
A Neural Material Point Method for Particle-based Simulations

Omer Rochman Sharabi * 1 Sacha Lewin * 1 Gilles Louppe 1

Abstract
Mesh-free Lagrangian methods are widely used
for simulating fluids, solids, and their complex
interactions due to their ability to handle large
deformations and topological changes. These
physics simulators, however, require substantial
computational resources for accurate simulations.
To address these issues, deep learning emulators
promise faster and scalable simulations, yet they
often remain expensive and difficult to train, lim-
iting their practical use. Inspired by the Material
Point Method (MPM), we present NeuralMPM,
a neural emulation framework for particle-based
simulations. NeuralMPM interpolates Lagrangian
particles onto a fixed-size grid, computes updates
on grid nodes using image-to-image neural net-
works, and interpolates back to the particles. Sim-
ilarly to MPM, NeuralMPM benefits from the
regular voxelized representation to simplify the
computation of the state dynamics, while avoid-
ing the drawbacks of mesh-based Eulerian meth-
ods. We demonstrate the advantages of Neu-
ralMPM on several datasets, including fluid dy-
namics and fluid-solid interactions. Compared to
existing methods, NeuralMPM reduces training
times from days to hours, while achieving com-
parable or superior long-term accuracy, making
it a promising approach for practical forward and
inverse problems. Our code and experiments will
be made available soon.

1. Introduction
The Navier-Stokes equations describe the time evolution of
fluids and their interactions with solid materials. As analyti-
cal solutions rarely exist, numerical methods are required to
approximate the solutions. These methods can be broadly
categorized into Eulerian and Lagrangian approaches, each

*Equal contribution 1University of Liege, Liege, Bel-
gium. Correspondence to: Omer Rochman Sharabi
<o.rochman@uliege.be>.

AI for Science Workshop at the 41 st International Conference on
Machine Learning, Vienna, Austria. PMLR 235, 2024. Copyright
2024 by the author(s).

with its own strengths and weaknesses. On the one hand,
Eulerian methods discretize the fluid domain on a fixed grid,
simplifying the computation of the dynamics, but requiring
high-resolution meshes to solve small-scale details in the
flow. Lagrangian methods, on the other hand, represent
the fluid as virtual moving particles defining the system’s
state, hence maintaining a high level of detail in regions of
high density. While effective at handling deformations and
topological changes, Lagrangian methods struggle, however,
with collisions and interactions with rigid objects.

Regardless of the discretization strategy, large-scale high-
resolution numerical simulations are computationally expen-
sive, limiting their practical use in downstream tasks such as
forecasting, inverse problems, or computational design. To
address these issues, deep learning emulators have shown
promise in accelerating simulations by learning an emulator
model that can predict the system’s state at a fraction of the
cost. Next to their speed, neural emulators also have the
strategic advantage of being differentiable, enabling their
use in inverse problems and optimization tasks (Allen et al.,
2022; Zhao et al., 2022; Liu et al., 2018; Colburn & Majum-
dar, 2021; Forte et al., 2022; Kumar et al., 2020). Moreover,
they have the potential to be learned directly from real data,
bypassing the costly and resource-intensive process of build-
ing a simulator (Lam et al., 2023; Pfaff et al., 2021; Lemos
et al., 2023; Bourilkov, 2019; Jumper et al., 2021; He et al.,
2019; Nasser & Yusof, 2023; Arpaia et al., 2021). In this di-
rection, particle-based neural emulators (Sanchez-Gonzalez
et al., 2020; Ummenhofer et al., 2020; Prantl et al., 2022)
have seen success in accurately simulating fluids and gener-
alizing to unseen environments. These emulators, however,
suffer from the same issues as traditional Lagrangian meth-
ods, with collisions and interactions with rigid objects being
particularly challenging. These emulators may also require
long training and inference times, limiting their practical
use.

