ a
quantile-based relaxation strategy to relax the derived bounds. Particularly, due to
the circular dependency between the lower bound and the stretch factor, we apply
a grid search strategy over the admissible interval to determine the most feasible
stretch factor. Extensive experimental results demonstrate that AnaFP consistently
outperforms prior methods, achieving effective and reliable ownership verification
across diverse model architectures and model modification attacks.

1 INTRODUCTION

Deep neural networks (DNNs) are increasingly vulnerable to model piracy in real-world deploy-
ments (Ren et al., 2023; Choi et al., 2025). Adversaries may steal a model, apply performance-
preserving model modification attacks to evade detection, and distribute these pirated ones as black-
box services, thereby profiting from public usage while concealing the models’ internal details. This
emerging threat raises serious concerns about the intellectual property (IP) protection of DNN models.
So far, extensive research has explored ownership protection techniques, such as watermarking (Fan
et al., 2019; Shafieinejad et al., 2021; Li et al., 2024; Choi et al., 2025) and fingerprinting (Chen et al.,
2022; Pan et al., 2022; Liu & Zhong, 2024; Godinot et al., 2025). While watermarking involves em-
bedding identifiable patterns into DNN models—potentially introducing new security vulnerabilities
(Wang et al., 2021a; Xu et al., 2024), fingerprinting offers a non-intrusive alternative by leveraging
the model’s intrinsic characteristics to generate unique, verifiable fingerprints. This non-intrusive
nature has made fingerprinting an increasingly appealing ownership protection approach.

To date, a broad spectrum of model fingerprinting schemes has been proposed (Cao et al., 2021; Guan
et al., 2022; Wang et al., 2021a; Xu et al., 2024; Zhao et al., 2024a; You et al., 2024; Ren et al., 2023;
Yin et al., 2022; Yang & Lai, 2023; Peng et al., 2022; Liu & Zhong, 2024; Godinot et al., 2025).
These schemes involve two phases: fingerprint generation and ownership verification (Lukas et al.,
2021; Yang et al., 2022). During the fingerprint generation phase, the inherent characteristics of a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

protected DNN model are leveraged to carefully craft fingerprints that elicit model-specific responses.
In the subsequent ownership verification phase, these fingerprints are used to assess whether a suspect
model is a pirated version of the protected model. The goal is to reliably identify pirated models
derived from the protected one, while avoiding false attribution of independently trained models. To
ensure this, effective fingerprints must exhibit two essential properties: 1) robustness—the ability
to withstand performance-preserving model modifications, and 2) uniqueness—the capability to
distinguish the protected model from other independently trained models (Pan et al., 2022).

A prominent line of work among existing model fingerprinting schemes builds on the key observation
that decision boundaries are highly model-specific, even across models trained on the same dataset
(Somepalli et al., 2022). This motivates adversarial-example-based fingerprinting approaches that
leverage the unique decision boundary characteristics of a model to craft fingerprints (Cao et al., 2021;
Wang et al., 2021a; Lukas et al., 2021; Yang & Lai, 2023; Peng et al., 2022; Zhao et al., 2020). More
specifically, fingerprints are crafted by applying minimal perturbations to input samples, pushing
them across the decision boundary of the protected model, akin to adversarial example generation.
Due to the inherent differences in decision boundaries, such perturbations typically induce prediction
changes in the protected model but leave independently trained models largely unaffected (Szegedy
et al., 2014; Zhao et al., 2020). This resulting prediction asymmetry enables the construction of
distinctive and reliable fingerprints for ownership verification (Zhao et al., 2020).

However, a fundamental challenge in adversarial-example-based fingerprinting is: how far should
a fingerprint be placed from the decision boundary to simultaneously satisfy the requirements of
robustness and uniqueness? Ensuring uniqueness requires placing fingerprints close to decision
boundaries, while enhancing robustness requires positioning fingerprints far from the boundaries.
Recent works (Cao et al., 2021; Liu & Zhong, 2024) have employed heuristic strategies to empirically
select the fingerprint-to-boundary distance. However, such approaches lack theoretical guidance,
potentially resulting in fingerprints that violate the two desired properties. Consequently, how
to theoretically determine the fingerprint-to-boundary distance that simultaneously satisfies both
uniqueness and robustness properties remains an open issue.

In this paper, we propose AnaFP, an Analytical adversarial-example-based FingerPrinting scheme
that crafts fingerprints under theoretical guidance. Specifically, we first identify high-confidence
samples from the dataset used to train the protected model as anchors for fingerprint generation. For
each anchor, we compute a minimal perturbation that induces a prediction change in the protected
model, thereby ensuring strong uniqueness. To further improve robustness, we introduce a stretch
factor that scales the perturbation, controlling the fingerprint’s distance from the decision boundary. To
ensure both robustness and uniqueness, we mathematically formalize the robustness and uniqueness
constraints and theoretically derive the lower and upper bounds of the stretch factor accordingly.
These bounds define an admissible interval within which the stretch factor must lie, thus establishing
a theoretical relationship between the two constraints and the fingerprint-to-boundary distance.

Although this theoretical relationship offers strong theoretical guarantees, its practical implementation
poses several challenges. First, computing the bounds requires worst-case parameter estimation over
all possible pirated and independently trained models—two theoretically infinite sets. Thus, we ap-
proximate the two sets using two surrogate model pools. Second, using the worst-case estimates often
leads to overly conservative bounds, reducing the feasibility of fingerprint construction. To mitigate
this, we employ a quantile-based relaxation mechanism to relax the two bounds through quantile-
based parameter estimation. Third, there exists a circular dependency between the lower bound and
the stretch factor. We address this by applying a grid search strategy over the admissible interval to
determine the most feasible value for the stretch factor. We conduct extensive experiments across di-
verse model architectures and datasets, and experimental results demonstrate that AnaFP consistently
achieves superior ownership verification performance, even under performance-preserving model
modification attacks, outperforming existing adversarial-example-based fingerprinting approaches.

2 BACKGROUND

2.1 ADVERSARIAL EXAMPLES

Adversarial examples are carefully crafted from samples in a clean dataset to induce a target model to
make incorrect predictions (Szegedy et al., 2014; Goodfellow et al., 2015). Given a model f and an

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

input-label pair (x, y) in a clean dataset D, an adversarial example x̂ = x + δ can be obtained by
solving:

min ∥x− x̂∥, s.t. f(x̂) ̸= y, (1)

where ∥ · ∥ denotes a distance metric (e.g., ℓ2 or ℓ∞ norm), and the perturbation δ is constrained
to ensure imperceptibility. By inducing misclassifications with minimal perturbations, adversarial
examples reveal the unique characteristics of a model’s decision boundary. This property makes
them particularly effective for constructing fingerprints that capture model-specific behaviors used
for ownership verification.

2.2 MODEL MODIFICATION ATTACKS

To circumvent ownership verification, adversaries usually launch performance-preserving model
modification attacks that alter a pirated model’s decision boundary while maintaining predictive
accuracy. Common techniques include fine-tuning (Zhuang et al., 2020), pruning (Li et al., 2017),
knowledge distillation (KD) (Hinton et al., 2015), and adversarial training (Zhao et al., 2024b).
Specifically, fine-tuning adjusts the weights of a pirated model through additional model training;
pruning eliminates less significant weights or neurons of a pirated model to reshape its structure; KD
trains a new model with a different structure and parameters to replicate the behavior of a pirated
model; and adversarial training updates model weights using a mixture of clean data and adversarial
examples, thereby posing a unique threat to adversarial-example-based fingerprinting methods. Even
worse, adversaries may combine multiple techniques, such as pruning followed by fine-tuning, to
induce substantial shifts in the decision boundary, thereby increasing the likelihood of invalidating
fingerprints.

3 PROBLEM FORMULATION

Attacker

Protected Model

Fingerprints

Steal

Extract

Model Owner

Pirated Model

Verify

Pruning
Fine-tuning

KD

Modification Attacks

DeployProcess

Ownership

Figure 1: A typical model fingerprinting scenario.

We consider a typical simplified model finger-
printing scenario with two parties: a model owner
and an attacker, as shown in Figure 1. Specifi-
cally, the model owner trains a DNN model P
and deploys it as a service. The attacker acquires
an unauthorized copy of P , applies performance-
preserving model modifications to it, and subse-
quently redistributes the pirated model in a black-
box manner (e.g., via API access). Let VP denote
the set of pirated models derived from P . To safe-
guard the intellectual property of P , the model
owner leverages the adversarial example technique to produce a set of fingerprints F for P . Once
identifying a suspect model S, the owner initiates ownership verification by querying S using fin-
gerprints in F . The goal is to determine whether S belongs to the pirated model set VP or the
independent model set IP that includes models independently trained from scratch without any
access to P .

To enable reliable verification, the fingerprint set F = {(x⋆
i , y

⋆
i)|1 ≤ i ≤ Nf}, where Nf is the

number of fingerprints, x⋆
i ∈ X ∈ Rd1×...×dn is the input of fingerprint i, and y⋆i ∈ Y = {1, . . . ,K}

is the corresponding target label, is constructed with the goal of satisfying the following properties:

• Robustness: Any fingerprint (x⋆
i , y

⋆
i) ∈ F remains effective against performance-preserving

modification attacks, i.e., P ′(x⋆
i) = y⋆i , for ∀P ′ ∈ VP .

• Uniqueness: Any fingerprint (x⋆
i , y

⋆
i) ∈ F is unlikely to be correctly predicted by any indepen-

dently trained models, i.e., I(x⋆
i) ̸= y⋆i , for ∀I ∈ IP .

4 THE DESIGN OF ANAFP

We present AnaFP, an analytical fingerprinting scheme that mathematically formalizes the robustness
and uniqueness properties, constructs practical fingerprints satisfying relaxed versions of these
constraints, and enables ownership verification using these fingerprints. As illustrated in Figure 2,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Fingerprint Generation

Surrogate-based
estimation

Quantile-based
relaxation

𝑞!

