
RLJ | RLC 2024

BetaZero: Belief-State Planning for Long-Horizon
POMDPs using Learned Approximations

Robert J. Moss, Anthony Corso, Jef Caers, Mykel J. Kochenderfer
Stanford University, {mossr, acorso, caers, mykel}@stanford.edu

Abstract

Real-world planning problems, including autonomous driving and sustainable en-
ergy applications like carbon storage and resource exploration, have recently been
modeled as partially observable Markov decision processes (POMDPs) and solved
using approximate methods. To solve high-dimensional POMDPs in practice, state-
of-the-art methods use online planning with problem-specific heuristics to reduce
planning horizons and make the problems tractable. Algorithms that learn ap-
proximations to replace heuristics have recently found success in large-scale fully
observable domains. The key insight is the combination of online Monte Carlo tree
search with offline neural network approximations of the optimal policy and value
function. In this work, we bring this insight to partially observable domains and
propose BetaZero, a belief-state planning algorithm for high-dimensional POMDPs.
BetaZero learns offline approximations that replace heuristics to enable online de-
cision making in long-horizon problems. We address several challenges inherent
in large-scale partially observable domains; namely challenges of transitioning in
stochastic environments, prioritizing action branching with a limited search bud-
get, and representing beliefs as input to the network. To formalize the use of all
limited search information, we train against a novel Q-weighted visit counts policy.
We test BetaZero on various well-established POMDP benchmarks found in the lit-
erature and a real-world problem of critical mineral exploration. Experiments show
that BetaZero outperforms state-of-the-art POMDP solvers on a variety of tasks.1

1 Introduction

Optimizing sequential decisions in real-world settings is challenging due to uncertainties about the
true state of the environment. Modeling such problems as partially observable Markov decision
processes (POMDPs) has shown recent success in autonomous driving (Wray et al., 2021), robotics
(Lauri et al., 2022), and aircraft collision avoidance (Kochenderfer et al., 2012). Solving large or
continuous POMDPs require approximations in the form of state-space discretizations or modeling
assumptions, e.g., assuming full observability. Although these approximations are useful when mak-
ing decisions in a short time horizon, scaling these solutions to long-horizon problems is challenging
(Shani et al., 2013). Recently, POMDPs have been used to model large-scale information gather-
ing problems such as carbon capture and storage (CCS) (Corso et al., 2022; Wang et al., 2023),
remediation for groundwater contamination (Wang et al., 2022), and critical mineral exploration
for battery metals (Mern & Caers, 2023), and are solved using online tree search methods such as
DESPOT (Ye et al., 2017) and POMCPOW (Sunberg & Kochenderfer, 2018). The performance of
these online methods rely on heuristics for action selection (to reduce search tree expansion) and
heuristics to estimate the value function (to avoid expensive rollouts and reduce tree search depth).
Without heuristics, online methods have difficulty planning for long-term information acquisition to
reason about uncertain future events. Thus, algorithms to solve high-dimensional POMDPs need to
be designed to learn heuristic approximations to enable decision making in long-horizon problems.

1Code: https://github.com/sisl/BetaZero.jl

https://github.com/sisl/BetaZero.jl

RLJ | RLC 2024

b

SELECTION

(
where b̃← ϕ(b)

)
a ∼ Pθ(b̃)

b

EXPANSION

a

b′

b′ ← UPDATE(b, a, o)

s ∼ b

s′ ∼ T (s, a)

o ∼ O(a, s′)

b

SIMULATION

a

b′

r + γVθ(b̃
′)

b

BACKPROPAGATION

a

b′

Q-value

policy evaluation

n parallel MCTS simulations

f ′
θ = TRAIN(fθ,D)

policy improvement

(p, v) = fθ(b̃)

(
b̃ = ϕ(b)

belief representation

)

initial network

D =
{{

(bt,πt, gt)
}T

t=1

}n

i=1

collected data
fθ = f ′

θ

Figure 1: The BetaZero POMDP policy iteration algorithm.

Contributions. This work aims
to address the problem of high-
dimensional, long-horizon POMDPs
by using the insight of combining
online MCTS planning with learned
offline neural network approxima-
tions that replace heuristics. Our
main contribution is the BetaZero
belief-state planning algorithm for
POMDPs (fig. 1), addressing the chal-
lenges of partial observability in large discrete action spaces and continuous state and observation
spaces. To handle stochastic belief-state transitions, BetaZero uses progressive widening (Couëtoux
et al., 2011) to limit belief-state expansion. When planning in belief space, expensive belief updates
limit the search budget in practice (e.g., O(n) for particle filters (Thrun et al., 2005) or O(n3) for
Kalman filters (Welch & Bishop, 1995)). Therefore, we sample from the policy network to prioritize
branching on promising actions, and we introduce a novel Q-weighted visit count policy target that
formalizes the use of all information seen during the limited search for policy imitation. While
planning occurs over the full belief, we use a parametric belief representation b̃ = ϕ(b) to capture
state uncertainty as input to the network. BetaZero uses the learned policy network Pθ(b̃) to reduce
search breadth and the learned value estimate Vθ(b̃) to reduce search depth to enable long-horizon
online planning (shown in red in fig. 2).

2 Problem Formulation

A partially observable Markov decision process (POMDP) is a model for sequential decision making
problems where the true state is unobservable. Defined by the tuple ⟨S,A,O, T,R,O, γ⟩, POMDPs
are an extension to the Markov decision process (MDP) used in reinforcement learning and planning
with the addition of an observation space O (where o ∈ O) and observation model O(o | a, s′).
Given a current state s ∈ S and taking an action a ∈ A, the agent transitions to a new state s′ using
the transition model s′ ∼ T (· | s, a). Without access to the true state, an observation is received
o ∼ O(· | a, s′) and used to update the belief b over the possible next states s′ to get the posterior

b′(s′) ∝ O(o | a, s′)
∫

s∈S
T (s′ | s, a)b(s) ds. (1)

An example of a type of belief is the non-parametric particle set that can represent a broad range
of distributions (Thrun et al., 2005), and Lim et al. (2023) show that optimality guarantees exist
in finite-sample particle-based POMDP approximations. Despite choosing to study particle-based
beliefs, our work generalizes well to problems with parametric beliefs.

A stochastic POMDP policy π(a | b) is defined as the distribution over actions given the current
belief b. After taking an action a ∼ π(· | b), the agent receives a reward r from the environment
according to the reward function R : S ×A → R or R : S ×A× S → R using the next state.

Belief-state MDPs. In belief-state MDPs, the POMDP is converted to an MDP by treating
the belief as a state (Kaelbling et al., 1998; Kochenderfer et al., 2022). The reward function then
becomes a weighted sum of the state-based reward:

Rb(b, a) =
∫

s∈S
b(s)R(s, a) ds ≈

∑
s∈b

b(s)R(s, a) (2)

The belief-state MDP shares the same action space as the POMDP and operates over a belief space
B that is the simplex over the state space S. The belief-MDP defines a new belief-state transition
function b′ ∼ Tb(· | b, a) as:

s ∼ b(·) s′ ∼ T (· | s, a) o ∼ O(· | a, s′) b′ ← Update(b, a, o) (3)

RLJ | RLC 2024

where the belief update can be done using a particle filter (Gordon et al., 1993). Therefore, the
belief-state MDP is defined by the tuple ⟨B,A, Tb, Rb, γ⟩ with the finite-horizon discount factor
γ ∈ [0, 1) that controls the effect that future rewards have on the current action.

The objective to solve belief-MDPs is to find a policy π that maximizes the value function

V π(b0) = Eπ

[
T∑

t=0
γtRb(bt, at)

∣∣ bt ∼ Tb, at ∼ π

]
(4)

from an initial belief b0. Instead of explicitly constructing a policy over all beliefs, online planning
algorithms estimate the next best action through a planning procedure, often a best-first tree search.

2.1 Monte Carlo tree search (MCTS)

Monte Carlo tree search (Coulom, 2007; Browne et al., 2012) is an online, recursive, best-first tree
search algorithm to determine the approximately optimal action to take from a given root state of
an MDP. Extensions to MCTS have been applied to POMDPs through several algorithms: partially
observable Monte Carlo planning (POMCP) treats the state nodes as histories h of action-observation
trajectories (Silver & Veness, 2010), POMCP with observation widening (POMCPOW) constructs
weighted particle sets at the observation nodes and extends POMCP to fully continuous domains
(Sunberg & Kochenderfer, 2018), and particle filter trees (PFT) and information PFT (IPFT) treat
the POMDP as a belief-state MDP and plan directly over the belief-state nodes using a particle
filter (Fischer & Tas, 2020). All variants of MCTS execute the following four steps. In this section
we use s to represent the state, the history h, and the belief state b and refer to them as “the state”.

1. Selection. During selection, an action is selected from the children of a state node based
on criteria that balances exploration and exploitation. The upper-confidence tree algo-
rithm (UCT) (Kocsis & Szepesvári, 2006) is a common criterion that selects an action that
maximizes the upper-confidence bound Q(s, a) + c

√
logN(s)/N(s, a) where Q(s, a) is the

Q-value estimate for state-action pair (s, a) with a visit count of N(s, a), the total visit
count of N(s) =

∑
a N(s, a) for the children a ∈ A(s), and c is an exploration constant.

Rosin (2011) introduced the UCT with predictor algorithm (PUCT), modified by Silver
et al. (2017), where a predictor P (s, a) guides the exploration towards promising branches
and selects an action according to the following:

argmax
a∈A(s)

Q(s, a) + c

(
P (s, a)

√
N(s)

1 +N(s, a)

)
(5)

2. Expansion. In the expansion step, the selected action is taken in simulation and the tran-
sition model T (s′ | s, a) is sampled to determine the next state s′. When the transitions are
deterministic, the child node is always a single state. If the transition dynamics are stochas-
tic, techniques to balance the branching factor such as progressive widening (Couëtoux et al.,
2011) and state abstraction refinement (Sokota et al., 2021) have been proposed.

3. Rollout/Simulation. In the rollout step, also called the simulation step due to recur-
sively simulating the MCTS tree expansion, the value is estimated through the execution of
a rollout policy until termination or using heuristics to approximate the value function from
the given state s′. Expensive rollouts done by AlphaGo were replaced with a value network
lookup in AlphaGo Zero and AlphaZero (Silver et al., 2016; 2017; 2018).

4. Backpropagation. Finally, during the backpropagation step, the Q-value estimate from
the rollout is propagated up the path in the tree as a running average.