Taking inspiration from the hybrid Material Point Method
(MPM) (Sulsky et al., 1993; Nguyen et al., 2023) that com-
bines the strengths of both Eulerian and Lagrangian meth-
ods, we introduce NeuralMPM, a neural emulation frame-
work for particle-based simulations. As in MPM, Neu-
ralMPM maintains Lagrangian particles to represent the
system’s state but models the system dynamics on voxelized
representations. In this way, NeuralMPM benefits from a

1

A Neural Material Point Method for Particle-based Simulations

regular grid structure to simplify the computation of the state
dynamics but avoids the drawbacks of mesh-based Eulerian
methods. By interpolating the particles onto a fixed-size
grid, it also bypasses the need to perform an expensive
neighbor search at every timestep, substituting it with two
interpolation steps based on cheap voxelization (Nourian
et al., 2016; Xu et al., 2021; Prantl et al., 2022). Furthermore,
by defining the system dynamics on a grid, NeuralMPM
can leverage well-established neural network architectures,
such as image-to-image neural networks or neural operators.
The resulting inductive bias allows the model to more easily
process the global and local structures of the point cloud,
instead of having to discover them, and frees capacity for
learning the dynamics of the system represented by the grid.
Compared to previous approaches (Sanchez-Gonzalez et al.,
2020; Ummenhofer et al., 2020; Prantl et al., 2022), these
improvements reduce the training time from days to hours,
while achieving higher or comparable accuracy.

2. Computational Fluid Dynamics
Computational fluid dynamics simulations can be classi-
fied into two broad categories, Eulerian and Lagrangian,
depending on how the discretization of the continuous fluid
is handled (Rakhsha et al., 2021). In Eulerian simulations,
the domain is discretized with a mesh, with state variables
ut
i (such as mass or momentum) maintained at each mesh

point i. Well-known examples of Eulerian simulations are
the finite difference method, where the domain is divided
into a uniform regular grid (also called an Eulerian grid),
and the finite element method, where the domain is divided
into regions, or elements, that may have different shapes
and density, allowing to increase the resolution in only some
areas of the domain (Iserles, 2008; Morton & Mayers, 2005).
Lagrangian simulations, on the other hand, discretize the
fluid as a set of virtual moving particles {pti, ut

i}Ni=1, each
described by its position pti and state variables ut

i that in-
clude the particle velocity vti . To simulate the fluid, the
particles move according to the dynamics of the system,
producing a new set of particles {pt+1

i , ut+1
i }Ni=1 at each

timestep. Simulations in Lagrangian coordinates are par-
ticularly useful when the fluid is highly deformable, as the
particles can move freely and adapt to the fluid’s shape.
Among Lagrangian methods, Smoothed Particle Hydrody-
namics (SPH) is one of the most popular, where the fluid
is represented by a set of particles that interact with each
other through a kernel function that smooths the interactions.
SPH has been widely used in large-scale astrophysical sim-
ulations, such as galactic dynamics (Wissing & Shen, 2023;
Few et al., 2016) or planetary collision (Kegerreis et al.,
2022), and in ocean engineering (Gotoh & Khayyer, 2016;
Tan et al., 2023; Lyu et al., 2022) to model deformations
and fractures, and interactions between solids and fluids
(Monaghan, 2012; Vacondio et al., 2021; Lind et al., 2020).

Hybrid Eulerian-Lagrangian methods combine the strengths
of both frameworks. Like Lagrangian methods, they carry
the system state information via particles, thereby automat-
ically adjusting the resolution to the local density of the
system. By using a regular grid, however, they simplify
gradient computation, make entity contact detection easier,
and prevent cracks from propagating only along the mesh.
Among hybrid methods, the Material Point Method has
gained popularity for its ability to handle large deformations
and topological changes. MPM combines a regular Eulerian
grid with moving Lagrangian particles. It does so in four
main steps: (1) the quantities carried by the particles are
interpolated onto a regular grid Gt = p2g({pti, ut

i}) using a
particle-to-grid (p2g) function, (2) the equations of motion
are solved on the grid, where derivatives and other quan-
tities are easier to compute, resulting in a new grid state
Gt+1 = f(Gt), (3) the resulting dynamics are interpolated
back onto the particles as {ut+1