𝑞"
𝑞#

𝑥!$

𝑥"$

𝑥#$

𝛿!∗

𝛿"∗
𝛿#∗

𝑥!$

𝑥"$

𝑥#$
𝑥!∗

𝑥"∗
𝑥#∗

Step 1 Step 2 Step3 Step 4
Seaching stretch factors under theoretical

constraints

Grid search

𝛿&∗𝑥&$
Anchor

Boundary
point

Fingerprint

<latexit sha1_base64="4uKkdZMI8nkapJO/Pk+yFaorKlo=">AAACB3icbZDLSgMxFIYzXmu9jboUJFgEV2VGpLrooujGZQV7gXYYMmnahmaSIRelDN258VXcuFDEra/gzrcx085CW38I/PnOOSTnjxJGlfa8b2dpeWV1bb2wUdzc2t7Zdff2m0oYiUkDCyZkO0KKMMpJQ1PNSDuRBMURI61odJ3VW/dEKir4nR4nJIjRgNM+xUhbFLpHXY1MmDLxQOSkml2qM2KSxJLQLXllbyq4aPzclECueuh+dXsCm5hwjRlSquN7iQ5SJDXFjEyKXaNIgvAIDUjHWo5iooJ0uscEnljSg30h7eEaTunviRTFSo3jyHbGSA/VfC2D/9U6Rvcvg5TyxGjC8eyhvmFQC5iFAntUEqzZ2BqEJbV/hXiIJMLaRle0IfjzKy+a5lnZr5Qrt+el2lUeRwEcgmNwCnxwAWrgBtRBA2DwCJ7BK3hznpwX5935mLUuOfnMAfgj5/MHZ26aTw==</latexit>

ωlower < ω < ωupper

<latexit sha1_base64="l+cBQUqsfwvsGcGyFlPWUhrOIzg=">AAAB+XicbVBNS8NAEN34WetX1KOXxSJ4KolI9Vj04rGC/YAmhs120y7dbMLupFBC/okXD4p49Z9489+4bXPQ1gcDj/dmmJkXpoJrcJxva219Y3Nru7JT3d3bPzi0j447OskUZW2aiET1QqKZ4JK1gYNgvVQxEoeCdcPx3czvTpjSPJGPME2ZH5Oh5BGnBIwU2LYHJHvKPQ1EFUHuFoFdc+rOHHiVuCWpoRKtwP7yBgnNYiaBCqJ133VS8HOigFPBiqqXaZYSOiZD1jdUkphpP59fXuBzowxwlChTEvBc/T2Rk1jraRyazpjASC97M/E/r59BdOPnXKYZMEkXi6JMYEjwLAY84IpREFNDCFXc3IrpiChCwYRVNSG4yy+vks5l3W3UGw9XteZtGUcFnaIzdIFcdI2a6B61UBtRNEHP6BW9Wbn1Yr1bH4vWNaucOUF/YH3+AAnNk/A=</latexit>

ωω1
<latexit sha1_base64="hRDT1MIBzm5d09sgwJjB2TbtWXI=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0mKVI9FLx4r2A9oYthst+3SzSbsTgol5J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5YSK4Bsf5tkobm1vbO+Xdyt7+weGRfXzS0XGqKGvTWMSqFxLNBJesDRwE6yWKkSgUrBtO7uZ+d8qU5rF8hFnC/IiMJB9ySsBIgW17QNKnzNNAVB5k9Tywq07NWQCvE7cgVVSgFdhf3iCmacQkUEG07rtOAn5GFHAqWF7xUs0SQidkxPqGShIx7WeLy3N8YZQBHsbKlAS8UH9PZCTSehaFpjMiMNar3lz8z+unMLzxMy6TFJiky0XDVGCI8TwGPOCKURAzQwhV3NyK6ZgoQsGEVTEhuKsvr5NOveY2ao2Hq2rztoijjM7QObpELrpGTXSPWqiNKJqiZ/SK3qzMerHerY9la8kqZk7RH1ifPwtSk/E=</latexit>

ωω2

<latexit sha1_base64="mLpcCedtJHmOKp20ZbtlZzYmvFM=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBbBU0lUqseiF48V7Ac0MWy223bpZhN2J4US8k+8eFDEq//Em//GbZuDtj4YeLw3w8y8MBFcg+N8W6W19Y3NrfJ2ZWd3b//APjxq6zhVlLVoLGLVDYlmgkvWAg6CdRPFSBQK1gnHdzO/M2FK81g+wjRhfkSGkg84JWCkwLY9IOlT5mkgKg+yyzywq07NmQOvErcgVVSgGdhfXj+macQkUEG07rlOAn5GFHAqWF7xUs0SQsdkyHqGShIx7Wfzy3N8ZpQ+HsTKlAQ8V39PZCTSehqFpjMiMNLL3kz8z+ulMLjxMy6TFJiki0WDVGCI8SwG3OeKURBTQwhV3NyK6YgoQsGEVTEhuMsvr5L2Rc2t1+oPV9XGbRFHGZ2gU3SOXHSNGugeNVELUTRBz+gVvVmZ9WK9Wx+L1pJVzByjP7A+fwAM15Py</latexit>

ωω3
<latexit sha1_base64="2zn78QkS8mOolI8TpynWpdxDePk=">AAACCXicbVA9SwNBEN3zM8avU0ubxSCIRbgzEi2DNpYRTCLk4jG3t0kW9z7YnRPCkdbGv2JjoYit/8DOf+Pmo9DEBwOP92aYmRekUmh0nG9rYXFpeWW1sFZc39jc2rZ3dps6yRTjDZbIRN0GoLkUMW+gQMlvU8UhCiRvBfeXI7/1wJUWSXyDg5R3IujFoisYoJF8m3oI2V3uaQQ19PPK0GNhgtQLuUS4O/Yrvl1yys4YdJ64U1IiU9R9+8sLE5ZFPEYmQeu266TYyUGhYJIPi16meQrsHnq8bWgMEdedfPzJkB4aJaTdRJmKkY7V3xM5RFoPosB0RoB9PeuNxP+8dobd804u4jRDHrPJom4mKSZ0FAsNheIM5cAQYEqYWynrgwKGJryiCcGdfXmeNE/KbrVcvT4t1S6mcRTIPjkgR8QlZ6RGrkidNAgjj+SZvJI368l6sd6tj0nrgjWd2SN/YH3+AIZimjg=</latexit>

ωω3 · ε→3

<latexit sha1_base64="09HqAn1Ugxq+tbJ/G0ppvKT/s5g=">AAACCXicbVDJSgNBEO1xjXGLevTSGATxEGaCRI9BLx4jmAUyyVDT00ma9Cx01whhyNWLv+LFgyJe/QNv/o2d5aCJDwoe71VRVc9PpNBo29/Wyura+sZmbiu/vbO7t184OGzoOFWM11ksY9XyQXMpIl5HgZK3EsUh9CVv+sObid984EqLOLrHUcI7IfQj0RMM0EhegboIaTdzNYIae1l57LIgRuoGXCJ0z72yVyjaJXsKukycOSmSOWpe4csNYpaGPEImQeu2YyfYyUChYJKP826qeQJsCH3eNjSCkOtONv1kTE+NEtBerExFSKfq74kMQq1HoW86Q8CBXvQm4n9eO8XeVScTUZIij9hsUS+VFGM6iYUGQnGGcmQIMCXMrZQNQAFDE17ehOAsvrxMGuWSUylV7i6K1et5HDlyTE7IGXHIJamSW1IjdcLII3kmr+TNerJerHfrY9a6Ys1njsgfWJ8/g0maNg==</latexit>

ω ω
2 · ε→2

<latexit sha1_base64="x7qgnypnGdmxspZxZfAqLr9faRo=">AAACCXicbVDJSgNBEO2JW4xb1KOXxiCIhzAjEj0GvXiMYBbIJENNTydp0rPQXSOEIVcv/ooXD4p49Q+8+Td2loMmPih4vFdFVT0/kUKjbX9buZXVtfWN/GZha3tnd6+4f9DQcaoYr7NYxqrlg+ZSRLyOAiVvJYpD6Eve9Ic3E7/5wJUWcXSPo4R3QuhHoicYoJG8InUR0m7magQ19jJn7LIgRuoGXCJ0zzzHK5bssj0FXSbOnJTIHDWv+OUGMUtDHiGToHXbsRPsZKBQMMnHBTfVPAE2hD5vGxpByHUnm34ypidGCWgvVqYipFP190QGodaj0DedIeBAL3oT8T+vnWLvqpOJKEmRR2y2qJdKijGdxEIDoThDOTIEmBLmVsoGoIChCa9gQnAWX14mjfOyUylX7i5K1et5HHlyRI7JKXHIJamSW1IjdcLII3kmr+TNerJerHfrY9aas+Yzh+QPrM8fgDCaNA==</latexit>

ωω1 · ε→1

<latexit sha1_base64="5UvOkjniiFZKTCBHHlj8ZQ6pbk0=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Ie0oWy223bpbhJ2J0IJ/RVePCji1Z/jzX/jps1BWx8MPN6bYWZeEEth0HW/ncLa+sbmVnG7tLO7t39QPjxqmSjRjDdZJCPdCajhUoS8iQIl78SaUxVI3g4mt5nffuLaiCh8wGnMfUVHoRgKRtFKjz2kST+9nJX65Ypbdecgq8TLSQVyNPrlr94gYoniITJJjel6box+SjUKJvms1EsMjymb0BHvWhpSxY2fzg+ekTOrDMgw0rZCJHP190RKlTFTFdhORXFslr1M/M/rJji89lMRxgnykC0WDRNJMCLZ92QgNGcop5ZQpoW9lbAx1ZShzSgLwVt+eZW0LqperVq7v6zUb/I4inACp3AOHlxBHe6gAU1goOAZXuHN0c6L8+58LFoLTj5zDH/gfP4AT3aQGg==</latexit>ω4

Ownership Verification

<latexit sha1_base64="UcyT0g+RKkxVm3193ppbzFwwDEg=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjMi1WVREJcV7AOmQ8mkmTY0kwzJHaEM/Qw3LhRx69e482/MtLPQ1gOBwzn3knNPmAhuwHW/ndLa+sbmVnm7srO7t39QPTzqGJVqytpUCaV7ITFMcMnawEGwXqIZiUPBuuHkNve7T0wbruQjTBMWxGQkecQpASv5/ZjAmBKR3c0G1Zpbd+fAq8QrSA0VaA2qX/2homnMJFBBjPE9N4EgIxo4FWxW6aeGJYROyIj5lkoSMxNk88gzfGaVIY6Utk8Cnqu/NzISGzONQzuZRzTLXi7+5/kpRNdBxmWSApN08VGUCgwK5/fjIdeMgphaQqjmNiumY6IJBdtSxZbgLZ+8SjoXda9Rbzxc1po3RR1ldIJO0Tny0BVqonvUQm1EkULP6BW9OeC8OO/Ox2K05BQ7x+gPnM8fe3mRZw==</latexit>F

query

Suspect model
⋯

Independent

<latexit sha1_base64="lrdE5/BKO+7VgAtgKctSCbGGP2o=">AAAB/nicbVDLSsNQEL3xWesrKq7cBIvgqiQi1WXRjcuK9gFNKZPbSXPpzcN7J0IJBX/FjQtF3Pod7vwb08dCWw8MHM6ZYWaOl0ihyba/jaXlldW19cJGcXNre2fX3Ntv6DhVHOs8lrFqeaBRigjrJEhiK1EIoSex6Q2ux37zEZUWcXRPwwQ7IfQj4QsOlEtd89AFmQTQze5Gbh8fXAqQoNg1S3bZnsBaJM6MlNgMta755fZinoYYEZegdduxE+pkoEhwiaOim2pMgA+gj+2cRhCi7mST80fWSa70LD9WeUVkTdTfExmEWg9DL+8MgQI9743F/7x2Sv5lJxNRkhJGfLrIT6VFsTXOwuoJhZzkMCfAlchvtXgACjjliY1DcOZfXiSNs7JTKVduz0vVq1kcBXbEjtkpc9gFq7IbVmN1xlnGntkrezOejBfj3fiYti4Zs5kD9gfG5w824pWp</latexit>

ωS → εPriated
yes

no

Figure 2: The pipeline of fingerprint generation and ownership verification.