RLJ | RLC 2024

b

SELECTION

(
where b̃← ϕ(b)

)
a ∼ Pθ(b̃)

b

EXPANSION

a

b′

b′ ← UPDATE(b, a, o)

s ∼ b

s′ ∼ T (s, a)

o ∼ O(a, s′)

b

SIMULATION

a

b′

r + γVθ(b̃
′)

b

BACKPROPAGATION

a

b′

Q-value

Figure 2: The four stages of MCTS belief-state planning in BetaZero using the value Vθ and policy
Pθ network heads (the policy evaluation step in fig. 1).

Root node action selection. After repeating the four steps of MCTS, the final action is selected
from the children a ∈ A(s) of the root state s and executed in the environment. One way to select
the best root node action, referred to as the robust child (Schadd, 2009; Browne et al., 2012), selects
the action with the highest visit count as argmaxa N(s, a). Sampling from the normalized counts,
exponentiated by an exploratory temperature τ , is also common (Silver et al., 2017). Another
method uses the highest estimated Q-value as argmaxa Q(s, a). Both criteria have been shown to
have problem-based trade-offs (Browne et al., 2012).

Double progressive widening. To handle stochastic state transitions and large or continuous
state and action spaces, double progressive widening (DPW) balances between sampling new nodes
to expand on or selecting from existing nodes already in the tree (Couëtoux et al., 2011). Two
hyperparameters α ∈ [0, 1] and k ≥ 0 control the branching factor. If the number of actions tried
from state s is less than kN(s)α, then a new action is sampled from the action space and added as a
child of node s. Likewise, if the number of expanded states from node (s, a) is less than kN(s, a)α,
then a new state is sampled from the transition function s′ ∼ T (· | s, a) and added as a child. If the
state widening condition is not met, then a next state is sampled from the existing children.

Note, in the following sections we will refer to the belief state as b and the true (hidden) state as s.

3 Proposed Algorithm: BetaZero

We introduce the BetaZero POMDP planning algorithm that replaces heuristics with learned ap-
proximations of the optimal policy and value function. BetaZero is a belief-space policy iteration
algorithm with two offline steps that learn a network used online:

1. Policy evaluation: Evaluate the current value and policy network through n parallel
episodes of MCTS (fig. 2) and collect training data: D =

{
{(bt,πt, gt)}T

t=1
}n

i=1

2. Policy improvement: Improve the estimated value function and policy by retraining the
neural network parameters θ with data from the nbuffer most recent MCTS simulations.

The policy vector over actions p = Pθ(b̃, ·) and the value v = Vθ(b̃) are combined into a single
network with two output heads (p, v) = fθ(b̃); we refer to Pθ and Vθ separately for convenience.
During policy evaluation, training data is collected from the outer POMDP loop. The belief bt

and the tree policy πt are collected for each time step t. At the end of each episode, the returns
gt =

∑T
i=t γ

(i−t)ri are computed from the set of observed rewards for all time steps up to a terminal
horizon T . Traditionally, MCTS algorithms use a tree policy πt that is proportional to the root
node visit counts of its children actions πt(bt, a) ∝ N(bt, a)1/τ . The counts are sampled after
exponentiating with a temperature τ to encourage exploration but evaluated online with τ → 0 to
return the maximizing action (Silver et al., 2017). In certain settings, relying solely on visit counts
may overlook crucial information (see fig. 3).

RLJ | RLC 2024

b

a1 a2 a3

0.5

0.13

0.38

π(b, a) ∝ visit counts

a1

N=20

Q=2

a2
N=5

Q=4

a3

N=15

Q=3.5

b

a1 a2 a3

0.21
0.42 0.37

π(b, a) ∝ Q-values

a1

N=20

Q=2

a2

N=5

Q=4

a3

N=15

Q=3.5

b

a1 a2 a3

0.16
0.30

0.54

π(b, a) ∝ Q-weighted counts

a1

N=20

Q=2

a2
N=5

Q=4

a3

N=15

Q=3.5

Figure 3: An illustrative example of when collecting policy data based purely on visit counts (left)
or Q-values (middle) would perform worse than weighting the visit counts based on Q-values (right).
This is useful when using a small MCTS budget with high exploration. Using both the Q-values
and visit counts, we incorporate both what the tree search focused on and the values it found.

Policy vector as Q-weighted counts. When planning in belief space, expensive belief updates
occur in the tree search and thus may limit the MCTS budget. Therefore, the visit counts may not
converge towards an optimal strategy as the budget may be spent on exploration. Danihelka et al.
(2022) and Czech et al. (2021) suggest using knowledge of the Q-values from search in MCTS action
selection. Using only tree information, we incorporate Q-values and train against the policy

πt(bt, a) ∝
((

expQ(bt, a)∑
a′ expQ(bt, a′)

)zq
(

N(bt, a)∑
a′ N(bt, a′)

)zn
)1/τ

(6)

which is then normalized to get a valid probability distribution. Equation (6) simply weights the
visit counts by the softmax Q-value distribution with parameters zq ∈ [0, 1] and zn ∈ [0, 1] defining
the influence of the values and the visit counts, respectively. If zq = zn = 1, then the influence is
equal and if zq = zn = 0, then the policy becomes uniform. Once the tree search finishes, the root
node action is selected from a ∼ πt(bt, ·) and returns the argmax when the temperature τ → 0.

Loss function. Using the latest collected data, the policy improvement step retrains the policy
network head using the cross-entropy loss LPθ

(πt,pt) = −π⊤
t log pt. The value network head is

simultaneously trained to fit the returns gt using mean-squared error (MSE) or mean-absolute error
(MAE) to predict the value of the belief bt. Note that we use either MSE or MAE value losses LVθ

for different problems depending on the characteristics of the return distribution. In sparse reward
problems, MAE is a better choice as the distribution is closer to Laplacian (Hodson, 2022). When
the reward is distributed closer to Gaussian, then MSE is more suitable (Chai & Draxler, 2014).
The final loss function combines the value and policy losses with L2-regularization scaled by λ:

ℓβ0 = LVθ
(gt, vt) + LPθ

(πt,pt) + λ∥θ∥2 (7)

Prioritized action widening. Planning in belief space explicitly handles state uncertainty but
may incur computational overhead when performing belief updates, therefore we avoid trying all
actions at every belief node. We apply action progressive widening (Couëtoux et al., 2011) to limit
action expansion, which has been used in the context of continuous action spaces (Moerland et al.,
2018) and large discrete action spaces (Yee et al., 2016). Browne et al. (2012) found action progressive
widening to be effective in cases where favorable actions were tried first and Mern et al. (2021) show
that prioritizing actions can improve MCTS performance in large discrete action spaces. Therefore,
BetaZero selects actions through progressive widening and uses information from the learned policy
network to sample new actions a ∼ Pθ(b̃, ·), line 4, alg. 1. This way, we first focus the expansion
on promising actions, then make the final selection based on PUCT.2 In section 5, we perform an
ablation to measure the effect of using the policy Pθ to prioritize actions when widening the tree.

2PUCT uses normalized Q-values from 0 to 1 (Q̄) so c can be problem independent (Schrittwieser et al., 2020).

RLJ | RLC 2024

Algorithm 1: BetaZero action progressive widening.
1 function ActionSelection(fθ, b)
2 b̃← ϕ(b) ▷ belief representation
3 if |A(b)| ≤ kaN(b)αa ▷ action progressive widening
4 a ∼ Pθ(b̃, ·) ▷ prioritized from network
5 N(b, a)← N0(b, a)
6 Q(b, a)← Q0(b, a) ▷ bootstrap initial Q-value
7 A(b)← A(b) ∪ {a} ▷ add to visited actions A(b)
8 return argmax

a∈A(b)
Q̄(b, a) + c

(
Pθ(b̃, a)

√
N(b)

1+N(b,a)

)

Algorithm 2: BetaZero belief-state progressive widening.
1 function BeliefStateExpansion(b, a)
2 if |B(b, a)| ≤ kbN(b, a)αb ▷ belief progressive widening
3 b′ ∼ Tb(· | b, a) ▷ eq. (3)
4 B(b, a)← B(b, a) ∪ {b′} ▷ add to visited beliefs
5 else
6 b′ ∼ B(b, a) ▷ sample from belief-states in the tree
7 r ← R(b, a) or r ← R(b, a, b′)
8 return b′, r

Stochastic belief-state transitions. A challenge with partially observable domains is handling
non-deterministic belief-state transitions in the tree search. The belief-state transition function Tb

consists of several stochastic components and the belief is continuous (being a probability distribution
over states). To address this, we use progressive widening from Couëtoux et al. (2011) (algorithm 2).
Other methods for state expansion, like state abstraction refinement from Sokota et al. (2021), rely on
problem-specific distance metrics between states to perform a nearest neighbor search. Progressive
widening avoids problem-specific heuristics by using information only available in the search tree
to provide artificially limited belief-state branching. Limited branching is important as the belief
updates can be computationally expensive, thus limiting the MCTS search budget in practice.

Parametric belief representation. Inputting state histories into the network has been done in
the literature, in both the context of MDPs (Silver et al., 2018) and POMDPs (Cai & Hsu, 2022)
Using only state information does not generalize to complex POMDPs (seen in fig. 8), therefore,
a representation of the belief is required. Although a particle belief is not parametrically defined,
approximating the belief as summary statistics (e.g., mean and std) may capture enough information
for value and policy estimation to be used during planning (Coquelin et al., 2008). Approximating
the particle set parametrically is easy to implement and computationally inexpensive. We show that
the approximation works well across various problems and, unsurprisingly, using only the mean state
is inadequate (see section 5). We represent the particle set b parametrically as ϕ(b) = [µ(b), σ(b)].
BetaZero plans over the full belief b in the tree and only converts to the belief representation b̃ = ϕ(b)
for network evaluations. We do not depend on the exact way in which the belief is represented, so
long as it captures state uncertainty. Coquelin et al. (2008) consider how to represent a particle filter
belief as a finite set of features for policy gradient and suggest the approximation that consists of
the mean and covariance, but only consider the class of policies depending on a single feature of the
mean. Their work suggests that other features, such as entropy, could also be used. Other algorithms
(e.g., FORBES from Chen et al. (2022)) could instead be used to learn this belief representation.
Another example approach could use principle component analysis (PCA) to learn lower-dimensional
features for belief representation (Roy et al., 2005).