i } = g2p(Gt+1, {pti}), us-
ing a grid-to-particle (g2p) function, (4) the positions of
the particles are updated by computing particle-wise veloci-
ties and using an appropriate integrator, such as Euler, i.e.,
pt+1
i = pti +∆tvt+1

i . The grid values are then reset for the
next step. MPM has been used in soft tissue simulations
(Ionescu et al., 2005), in molecular dynamics (Lu et al.,
2006), in astrophysics (Li & Liu, 2002), in fluid-membrane
interactions (York II et al., 2000), and in simulating cracks
(Daphalapurkar et al., 2007) and landslides (Llano Serna
et al., 2015). MPM is also widely used in the animation in-
dustry, perhaps most notably in Disney’s 2013 film Frozen
(Stomakhin et al., 2013), where it was used to simulate
snow.

Notwithstanding the success of numerical simulators, they
remain expensive, slow, and, most of the time, non-
differentiable. In recent years, differentiable neural emula-
tors have shown great promise in accelerating fluid simula-
tions, most notably in a series of works to emulate SPH sim-
ulations. Graph network-based simulators (GNS) (Sanchez-
Gonzalez et al., 2020) use a graph neural network (GNN)
and a graph built from the local neighborhood of the parti-
cles to predict the acceleration of the system. The approach
requires building a graph out of the point cloud at every
timestep to obtain structural information about the cloud,
which is an expensive operation. In addition, the GNN
needs to extract global information from its nodes, which is
only possible with a high number of message-passing steps,
resulting in a large computational graph and long training
and inference times. The number of message-passing steps,
together with the construction of the graph at each timestep,
virtually guarantees that it will not be possible to train GNS
using autoregressive rollouts. As autoregressive training
is not available, the stability of the learned dynamics can
be compromised, making the model prone to diverging or
oscillating. Noise injection training strategies can be used

2

A Neural Material Point Method for Particle-based Simulations

to increase the stability of the rollouts, but the magnitude
of the noise becomes a critical parameter. An alternative
approach is the continuous convolution (CConv) (Ummen-
hofer et al., 2020), an extension of convolutional networks
to point clouds. In this method, a convolutional kernel is
applied to each particle by interpolating the values of the
kernel at the positions of its neighbors, which are found via
spatial hashing on GPU, a cheaper alternative to tree-based
searches that allows for autoregressive training. Finally,
Deep Momentum Conserving Fluids (DMCF) (Prantl et al.,
2022) build upon CConv to design a momentum-conserving
architecture. Nevertheless, to account for long-range in-
teractions, the authors introduce different branches, with
different fields of view, into their network. The number of
branches, and their hyperparameters, need to be tuned to
capture global dependencies, leading to long training times
even with optimized CUDA kernels.

3. NeuralMPM
We consider a Lagrangian system evolving in time and de-
fined by the positions pti and velocities vti of a set of N
particles i = 1, ..., N . For notational simplicity, we denote
with P t and V t the set of positions and velocities of all
particles at time t and with St = (P t, V t) the full state
of the system. The evolution of the particles is described
by a function f mapping the current state of the system
to its next state St+1 = f(St). Given a starting system
S0 = (P 0, V 0), its full trajectory, or rollout, is denoted
by S1:T . Our goal is to build an emulator Ŝθ(·) capable of
predicting a full rollout Ŝ1:T

θ (S0) of T timesteps from the
initial state S0. Following MPM, NeuralMPM operates in
four steps, as illustrated in Figure 1:

Step 1: Voxelization. Using the positions P t, the veloc-
ities V t of the particles in the point cloud are first interpo-
lated onto a regular fixed-size grid. This interpolation is
performed through voxelization, which divides the domain
into regular volumes (voxels). Each grid node is identified
as the center of a voxel (e.g., square in 2D) in the domain,
and the velocities of the particles in the voxel are averaged to
give the node’s velocity. Similarly, the density is computed
as the normalized number of particles in the voxel. This
results in the grid tensor Gt that contains the grid velocities
V t
g and density Dt

g .