AnaFP comprises two phases: fingerprint generation and ownership verification. Particularly, the
fingerprint generation phase is composed of four main steps. The first step selects high-confidence
samples from a clean dataset as anchors, ensuring that independently trained models predict their
original labels with high probability. The second step computes a minimal perturbation for each
anchor such that the protected model, when evaluated on the perturbed anchor, outputs a different
label from that of the original anchor. The third step calculates a stretch factor for each anchor. To
this end, an admissible interval for a stretch factor is derived by first mathematically formulating
robustness and uniqueness constraints and then relaxing the formulated ones based on surrogate-based
parameter estimation and quantile-based relaxation. With this interval, a feasible stretch factor is
determined by exploiting a grid search strategy. The fourth step generates fingerprints by first scaling
the perturbation with the obtained stretch factor and then applying it to its corresponding anchor. All
resulting fingerprints form the final fingerprint set that will be used for ownership verification. In the
following, we detail the four steps of fingerprint generation and the ownership verification protocol.

4.1 STEP 1: SELECTING HIGH-CONFIDENCE ANCHORS

In the first step, we identify high-confidence samples from the training dataset used to train the
protected model. These input-label pairs, referred to as anchors, are selected based on the model’s
confidence in correctly predicting their labels. To quantify the confidence, we define the logit margin
of a sample (x, y) ∈ D with respect to the protected model P as gP (x) = sP,y(x)−maxk ̸=y sP,k(x),
where sP,k(x) is the logit (i.e., the pre-softmax outputs) of class k outputted by P for input x.

We construct the anchor set A by selecting samples whose logit margins exceed a predefined threshold
manchor, i.e., A = {(xa, y) ∈ D | gP (xa) ≥ manchor}. Intuitively, high-margin samples exhibit class-
distinctive features that are reliably captured across independently trained models. As such, using
these samples as anchors helps enhance the uniqueness of the resulting fingerprints.

4.2 STEP 2: COMPUTING MINIMAL DECISION-ALTERING PERTURBATIONS

In the second step, we compute a minimal perturbation for each anchor and apply it to produce a
perturbed anchor that causes the protected model to change its prediction. Given an anchor (xa, y),
we formulate a decision-altering perturbation minimization problem as

δ∗ = argmin
δ

∥δ∥2, s.t. P (xa + δ) ̸= y, (2)

where δ∗ is the minimal perturbation for an anchor (xa, y) ∈ A, and ∥ · ∥2 is the ℓ2 norm.

To solve the formulated problem, we employ the Carlini & Wagner ℓ2 attack (C&W-ℓ2) (Carlini &
Wagner, 2017) to efficiently compute δ∗. The resulting perturbed input is q = xa + δ∗, which we
refer to as the boundary point, as it resides on a decision boundary of the protected model. This is the
closest point to the anchor (xa, y) at which the protected model P alters its prediction to a different
label.

4.3 STEP 3: SEARCHING STRETCH FACTORS UNDER THEORETICAL CONSTRAINTS

Since boundary points are located directly on the decision boundary, they are highly vulnerable to
boundary shifts caused by model modifications, often resulting in changes in model predictions. To
improve robustness, we stretch the perturbation δ∗ along its direction and apply it to the anchor to
generate a fingerprint positioned farther from the boundary. Specifically, given an anchor (xa, y),
the corresponding fingerprint is defined as (x⋆ = xa + τδ∗, y⋆ = P (x⋆)), where τ > 1 is a stretch
factor that controls the distance of the fingerprint from the decision boundary.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

A central challenge lies in selecting an appropriate stretch factor τ , as the resulting fingerprint needs
to satisfy both robustness and uniqueness properties. To mathematically formalize these requirements,
we first define a lower bound τlower and an upper bound τupper with respect to τ , corresponding to the
robustness and uniqueness constraints, respectively: the robustness constraint requires τ > τlower,
while the uniqueness constraint requires τ < τupper. Then, we derive a theoretical constraint that
defines the admissible interval of the stretch factor τ :

1 +
2 ϵlogit

cg ∥δ∗∥
= τlower < τ < τupper =

mmin

2Luniq ∥δ∗∥
, (3)

where cg = ∥∇gP (q)∥2 is the norm of the gradient of the logit margin function gP at the boundary
point q = xa + δ∗, as well as mmin, Luniq, and ϵlogit are defined as follows:

• mmin: a lower bound on the logit margin of independently trained models at the anchor (xa, y):
sI,y(x

a)−maxk ̸=y sI,k(x
a) ≥ mmin, for ∀k ∈ Y, ∀I ∈ IP .

• Luniq: an upper bound on the local Lipschitz constant of independently trained models in the region
between xa and x⋆, such that ∥sI(x⋆)−sI(x

a)∥2

∥x⋆−xa∥2
≤ Luniq, for ∀I ∈ IP , and sI(·) is the logit vector

of an independently trained model I .

• ϵlogit: an upper bound on the logit shift at x⋆ due to the performance-preserving model modification
attack on a protected model P : |sP ′,k(x

⋆)− sP,k(x
⋆)| ≤ ϵlogit, ∀k ∈ Y, ∀P ′ ∈ VP .

The detailed derivation of Equation (3) is provided in Appendix A.

4.3.1 PARAMETER ESTIMATION AND RELAXATION

Surrogate-based estimation. mmin, Luniq, and ϵlogit are defined over VP and IP , which, however,
contain an infinite number of models respectively. Consequently, it is impossible to compute them
directly. To address this issue, a common approach is to introduce two finite surrogate model pools to
approximate the original sets (Li et al., 2021; Pan et al., 2022): a surrogate pirated pool Vs

P and a
surrogate independent pool Is

P . Vs
P contains the protected model P and its pirated variants, while Is

P
is composed of independently trained models.

Then, each parameter is estimated over the corresponding surrogate pool: mmin is estimated as
the minimum margin over Is

P , Luniq is estimated as the maximum local Lipschitz constant over
Is
P , and ϵlogit is estimated as the maximum logit shift over Vs

P . While these finite surrogate pools
serve as practical approximations of the infinite sets IP and VP , this substitution inevitably relaxes
the original theoretical constraints and introduces approximation error. Although such error is
theoretically intractable and dependent on the choice of surrogate models, experimental results
in Section 5.2.1 demonstrate that AnaFP remains robust to variations in pool size and diversity,
consistently yielding stable verification performance.

Quantile-based relaxation. Directly adopting the most conservative estimates, i.e., the minimum
value of mmin and the maximum values of Luniq and ϵlogit, may lead to overly strict lower and
upper bounds on τ , potentially resulting in a situation where no fingerprints simultaneously satisfy
the constraints for robustness and uniqueness. To address this issue, we employ a quantile-based
relaxation strategy. Instead of using extreme values, we estimate each parameter based on its empirical
quantile distribution over the surrogate pools: mmin is set to the qmargin-quantile of the logit margins
computed over Is

P , Luniq is set to the qlip-quantile of local Lipschitz constants over Is
P , and ϵlogit is

set to the qeps-quantile of logit shifts measured over Vs
P . In this way, we relax the lower and upper

bounds on τ , balancing theoretic rigor with practical feasibility.

4.3.2 THE GRID SEARCH STRATEGY FOR FINDING A FEASIBLE τ

Based on Equation (3), the stretch factor τ is constrained by a lower bound τlower and an upper
bound τupper. While τupper can be explicitly computed using the estimated parameters, τlower is defined
implicitly as a function of τ—since it depends on the logit shift at the point x⋆ = xa + τδ∗. This
circular dependency introduces a non-trivial challenge in directly solving for τlower. As a result, it
becomes necessary to search for a feasible value of τ that satisfies the constraint τlower(τ) ≤ τ ≤ τupper
and simultaneously achieves a balance between uniqueness and robustness in the resulting fingerprint.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

To address this, we exploit a grid search strategy to determine the feasible τ . Specifically, given
that τlower = 1 +

2 ϵlogit

cg ∥δ∗∥ ≥ 1, we define the search interval as (1, τupper]. We first construct a
candidate set T by uniformly sampling stretch factors within this interval. For each τ ∈ T , we
compute τlower(τ) and retain those satisfying τ ≥ τlower(τ) to form the feasible set Tfeas. If no valid
τ exists within the search interval (i.e., Tfeas = ∅), the corresponding anchor is discarded, as it
cannot yield a valid fingerprint under the relaxed constraints. This infeasibility may arise in two
cases: (i) τupper < 1, rendering the interval void, or (ii) τupper ≥ 1, but no candidate τ satisfies
τ > τlower(τ). Finally, from the feasible set Tfeas, we select the most feasible stretch factor τ⋆ by
τ⋆ = argmaxτ∈Tfeas

min
{
τ − τlower(τ), τupper − τ

}
. This selection maximizes the minimum slack

to both bounds, offering the greatest possible tolerance to parameter-estimation errors.

4.4 STEP 4: CONSTRUCTING THE FINGERPRINT SET

After determining the most feasible stretch factor τ⋆i for each retained anchor xa
i , we proceed

to generate the corresponding fingerprints. Specifically, we scale the minimal decision-altering
perturbation δ⋆i by τ⋆i , applying it to the anchor xa

i , and then record the resulting label assigned by
the protected model P . The final fingerprint set F is constructed as: F =

{
(x⋆

i , y
⋆
i) | (x⋆

i , y
⋆
i) =(

xa
i + τ⋆i δ∗i, P (xa

i + τ⋆i δ∗i)
)}Nf

i=1
. By utilizing multiple fingerprints, our proposed scheme mitigates

the potential impact of approximation errors—those introduced during the parameter estimation and
relaxation in Step 3—that may affect the verification performance of individual fingerprint, thereby
enhancing the overall reliability of the ownership verification.