Bootstrapping initial Q-values. The value network Vθ is used during the simulation step to
replace rollouts with a network lookup (line 7, alg. 3). When a new state-action node is added to
the tree, initial Q-values can also use the value network to bootstrap the estimate:

Q0(b, a) def= Rb(b, a) + γVθ(ϕ(b′)) where b′ ∼ Tb(· | b, a) (8)

Bootstrapping occurs in algorithm 1 (line 6) and incurs an additional belief update through the
belief-state transition Tb and may be opted only during online execution. The bootstrapped esti-
mate is more robust (Kumar et al., 2019) and can be useful to initialize online search. Note that
bootstrapping is also used in the model-free MuZero algorithm (Schrittwieser et al., 2020).

Complexity analysis. The runtime complexity of MCTS is M = O(ndm) for the n number of
MCTS iterations (denoted nonline in algorithm 3), for the search depth d, and with a belief up-
date over m particles at each belief-state node. The full complexity of BetaZero is O(pmTM/c)
for p parallel runs (denoted ndata in algorithm 5), an episode horizon of T (each step updat-
ing the belief over m particles), the MCTS complexity of M , and the number of CPU cores c.

RLJ | RLC 2024

Algorithm 3: BetaZero MCTS simulation.
1 function Simulate(fθ, b, d)
2 if d = 0 return 0
3 if b ̸∈ T
4 T ← T ∪ {b}
5 N(b)← N0(b)
6 b̃← ϕ(b) ▷ belief representation
7 return Vθ(b̃) ▷ value lookup
8 N(b)← N(b) + 1
9 a← ActionSelection(fθ, b)

10 (b′, r)← BeliefStateExpansion(b, a)
11 q ← r + γSimulate(fθ, b

′, d− 1)
12 N(b, a)← N(b, a) + 1
13 Q(b, a)← Q(b, a) + q−Q(b,a)

N(b,a)
14 return q

The memory complexity for MCTS is E = O(kd) for
k = |A(b)||B(b, a)| where |B(b, a)| is the number of belief-
action nodes and |A(b)| is the number of children, which
depend on progressive widening parameters. The mem-
ory complexity for BetaZero is O(TPE|θ|) for the col-
lected data sizes of the belief and returns T (same as the
horizon), the policy vector size of P = |A| (i.e., action
space size), the MCTS memory complexity of E, and the
network size of |θ|. Compared to standard MCTS applica-
tions to belief-state MDPs, BetaZero requires additional
memory for data collection and neural network storage.

Algorithm 3 details MCTS for BetaZero with extensions
for belief-state planning with learned approximations.
The full BetaZero algorithm is shown in algorithms 4 to 6.

4 Related Work

Algorithms to solve high-dimensional, fully observable Markov decision processes (MDPs) have been
proposed to learn approximations that replace problem-specific heuristics. Silver et al. (2018) intro-
duced the AlphaZero algorithm for large, deterministic MDPs and showed considerable success in
games such as Go, chess, shogi, and Atari (Silver et al., 2018; Schrittwieser et al., 2020). The success
is attributed to the combination of online Monte Carlo tree search (MCTS) and a neural network
that approximates the optimal value function and the offline policy. Extensions of AlphaZero and
the model-free variant MuZero (Schrittwieser et al., 2020) have already addressed several challenges
when applying to broad classes of MDPs. For large or continuous action spaces, Hubert et al. (2021)
introduced a policy improvement algorithm called Sampled MuZero that samples an action set of an
a priori fixed size every time a node is expanded. Antonoglou et al. (2021) introduced Stochastic
MuZero that extends MuZero to games with stochastic transitions but assumes a finite set of pos-
sible next states so that each transition can be associated with a chance outcome. Applying these
algorithms to large or continuous spaces with partially observability remains challenging.

To handle partial observability in stochastic games, Ozair et al. (2021) combine VQ-VAEs with
MuZero to encode future discrete observations into latent variables. Other approaches handle partial
observability by inputting action-observation histories directly into the network (Kimura et al., 2020;
Vinyals et al., 2019). Similarly, Igl et al. (2018) introduce a method to learn a belief representation
within the network when the agent is only given access to histories. Their work focuses on the
reinforcement learning (RL) domain and they show that a belief distribution can be represented as
a latent state in the learned model. The FORBES algorithm (Chen et al., 2022) builds a normalizing
flow-based belief and learns a policy through an actor-critic RL algorithm. Methods to learn the
belief are necessary when a prior belief model is not available. When such models do exist, as is the
case with many POMDPs that we study, using the models can be valuable for long-term planning.
Hoel et al. (2019) apply AlphaGo Zero (Silver et al., 2017) to an autonomous driving POMDP using
the most-likely state as the network input but overlook significant belief uncertainty information.

Planning vs. reinforcement learning. In POMDP planning, models of the transitions, rewards,
and observations are known. In contrast, in the model-based partially observable reinforcement
learning (PORL) domain, these models are learned along with a policy or value function (Sutton &
Barto, 2018; Subramanian et al., 2022). A difference between these settings is that PORL algorithms
reset the agent and learn through experience, while planning algorithms, like MCTS, must consider
future trajectories from any state. When RL problems have deterministic state transitions, they
can be cast as a planning problem by replaying the full state trajectory along a tree path, which
may be prohibitively expensive for long-horizon problems. Both settings are closely related and
pose interesting research challenges. Specifically, sequential planning over given models in high-
dimensional, long-horizon POMDPs remains challenging (Lauri et al., 2022).

RLJ | RLC 2024

Online POMDP planning. Sunberg & Kochenderfer (2018) introduced the POMCPOW plan-
ning algorithm that iteratively builds a particle set belief within the tree, designed for fully continuous
spaces. In practice, POMCPOW relies on heuristics for value function estimation and action selec-
tion (e.g., work from Mern & Caers (2023)). Wu et al. (2021b) introduced AdaOPS that adaptively
approximates the belief through particle filtering and maintains value function bounds that are ini-
tialized with heuristics (e.g., solving the MDP or using expert policies). The major limitation of
existing solvers is the reliance on heuristics to make long-horizon POMDPs tractable, which may not
scale to high-dimensional problems. Cai & Hsu (2022) proposed LeTS-Drive applied to autonomous
driving that combines planning and learning similar to BetaZero, and uses HyP-DESPOT with
PUCT exploration (Cai et al., 2021) as the planning algorithm, instead of MCTS. It uses a state-
history window as input to the network, which may not adequately capture the state uncertainty.
LeTS-Drive expands on all actions during planning, which we show may lead to suboptimal planning
under limited search budgets (shown in figs. 14 and 16). To handle long-horizon POMDPs, Mazzi
et al. (2023) propose learning logic-based rules as policy guidance in POMCP, yet domain-specific
knowledge is required to define the set of features for the rules, which may not be easily generalized
to complex POMDPs we study in this work. Therefore, we identified the need for a general POMDP
planning algorithm that does not rely on problem-specific heuristics for good performance.

5 Experiments

|S| |A| |O|

LightDark(5 and 10) |R| 3 |R|
RockSample(15, 15) 7,372,800 20 3
RockSample(20, 20) 419,430,400 25 3
Mineral Exploration |R32×32| 38 |R≥0|

Figure 4: POMDP space dimensions.

Three benchmark problems were chosen to evaluate the
performance of BetaZero. Figure 4 details the POMDP
sizes and appendices further describe the POMDPs, net-
work architectures, and experimental design.

In LightDark(y) from Platt Jr. et al. (2010), the goal of
the agent is to execute a stop action at the origin while
receiving noisy observations of its true location. The noise
is minimized in the “light” region y = 5. We also bench-
mark against a more challenging version with the light
region at y = 10 from Sunberg & Kochenderfer (2018), and restrict the agent to only three actions:
move up or down by one, or stop. The modified problem requires information gathering over longer
horizons. Next is the RockSample(n, k) POMDP (Smith & Simmons, 2004), which is a scalable
information gathering problem where an agent moves in an n × n grid to observe k rocks with an
objective to sample only the “good” rocks. Well-established POMDP benchmarks go up to n = 15
and k = 15; we also test a harder version with n = 20 and k = 20 to show the scalability of BetaZero,
noting that this case has been evaluated in the multi-agent setting (Cai et al., 2021). Finally, in the
real-world Mineral Exploration problem (Mern & Caers, 2023), the agent drills over a 32× 32
region to determine if a subsurface ore body should be mined or abandoned and the continuous ore
quality is observed at the drill locations to build a belief. Drilling incurs a penalty, and if chosen to
mine, then the agent is rewarded or penalized based on an economic threshold of the extracted ore
mass. The problem is challenging due to reasoning over limited observations with sparse rewards.

We baseline BetaZero against several online POMDP algorithms, namely AdaOPS, POMCPOW,
DESPOT, and LeTS-Drive (HyP-DESPOT with a learned network). In LightDark, we solve for
an approximately optimal policy using local approximation value iteration (LAVI) (Kochenderfer,
2015) over a discretized parametric belief space, and for mineral exploration, the value estimates
come from privileged information described in the appendix. For a fair comparison, parameters were
set to roughly match the total number of simulations of about one million per algorithm.