Step 2: Processing. Taking advantage of the regular grid
representation of the cloud, the grid velocities {V̂ i}t+m

i=t+1 of
the next m timesteps are predicted using an image-to-image
neural network, such as a U-Net (Ronneberger et al., 2015)
or a neural operator (Li et al., 2021).

Step 3: Update of particle velocities. The predicted ve-
locities V̂ t+1 at the next timestep are then interpolated back

to the particle level onto the positions P t using bilinear
interpolation. The velocity of each particle is computed as
a weighted average of the four surrounding grid velocities,
based on its Euclidean distance to each of them.

Step 4: Update of particle positions. Finally, the po-
sitions of the particles are updated with Euler integration
using the next velocities and known current positions of the
particles, that is P̂ t+1 = P t +∆tV̂ t+1. Steps 3 and 4 are
performed m times to compute the next m positions from
the set of grid velocities computed at step 2.

Additional features of the individual particles can be in-
cluded in the grid tensor Gt by interpolating them in the
same way as the velocities. Local, such as boundary condi-
tions, or global, such as gravity or external forces, features
are represented as grid channels. For simulations with mul-
tiple types of particles, the velocity and density of each
material are interpolated independently and stacked as chan-
nels in the grid tensor Gt.

NeuralMPM is trained end-to-end on a set of trajecto-
ries S0:T to minimize the mean squared error ||P t+1 −
P̂ t+1
θ (St)||22 between the ground-truth and predicted next

positions of the particles. At inference time, the model is
exposed to much longer sequences, which requires carefully
stabilizing the rollout procedure to prevent the accumulation
of large errors over time. To address this, we first make use
of autoregressive training (Prantl et al., 2022; Ummenhofer
et al., 2020), where the model is unrolled K times on its
own predictions, producing a sequence of Ŝk = Ŝθ(Ŝ

k−1)
for k = 1, ...,K and initial input Ŝ0 = S0, before backprop-
agating the error through the entire rollout. Unlike more
costly methods that require alternative stabilization strate-
gies, such as noise injection (Sanchez-Gonzalez et al., 2020),
NeuralMPM’s efficiency makes autoregressive training pos-
sible. Nevertheless, to further stabilize the training, we
couple autoregressive training with time bundling (Brand-
stetter et al., 2022), resulting in a training strategy where
the model predicts m steps Ŝ1:m at once from a single ini-
tial state, inside an outer autoregressive loop of K steps of
length m. We show in Section 4 that this training strategy
leads to more accurate rollouts.

4. Experiments
We conduct a set of diverse experiments to demonstrate
the accuracy, speed, and generalization capabilities of Neu-
ralMPM. Specifically, we examine its robustness to hyper-
parameter and architectural choices through an ablation
study (4.1). We compare NeuralMPM to GNS (Sanchez-
Gonzalez et al., 2020) and DMCF (Prantl et al., 2022) in
terms of accuracy, training time, convergence, and inference
speed (4.2). We also evaluate the generalization capabilities
of NeuralMPM (4.3) and illustrate how its differentiabil-

3

A Neural Material Point Method for Particle-based Simulations

Voxelization

Processing

Update
velocities

Update
velocities

Update
velocities

Update
positions

Update
positions

Update
positions

Figure 1. NeuralMPM works in 4 steps. (1) The positions P t and velocities V t of the particles are used to compute the velocity V t
g and

density Dt
g of each grid node through voxelization. (2) From this grid, the processor neural network predicts the grid velocities at the next

m timesteps. The next m positions are computed iteratively by (3) performing bilinear interpolation of the predicted velocities onto the
previous positions and (4) updating the positions using the predicted velocities.