4.5 VERIFICATION PROTOCOL

Given a suspect model S, the model owner verifies ownership by querying it with fingerprints
in F = {(x⋆

i , y
⋆
i)}

Nf

i=1. Specifically, for a fingerprint (x⋆
i , y

⋆
i) ∈ F , the model owner queries

S using x⋆
i and compares the returned label S(x⋆

i) with y⋆i . If S(x⋆
i) = y⋆i , the model owner

counts it as a match. After querying all fingerprints, the model owner computes the matching rate
αS = 1

Nf

∑Nf

i=1 1
[
S(x⋆

i) = y⋆i
]
, where 1[·] is the indicator function. If αS ≥ θ, where θ ∈ [0, 1] is

a decision threshold, the suspect model S is classified as pirated; otherwise, it is deemed independent.

5 EXPERIMENTS

We conduct extensive experiments to evaluate the effectiveness of AnaFP across three representative
types of deep neural networks: convolutional neural network (CNN) models trained on the CIFAR-10
dataset (Krizhevsky, 2009) and the CIFAR-100 dataset (Krizhevsky, 2009), multilayer perceptron
(MLP) models trained on the MNIST dataset (LeCun et al., 2010), and graph neural network (GNN)
models trained on the PROTEINS dataset (Borgwardt et al., 2005).

Model construction. For each task, we designate a protected model and construct two surrogate
model sets as well as two testing model sets:

• Protected model: The protected model architectures for CNN, MLP, and GNN are ResNet-18,
ResMLP, and GAT.

• Surrogate model sets: For each task, we construct a pirated model pool consisting of six models ob-
tained via two simulated performance-preserving modifications of the protected model (fine-tuning
and knowledge distillation), and an independent model pool including six models independently
trained from scratch with two different architectures and random seeds.

• Testing model sets: For each task, we construct a pirated model set via modification attacks,
including pruning, fine-tuning, knowledge distillation (KD), adversarial training (AT), N-finetune
(injecting noise into weights followed by fine-tuning), and P-finetune (pruning followed by fine-
tuning). Each type of model modification produces 20 variants using different random seeds,
resulting in 120 pirated models in this set. Besides, we construct an independent model set, and
the independently trained models are trained from scratch with varying architectures and seeds,
without any access to the protected model and its variants. This set includes 120 independently
trained models.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The two testing sets constitute the evaluation benchmark used to test whether AnaFP can effectively
discriminate pirated models from independently trained ones. The models in the testing sets used for
performance testing are all unseen/unknown during the fingerprint generation process and have no
overlap with the models in the surrogate pools.

Baselines. We compare AnaFP with six representative model fingerprinting approaches: UAP (Peng
et al., 2022), which generates universal adversarial perturbations as fingerprints; IPGuard (Cao et al.,
2021), which probes near-boundary samples to capture model-specific behavior; MarginFinger
(Liu & Zhong, 2024), which controls the distance between a fingerprint and the decision boundary
to gain robustness; AKH (Godinot et al., 2025), a recently proposed fingerprinting method that
uses the protected model’s misclassified samples as fingerprints; GMFIP (Yan et al., 2025), a
recently-proposed non-adversarial-example-based fingerprinting method that trains a generator to
synthesize fingerprint samples; and ADV-TRA (Xu et al., 2024), a fingerprinting method that
constructs adversarial trajectories traversing across multiple boundaries.

Table 1: AUCs achieved by different approaches across DNN models and datasets.

Method CNN (CIFAR-10) CNN (CIFAR-100) MLP (MNIST) GNN (PROTEINS)
AnaFP (ours) 0.957 ± 0.002 0.893 ± 0.005 0.963 ± 0.002 0.926 ± 0.005
UAP 0.850 ± 0.010 0.806 ± 0.021 0.906 ± 0.004 –
IPGuard 0.715 ± 0.075 0.725 ± 0.090 0.873 ± 0.018 0.636 ± 0.067
MarginFinger 0.671 ± 0.064 0.630 ± 0.072 0.653 ± 0.051 –
AKH 0.723 ± 0.016 0.802 ± 0.019 0.851 ± 0.013 0.854 ± 0.021
ADV-TRA 0.878 ± 0.012 0.850 ± 0.024 0.887 ± 0.005 –
GMFIP 0.814 ± 0.047 0.781 ± 0.075 0.892 ± 0.023 –

Evaluation metric. We adopt the Area Under the Receiver Operating Characteristic (ROC) Curve
(AUC) as the primary metric. AUC measures the probability that a randomly selected pirated model
exhibits a higher fingerprint matching rate than an independently trained model that is randomly
selected, thereby quantifying the discriminative capability of the fingerprints across all possible
decision thresholds. A higher AUC value indicates stronger discriminative capability, with an AUC
of 1.0 representing perfect discrimination between pirated and independently trained models.

5.1 EFFECTIVENESS OF OUR DESIGN

The discriminative capability of AnaFP. To evaluate the discriminative capability of AnaFP, we
conduct experiments across multiple types of DNN models (CNN, MLP, and GNN) trained on differ-
ent datasets (CIFAR-10, CIFAR-100, MNIST, and PROTEINS). Note that UAP and MarginFinger
are not evaluated on GNNs as they are designed for data with Euclidean structures, such as images or
vectors, and cannot generalize to graph-structured (i.e., non-Euclidean) data. All experiments were
independently run five times to find the mean and standard deviation across the runs.

The experimental results are summarized in Table 1. Specifically, we observe that AnaFP consistently
achieves the highest AUCs across all evaluation settings, whereas the baselines exhibit substantial
variability across different models and datasets. This observation underscores AnaFP’s superiority in
distinguishing pirated models from independently trained ones across diverse DNN model types and
data modalities, demonstrating its effectiveness for ownership verification.

(a) (b)
Figure 3: (a) The ROC curve and (b) the matching rate distribution.

To further illustrate
AnaFP’s discrimina-
tive capability, we
present both ROC
curves and fingerprint
matching rate distri-
butions on a repre-
sentative case with
CNN models trained
on CIFAR-10. The
ROC curve plots the
true positive rate (TPR) against the false positive rate (FPR) across varying verification thresholds,
providing a comprehensive view of the fingerprint’s discriminative ability. A curve closer to the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: AUCs under various performance-preserving model modifications.

Method Pruning Fine-tuning KD AT N-finetune P-finetune Prune-KD

AnaFP (ours) 1.000 ± 0.000 0.979 ± 0.008 0.756 ± 0.023 0.983 ± 0.015 0.978 ± 0.010 0.989 ± 0.007 0.689 ± 0.031
UAP 1.000 ± 0.000 0.868 ± 0.023 0.679 ± 0.013 0.783 ± 0.041 0.870 ± 0.021 0.876 ± 0.022 0.625 ± 0.026
IPGuard 0.999 ± 0.002 0.741 ± 0.113 0.559 ± 0.105 0.616 ± 0.026 0.679 ± 0.104 0.671 ± 0.106 0.596 ± 0.079
MarginFinger 1.000 ± 0.000 0.658 ± 0.119 0.554 ± 0.083 0.672 ± 0.087 0.586 ± 0.064 0.638 ± 0.115 0.543 ± 0.088
AKH 0.999 ± 0.001 0.848 ± 0.016 0.616 ± 0.054 0.627 ± 0.122 0.716 ± 0.039 0.701 ± 0.052 0.636 ± 0.047
ADV-TRA 1.000 ± 0.000 0.923 ± 0.010 0.660 ± 0.025 0.742 ± 0.036 0.895 ± 0.032 0.857 ± 0.013 0.633 ± 0.035
GMFIP 0.999 ± 0.001 0.779 ± 0.054 0.591 ± 0.035 0.711 ± 0.084 0.858 ± 0.031 0.819 ± 0.061 0.601 ± 0.068

top-left corner indicates stronger separability between pirated and independently trained models.
As shown in Figure 3(a), AnaFP achieves the most favorable ROC curve that approaches the top
left corner, while the curves of baseline methods lie relatively closer to the diagonal line, indicating
weaker discriminative capability. This result further confirms AnaFP’s superior performance in distin-
guishing pirated and independently trained models. On the other hand, Figure 3(b) complements this
analysis by showing the distribution of fingerprint matching rates for both model sets with boxplots.
The matching rate reflects the proportion of fingerprints for which a model returns the expected
label. A greater separation between the distributions for pirated and independently trained models
indicates higher discriminative capability. As depicted in the figure, AnaFP exhibits sharply separated
distributions, enabling reliable verification outcomes. In contrast, the baselines show overlapped
distributions, indicating ambiguity in their verification decisions.

The robustness to performance-preserving model modification attacks. We evaluate AnaFP’s ro-
bustness to performance-preserving model modifications using seven representative attacks: pruning,
fine-tuning, KD, AT, and three composite attacks (N-finetune, P-finetune, and Prune-KD). Table 2
shows AUCs obtained by AnaFP and the six baselines under each attack with CNN models. Under
the pruning attack, all methods achieve near-perfect performance (AUC ≥ 0.999). However, AnaFP
consistently outperforms the baselines under the remaining attacks, including fine-tuning, KD, AT,
N-finetune, P-finetune, and Prune-KD. Notably, AnaFP achieves mean AUCs of 0.979, 0.983, 0.978,
and 0.989 for fine-tuning, AT, N-finetune, and P-finetune, respectively, showing strong resistance
to these attacks. Although KD and Prune-KD present a unique challenge by distilling knowledge
without retaining internal structures and weights, AnaFP still maintains a leading AUC of 0.756 and
0.689, surpassing all baselines. These results collectively demonstrate AnaFP’s robustness against a
wide range of model modification attacks.

5.2 SENSITIVITY TO DESIGN CHOICES

5.2.1 THE IMPACT OF SURROGATE MODEL POOL

To evaluate the robustness of AnaFP under different surrogate pool configurations, we examine two
key factors: pool size and pool diversity.

Sensitivity to pool size. We examine the impact of surrogate pool size on verification performance
by varying the number of models in each pool, considering configurations with 2, 4, 6, 8, and 10
models. As shown by the line plot in Figure 4, the AUC stabilizes rapidly once the pool size exceeds
6 models. This finding indicates that AnaFP achieves stable and reliable verification performance
with only a modest number of surrogate models, indicating robustness to pool size.

Figure 4: Line plot (top axis): effect of surro-
gate pool size; Bar plot (bottom axis): effect
of surrogate pool diversity.