5.1 Empirical results and discussion

Table 1 shows that BetaZero outperforms state-of-the-art algorithms in most cases, with larger
improvements when baseline algorithms do not rely on heuristics. While BetaZero has a large offline
timing component, similar to LeTS-Drive, it is significantly less than solving for the approximately

RLJ | RLC 2024

LightDark(5) LightDark(10) RockSample(15, 15) RockSample(20, 20) Mineral Exploration
returns time [off,on] s returns time [off,on] s returns time [off,on] s returns time [off,on] s returns time [off,on] s

BetaZero 4.47± 0.28 [2274, 0.014] 16.77± 1.28 [2740, 0.331] 20.15± 0.71 [5701, 0.477] 13.09± 0.55 [7081, 1.109] 10.67± 2.25 [22505, 5.126]
Raw Policy Pθ 4.44± 0.28 [2274, 0.004] 13.74± 1.33 [2740, 0.004] 10.96± 0.98 [5701, 0.018] 2.03± 0.34 [7081, 0.084] 8.67± 2.52 [22505, 0.533]

Raw Value Vθ
* 3.16± 0.40 [2274, 0.008] 12.70± 1.46 [2740, 0.009] 9.96± 0.65 [5701, 0.158] 3.57± 0.40 [7081, 0.204] 9.75± 2.42 [22505, 1.420]

AdaOPS 3.78± 0.27 [68, 0.089] 5.22± 1.77 [81, 0.510] 20.67± 0.72 [7, 2.768] — — 3.33± 1.95 [5, 0.112](3.79± 0.07) (17.16± 0.21)
AdaOPS (fixed bounds) 3.70± 0.25 [0, 0.039] 4.98± 2.01 [0, 0.573] 13.37± 0.71 [0, 1.349] 11.66± 0.49 [1, 1.458] ” ”

POMCPOW 3.21± 0.38 [59, 0.189] 0.68± 0.41 [70, 1.261] 11.14± 0.59 [0, 0.929] 10.22± 0.47 [0, 1.480] 9.43± 2.19 [0, 6.728](3.23± 0.11) (10.40± 0.18)
POMCPOW (no heuristics) 1.96± 0.58 [0, 0.099] −5.90± 5.78 [0, 0.742] 10.17± 0.61 [0, 1.485] 4.03± 0.44 [0, 5.173] 5.38± 2.15 [0, 5.915]

DESPOT 2.37± 0.37 [0, 0.008] 0.43± 0.36 [0, 0.046] 18.44± 0.69 [7, 3.822] — — 5.29± 2.17 [5, 0.283](2.50± 0.10) (15.67± 0.20)
DESPOT (fixed bounds) 2.70± 0.50 [0, 0.008] 0.49± 0.30 [0, 0.025] 4.29± 0.45 [0, 5.091] 0.00 [0, 5.179] ” ”

LeTS-Drive (HyP-DESPOT + fθ) 3.05± 0.25 [1260, 0.019] 4.08± 5.48 [1529, 0.058] 11.22± 0.27 [48064, 1.576] 9.68± 0.25 [63850, 2.018] 3.17± 2.04 [11738, 4.613]

Approx. Optimal 4.06± 0.31 [18359, 0.094] 15.04± 1.27 [19548, 0.024] — — — — 11.90± 0.18 N/A

* One-step look-ahead over all actions using only the value network with 5 observations per action.
Entries with “—” failed to run, ” are the same as the ones above, and entries in (parentheses) are from the literature.

Table 1: Results comparing BetaZero to various state-of-the-art POMDP solvers. Reporting return
mean and standard error over 100 seeds, and [offline, online] timing in seconds.

optimal policy. Figure 5 compares the raw BetaZero value and policy network with value iteration
for LightDark(10). Qualitatively, BetaZero learns an accurate optimal policy and value function in
areas where training data was collected. Areas where BetaZero and the approximately optimal policy
diverge may be a result of a lack of training data in those regions (top right corners). Despite this,
BetaZero remains nearly optimal as those beliefs do not occur during execution. Out-of-distribution
methods could quantify this uncertainty, e.g., an ensemble of networks (Salehi et al., 2022).

In RockSample(15, 15), BetaZero is comparable to AdaOPS yet scales better to higher dimensional
problems such as the RockSample(20, 20) POMDP. AdaOPS computes an upper bound using
QMDP (Littman et al., 1995) to find the optimal utility of the fully observable MDP over all
k − 1 rock combinations, which scales exponentially in n. In problems with higher state space
dimensions, like RockSample(20, 20), the QMDP solution is intractable. Thus, fixed bounds are
used in AdaOPS assuming an optimistic Vmax (Wu et al., 2021a). The appendix further details the
heuristics used by the baseline algorithms. Indicated in table 1, the raw networks alone perform well
but outperform when combined with online planning, enabling reasoning with current information.

If online algorithms ran for a large number of iterations, one might expect to see convergence to
the optimal policy. In practice, this may be an intractable number as fig. 6 shows POMCPOW has
not reached the required number of iterations for RockSample. The advantage of BetaZero is that
it can generalize from a more diverse set of experiences. The inability of existing online algorithms
to plan over long horizons is also evident in the mineral exploration POMDP (fig. 7). POMCPOW

← training data distribution

0.0

2.5

5.0

7.5

10.0

µ
(b
)

BetaZero raw value network

a = upa = down

a = stop0.0

2.5

5.0

7.5

10.0

BetaZero raw policy network

0 1 2 3

0.0

2.5

5.0

7.5

10.0

σ(b)

µ
(b
)

Approximately optimal value function

0 1 2 3

σ(b)

Approximately optimal policy

Figure 5: LightDark(10) value and policy plots over belief mean and std. High uncertainty
(horizontal axis) makes the agent localize up near y = 10, then moves down and stops at the origin.

RLJ | RLC 2024

101 102 103 104 105 106 107

6

10

14

18

online planning iterations
re

tu
rn

s

Online performance in ROCKSAMPLE(15, 15)

BetaZero
POMCPOW
Raw Policy Pθ

Raw Value Vθ

Figure 6: Performance of POMCPOW with heuristics up to 10 million online iterations plateaus,
indicating that extending online searches alone misses valuable offline experience.

ran for one million online iterations without a value estimator heuristic and BetaZero ran online for
100 iterations (using about 850,000 offline simulations). In the figure, the probability of selecting a
drilling location is shown as vertical bars for each action, overlaid on the initial belief uncertainty
(i.e., the std of the belief in subsurface ore quality). BetaZero learned to take actions in areas of
the belief space with high uncertainty and high value (which matches the domain-specific heuristics
developed for the mineral exploration problem from Mern & Caers (2023)), while POMCPOW fails
to distinguish between the actions and resembles a uniform policy.

The most closely related algorithm, LeTS-Drive (Cai & Hsu, 2022), which also includes an offline
learning component with online tree search planning, performs better than its DESPOT counterpart
without the use of offline heuristics. This is observed in all studied POMDPs except for the mineral
exploration problem where the DESPOT bounds use privileged information from the approximately
optimal bounds on the value function. Table 1 highlights that LeTS-Drive is able to scale DESPOT
to the RockSample(20, 20) problem, with overall similar timing results as BetaZero but worse
performance. This could be attributed to the HyP-DESPOT online tree search used in LeTS-Drive
that plans over observation space (similar to POMCPOW) and implicitly constructs beliefs from
a set of K scenarios in the tree. Therefore, the beliefs are dependent on the number of in-tree
scenarios executed, hence the comparable timing results, and not on the actual root node belief that
is updated along the tree paths (where belief-state planning incurs different computational expense
but with the benefit of planning over reachable beliefs into the future). Instead of the state history
as network input, we use the in-tree belief for a better comparison. The HyP-DESPOT planner
expands the tree over all actions instead of using progressive widening with prioritization, and, as
we observe in the ablation studies in the next section, expanding on all actions may limit the effective
use of the tree search budget, thus potentially missing promising areas of the reachable futures.

Ablation studies. To test the effect of each contribution, we run several ablation studies. The
influence of value and visit count information when selecting an action is shown in fig. 9. Each cell
is the mean return for the RockSample(20, 20) problem over 100 online trials, selecting root-node
actions via the argmax of eq. (6) given zq and zn. The cell at (0, 0) corresponds to a uniform policy

x

y

p

BETAZERO

0.00 1.00 2.00 3.00

·10−3

abandon
mine

2.45 · 10−3

3.55 · 10−3

probability

x

y

p

POMCPOW

0.00 1.00 2.00 3.00 4.00

·10−2

abandon
mine

3.04 · 10−2

3.77 · 10−2

probability

Figure 7: Mineral exploration policies: BetaZero prioritizes uncertainty, matching heuristics from
Mern & Caers (2023) (i.e., select action with high uncertainty, shown in yellow).

RLJ | RLC 2024

2K 4K 6K 8K 10K

−3
0

3

6

9

12

number of episodes trained on

m
ea

n
re

tu
rn

Ablation: Q-weighted policy vector

Q-weighted counts
Q-values
visit counts

5K 10K 15K

−3
0

3

6

9

12

number of episodes trained on

Ablation: Belief representation

b̃ = [µ(b), σ(b)]

b̃ = µ(b)

5K 10K 15K 20K 25K

−3
0

3

6

9

12

number of episodes trained on

Ablation: Prioritized action widening

sample from policy network
sample from action space

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

visit count influence zn

va
lu

e
in

flu
en

ce
z q

Influence of
Q-weighed counts on return

0

5

10

Figure 8: LightDark(10) ablation study. (Left) Learning is faster
when the network is trained using Q-weighted visit counts. (Middle)
Incorporating belief uncertainty is crucial for learning. (Right) Ac-
tion widening from the policy network shows significant improvement.
The same red curves are shown with varying horizontal axes, and one
std is shaded from three seeds using 0.6 exponential smoothing.

Figure 9: Ablation study in
RockSample(20, 20). Com-
bining value and count infor-
mation leads to the highest re-
turn. The diagonal is identical
due to the argmax of eq. (6).

and thus samples actions instead. Using only the visit counts (bottom cells) or only the values (left
cells) to make decisions is worse than using a combination of the two. The effect of the Q-weighting
is also shown in the leftmost fig. 8, which suggests that it helps learn faster in LightDark(10).

Unsurprisingly, using the state uncertainty encoded in the belief is crucial for learning as indicated in
the middle of fig. 8. Future work could directly input the particle set into the network, first passing
through an order invariant layer (Zaheer et al., 2017), to offload the belief approximation to the
network itself. Finally, the rightmost plot in fig. 8 suggests that when branching on actions using
progressive widening, it is important to first prioritize the actions suggested by the policy network.
Offline learning fails if instead we sample uniformly from the action space (even in the LightDark
case with only three actions).

6 Conclusions

We propose the BetaZero belief-state planning algorithm for POMDPs; designed to learn from offline
experience to inform online decisions. Planning in belief space explicitly handles state uncertainty
and learning offline approximations to replace heuristics enables effective online planning in long-
horizon POMDPs. Although belief-space planning incurs expensive belief updates in the tree search,
we address the limited search budget used in practice by incorporating all information available in
the search tree to (a) train the policy vector target (using the Q-weighted visit counts), and (b)
sample from the policy network during action progressive widening to prioritize promising actions.
Stochastic belief-state transitions in MCTS are addressed using progressive widening and we test a
belief representation of summary statistics to allow beliefs as input to the value and policy network.
Results indicate that BetaZero scales to larger problems where certain heuristics break down and,
as a result, can solve large-scale POMDPs by learning to plan in belief space using zero heuristics.