WATERRAMPS SANDRAMPS GOOP MULTIMATERIAL WBC-SPH WATERDROP-
XL

In
iti

al
Pr

ed
ic

tio
ns

G
ro

un
d

Tr
ut

h

Figure 2. Example snapshots. We train and evaluate NeuralMPM on WATERRAMPS, SANDRAMPS and GOOP, each consisting of
a single material, on MULTIMATERIAL that mixes water, sand and goop, and on WBC-SPH with more complex obstacles. We also
evaluate the generalization of NeuralMPM on WATERDROP-XL, an unseen environment with more particles. NeuralMPM is able to learn
various kinds of materials, their interactions, and their interactions with solid obstacles. The model is also able to generalize to unseen
environments with more particles.

4

A Neural Material Point Method for Particle-based Simulations

ity can be leveraged to solve an inverse design problem
(4.4). Through these experiments, we demonstrate that
NeuralMPM is a flexible, accurate, and fast method for
emulating complex particle-based simulations.

Data. We consider 5 datasets with variable sequence
lengths, numbers of particles, and materials. The first three
datasets, WATERRAMPS, SANDRAMPS, and GOOP, contain
a single material, water, sand, and goop, respectively, with
different material properties. The first two datasets contain
random ramp obstacles to challenge the model’s generaliza-
tion capacity. The fourth dataset, MULTIMATERIAL, mixes
the three materials together in the same simulations. These
four datasets are taken from (Sanchez-Gonzalez et al., 2020)
and were simulated using the Taichi-MPM simulator (Hu
et al., 2018). They each contain 1000 trajectories for train-
ing and 30 (GOOP) or 100 (WATERRAMPS, SANDRAMPS,
MULTIMATERIAL) for validation and testing. The fifth
dataset, WBC-SPH (Prantl et al., 2022), was generated
using a high-fidelity SPH solver (Adami et al., 2012) and
contains water, random obstacles, and variable gravity. It
contains 30 trajectories for training and 9 for validation
and testing. Rollout snapshots of NeuralMPM compared to
ground truth for each dataset are shown in Figure 2.

Protocol. NeuralMPM is trained on a set of full trajecto-
ries, with varying initial conditions and number of particles.
The training batches are sampled randomly in time and
across sequences. We use the Adam optimizer (Kingma &
Ba, 2014) with the following learning rate schedule: a linear
warm-up over 100 steps from 10−5 to 10−3, 900 steps at
10−3, then a cosine annealing (Loshchilov & Hutter, 2017)
for 100, 000 iterations. We use a batch size of 128, K = 3
autoregressive steps per iteration, bundle m = 8 timesteps
per model call (resulting in 24 predicted states), and a grid
size of 64 × 64. For most of our experiments, we use a
U-Net (Ronneberger et al., 2015) with three downsampling
blocks with a factor of 2, 64 hidden channels, a kernel size
of 3, and MLPs with three hidden layers of size 64 for pixel-
wise encoding and decoding into a latent space. For a fair
comparison, we ran training and inference for NeuralMPM,
DMCF, and GNS on the exact same hardware. GNS and
DMCF were trained for a maximum of 72 hours, while
NeuralMPM required 20 hours or less to converge. Further
details on training can be found in Appendix A.

e add Gaussian noise to ground-truth predicted grids and
particles positions, respectively of 10−3 and 3× 10−4.

4.1. Ablation study

To study the robustness of NeuralMPM to hyperparameter
and architectural choices, we start with the default architec-
ture and hyperparameters and ablate its components individ-
ually to examine their impact on performance. We vary the

number K of autoregressive steps with and without noise,
the number of bundled timesteps m predicted by a single
model call, and the depth and number of hidden channels of
the network. We also investigate adding noise to stabilize
rollouts, either directly to the particles’ positions or to the
grid-level representation after voxelization.