Sensitivity to pool diversity. We further analyze the
effect of surrogate set diversity on verification perfor-
mance by constructing pools with varying levels of
model diversity. In the low-diversity setting, the pi-
rated model pool consists solely of fine-tuned variants
of the protected model, and the independent model
pool contains independently trained models sharing
the same architecture as the protected model. The
medium-diversity setting expands the pirated pool
diversity to include both fine-tuned and knowledge-
distilled models, while the independent pool com-
prises models with two distinct architectures. In the
high-diversity setting, we further incorporate noise-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Effect of the quantile thresholds.

qmargin/qlip 0.1/0.9 0.2/0.8 0.3/0.7 0.4/0.6 0.5/0.5 0.6/0.4 0.7/0.3 0.8/0.2 0.9/0.1

Valid Fingerprints 0 0 11 33 56 103 228 428 1158
AUC – – 0.848 0.906 0.957 0.959 0.951 0.938 0.896

finetuned pirated variants into the pirated pool and
independently trained models with three different ar-
chitectures in the independent pool. As shown in the
bar plot of Figure 4, increasing diversity generally improves AUC. However, the performance gain
from medium and high diversity is marginal, indicating diminishing returns. Importantly, even in
the low-diversity setting, AnaFP maintains a strong AUC of 0.912, demonstrating its robustness to
variations in surrogate pool diversity.

In summary, these results show that AnaFP is insensitive to the specific configurations of surrogate
pools. Reliable ownership verification can be achieved using a modest number of surrogate models and
without requiring extensive diversity, thereby underscoring AnaFP’s practicality and generalizability.

5.2.2 THE IMPACT OF THE QUANTILE THRESHOLD

To assess how the quantile thresholds affect verification performance, we perform a sensitivity study
on qmargin and qlip while fixing qeps = 1.0, as its impact was found to be empirically negligible. The
results are summarized in Table 3. Overly strict thresholds (e.g., 0.1/0.9 and 0.2/0.8) result in no
valid fingerprints, making ownership verification impossible. Even with a slightly relaxed threshold
like 0.3/0.7, the small number of valid fingerprints remains limited (only 11), leading to a low AUC
of 0.848. As the thresholds are moderately relaxed, the number of valid fingerprints increases, and
verification performance quickly stabilizes. Notably, starting from the 0.5/0.5 configuration, all
subsequent threshold pairs yield AUC values exceeding 0.950, indicating that once a sufficiently
large and reliable fingerprint set is established, the verification performance becomes robust to further
threshold variations. However, excessive relaxation introduces a substantial number of low-quality
fingerprints, ultimately degrading the discriminative capability (e.g., achieving the AUC of 0.896 at
0.9/0.1). Overall, these findings indicate that AnaFP’s verification performance is not highly sensitive
to the precise choice of quantile thresholds. As long as the thresholds are moderately relaxed, a
high-quality fingerprint pool can be obtained without extensive tuning.

5.3 ABLATION STUDY OF THE STRETCH FACTOR τ

To assess the impact of the stretch factor τ on verification performance, we conduct an ablation study
using five variants of AnaFP: A-lower (selecting τ from the feasible set Tfeas that is closest to the
lower bound), A-upper (selecting τ from the feasible set Tfeas that is closest to the upper bound),
C-fix (applying a fixed prediction margin across all fingerprints by optimizing τ to enforce the same
difference between the probabilities of the first and second-highest predicted classes), C-lower (fixing
τ to the lower bound τlower to solely enforce robustness), and C-upper (setting τ to the upper bound
τupper to solely enforce uniqueness).

Figure 5: The AUCs achieved by AnaFP and
three variants.

Figure 5 shows the AUC values achieved by
AnaFP and its variants. Specifically, AnaFP con-
sistently outperforms all five variants, validat-
ing the importance of searching for a feasible τ
within its admissible interval. Among the vari-
ants, C-fix performs better than both C-lower and
C-upper, as it seeks a balance between robust-
ness and uniqueness using a uniform margin. In
contrast, C-lower and C-upper impose single con-
straints across all fingerprints—either robustness
or uniqueness—without verifying whether both
constraints are satisfied. Consequently, many in-
feasible τs are retained, degrading the overall dis-
criminative capability. However, C-fix lacks the flexibility to adapt its margin to the local decision
geometry of individual samples. On the other hand, AnaFP, A-lower, and A-upper discard infeasible τ ,
thereby maintaining high verification reliability. While A-lower and A-upper exhibit slightly reduced
performance, primarily due to the lower tolerance of their selected feasible τ to parameter-estimation

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

errors, they still outperform C-fix, C-lower, and C-upper. These results underscore the importance of
selecting τ that is within the admissible interval.

6 CONCLUSIONS

We study the problem of constructing effective fingerprints for adversarial-example-based model
fingerprinting by ensuring simultaneous satisfaction of both robustness and uniqueness constraints.
To this end, we propose AnaFP, an analytical fingerprinting scheme that mathematically formalizes
the two constraints and theoretically derives an admissible interval, which is defined by the lower and
upper bounds for the robustness and uniqueness constraints, for the stretch factor used in fingerprint
construction. To enable practical fingerprint generation, AnaFP approximates the original model sets
using two finite surrogate model pools and employs a quantile-based relaxation strategy to relax the
derived bounds. Particularly, due to the circular dependency between the lower bound and the stretch
factor, a grid search strategy is exploited to determine the most feasible stretch factor. Extensive
experiments across diverse DNN architectures and datasets demonstrate that AnaFP achieves effective
and reliable ownership verification, even under various model modification attacks, and consistently
outperforms prior adversarial-example-based fingerprinting methods.

REFERENCES

Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alex J. Smola,
and Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(1):
47–56, January 2005. ISSN 1367-4803.

Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. IPGuard: Protecting intellectual property of
deep neural networks via fingerprinting the classification boundary. In Proceedings of the 2021
ACM Asia Conference on Computer and Communications Security, 2021.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017.

Yufei Chen, Chao Shen, Cong Wang, and Yang Zhang. Teacher model fingerprinting attacks against
transfer learning. In Proceedings of 31st USENIX Security Symposium (USENIX Security 22), pp.
3593–3610, Boston, MA, 2022.

Brian Choi, Shu Wang, Isabelle Choi, and Kun Sun. Chainmarks: Securing dnn watermark with cryp-
tographic chain. In ASIA CCS ’25, pp. 442–455, New York, NY, USA, 2025. ISBN 9798400714108.

Lixin Fan, Kam Woh Ng, and Chee Seng Chan. Rethinking deep neural network ownership verifica-
tion: Embedding passports to defeat ambiguity attacks. Advances in neural information processing
systems, 32, 2019.

Augustin Godinot, Erwan Le Merrer, Camilla Penzo, François Taïani, and Gilles Trédan. Queries,
representation detection: The next 100 model fingerprinting schemes. In AAAI, pp. 16817–16825,
2025. URL https://doi.org/10.1609/aaai.v39i16.33848.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In Yoshua Bengio and Yann LeCun (eds.), Proceedings of ICLR 2015, 2015.

Jiyang Guan, Jian Liang, and Ran He. Are you stealing my model? sample correlation for fingerprint-
ing deep neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Proceedings of Advances in Neural Information Processing Systems, 2022.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Report
TR-2009, University of Toronto, 2009. URL https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

10

https://doi.org/10.1609/aaai.v39i16.33848
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In Proceedings of ICLR (Poster), 2017.

Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu. ModelDiff: testing-based
DNN similarity comparison for model reuse detection. In Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2021.

Yuxuan Li, Sarthak Kumar Maharana, and Yunhui Guo. Not just change the labels, learn the features:
Watermarking deep neural networks with multi-view data, 2024. URL https://arxiv.org/
abs/2403.10663.

Weixing Liu and Shenghua Zhong. MarginFinger: Controlling generated fingerprint distance
to classification boundary using conditional gans. In Proceedings of the 2024 International
Conference on Multimedia Retrieval, 2024.

Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. Deep neural network fingerprinting by
conferrable adversarial examples. In Proceedings of 2021 International Conference on Learning
Representations, 2021.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple and
accurate method to fool deep neural networks. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2574–2582, 2015. URL https://api.semanticscholar.
org/CorpusID:12387176.

Xudong Pan, Yifan Yan, Mi Zhang, and Min Yang. MetaV: A meta-verifier approach to task-agnostic
model fingerprinting. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022.

Zirui Peng, Shaofeng Li, Guoxing Chen, Cheng Zhang, Haojin Zhu, and Minhui Xue. Fingerprinting
deep neural networks globally via universal adversarial perturbations. In Proceedings of 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13420–13429,
2022.

Huali Ren, Anli Yan, Xiaojun Ren, Peigen Ye, Chong zhi Gao, Zhili Zhou, and Jin Li. GanFinger:
Gan-based fingerprint generation for deep neural network ownership verification. ArXiv, 2023.

Reuven Rubinstein. The cross-entropy method for combinatorial and continuous optimization.
Method. Comput. Appl. Prob., 1(2):127–190, 1999. ISSN 1387-5841. doi: 10.1023/A:
1010091220143. URL https://doi.org/10.1023/A:1010091220143.

Masoumeh Shafieinejad, Nils Lukas, Jiaqi Wang, Xinda Li, and Florian Kerschbaum. On the
robustness of backdoor-based watermarking in deep neural networks. In Proceedings of the 2021
ACM workshop on information hiding and multimedia security, pp. 177–188, 2021.

Gowthami Somepalli, Liam Fowl, Arpit Bansal, Ping Yeh-Chiang, Yehuda Dar, Richard Baraniuk,
Micah Goldblum, and Tom Goldstein. Can neural nets learn the same model twice? investigating
reproducibility and double descent from the decision boundary perspective. In Proceedings of
CVPR 2022, pp. 13699–13708, 2022.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In Proceedings of ICLR 2014, 2014.

Ling Tang, YueFeng Chen, Hui Xue, and Quanshi Zhang. Towards the resistance of neural network
fingerprinting to fine-tuning. In The Thirty-ninth Annual Conference on Neural Information
Processing Systems, 2025. URL https://openreview.net/forum?id=IV6JqdW0BE.

Siyue Wang, Xiao Wang, Pinyu Chen, Pu Zhao, and Xue Lin. Characteristic examples: High-
robustness, low-transferability fingerprinting of neural networks. In Proceedings of International
Joint Conference on Artificial Intelligence, 2021a.

11

https://arxiv.org/abs/2403.10663
https://arxiv.org/abs/2403.10663
https://openreview.net/forum?id=rJzIBfZAb
https://api.semanticscholar.org/CorpusID:12387176
https://api.semanticscholar.org/CorpusID:12387176
https://doi.org/10.1023/A:1010091220143
https://openreview.net/forum?id=IV6JqdW0BE

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Siyue Wang, Pu Zhao, Xiao Wang, Sang Peter Chin, Thomas Wahl, Yunsi Fei, Qi Alfred Chen, and
Xue Lin. Intrinsic examples: Robust fingerprinting of deep neural networks. In Proceedings of
British Machine Vision Conference, 2021b.

Tianlong Xu, Chen Wang, Gaoyang Liu, Yang Yang, Kai Peng, and Wei Liu. United we stand,
divided we fall: Fingerprinting deep neural networks via adversarial trajectories. In Proceedings of
Neural Information Processing Systems, 2024.