Limitations. It is standard for POMDP planning algorithms to assume known models but this
may limit the applicability to certain problems where reinforcement learning may be better suited.
We chose a simplified belief representation to allow for further research innovations in using other
parametric and non-parametric representations. Other limitations include compute resource require-
ments for training neural networks and parallelizing MCTS simulations. We designed BetaZero to
use a single GPU for training and to scale based on available CPUs. Certain POMDPs may not
require this training burden, especially when known heuristics perform well. BetaZero is useful for
long-horizon, high-dimensional POMDPs but may be unnecessary when offline training is compu-
tationally limited. BetaZero is designed for problems where the simulation cost is the dominating
factor compared to offline training time.

RLJ | RLC 2024

Acknowledgments

We would like to thank Johannes Fischer, Arec Jamgochian, Markus Zechner, Dylan Asmar and
Ashwin Kanhere for their insights and comments on this work. This work is supported by funding
from the Stanford Institute for Human-Centered AI (HAI), Stanford Mineral-X, and OMV.

References
Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas K. Hubert, and David Silver. Plan-

ning in Stochastic Environments with a Learned Model. In International Conference on Learning
Representations (ICLR), 2021.

Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A Survey
of Monte Carlo Tree Search Methods. IEEE Transactions on Computational Intelligence and AI
in Games, 4(1):1–43, 2012.

Panpan Cai and David Hsu. Closing the Planning–Learning Loop With Application to Autonomous
Driving. IEEE Transactions on Robotics, 39(2):998–1011, 2022.

Panpan Cai, Yuanfu Luo, David Hsu, and Wee Sun Lee. HyP-DESPOT: A hybrid parallel algorithm
for online planning under uncertainty. The International Journal of Robotics Research, 40(2-3):
558–573, 2021.

Tianfeng Chai and Roland R. Draxler. Root mean square error (RMSE) or mean absolute error
(MAE)?–Arguments against avoiding RMSE in the literature. Geoscientific Model Development,
7(3):1247–1250, 2014.

Xiaoyu Chen, Yao Mark Mu, Ping Luo, Shengbo Li, and Jianyu Chen. Flow-Based Recurrent Belief
State Learning for POMDPs. In International Conference on Machine Learning (ICML), 2022.

Pierre-Arnaud Coquelin, Romain Deguest, and Rémi Munos. Particle Filter-Based Policy Gradient
in POMDPs. Advances in Neural Information Processing Systems (NIPS), 21, 2008.

Anthony Corso, Yizheng Wang, Markus Zechner, Jef Caers, and Mykel J. Kochenderfer. A POMDP
Model for Safe Geological Carbon Sequestration. NeurIPS Workshop on Tackling Climate Change
with Machine Learning, 2022.

Adrien Couëtoux, Jean-Baptiste Hoock, Nataliya Sokolovska, Olivier Teytaud, and Nicolas Bonnard.
Continuous Upper Confidence Trees. In Learning and Intelligent Optimization. Springer, 2011.

Rémi Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. In Computers
and Games, 2007.

Katalin Csilléry, Michael G. B. Blum, Oscar E. Gaggiotti, and Olivier François. Approximate
Bayesian Computation (ABC) in practice. Trends in Ecology & Evolution, 25(7):410–418, 2010.

Johannes Czech, Patrick Korus, and Kristian Kersting. Improving AlphaZero Using Monte-Carlo
Graph Search. In International Conference on Automated Planning and Scheduling (ICAPS),
volume 31, pp. 103–111, 2021.

Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy Improvement by Planning
with Gumbel. In International Conference on Learning Representations (ICLR), 2022.

Maxim Egorov, Zachary N. Sunberg, Edward Balaban, Tim A. Wheeler, Jayesh K. Gupta, and
Mykel J. Kochenderfer. POMDPs.jl: A Framework for Sequential Decision Making under Uncer-
tainty. Journal of Machine Learning Research, 18(26):1–5, 2017.

RLJ | RLC 2024

Johannes Fischer and Ömer Sahin Tas. Information Particle Filter Tree: An Online Algorithm for
POMDPs with Belief-Based Rewards on Continuous Domains. In International Conference on
Machine Learning (ICML), pp. 3177–3187. PMLR, 2020.

Neil J. Gordon, David J. Salmond, and Adrian F.M. Smith. Novel approach to nonlinear/non-
Gaussian Bayesian state estimation. In IEEE for Radar and Signal Processing, volume 140, 1993.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural Networks for Machine Learning.
Lecture 6a: Overview of Mini-Batch Gradient Descent. http://www.cs.toronto.edu/~tijmen/
csc321/slides/lecture_slides_lec6.pdf, 2014.

Timothy O. Hodson. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use
them or not. Geoscientific Model Development, 15(14):5481–5487, 2022.

Carl-Johan Hoel, Katherine Driggs-Campbell, Krister Wolff, Leo Laine, and Mykel J. Kochender-
fer. Combining Planning and Deep Reinforcement Learning in Tactical Decision Making for
Autonomous Driving. IEEE Transactions on Intelligent Vehicles, 5(2):294–305, 2019.

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and Planning in Complex Action Spaces. In International
Conference on Machine Learning (ICML), pp. 4476–4486. PMLR, 2021.

Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep Variational
Reinforcement Learning for POMDPs. In International Conference on Machine Learning (ICML),
pp. 2117–2126. PMLR, 2018.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134, 1998.

Tomoaki Kimura, Katsuyoshi Sakamoto, and Tomah Sogabe. Development of AlphaZero-Based
Reinforcment Learning Algorithm for Solving Partially Observable Markov Decision Process
(POMDP) Problem. Bulletin of Networking, Computing, Systems, and Software, 9(1):69–73,
2020.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980, 2014.

Mykel J. Kochenderfer. Decision Making Under Uncertainty: Theory and Application. MIT Press,
2015.

Mykel J. Kochenderfer, Jessica E. Holland, and James P. Chryssanthacopoulos. Next-Generation
Airborne Collision Avoidance System. Lincoln Laboratory Journal, 19(1), 2012.

Mykel J. Kochenderfer, Tim A. Wheeler, and Kyle H. Wray. Algorithms for Decision Making. MIT
Press, 2022.

Levente Kocsis and Csaba Szepesvári. Bandit Based Monte-Carlo Planning. In European Conference
on Machine Learning, pp. 282–293. Springer, 2006.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing Off-Policy
Q-Learning via Bootstrapping Error Reduction. In Advances in Neural Information Processing
Systems (NeurIPS), volume 32, 2019.

Mikko Lauri, David Hsu, and Joni Pajarinen. Partially Observable Markov Decision Processes in
Robotics: A Survey. IEEE Transactions on Robotics, 2022.

Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient BackProp. In
Neural Networks: Tricks of the Trade, pp. 9–50. Springer, 2002.

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

RLJ | RLC 2024

Michael H. Lim, Tyler J. Becker, Mykel J. Kochenderfer, Claire J. Tomlin, and Zachary N. Sun-
berg. Optimality Guarantees for Particle Belief Approximation of POMDPs. Journal of Artificial
Intelligence Research, 77:1591–1636, 2023.

Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling. Learning policies for partially
observable environments: Scaling up. In Machine Learning Proceedings, pp. 362–370. Elsevier,
1995.

Giulio Mazzi, Daniele Meli, Alberto Castellini, and Alessandro Farinelli. Learning Logic Specifica-
tions for Soft Policy Guidance in POMCP. In International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pp. 373–381, 2023.

John Mern and Jef Caers. The Intelligent Prospector v1.0: Geoscientific Model Development and
Prediction by Sequential Data Acquisition Planning with Application to Mineral Exploration.
Geoscientific Model Development, 16(1):289–313, 2023.

John Mern, Anil Yildiz, Lawrence Bush, Tapan Mukerji, and Mykel J. Kochenderfer. Improved
POMDP Tree Search Planning with Prioritized Action Branching. AAAI Conference on Artificial
Intelligence (AAAI), 35(13):11888–11894, 2021.

Thomas M. Moerland, Joost Broekens, Aske Plaat, and Catholijn M. Jonker. A0C: Alpha Zero in
Continuous Action Space. arXiv preprint arXiv:1805.09613, 2018.

Sherjil Ozair, Yazhe Li, Ali Razavi, Ioannis Antonoglou, Aaron Van Den Oord, and Oriol Vinyals.
Vector Quantized Models for Planning. In International Conference on Machine Learning (ICML),
pp. 8302–8313. PMLR, 2021.

Robert Platt Jr., Russ Tedrake, Leslie Kaelbling, and Tomas Lozano-Perez. Belief Space Planning
Assuming Maximum Likelihood Observations. Robotics: Science and Systems VI, 2010.

Christopher D. Rosin. Multi-Armed Bandits with Episode Context. Annals of Mathematics and
Artificial Intelligence, 61(3):203–230, 2011.

Nicholas Roy, Geoffrey Gordon, and Sebastian Thrun. Finding Approximate POMDP Solutions
Through Belief Compression. Journal of Artificial Intelligence Research, 23:1–40, 2005.

Mohammadreza Salehi, Hossein Mirzaei, Dan Hendrycks, Yixuan Li, Mohammad Hossein Rohban,
and Mohammad Sabokrou. A Unified Survey on Anomaly, Novelty, Open-Set, and Out of-
Distribution Detection: Solutions and Future Challenges. Transactions of Machine Learning
Research, 2022.

Frederik Christiaan Schadd. Monte-Carlo Search Techniques in the Modern Board Game Thurn and
Taxis. Maastricht University: Maastricht, The Netherlands, 2009.

Julian Schrittwieser. MuZero Intuition. https://www.furidamu.org/blog/2020/12/22/
muzero-intuition/, 12 2020.

Julian Schrittwieser et al. Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model.
Nature, 588(7839):604–609, 2020.

Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based POMDP solvers. Au-
tonomous Agents and Multi-Agent Systems, 27:1–51, 2013.

David Silver and Joel Veness. Monte-Carlo Planning in Large POMDPs. Advances in Neural
Information Processing Systems (NIPS), 23, 2010.

David Silver et al. Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587), 2016.

David Silver et al. Mastering the game of Go without human knowledge. Nature, 550(7676), 2017.

https://www.furidamu.org/blog/2020/12/22/muzero-intuition/
https://www.furidamu.org/blog/2020/12/22/muzero-intuition/

RLJ | RLC 2024

David Silver et al. A general reinforcement learning algorithm that masters chess, shogi, and Go
through self-play. Science, 362(6419), 2018.