Figure 3 summarizes the ablation results. A larger num-
ber K of autoregressive steps yields more accurate rollouts
without the need to add noise. Indeed, injecting noise does
not improve accuracy and is even detrimental for K = 4.
Individually tuning the noise levels for grids and particles
can modestly lower error rates, but is either very sensitive
or negligible. The model performs better when bundling
more timesteps, enabling faster rollouts as a single forward
pass predicts more steps. We found m = 8 to be opti-
mal with the other default hyperparameters, outperforming
larger bundling. This is because more network capacity is
needed to extract information for the next 16 or 32 timesteps
from a single state. Instead, we opted for a shallower and
narrower network to balance speed and memory footprint
with performance gains. In terms of network architecture,
we kept the U-Net as we found the FNO (Li et al., 2021) to
underperform in most of our experiments (see Appendix B).
We find the U-Net’s width and depth to have a minor impact
on performance, confirming that a larger network is not
needed. The grid size, however, is critical. A low resolution
loses fine details, while a high resolution turns meaningful
structures, such as liquid blobs or walls, into isolated voxels.

Given these results, we conduct the rest of our experiments
using the blue parameters in Figure 3, except for WBC-
SPH. As that dataset contains more particles and has a much
longer rollout, we opted for bundling more steps (m = 16),
coupled with a more expressive depth of 4. Crucially, as the
water density is higher in that dataset, we increase the grid
size to 128 to capture finer interactions.

4.2. Comparison with previous work

We compare NeuralMPM against GNS (Sanchez-Gonzalez
et al., 2020) and DMCF (Prantl et al., 2022). We use the
official implementations and training instructions released
by the authors to assess training times, inference times, as
well as accuracy. We compare against both GNS and DMCF
on WATERRAMPS, SANDRAMPS, and GOOP. We also
compare against GNS on MULTIMATERIAL, and against
DMCF on WBC-SPH.

Accuracy. We report quantitative results comparing the
long-term accuracy in Table 1 and show trajectories of Neu-
ralMPM in Figure 2. Additional snapshots and comparisons
with the baselines can be found in Appendix B, and in Ap-
pendix C. On the mono-material datasets WATERRAMPS,
SANDRAMPS, and GOOP, NeuralMPM performs compet-

5

A Neural Material Point Method for Particle-based Simulations

1 2 3 4
0

1

2

3

4

5

6

7

M
S

E
(1

0−
3)

K without noise

1 2 3 4

K with noise

1 2 4 8 16 32

Time bundle m

32 64 128

Grid size

0.005 0.001 0
0

1

2

3

4

5

6

7

M
S

E
(1

0−
3)

Grid noise

0.001 0.0006 0.0003 0

Particle noise

2 3 4 5

Depth

32 64 128

Width

Figure 3. Ablation results. Mean squared error (MSE) of full rollouts on unseen test data for GOOP. The default parameters are in blue.
The dashed orange line shows the best rollout MSE of GNS as reported in (Sanchez-Gonzalez et al., 2020) on the same data (1.89×10−3),
while the dotted line (4.57× 10−3) indicates the MSE we obtained for GNS after 72h (5M+ training steps). NeuralMPM is robust to
hyperparameter changes, with the biggest effects coming from the number of timesteps bundled together (m) and grid noise. For a
rollout of length T , the model is called T/m times, meaning lower values of m require maintaining stability for longer. Autoregressive
training coupled with time bundling is sufficient to stabilize the model, eliminating the need for noise injection. Although GNS reportedly
outperforms NeuralMPM by a small margin, these results could not be reproduced in our experiments.

itively with GNS and better than DMCF in terms of mean
squared error (MSE). For MULTIMATERIAL, NeuralMPM
reduces the MSE by almost half, which we attribute to
it being a hybrid method, known to better handle interac-
tions, mixing, and collisions between different materials.
In terms of Earth Mover’s Distance (EMD), NeuralMPM
outperforms both baselines, suggesting that NeuralMPM
is better at capturing the spatial distribution of the parti-
cles. However, on WBC-SPH, NeuralMPM falls behind
DMCF. This dataset is challenging as SPH solvers outper-
form MPM solvers in this domain. It is also limited to
only 30 training simulations, compared to 1000 in others,
with trajectories reaching a steady state after 1000 timesteps
(out of 3200), strongly reducing the quantity of data with
information about the dynamics. The dataset also features
variable gravity across simulations, which DMCF directly
integrates as an external force in its update step. This ap-
proach could improve NeuralMPM’s performance on this
dataset by offloading learning to apply gravity from the
model.