Anli Yan, Huali Ren, Kanghua Mo, Zhenxin Zhang, Shaowei Wang, and Jin Li. Enhancing model
intellectual property protection with robustness fingerprint technology. IEEE Transactions on
Information Forensics and Security, 20:9235–9249, 2025.

Kan Yang and Kunhao Lai. NaturalFinger: Generating natural fingerprint with generative adversarial
networks. ArXiv, 2023.

Kan Yang, Run Wang, and Lina Wang. MetaFinger: Fingerprinting the deep neural networks with
meta-training. In Proceedings of International Joint Conference on Artificial Intelligence, 2022.

Zhaoxia Yin, Heng Yin, and Xinpeng Zhang. Neural network fragile watermarking with no model
performance degradation. In Proceedings of 2022 IEEE International Conference on Image
Processing (ICIP), pp. 3958–3962, 2022.

Xia Zheng You, Youhe Jiang, Jianwei Xu, Mi Zhang, and Min Yang. GNNFingers: A fingerprinting
framework for verifying ownerships of graph neural networks. In Proceedings of the ACM on Web
Conference 2024, 2024.

Zhuomeng Zhang, Fangqi Li, Hanyi Wang, and Shi-Lin Wang. Boosting the uniqueness of neural
networks fingerprints with informative triggers. In The Thirty-ninth Annual Conference on Neural
Information Processing Systems, 2025.

Boyao Zhao, Haozhe Chen, Jie Zhang, Weiming Zhang, and Neng H. Yu. Dual-verification-based
model fingerprints against ambiguity attacks. Cybersecur., 7:78, 2024a.

Jingjing Zhao, Qin Hu, Gaoyang Liu, Xiaoqiang Ma, Fei Chen, and Mohammad Mehedi Hassan.
AFA: Adversarial fingerprinting authentication for deep neural networks. Comput. Commun., 150:
488–497, 2020.

Mengnan Zhao, Lihe Zhang, Jingwen Ye, Huchuan Lu, Baocai Yin, and Xinchao Wang. Adversarial
training: A survey, 2024b. URL https://arxiv.org/abs/2410.15042.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and
Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):43–76,
2020.

12

https://arxiv.org/abs/2410.15042

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A THEORETICAL DERIVATION OF THE LOWER AND UPPER BOUNDS

In Section 4.3, we introduced two theoretical constraints: a robustness constraint that defines a lower
bound for τ and a uniqueness constraint that defines an upper bound for τ . In this section, we present
formal derivations of both bounds.

First, we provide Lemma A.1 about the lower bound for the robustness as follows.

Lemma A.1 (Lower bound for robustness). For the input of a fingerprint x⋆ = xa + τδ∗, the
prediction of an arbitrary pirated model P ′ ∈ VP is P ′(x⋆) = y⋆, provided that τ > 1 +

2 ϵlogit

cg ∥δ∗∥2
.

Proof. To guarantee P ′(x⋆) = y⋆, we have sP ′,y⋆(x⋆) > sP ′,y(x
⋆). For any pirated model P ′, its

logit shift ϵlogit is bounded by |sP ′,k(x
⋆)− sP,k(x

⋆)| ≤ ϵlogit, ∀k ∈ Y . Following this, for a label of
the fingerprint y⋆ and the original label y, we have

sP ′,y⋆(x⋆) ≥ sP,y⋆(x⋆)− ϵlogit, sP ′,y(x
⋆) ≤ sP,y(x

⋆) + ϵlogit.

Subtracting them yields sP ′,y⋆(x⋆) − sP ′,y(x
⋆) ≥ gP (x

⋆) − 2ϵlogit. Hence, the robustness is
guaranteed if the margin of the protected model satisfies

gP (x
⋆) > 2ϵlogit. (4)

We perform the first-order Taylor expansion at the boundary point q = xa + δ∗, where gP (q) = 0.
Letting x⋆ = q+(τ − 1)δ∗, we approximate gP (x⋆) ≈ (τ − 1) δ∗⊤∇gP (q). Since δ∗ is the optimal
direction that minimizes ∥δ∥2 while satisfying gP (x

a + δ) = 0, the KKT condition yields δ∗ =
−λ∇gP (q) for some λ > 0, implying colinearity. Therefore, we have gP (x

⋆) ≈ (τ − 1) cg∥δ∗∥2.
Plugging gP (x

⋆) into Equation equation 4, we find (τ − 1) cg∥δ∗∥2 > 2ϵlogit, i.e., τ > 1 +
2ϵlogit

cg∥δ∗∥2
,

which concludes the proof.

Next, we state Lemma A.2 about the upper bound for the uniqueness as follows.

Lemma A.2 (Upper bound for uniqueness). For the input of a fingerprint x⋆ = xa + τδ∗, the
original label y of the anchor is preserved for ∀I ∈ IP , provided that τ < mmin

2Luniq ∥δ∗∥2
.

Proof. We first fix an arbitrary independently trained model I with Lipschitz constant LI ≤ Luniq.
Let ∆ = τδ∗, and k† = argmaxk ̸=y sI,k(x

a) be the runner-up class. Then, the margin at the anchor
is gI(xa) = sI,y(x

a)−sI,k†(xa) ≥ mmin. Now, setting v = argmaxk ̸=y sI,k(x
⋆) and considering

the margin at x⋆, we have
gI(x

⋆) = sI,y(x
⋆)− sI,v(x

⋆). (5)

Because Luniq is an upper bound on the local Lipschitz constant across all independently trained
models, we have

∥∥sI(x⋆)− sI(x
a)
∥∥
2
≤ Luniq∥∆∥2 = Luniqτ∥δ∗∥2, for ∀I ∈ IP . Each individual

coordinate satisfies |sI,k(x⋆) − sI,k(x
a)| ≤ ∥sI(x⋆) − sI(x

a)∥2. Thus, we have |sI,k(x⋆) −
sI,k(x

a)| ≤ Luniqτ∥δ∗∥2. Following this equation, we have the following two inequalities:

sI,y(x
⋆) ≥ sI,y(x

a)− Luniqτ∥δ∗∥2, (6)
sI,v(x

⋆) ≤ sI,v(x
a) + Luniqτ∥δ∗∥2. (7)

Subtracting equation 7 from equation 6 and inserting the result into equation 5, we have

gI(x
⋆) ≥ [sI,y(x

a)− sI,v(x
a)]− 2Luniqτ∥δ∗∥2

≥
[
sI,y(x

a)− sI,k†(xa)
]
− 2Luniqτ∥δ∗∥2 (since sI,v(x

a) ≤ sI,k†(xa))

= gI(x
a)− 2Luniqτ∥δ∗∥2. (8)

Preserving the original label y at x⋆ requires gI(x
⋆) > 0, which implies τ < gI(x

a)
2Luniq∥δ∗∥2

. Since
gI(x

a) ≥ mmin, we obtain gI(x
⋆) > 0 for any τ < mmin

2Luniq∥δ∗∥2
, which concludes the proof.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Following Lemmas A.1 and A.2, we establish Theorem A.1 about the robustness and uniqueness.

Theorem A.1 (Admissible interval for τ). For ∀P ′ ∈ VP and ∀I ∈ IP , any fingerprint (x⋆, y⋆)
constructed with a feasible stretch factor τ⋆ is guaranteed to be both robust and unique if 1 +
2 ϵlogit

cg ∥δ∗∥2
< τ < mmin

2Luniq ∥δ∗∥2
.

B SUPPLEMENTAL EXPERIMENTAL RESULTS

B.1 ROBUSTNESS TO MODEL MODIFICATION ATTACKS

Tables 4, 5, and 6 summarize the AUCs of AnaFP and the baseline methods under performance-
preserving model modifications across CNN, MLP, and GNN architectures. For CNN models trained
on CIFAR-100, AnaFP consistently achieves high AUCs (≥ 0.930) in five out of seven attacks, with
the sole exception being KD and Prune-KD, where UAP and AKH marginally outperform AnaFP
respectively. For MLP models, AnaFP attains near-perfect AUCs (≥ 0.999) on four attacks and
maintains strong performance on AT with an AUC of 0.987; besides, AnaFP performs best under KD
and Prune-KD. In contrast, for GNN models, AnaFP achieves the highest AUC across all six attacks,
with AUCs, ranging from 0.736 to 0.971, significantly outperforming IPGuard and AKH. It is worth
noting that UAP, MarginFinger, ADV-TRA, and GMFIP are not directly applicable to graph-structured
data, as they assume a fixed input geometry. The consistently superior performance achieved by
AnaFP across diverse model types highlights its strong generalization ability and robustness to
modification attacks, which is particularly important for ownership verification in diverse real-world
deployment scenarios.

B.1.1 THE IMPACT OF ANCHOR SELECTION

We investigate the impact of confidence levels during anchor selection by performing experi-
ments with low-confidence, mid-confidence, and high-confidence anchors on CNN(CIFAR-10)
and MLP(MNIST). The three confidence levels are defined by the range of logit margins gP (xa).
Experimental results illustrate that low-confidence anchors (0 ≤ gP (x

a) < 2.5) yield 0 valid finger-
prints for both cases, mid-confidence anchors (2.5 ≤ gP (x

a) < 5.0) produces 3 valid fingerprints for
CNN and 2 for MLP with the achieved AUCs of 0.791 and 0.755, respectively, and high-confidence
anchors (gP (xa) ≥ 5.0) produce 57 valid fingerprints for CNN and 85 for MLP with much higher
AUC (i.e., 0.958 for CNN and 0.961 for MLP). This confirms that low-confidence anchors fail to
produce a sufficient number of valid fingerprints and thus degrade the performance.

B.1.2 ROBUSTNESS TO THE KNOWLEDGE DISTILLATION ATTACK

In addition to the main metric AUC, which reflects the overall detection capability across all threshold
settings, we will also assess TPR, FPR, TNR, and FNR for the KD attack. The experimental results
are summarized in the Table 7. From this table, we can observe that AnaFP achieves the strongest
separation between pirated models under the KD attack and independently trained models, reaching a
high true positive rate (TPR=0.80) while keeping the false positive rate relatively low (FPR=0.22).
ADV-TRA and UAP perform worse than AnaFP but better than other baselines, showing a moderate-
level performance (TPR=0.73, FPR=0.30 for UAP, and TPR=0.75, FPR=0.27 for ADV-TRA). In
contrast, AKH, IPGuard, GMFIP, and MarginFinger are relatively less capable of distinguishing

Table 4: AUCs under various performance-preserving model modifications on CNN models trained
on CIFAR100.