Trey Smith and Reid Simmons. Heuristic Search Value Iteration for POMDPs. In Conference on
Uncertainty in Artificial Intelligence (UAI), pp. 520–527, 2004.

Samuel Sokota, Caleb Y. Ho, Zaheen Ahmad, and J. Zico Kolter. Monte Carlo Tree Search with
Iteratively Refining State Abstractions. Advances in Neural Information Processing Systems
(NeurIPS), 34:18698–18709, 2021.

Jayakumar Subramanian et al. Approximate Information State for Approximate Planning and
Reinforcement Learning in Partially Observed Systems. Journal of Machine Learning Research,
23(1):483–565, 2022.

Zachary N. Sunberg and Mykel J. Kochenderfer. Online Algorithms for POMDPs with Continuous
State, Action, and Observation Spaces. In International Conference on Automated Planning and
Scheduling (ICAPS), volume 28, 2018.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
2018.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT Press, 2005.

Oriol Vinyals et al. Grandmaster Level in StarCraft II using Multi-Agent Reinforcement Learning.
Nature, 575(7782):350–354, 2019.

Yizheng Wang, Markus Zechner, John Michael Mern, Mykel J. Kochenderfer, and Jef Karel Caers.
A sequential decision-making framework with uncertainty quantification for groundwater manage-
ment. Advances in Water Resources, 166:104266, 2022.

Yizheng Wang, Markus Zechner, Gege Wen, Anthony Louis Corso, John Michael Mern, Mykel J.
Kochenderfer, and Jef Karel Caers. Optimizing Carbon Storage Operations for Long-Term Safety.
arXiv preprint arXiv:2304.09352, 2023.

Greg Welch and Gary Bishop. An Introduction to the Kalman Filter. University of North Carolina
at Chapel Hill, 1995.

Kyle Hollins Wray, Bernard Lange, Arec Jamgochian, Stefan J. Witwicki, Atsuhide Kobashi, Sachin
Hagaribommanahalli, and David Ilstrup. POMDPs for Safe Visibility Reasoning in Autonomous
Vehicles. In International Conference on Intelligence and Safety for Robotics (ISR), pp. 191–195.
IEEE, 2021.

Chenyang Wu, Guoyu Yang, Zongzhang Zhang, Yang Yu, Dong Li, Wulong Liu, and Jianye
Hao. OpenReview Response: Adaptive Online Packing-guided Search for POMDPs. https:
//openreview.net/forum?id=0zvTBoQb5PA¬eId=bJTC_0sZPzr, 8 2021a.

Chenyang Wu, Guoyu Yang, Zongzhang Zhang, Yang Yu, Dong Li, Wulong Liu, and Jianye Hao.
Adaptive Online Packing-guided Search for POMDPs. Advances in Neural Information Processing
Systems (NeurIPS), 34:28419–28430, 2021b.

Nan Ye, Adhiraj Somani, David Hsu, and Wee Sun Lee. DESPOT: Online POMDP Planning with
Regularization. Journal of Artificial Intelligence Research, 58:231–266, 2017.

Timothy Yee, Viliam Lisỳ, Michael H. Bowling, and S. Kambhampati. Monte Carlo Tree Search
in Continuous Action Spaces with Execution Uncertainty. In International Joint Conference on
Artificial Intelligence (IJCAI), pp. 690–697, 2016.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, et al. Deep Sets. Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017.

https://openreview.net/forum?id=0zvTBoQb5PA¬eId=bJTC_0sZPzr
https://openreview.net/forum?id=0zvTBoQb5PA¬eId=bJTC_0sZPzr

RLJ | RLC 2024

Appendix

This section contains material detailing the POMDP environments and experiments, the ablation
studies, additional analysis of bootstrapping and double progressive widening, the network archi-
tectures, hyperparameters and tuning, computational resources, information regarding open-source
code for reproducibility, and the full BetaZero algorithm pseudocode.

A POMDP Environments

This section describes the benchmark POMDPs in detail, including the heuristics used by the baseline
POMDP algorithms and information regarding the particle filter belief used by BetaZero.

Light dark. The LightDark(y) POMDP is a one-dimensional localization problem (Platt Jr.
et al., 2010). The objective is for the agent to execute the stop action at the goal, which is at ±1
of the origin. The agent is awarded 100 for stopping at the goal and −100 for stopping anywhere
else; using a discount of γ = 0.9. The agent receives noisy observations of their position, where
the noise is minimized in the “light” region defined by y. In the LightDark(5) problem used by
Wu et al. (2021b), the noise is a zero-mean Gaussian with standard deviation of |y− 5|/

√
2 + 10−2.

For the LightDark(10) problem used by Sunberg & Kochenderfer (2018), the noise is a zero-mean
Gaussian with standard deviation of |y − 10| + 10−4. In both problems, we use a restricted action
space of A = [−1, 0, 1] where 0 is the stop action. The expected behavior of the optimal policy is
first to localize in the light region, then travel down to the goal. The BetaZero policy exhibits this
behavior which can be seen in fig. 10 (where circles indicate the final location).

The approximately optimal solution to the light dark problems used local approximation value iter-
ation (LAVI) (Kochenderfer, 2015) over the discretized belief-state space (i.e., mean and std). The
belief mean was discretized between the range [−12, 12] and the belief std was discretized between
the range [0, 5]; each of length 100. The LAVI solver used 100 generative samples per belief state
and ran for 100 value iterations with a Bellman residual of 1× 10−3.

Rock sample. In the RockSample(n, k) POMDP introduced by Smith & Simmons (2004), an
agent has full observability of its position on an n×n grid but has to sense the k rocks to determine
if they are “good” or “bad”. The agent knows a priori the true locations of the rocks (i.e., the rock
locations xrock are a part of the problem, not the state). The observation noise is a function of the
distance to the rock:

1
2

(
1 + exp

(
−∥xrock − xagent∥2 log(2)

c

))
(9)

where c = 20 is the sensor efficiency. The agent can move in the four cardinal directions, sense the
k rocks, or take the action to sample a rock when it is located under the agent. The agent receives
a reward of 10 for sampling a “good” rock and a penalty of −10 for sampling a “bad” rock. The
terminal state is the exit at the right edge of the map, where the agent gets a reward of 10 for
exiting.

Mineral exploration. The Mineral Exploration POMDP introduced by Mern & Caers (2023)
is an information gather problem with the goal of deciding whether a subsurface ore body is econom-
ical to mine or should be abandoned (calibrated so that 50% of cases are economical). The agent can
drill every fifth cell of a 32×32 plot of land to determine the ore quality at that location. Therefore,
the action space consists of the 36 drill locations and the final decisions to either mine or abandon.
The agent receives a small cost for each drill action, a reward proportional to the extracted ore if
chosen to mine (which is negative if uneconomical), and a reward of zero if chosen to abandon:

R(s, a) =


−cdrill if a = drill∑

1(sore ≥ hmassive)− cextract if a = mine
0 otherwise

(10)

RLJ | RLC 2024

20 40 60 80

−10

0

10

time

st
at

e

Localization trajectories in LIGHTDARK(10)

POMCPOW
AdaOPS
BetaZero

Figure 10: LightDark(10) trajectories from 50 episodes. BetaZero (dark blue) learned to first
localize in the light region at y = 10 before heading to the goal (origin).

where cdrill = 0.1, hmassive = 0.7, and cextract = 71. The term
∑

1(sore ≥ hmassive) indicates the
cells that have an ore quality value above some massive ore threshold hmassive (which are deemed
valuable). Figure 11 and fig. 12 show an example of four steps of the mineral exploration POMDP.

A.1 Experiment details

Experiment parameters for each problem can be seen in tables 3 to 5 under the “online” column.
For the baseline algorithms, the heuristics follow Wu et al. (2021b). Problems that failed to run due
to memory limits followed suggestions from Wu et al. (2021a) to first use the MDP solution and
then use a fixed upper bound of rcorrect = 100 for the light dark problems and the following for the
rock sample problems:

Vmax = rexit +
2k−n∑

t=1+n−k

γt−1rgood (11)

where rgood = rexit = 10 and the sum computes an optimistic value assuming the rocks are directly
lined between the agent and the goal and assuming n ≥ k for simplicity.

For problems not studied by Wu et al. (2021b), we use the same heuristics as their easier
counterpart (i.e., LightDark(10) uses LightDark(5) heuristics and RockSample(20, 20) uses
RockSample(15, 15) heuristics). For mineral exploration, the baselines used the following heuris-
tics. POMCPOW used a value estimator of max(0, R(s, a = mine)) and when using “no heuristic”
used a random rollout policy to estimate the value. Both AdaOPS and DESPOT used a lower bound
computed as the returns if fully drilled all locations, then made the decision to abandon:

Vmin = −
T −1∑
t=1

γt−1cdrill (12)

The upper bound comes from an oracle πtruth taking the correct final action without drilling, com-
puted over 10,000 states. Note that there is no state transition in this problem.

Vmax = E
s∈S

[
max

(
0, R

(
s, πtruth(s)

))]
(13)

≈ 1
n

n∑
i=1

max
(

0, R
(
s(i), πtruth(s)

))
(14)

Particle filtering. Both BetaZero and the baseline algorithms update their belief with a bootstrap
particle filter using a low-variance resampler (Gordon et al., 1993), with nparticles ∈ [500, 1000, 1000]
for the light dark, rock sample, and mineral exploration problems, respectively. The particle fil-
ter follows an update procedure of first reweighting then resampling. In mineral exploration, the

RLJ | RLC 2024

x

y

p

0.00 0.50 1.00 1.50

·10−2

abandon
mine

1.39 · 10−2

1.62 · 10−2

probability

10 20 30

10

20

30

Belief uncertainty (t = 1)

0.1

0.15

0.2

x

y

p

0.00 1.00 2.00 3.00 4.00

·10−2

abandon
mine

1.03 · 10−2

3.86 · 10−2

probability
10 20 30

10

20

30

Belief uncertainty (t = 2)

0.1

0.15

0.2

x

y

p

0.00 1.00 2.00 3.00 4.00

·10−2

abandon
mine

2.05 · 10−2

4.49 · 10−2

probability
10 20 30

10

20

30

Belief uncertainty (t = 3)

0.1

0.15

0.2

x

y

p

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

·10−2

abandon
mine

3.23 · 10−2

1.23 · 10−4

probability
10 20 30

10

20

30

Belief uncertainty (t = 4)

0.1

0.15

0.2

Figure 11: The BetaZero policy shown over belief mean for four
steps. BetaZero first prioritizes the edges of the belief mean,
corresponding to the belief uncertainty (right-most plots), then
explores the outer regions of the subsurface; ultimately gather-
ing information from actions with high mean and std, matching
heuristics. At the initial step, abandoning and mining have near-
equal probability (bottom left graphs) but by the fourth action,
abandoning is much more likely.