Training. In Figure 4, we report the evolution of the mean
squared error of full emulated rollouts on the held-out test

set during training, for each method, along with predicted
snapshots at increasing training durations. NeuralMPM con-
verges significantly faster than both baselines while reach-
ing lower error rates. Furthermore, the convergence of the
training procedure and quality of the architecture can be
assessed much earlier during training, effectively saving
compute and enabling the development of more refined
final models. Moreover, NeuralMPM is also more memory-
efficient, which enables the use of higher batch sizes of 128,
as opposed to only 2 in GNS and DMCF.

Inference time. Table 2 reports the average inference time
for one model call and a full rollout on WATERRAMPS.
NeuralMPM, despite predicting multiple frames per model
call, achieves faster inference time per call than the baselines
while maintaining comparable accuracy. Time bundling
results in an even larger gap for full rollouts. Additionally,
our method’s improved memory efficiency allows for over
100 parallel simulations, whereas GNS and DMCF face
memory limitations with more than a few.

6

A Neural Material Point Method for Particle-based Simulations

Data (Simulator) N T NeuralMPM GNS DMCF
MSE↓ EMD↓ MSE↓ EMD↓ MSE↓ EMD↓

WATERRAMPS (MPM) 2.3k 600 13.92 68 13.13 91 20.45 105
SANDRAMPS (MPM) 3.3k 400 3.12 61 3.11 84 7.60 97

GOOP (MPM) 1.9k 400 2.18 55 4.57 81 5.25 85
MULTIMATERIAL (MPM) 2k 1000 9.6 66 14.79 105 - -

WBC-SPH (SPH) 15k 3200 55.4 - - - 47.8 -

Table 1. Number of particles N , sequence length T , rollout MSE (×10−3) and rollout EMD (×10−3).

1 5 10 20 40 70
Time [h]

15

20

30

60

80
100

M
S

E
(1

0−
3)

NeuralMPM

DMCF

GNS

1 Hour 5 Hours 15 Hours Best Ground
Truth

O
ur

s
G

N
S

D
M

C
F

Figure 4. Training convergence. (Left) NeuralMPM trains and converges much faster than GNS and DMCF. (Right) Snapshots of models
trained for increasing durations then unrolled until the same timestep on a held-out simulation. For a fair comparison, out-of-bounds
particles in GNS and DMCF were clamped.

NeuralMPM (Ours) GNS DMCF

One model call (T = 1) 8.04± 0.43 13.91± 2.83 12.85± 8.41
Rollout (T = 600) 606.63± 7.69 8344.94± 1700.8 9448.17± 804.07

Table 2. Inference time (in ms) of NeuralMPM and baselines on WATERRAMPS. Times were averaged over all validation trajectories.
NeuralMPM predicts 8 frames in a single model call and still outperforms the two baselines per call, which further widens the gap for the
total rollout time. For comparison, GNS reports a computation time of 71ms to simulate one timestep with Taichi-MPM.

4.3. Generalization

One notable advantage of NeuralMPM is its invariance to
the number of particles, as the transition model only pro-
cesses the voxelized representation. To demonstrate this, we
train a model on WATERRAMPS, which contains about 2.3k
particles and 600 timesteps, and evaluate it on WATERDROP-
XL, which features about four times more particles, 1000
timesteps, and no obstacles. An example snapshot is dis-
played in Figure 2. The larger number of particles only
affects interpolation between the grid and particles, which
has a negligible impact on total inference time, making the
model nearly as fast despite 4 times more particles. We also
validate this quantitatively by comparing a model trained
directly on WATERDROP-XL with a model trained solely
on WATERRAMPS. With the same training budget, the latter
achieves a lower MSE at 20.92×10−3 against 28.09×10−3.