Method Pruning Finetuning KD AT N-finetune P-finetune Prune-KD

AnaFP (ours) 0.963 ± 0.002 0.954 ± 0.004 0.596 ± 0.009 0.930 ± 0.007 0.957 ± 0.005 0.956 ± 0.004 0.574 ± 0.013
UAP 0.897 ± 0.015 0.852 ± 0.022 0.598 ± 0.018 0.802 ± 0.027 0.852 ± 0.022 0.859 ± 0.021 0.583 ± 0.019
IPGuard 0.845 ± 0.086 0.811 ± 0.092 0.461 ± 0.096 0.721 ± 0.080 0.763 ± 0.088 0.750 ± 0.098 0.496 ± 0.078
MarginFinger 0.737 ± 0.076 0.667 ± 0.092 0.519 ± 0.026 0.679 ± 0.092 0.653 ± 0.089 0.553 ± 0.058 0.488 ± 0.026
AKH 0.915 ± 0.007 0.838 ± 0.032 0.592 ± 0.034 0.762 ± 0.076 0.829 ± 0.040 0.878 ± 0.044 0.601 ± 0.041
ADV-TRA 0.953 ± 0.007 0.904 ± 0.024 0.561 ± 0.011 0.886 ± 0.035 0.901 ± 0.017 0.898 ± 0.031 0.544 ± 0.030
GMFIP 0.885 ± 0.048 0.794 ± 0.076 0.548 ± 0.065 0.721 ± 0.078 0.877 ± 0.090 0.902 ± 0.064 0.516 ± 0.072

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: AUCs under various performance-preserving model modifications on MLP models.

Method Pruning Finetuning KD AT N-finetune P-finetune Prune-KD

AnaFP (ours) 1.000 ± 0.000 1.000 ± 0.000 0.792 ± 0.002 0.987 ± 0.005 1.000 ± 0.000 0.999 ± 0.000 0.788 ± 0.006
UAP 0.981 ± 0.001 0.969 ± 0.006 0.635 ± 0.002 0.931 ± 0.010 0.968 ± 0.007 0.976 ± 0.003 0.610 ± 0.005
IPGuard 0.924 ± 0.042 0.983 ± 0.007 0.535 ± 0.036 0.902 ± 0.029 0.938 ± 0.008 0.922 ± 0.037 0.517 ± 0.029
MarginFinger 0.708 ± 0.130 0.750 ± 0.145 0.572 ± 0.041 0.762 ± 0.149 0.759 ± 0.146 0.586 ± 0.090 0.570 ± 0.034
AKH 0.849 ± 0.017 0.870 ± 0.023 0.765 ± 0.008 0.897 ± 0.026 0.864 ± 0.025 0.777 ± 0.009 0.759 ± 0.011
ADV-TRA 0.971 ± 0.010 0.964 ± 0.007 0.596 ± 0.011 0.907 ± 0.005 0.922 ± 0.004 0.953 ± 0.001 0.602 ± 0.005
GMFIP 0.978 ± 0.021 0.971 ± 0.006 0.696 ± 0.042 0.914 ± 0.038 0.945 ± 0.029 0.873 ± 0.017 0.651 ± 0.054

Table 6: AUCs under various performance-preserving model modifications on GNN models.

Method Pruning Finetuning KD AT N-finetune P-finetune Prune-KD

AnaFP (ours) 0.933 ± 0.002 0.971 ± 0.007 0.806 ± 0.002 0.970 ± 0.012 0.962 ± 0.013 0.913 ± 0.006 0.736 ± 0.015
IPGuard 0.806 ± 0.051 0.668 ± 0.053 0.529 ± 0.330 0.612 ± 0.122 0669 ± 0.027 0.551 ± 0.074 0.571 ± 0.174
AKH 0.859 ± 0.011 0.831 ± 0.043 0.790 ± 0.021 0.869 ± 0.045 0.838 ± 0.041 0.849 ± 0.038 0.719 ± 0.036

pirated models under the KD attack from independently trained models, reflected by their high FPR
(0.36-0.47) and only moderately high TPR (0.57-0.67).

B.2 EFFICIENCY ANALYSIS

We experimentally compare the computing time and peak GPU memory consumed by AnaFP and
baselines. The experimental results are summarized in Table 8. Specifically, AKH and IPGuard
are the most lightweight methods: AKH operates purely through forward inference, and IPGuard
performs small-batch gradient updates without minimizing perturbation magnitude, resulting in
runtimes of around one minute and memory usage below 3 GB. UAP is the most expensive method,
as it requires multiple full passes over the training data to optimize a universal perturbation, leading
to high computing time and memory usage. Both MarginFinger and GMFIP achieve moderate cost by
training a generator model to synthesize boundary-adjacent samples. ADV-TRA generates adversarial
trajectories as fingerprints, which causes high time cost due to the sequential generation process.
Compared to these baselines, AnaFP consumes high memory but achieves balanced runtime. More
specifically, AnaFP costs the most GPU memory—up to 40 GB on ViT-S/16, as it processes a large
batch of anchors in parallel during the adversarial optimization step. This parallel design reduces the
total number of optimization iterations, thus reducing the overall runtime. Despite the high memory
usage, AnaFP can still run on a single A100 GPU, making the cost manageable in practice.

Moreover, we profiled the runtime of the three steps in our proposed fingerprinting method: Step
1 (anchor selection), Step 2 (adversarial perturbation computation), and Step 3 (searching stretch
factors). We also examine the impact of the model sizes (ResNet18 and ViT-S/16) and the number of
surrogate models used. The results are presented in the Table 9. From the table, we can see that the
runtime cost is acceptable. Specifically, first, Step 2 dominates the total runtime, requiring 1000–3800
seconds depending on the protected model size and surrogate pool size, whereas the time cost of
Step 1 is negligible, and Step 3 contributes a moderate amount (1000–2100 seconds). Second, the
time cost scales with model size: fingerprinting ViT-S/16 requires significantly more time cost than
fingerprinting ResNet-18, because a larger model incurs more computations during the fingerprint
generation process. Third, increasing the surrogate pool from 4 to 8 models increases the runtime of
Step 3, where grid search accounts for the major time cost. From the above discussion, we can see
AnaFP’s runtime is moderate.

We also measured GPU memory usage during Step 2 and Step 3, the experimental results are
summarized in Table 10. We can observe that first, Step 2 requires the highest memory because it
performs adversarial optimization, consuming 13 GB for ResNet-18 and about 40 GB for ViT-S/16,
whereas Step 3 requires 1–3 GB. Second, memory usage grows with model size: ViT-S/16 on
Tiny-ImageNet has roughly three times the memory requirements of ResNet-18 due to a larger model
size. Third, increasing the surrogate pool size from 4 to 8 models increases memory usage slightly.

Discussion on Potential Speedups. The computational efficiency of AnaFP can be further improved
through the following practices. First, regarding surrogate pools, independent surrogate models can

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Detection performance under the KD attack for CNN/CIFAR10.

Method TPR FPR TNR FNR
AnaFP (ours) 0.80 0.22 0.78 0.20
UAP 0.73 0.30 0.70 0.27
IPGuard 0.58 0.46 0.54 0.42
MarginFinger 0.57 0.47 0.53 0.43
AKH 0.63 0.40 0.60 0.37
ADV-TRA 0.75 0.27 0.73 0.25
GMFIP 0.67 0.36 0.64 0.33

Table 8: Time cost and peak GPU memory consumption of different fingerprinting methods under
two representative protected models.

ResNet-18 ViT-S/16

Time Memory Time Memory

AnaFP (ours) 33 m 8 s 13 GB 1 h 26 m 40 GB
UAP 4 h 55 m 4 GB 8 h 10 m 10 GB
IPGuard 1 m 6 s 1 GB 1 m 41 s 3 GB
MarginFinger 51 m 18 s 4 GB 1 h 14 m 10 GB
AKH 20 s 1 GB 1 m 10 s 3 GB
ADV-TRA 58 m 01 s 4 GB 1 h 29 m 10 GB
GMFIP 1 h 15 m 4 GB 1 h 40 m 10 GB

be drawn directly from publicly available models, eliminating the need for additional training, while
generating pirated surrogate models via fine-tuning or pruning incurs very low cost. Even performing
knowledge distillation, which is relatively more expensive, remains cheaper than training models
from scratch. Second, the C&W optimization used in Step 2 (computing minimal decision-altering
perturbations) can be replaced with more efficient alternatives, such as PGD (Madry et al., 2018) and
DeepFool (Moosavi-Dezfooli et al., 2015), which can reduce computations. Third, a coarse-to-fine
search strategy (Rubinstein, 1999) can be applied to further reduce the computational cost.

C IMPLEMENTATION DETAILS

C.1 MODEL ARCHITECTURES AND TRAINING SETTINGS

We summarize the architectures and training configurations of the protected model, the attacked
models, and the independently trained models used for each task in the following.

C.1.1 PROTECTED MODEL

CNN (CIFAR-10 and CIFAR-100). The protected model is a ResNet-18 trained from scratch
using SGD with momentum 0.9, weight decay 5e-4, learning rate 0.1, cosine annealing learning rate
scheduling, and Xavier initialization. Training is conducted for 600 epochs with a batch size of 128.

MLP (MNIST). The protected model is a ResMLP trained from scratch using SGD with momentum
0.9, weight decay 5e-4, a learning rate of 0.01, cosine annealing learning rate scheduling, and Kaiming
initialization (default Pytorch setting). Training is conducted for 40 epochs with a batch size of 64.

GNN (PROTEINS). The protected model is a Graph Attention Network (GAT) trained using the
Adam optimizer with a learning rate of 0.01 and Xavier initialization (default Pytorch setting). The
default PyTorch Adam settings are used: β1 = 0.9 and β2 = 0.999.

C.1.2 INDEPENDENTLY TRAINED MODELS

CNN (CIFAR-10 and CIFAR-100). The independent model set consists of ten diverse architec-
tures: ResNet-18, ResNet-50, ResNet-101, WideResNet-50, MobileNetV2, MobileNetV3-Large,
EfficientNet-B2, EfficientNet-B4, DenseNet-121, and DenseNet-169. Each model is trained from

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Time cost for the three fingerprint-generation steps: Step 1 (anchor selection), Step 2
(adversarial perturbation generation), and Step 3 (τ search).

Protected Model Surrogate pool size Step 1 Step 2 Step 3

ViT-S/16 4 63s 3856s 1276s
ResNet18 4 8s 1004s 976s
ViT-S/16 8 61s 3855s 2121s
ResNet18 8 8s 997s 1419s

Table 10: Peak memory consumption for Step 2 (adversarial perturbation generation) and Step 3 (grid
search).