Figure 12: The selected
drill actions over belief un-
certainty, showing that uncer-
tainty collapses after drilling.

RLJ | RLC 2024

observations are noiseless which could quickly result in particle depletion. Therefore, approximate
Bayesian computation (ABC) is used to reweight each particle using a Gaussian distribution centered
at the observation with a standard deviation of σabc = 0.1 (Csilléry et al., 2010).

The belief representation takes the mean and standard deviation across the nparticles. In the light
dark problems, this is computed across the 500 sampled y-state values that make up the belief. The
initial y-value state distribution—which makes up the initial belief—follows a Gaussian distribution
and thus the parametric representation is a good approximation of the belief.

For the rock sample problem, the belief is represented as the mean and standard deviation of the
good rocks from the 1000 sampled states (appending the true position as it is deterministic). The
rock qualities are sampled uniformly in {0, 1} indicating if they are “good”, which makes the problem
non-Gaussian, but the parametric belief approximation can model a uniform distribution by placing
the mean at the center of the uniform range and stretching the variance to match the uniform.

Lastly, the mineral exploration problem flattens the 1000 subsurface 32 × 32 maps that each have
associated ore quality per-pixel between [0, 1] into two images: a mean and standard deviation image
of the ore quality that is stacked and used as input to a CNN. The initial state distribution for the
massive ore quantity closely follows a Gaussian, making the parametric belief approximation well
suited.

For problems where Gaussian approximations do not capture the belief, the parameters of other
distributions could be used as a belief representation or the particles themselves could be input
into a network—first passing through an order-invariant layer (Igl et al., 2018). Scaling to larger
observation spaces will not be an issue as BetaZero plans over belief states instead of observations.

B Additional Analysis

This section briefly describes additional analyses omitted from the main body of the paper. This
includes analysis of bootstrapping the initial Q-values using a one-step lookahead with the value
network and sensitivity analysis of double progressive widening on belief-states and actions.

B.1 Bootstrapping analysis

When adding a belief-action pair (b, a) to the MCTS tree, initializing the Q-values via bootstrapping
with the value network may improve performance when using a small MCTS budget. Table 2 shows
the results of an analysis comparing BetaZero with bootstrapping Q0(b, a) = Rb(b, a) + γVθ(b̃′)
where b̃′ = ϕ(b′) and without bootstrapping Q0(b, a) = 0. Each domain used the online parameters
described in tables 3 to 5. Results indicate that bootstrapping was only helpful in the rock sample
problems and incurs additional compute time due to the belief update done in b′ ∼ Tb(b, a). Note
that bootstrapping was not used during offline training. In problems with high stochasticity in the
belief-state transitions, bootstrapping may be noisy during the initial search due to the transition
Tb sampling a single state from the belief. Further analysis could investigate the use of multiple
belief transitions to better estimate the value, at the expense of additional computation. The value
estimate of b could instead be used as the bootstrap but we would expect similar results to the
one-step bootstrap as many problems we study have sparse rewards.

LightDark(5) LightDark(10) RockSample(15, 15) RockSample(20, 20) Mineral Exploration
returns time [s] returns time [s] returns time [s] returns time [s] returns time [s]

BetaZero (bootstrap) 4.22± 0.31 0.014 14.45± 1.15 0.34 20.15± 0.71 0.48 13.09± 0.55 1.11 10.32± 2.38 6.27
BetaZero (no bootstrap) 4.47± 0.28 0.014 16.77± 1.28 0.33 19.50± 0.71 0.42 11.00± 0.54 0.57 10.67± 2.25 4.46

Reporting mean ± standard error over 100 seeds (i.e., episodes); timing is average per episode.

Table 2: Effect of Q-value bootstrapping in online BetaZero performance (returns and online timing).

RLJ | RLC 2024

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

k state

α
st

at
e

LIGHTDARK(10)
state progressive widening

13

14

15

16

0 1 2 3
0

0.2

0.4

0.6

0.8

1

k action

α
ac

tio
n

LIGHTDARK(10)
action progressive widening

13

14

15

16

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

k state

α
st

at
e

ROCKSAMPLE(20, 20)
state progressive widening

8

10

12

0 10 20
0

0.2

0.4

0.6

0.8

1

k action

α
ac

tio
n

ROCKSAMPLE(20, 20)
action progressive widening

6

8

10

12

Figure 13: Sensitivity
analysis of belief-state
progressive widening in
LightDark(10).

Figure 14: Sensitiv-
ity analysis of action
progressive widening in
LightDark(10).

Figure 15: Sensitivity
analysis of belief-state
progressive widening in
RockSample(20, 20).

Figure 16: Sensitiv-
ity analysis of action
progressive widening in
RockSample(20, 20).

B.2 Limitations of double progressive widening

Double progressive widening (DPW) is a straightforward approach to handle large or continuous state
and action spaces in Monte Carlo tree search. It is easy to implement and only requires information
available in the tree search, i.e., number of children nodes and number of node visits. It is known that
MCTS performance can be sensitive to DPW hyperparameter tuning and Sokota et al. (2021) show
that DPW ignores information about the relation between states that could provide more intelligent
branching. Sokota et al. (2021) introduce state abstraction refinement that uses a distance metric
between states to determine if a similar state should be added to the tree; requiring a state transition
every time a state-action node is visited. For our work, we want to reduce the number of expensive
belief-state transitions in the tree and avoid the use of problem-specific heuristics required when
defining distance metrics. Using DPW in BetaZero was motivated by simplicity and allows future
work to innovate on the components of belief-state and action branching.

To analyze the sensitivity of DPW, figs. 13 and 14 show a sweep over the α and k parameters for
DPW in LightDark(10). Figure 13 shows that the light dark problem is sensitive to belief-state
widening and fig. 14 indicates that this problem may not require widening on all actions—noting
that when k = 0, the only action expanded on is the one prioritized from the policy head a ∼ Pθ(b̃, ·).
The light dark problems have a small action space of |A| = 3, therefore this prioritization leads to
good performance when only a single action is evaluated (left cells in fig. 14 when k = 0).

In RockSample(20, 20), figs. 15 and 16 indicates that this problem benefits from a higher widening
factor (top right of the figures) as the action space |A| = 25 is larger and the belief-state transitions
operate over a much larger state space. DPW uses a single branching factor throughout the tree
search and research into methods that adapt the branching based on learned information would be
a valuable direction to explore.

Lim et al. (2023) introduce a class of POMDP planning algorithms that use a fixed number of
samples to branch on instead of progressive widening. The bottom row of figs. 13 to 16 (where
α = 0) can be interpreted as a fixed branching factor compared to progressive widening in the other
cells. The analysis in the figures shows that there are cases where BetaZero has better performance
when using progressive widening (show in the lighter colors).

C Network Architectures

Figures 17 to 19 specify the neural network architectures for the three problem domains. The net-
works were designed to be simple so that future work could focus on incorporating more complicated
architectures such as residual networks. Mineral exploration does not normalize the inputs and is
the only problem where the input is treated as an image, thus we use a convolutional neural network
(CNN). Training occurs on normalized returns and an output denormalization layer is added to the
value head to ensure proper magnitude of the predicted values.

RLJ | RLC 2024

×3

input size = 2

normalization

relu

dropout

relu

⟨value head⟩

dropout

relu

denorm.

Vθ(b̃)

relu

⟨policy head⟩

dropout

relu

softmax

Pθ(b̃, ·)

ℓ = 2

ℓ = 64

ℓ = 64

ℓ = 64

ℓ = 1

ℓ = 64

ℓ = 64

ℓ = |A| = 3

×3

input size = 2k + 2

normalization

fc ⇒ batch norm

relu

dropout

fc ⇒ batch norm

⟨value head⟩

relu

dropout

relu

denorm.

Vθ(b̃)

fc ⇒ batch norm

⟨policy head⟩

relu

dropout

relu

softmax

Pθ(b̃, ·)

ℓ = 2k + 2

ℓ = 128

ℓ = 128

ℓ = 128

ℓ = 128

ℓ = 128

ℓ = 1

ℓ = 128

ℓ = 128

ℓ = 128

ℓ = |A| ∈ {20, 25}

×2

input size = 32× 32× 2

normalizationconvolution(5, 5)⇒ relu

convolution(5, 5)⇒ relu

flatten

fc ⇒ batch norm

relu

dropout

fc ⇒ batch norm

⟨value head⟩

relu

dropout

relu

denorm.

Vθ(b̃)

fc ⇒ batch norm

⟨policy head⟩

relu

dropout

relu

softmax

Pθ(b̃, ·)

ℓ = 64

ℓ = 128

ℓ = 73,728

ℓ = 256

ℓ = 256

ℓ = 256

ℓ = 256

ℓ = 256

ℓ = 1

ℓ = 256

ℓ = 256

ℓ = 256

ℓ = |A| = 38

Figure 17: Light dark
neural network archi-
tecture.

Figure 18: Rock sample
neural network architecture.

Figure 19: Mineral explo-
ration CNN architecture.

C.1 Return scaling for output normalization

For general POMDPs, the return can be an unbounded real-value and not conveniently in [0, 1] or
[−1, 1]; as is often the case with two player games. Schrittwieser et al. (2020) use a categorical
representation of the value split into a discrete support to make learning more robust (Schrittwieser,
2020). We instead simply normalize the target before training as

ḡt = gt − E[Gtrain]√
Var[Gtrain]

(15)

where Gtrain is the set of returns used during training; keeping running statistics of all training data.
Intuitively, this ensures that the target values have zero mean and unit variance which is known
to stabilize training (LeCun et al., 2002). After training, a denormalization layer is added to the
normalized output v̄ of the value network as

vt = v̄
√

Var[Gtrain] + E[Gtrain] (16)

to properly scale value predictions when the network is evaluated (which is done entirely internal to
the network).