Protected Model Surrogates Step 2 Step 3

ViT-S/16 4 40G 3G
ResNet18 4 13G 1G
ViT-S/16 8 41G 3.2G
ResNet18 8 13G 1.1G

scratch with different random seeds under the same optimizer, scheduler, and initialization scheme as
the protected model.

MLP (MNIST). The independent model set includes seven multilayer perceptron architectures:
WideDeep, ResMLP, FTMLP, SNNMLP, NODE, TabNet, and TabTransformer. Each model is trained
from scratch under the same optimizer, learning rate, scheduler, and number of epochs as the protected
model, but with different random seeds and architecture-specific parameters where applicable.

GNN (PROTEINS). The independent model set includes seven graph neural network architectures:
GCN, GIN, GraphSAGE, GAT, GATv2, SGC, and APPNP. Each model is trained from scratch using
the same optimizer, learning rate, and number of epochs as the protected model, but with different
random seeds and architecture-specific configurations.

C.1.3 PIRATED MODELS

We construct pirated models across all tasks using seven types of performance-preserving attacks
applied to the protected model with the following settings.

• Fine-tuning: retraining the protected model for a specified number of epochs.

• Adversarial Training (AT): retraining the protected model for a specified number of epochs using
a mix of normal data samples and adversarial samples.

• Pruning: applying unstructured global pruning with sparsity levels ranging from 10% to 90% in
increments of 10%, without retraining.

• P-Finetune: applying pruning at sparsity levels of 30%, 60%, and 90%, followed by fine-tuning.

• N-Finetune: perturbing each trainable parameter tensor with Gaussian noise scaled by its standard
deviation, i.e., param += 0.09× std(param)×N (0, 1), followed by fine-tuning.

• Knowledge Distillation (KD): training a student model of the same or different architecture with
the protected model using the KL divergence between the outputs of the protected (teacher) model
and the student model, temperature T is set to 1.

• Prune-KD: performing pruning to the protected model, followed by knowledge distillation (KD)
attack.

All attacks are applied consistently across tasks, with differences only in optimizer settings, learning
rates, and the number of fine-tuning epochs. For CNN (CIFAR-10), we use SGD with a learning rate
of 0.01 and a cosine annealing scheduler for 200 epochs (600 epochs for KD). For MLP (MNIST),
the optimizer is SGD with a learning rate of 0.001, also using cosine annealing over 30 epochs (30
epochs for KD). For GNN (PROTEINS), we use the Adam optimizer with a learning rate of 0.001
for 60 epochs (100 epochs for KD).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.1.4 DATA PREPROCESSING

All datasets are normalized prior to training the DNN models, in line with standard preprocessing
practice. For the MNIST dataset, each 28× 28 grayscale image is flattened into a 784-dimensional
vector to serve as the input to the MLP model. For CIFAR-10, CIFAR-100, and PROTEINS, no
additional preprocessing is applied beyond normalization.

C.2 THE IMPLEMENTATION DETAILS OF ANAFP

C.2.1 ANCHOR SELECTION AND ADVERSARIAL PERTURBATION

To identify anchors, we use a logit margin threshold of manchor = 5.0 across all tasks. To compute the
minimal perturbation that can alter prediction results (cf. Step 2 of AnaFP), we adopt the C&W-ℓ2
attack. The attack is parameterized with a confidence margin kappa = 0, the number of optimization
steps steps = 3000, and the optimization learning rate lr = 0.01.

C.2.2 SURROGATE MODEL POOLS CONSTRUCTION

To enable estimation of theoretical bounds in Step 3 of AnaFP, we construct two surrogate model pools
for each task: a pirated model pool consisting of six models obtained via two simulated performance-
preserving modifications of the protected model (fine-tuning and knowledge distillation), and an
independent model pool consisting of six independently trained models trained from scratch with
different architectures and random seeds. All surrogate models and test models are trained with
different random seeds and architectures, ensuring no surrogate models overlap with any test models.

Specifically, for the CNN on CIFAR-10 and CIFAR-100, pirated models include fine-tuned and
knowledge-distilled models using ResNet-18 and DenseNet-121. The architectures of independently
trained models include ResNet-18 and DenseNet-169, with three random seeds per architecture.
For the MLP on MNIST, pirated models include fine-tuned ones, along with knowledge-distilled
models using FT-MLP and Wide&Deep. The architectures of independently trained models consist
of NODE and ResMLP, each instantiated with three seeds. For the GNN task on PROTEINS, pirated
models include fine-tuned ones, as well as knowledge-distilled models with GAT and GATv2. The
architectures of independently trained models consist of APPNP and GAT, each trained with three
random seeds.

C.2.3 PARAMETER ESTIMATION

The three parameters mmin, Luniq, and ϵlogit are estimated using the surrogate model pools described
in Appendix C.2.2. For each anchor, the lower bound mmin of the logit margin is estimated by
computing the logit margin for each surrogate independently trained model I , and aggregating using
the qmargin-quantile. The local Lipschitz constant Luniq is estimated for each independently trained
model based on the ratio of logit difference to input norm between the anchor input xa and its
boundary point xa + δ∗, and aggregated via the qlip-quantile. The bound ϵlogit of the logit shift bound
is computed as the maximum per-class logit difference between the protected model and the pirated
ones at the perturbed input x⋆, and relaxed using qeps-quantile. The quantile configurations are as
follows. For the CNN model evaluated on CIFAR-10 and CIFAR-100, and GNN on PROTEINS,
qmargin, qlip, and qeps are set to be 0.5, 0.5, and 1.0, respectively. For MLP on MNIST, we set qmargin,
qlip, and qeps to be 0.9, 0.1, and 1.0, respectively. In practice, selecting the thresholds requires only
coarse adjustment, typically by relaxing them until a reasonable number of valid fingerprints is found
(e.g., 50–100), which is corroborated by the experimental results in Section 5.2.2.

C.2.4 GRID SEARCH

The grid search over the interval (1, τupper] is implemented by uniformly sampling a finite number
of stretch factor value candidates. Specifically, we sample Ngrid points within this interval, where
Ngrid = 500 is used by default in all our experiments.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D THE COMPUTATION PLATFORM

All experiments are conducted on a high-performance server equipped with an NVIDIA A100 GPU
with 40 GB of memory and an Intel Xeon Gold 6246 CPU running at 3.30 GHz. The software
environment includes Python 3.9.21, PyTorch 2.5.1, and CUDA 12.5.

E SOCIETAL IMPACTS

Our work proposes a fingerprinting framework for verifying the ownership of deep neural network
(DNN) models, aiming to protect the intellectual property (IP) of model creators. By enabling reliable
and robust ownership verification, our method contributes positively to the development of secure
and trustworthy AI ecosystems. This can help mitigate unauthorized usage, model stealing, and
commercial misuse, encouraging responsible AI deployment and fair attribution in both academia
and industry.

F RELATED WORK

Model fingerprinting has become a key paradigm for protecting intellectual property (IP) of DNN
models (Cao et al., 2021; Guan et al., 2022; Wang et al., 2021a). In contrast to watermarking that
embeds additional functionalities into model parameters, which introduces security issues to the
model (Wang et al., 2021a; Xu et al., 2024; Li et al., 2024; Choi et al., 2025), fingerprinting provides
a non-intrusive alternative that protects a model’s ownership by extracting its intrinsic decision
behavior without making any modifications to it. The majority of existing methods consider a
practical black-box setting where ownership verification is conducted by querying the suspect model
with fingerprints and comparing the similarity between the outputs of the protected model and the
suspect model (Cao et al., 2021; Xu et al., 2024; Zhao et al., 2024a; You et al., 2024; Ren et al., 2023;
Yin et al., 2022; Yang & Lai, 2023; Peng et al., 2022; Liu & Zhong, 2024; Godinot et al., 2025).

Among these methods, many works leverage adversarial examples as fingerprints to induce model-
specific outputs for the protected models (Zhao et al., 2020; Yin et al., 2022; Peng et al., 2022; Yang
& Lai, 2023). To improve robustness against ownership obfuscation techniques, several studies create
variants for the protected model to optimize fingerprints (Wang et al., 2021a;b). To further enhance
the detection capability, Lukas et al. (2021); Li et al. (2021); Yang et al. (2022); Ren et al. (2023)
train fingerprints to yield consistent outputs across pirated variants of the protected model while
remaining distinguishable from independently trained models. Besides, some methods extract robust,
task-relevant features such as universal perturbations or adversarial trajectories to construct stronger
identifiers Peng et al. (2022); Xu et al. (2024). Recently, Godinot et al. (2025) leverages the training
samples that have been misclassified by the protected model as fingerprints, which demonstrate
stronger discriminative power than normal adversarial examples. Tang et al. (2025) proposes a
robust fingerprinting scheme that embeds ownership information in the frequency domain. Zhang
et al. (2025) identifies the most informative fingerprints from the set to achieve higher verification
performance under limited query budgets.

For model fingerprinting, an open question is how to craft fingerprints that can satisfy the properties of
robustness (robust to model modification attacks) and uniqueness (not falsely attribute independently
trained models as pirated) simultaneously. Several previous works provided their answers, i.e.,
empirically controlling the placement of fingerprints relative to the decision boundaries (Cao et al.,
2021; Liu & Zhong, 2024). However, these approaches rely on empirically tuned distance without
any theoretical guidance, which can lead to unstable fingerprint behavior and inconsistent verification
performance. In this paper, we propose an analytical fingerprinting approach that crafts adversarial
example-based fingerprints under the guidance of formalized properties of robustness and uniqueness.

19

	Introduction
	Background
	Adversarial Examples
	Model Modification Attacks

	Problem Formulation
	The Design of AnaFP
	Step 1: Selecting High-Confidence Anchors
	Step 2: Computing Minimal Decision-Altering Perturbations
	Step 3: Searching Stretch Factors Under Theoretical Constraints
	Parameter Estimation and Relaxation
	The Grid Search Strategy for Finding A Feasible tau

	Step 4: Constructing the Fingerprint Set
	Verification Protocol

	Experiments
	Effectiveness of Our Design
	Sensitivity to Design Choices
	The Impact of Surrogate Model Pool
	The Impact of the Quantile Threshold

	Ablation Study of the Stretch Factor

	Conclusions
	Theoretical Derivation of the Lower and Upper Bounds
	Supplemental Experimental Results
	Robustness to Model Modification attacks
	The Impact of Anchor Selection
	Robustness to the Knowledge Distillation Attack

	Efficiency Analysis

	Implementation Details
	Model Architectures and Training Settings
	Protected Model
	Independently Trained Models
	Pirated Models
	Data Preprocessing

	The Implementation Details of AnaFP
	Anchor Selection and Adversarial Perturbation
	Surrogate Model Pools Construction
	Parameter Estimation
	Grid Search

	The Computation Platform
	Societal Impacts
	Related Work