D Hyperparameters and Tuning

The hyperparameters used during offline training and online execution are described in tables 3
to 5. Offline training refers to the BetaZero policy iteration steps that collect parallel MCTS data
(policy evaluation) and then retrain the network (policy improvement). The online execution refers
to using the BetaZero policy after offline training to evaluate its performance through online tree
search. The main difference between these two settings is the final criteria used to select the root
node action in MCTS. During offline training of problems with large action spaces (e.g., rock sample
and mineral exploration), sampling root node actions according to the Q-weighted visit counts with
a temperature τ ensures exploration. To evaluate the performance online, root node action selection
takes the maximizing action of the Q-weighted visit counts. During training, we also evaluate a
holdout set that uses the argmax criteria to monitor the true performance of the learned policy.

The MCTS parameters for the mineral exploration problem were tuned using Latin hypercube
sampling based on the lower-confidence bound of the returns. During training, the rock sample

RLJ | RLC 2024

Parameter* LightDark(5) LightDark(10) Description
Offline Online Offline Online

BetaZero policy
iteration parameters

niterations 30 — 30 — Number of offline BetaZero policy iterations.
ndata 500 — 500 — Number of parallel MCTS data gen. episodes per policy iteration.
bootstrap Q0 false false false false Use bootstrap estimate for initial Q-value in MCTS.

Neural network
parameters

nepochs 50 — 50 — Number of training epochs.
α 1 × 10−4 — 1 × 10−4 — Learning rate.
λ 1 × 10−5 — 1 × 10−5 — L2-regularization parameter.

MCTS
parameters

nonline 100 1300 100 1000 Number of tree search iterations of MCTS.
c 1 1 1 1 PUCT exploration constant.
ka 2.0 2.0 2.0 2.0 Multiplicative action progressive widening value.
αa 0.25 0.25 0.25 0.25 Exponential action progressive widening value.
kb 2.0 2.0 2.0 2.0 Multiplicative belief-state progressive widening value.
αb 0.1 0.1 0.1 0.1 Exponential belief-state progressive widening value.
d 10 10 10 10 Maximum tree depth.
τ 0 0 0 0 Exploration temperature for final root node action selection.
zq 1 1 1 1 Influence of Q-values in final criteria.
zn 1 1 1 1 Influence of visit counts in final criteria.

* Entries with “—” denote non-applicability and “·” denotes they are disabled.

Table 3: BetaZero parameters for the LightDark problems.

Parameter RockSample(15, 15) RockSample(20, 20) Description
Offline Online Offline Online

BetaZero policy
iteration parameters

niterations 50 — 50 — Number of offline BetaZero policy iterations.
ndata 500 — 500 — Number of parallel MCTS data gen. episodes per policy iteration.
bootstrap Q0 false true false true Use bootstrap estimate for initial Q-value in MCTS.

Neural network
parameters

nepochs 10 — 10 — Number of training epochs.
α 1 × 10−3 — 1 × 10−3 — Learning rate.
λ 1 × 10−5 — 1 × 10−5 — L2-regularization parameter.

MCTS
parameters

nonline 100 100 100 100 Number of tree search iterations of MCTS.
c 50 50 50 50 PUCT exploration constant.
ka · 5.0 · · Multiplicative action progressive widening value.
αa · 0.9 · · Exponential action progressive widening value.
kb · 1.0 1.0 1.0 Multiplicative belief-state progressive widening value.
αb · 0.0 0.0 0.0 Exponential belief-state progressive widening value.
d 15 15 4 4 Maximum tree depth.
τ 1.0 0 1.5 0 Exploration temperature for final root node action selection.
zq 1 0.4 1 0.5 Influence of Q-values in final criteria.
zn 1 0.9 1 0.8 Influence of visit counts in final criteria.

Table 4: BetaZero parameters for the RockSample problems.

Parameter Offline Online Description

BetaZero policy
iteration parameters

niterations 20 — Number of offline BetaZero policy iterations.
ndata 100 — Number of parallel MCTS data gen. episodes per policy iteration.
bootstrap Q0 false false Use bootstrap estimate for initial Q-value in MCTS.

Neural network
parameters

nepochs 10 — Number of training epochs.
α 1 × 10−6 — Learning rate.
λ 1 × 10−4 — L2-regularization parameter.

MCTS
parameters

nonline 50 50 Number of tree search iterations of MCTS.
c 57 57 PUCT exploration constant.
ka 41.09 41.09 Multiplicative action progressive widening value.
αa 0.57 0.57 Exponential action progressive widening value.
kb 37.13 37.13 Multiplicative belief-state progressive widening value.
αb 0.94 0.94 Exponential belief-state progressive widening value.
d 5 5 Maximum tree depth.
τ 1.0 0 Exploration temperature for final root node action selection.
zq 1 1 Influence of Q-values in final criteria.
zn 1 1 Influence of visit counts in final criteria.

Table 5: BetaZero parameters for the Mineral Exploration problem.

RLJ | RLC 2024

problems disabled progressive widening to expand on all actions and transition to a single belief
state. Then for online execution, we tuned the DPW parameters as shown in figs. 13 to 16. The
problems train with a batch size of 1024 over 80% of 100,000 samples from one round of data
collection (nbuffer = 1) using pdropout of 0.2, 0.5, 0.7, respectively. The neural network optimizer
Adam (Kingma & Ba, 2014) was used in LightDark(y) while RMSProp (Hinton et al., 2014) was
used in the others. A value function loss of MAE was used in mineral exploration (MSE otherwise),
each using nsamples = 100,000 during training.

E Compute Resources

BetaZero was designed to use a single GPU to train the network and parallelize MCTS evaluations
across available CPUs. Evaluating the networks on the CPU is computationally inexpensive due to
the size of the networks (see figs. 17 to 19). This design was chosen to enable future research without
a computational bottleneck. For network training, a single NVIDIA A100 was used with 80GB of
memory on an Ubuntu 22.04 machine with 500 GB of RAM. Parallel data collection processes were
run on 50 processes split evenly over two separate Ubuntu 22.04 machines: (1) with 40 Intel Xeon
2.3 GHz CPUs, and (2) with 56 Intel Xeon 2.6 GHz CPUs. Algorithm 5 (line 3) shows where CPU
parallelization occurs. In practice, the MCTS data generation simulations are the bottleneck of the
offline component of BetaZero and not the network training—thus, parallelization is useful.

F Open-Sourced Code and Experiments

The BetaZero algorithm has been open sourced and incorporated into the Julia programming lan-
guage POMDPs.jl ecosystem (Egorov et al., 2017). Fitting into this ecosystem allows BetaZero
to access existing POMDP models and can easily be compared to various POMDP solvers. The
user constructs a BetaZeroSolver that takes parameters for policy iteration and data generation,
parameters for neural network architecture and training, and parameters for MCTS (described in
the tables above). The user may choose to define a method that inputs the belief b and outputs the
belief representation b̃ used by the neural network (the default computes the belief mean and std).
Given a pomdp::POMDP structure, a solver::BetaZeroSolver is constructed and solved using:

policy = solve(solver, pomdp)

which runs offline policy iteration (algorithm 4). Once you have a trained neural network, an action
can then be generated online from the policy given a belief b using the following (algorithm 6):

a = action(policy, b)

All experiments, including the experiment setup for the baseline algorithms with their heuristics,
are included for reproducibility. Code to run MCTS data collection across parallel processes is also
included. The code and experiments presented in this work are available online.3

G BetaZero Algorithm

The following algorithms 4 to 6 detail the full BetaZero policy iteration algorithm that iterates
between policy evaluation and policy improvement for a total of niterations. The offline policy evalu-
ation stage, or data collection process (algorithm 5), runs ndata parallel MCTS simulations over the
original POMDP and collects a dataset D of beliefs bt, policy vectors πt, and returns gt (computed
after each episode terminates). The top-level Q-weighted MCTS algorithm is shown in algorithm 6,
which iteratively runs MCTS simulations for nonline iterations to a specified depth d. The final root
node action selection policy follows the Q-weighted visit counts from eq. (6). The descriptions of
parameters ψ used in offline training and online tree search are listed in tables 3 to 5.

3https://github.com/sisl/BetaZero.jl

https://github.com/sisl/BetaZero.jl

RLJ | RLC 2024

Algorithm 4: BetaZero offline policy iteration.

Require: P def= ⟨S,A,O, T,R,O, γ⟩: POMDP
Require: ψ: Parameters (includes niterations, ndata, nonline, and d)

1 function BetaZero(P, ψ)
2 fθ ← InitializeNetwork(ψ)
3 Pθ, Vθ ← fθ ▷ where (p, v)←

(
Pθ(b̃), Vθ(b̃)

)
4 for i← 1 to niterations
5 D ← CollectData(P, fθ, ψ) ▷ policy evaluation
6 fθ ← Train(fθ,D) ▷ policy improvement
7 return βπ

0 (P, fθ) ▷ BetaZero online policy (uses alg. 6)

Algorithm 5: Collect MCTS data offline for policy evaluation.
1 function CollectData(P, fθ, ψ)
2 D = ∅
3 parallel for i← 1 to ndata ▷ parallelize MCTS runs across available CPUs
4 for t← 1 to T
5 at ←MonteCarloTreeSearch(P, fθ, bt, ψ) ▷ select next action through online planning
6 D(t)

i ← D
(t)
i ∪

{
(bt,π

(t)
tree, gt)

}
▷ collect belief and policy data (placeholder for returns)

7 st+1 ∼ T (· | st, at)
8 ot ∼ O(· | at, st+1)
9 bt+1 ← Update(bt, at, ot)

 transition the original POMDP

10 rt ← R(st, at) or R(st, at, st+1)
11 gt ←

∑T

k=t
γ(k−t)rk for t← 1 to T ▷ compute returns from observed rewards

12 return D

Algorithm 6: Monte Carlo tree search algorithm using Q-weighed visit counts.
1 function MonteCarloTreeSearch(P, fθ, b, ψ)
2 M← ⟨B,A, Tb, Rb, γ⟩ converted from the POMDP P ▷ plan using the belief-state MDP
3 for i← 1 to nonline
4 Simulate(fθ, b, d) ▷ MCTS simulated planning to a depth d (algorithm 3)

5 πtree(b, a) ∝
((

exp Q(b,a)∑
a′ exp Q(b,a′)

)zq
(

N(b,a)∑
a′ N(b,a′)

)zn
)1/τ

▷ Q-weighted visit counts eq. (6)

6 πtree(b, ai)← πtree(b, ai)/
∑

j
πtree(b, aj) ▷ normalize to get a valid probability distribution

7 return a ∼ πtree(b, ·) ▷ sample root node action (let τ → 0 to get argmax)