4.4. Inverse design problem

Finally, we demonstrate the application of NeuralMPM for
inverse problems on a toy inverse design task that consists
in optimizing the direction of a ramp to make the particles
reach a target location, similar to (Allen et al., 2022). We
place a blob of water at different starting locations, and we
then place a ramp at some location, with a random initial
angle α. The goal is to spin that ramp by tuning α in order
to make the water end up at a desired location. The main
challenges of this task are the long-range time horizon of
the goal and the presence of nonlinear physical dynamics.
We proceed by selecting the point where we want the water
to end up and compute the average distance between the
point and particles at the last simulation frame (Tests 1 & 2)
or at an intermediate frame (Test 3). We then minimize the
distance via gradient descent, leveraging the differentiability

7

A Neural Material Point Method for Particle-based Simulations

Test 1 Test 2 Test 3
In

iti
al

α

U
no

pt
im

iz
ed

O
pt

im
iz

ed

Figure 5. Inverse design problem. We exploit NeuralMPM’s dif-
ferentiability to optimize the angle α of a ramp, anchored at the
red dot, in order to get the water close to the red square region.

of NeuralMPM to solve this inverse design problem. We
show three example optimizations in Figure 5.

5. Conclusion
Summary. We presented NeuralMPM, a neural emulation
framework for particle-based simulations inspired by the hy-
brid Eulerian-Lagrangian Material Point Method. We have
shown its effectiveness in simulating a variety of materials
and interactions, its ability to generalize to larger systems
and its use in inverse problems. Crucially, NeuralMPM
trains in a fraction of the time it takes to train alternative
approaches, and is substantially faster at inference time. By
interpolating particles onto a fixed-size grid, global informa-
tion is distilled into a voxelized representation that is easier
to learn and process with powerful image-to-image mod-
els. The use of voxelization allows NeuralMPM to bypass
expensive graph constructions, and the interpolation leads
to easier generalization to a larger number of particles and
constant runtime. The lack of expensive graph construction
and message passing also allows for more autoregressive
steps and parallel rollouts.

Limitations. Like other approaches, NeuralMPM is lim-
ited by the computation used to process the structure of the
point cloud. In our case, voxelization means we cannot deal
with particles that lie outside of the domain and are limited
to regular grids. Additionally, the size of the voxels is cou-
pled to the density of the fluid, understood as the number of
particles per given volume. If the voxels are too large, the
model will fail to reproduce finer details. On the other hand,
if they are too small, the model might be overwhelmed by
the lack of local structure. Unsurprisingly, NeuralMPM per-

forms better on domains where numerical MPM methods
are strong and will struggle in domains not suited for MPM.

Future work. Our work is only a first step towards hy-
brid Eulerian-Lagrangian neural emulators, leaving many
avenues for future research. Extending NeuralMPM to 3D
systems is a natural continuation of this work. Future studies
could also explore alternative particle-to-grid and grid-to-
particle functions, like the non-uniform Fourier transform
(Fessler & Sutton, 2003), or more sophisticated interpola-
tion methods from classical MPM literature (Nguyen et al.,
2023). Additionally, incorporating features commonly used
in classical SPH and MPM simulations, such as viscosity,
pressure, or temperature, presents another promising direc-
tion for future work. A less traditional direction is to make
NeuralMPM probabilistic and encode richer distributional
information about the particles in the grid nodes, instead
of maintaining only a mean value. This could potentially
improve NeuralMPM’s ability to resolve subgrid phenom-
ena. Advances in Lagrangian Particle Tracking (Schröder
& Schanz, 2023) will eventually make it possible to create
datasets from real-world data, enabling the training of Neu-
ralMPM directly from data without the need for the costly
design process of a numerical simulator. Lastly, losses that
take into account the distribution of particles and are invari-
ant under particle permutation, such as the earth mover’s
distance, are increasingly becoming an option to consider,
as more efficient differentiable approximations emerge.

Impact statement. While the immediate societal impact
of this work will likely be minor, learned emulators have
the potential to have a profoundly positive social impact
by facilitating large weather simulations, efficient inverse
design methods, and scientific advance.

References
Adami, S., Hu, X., and Adams, N. A generalized wall

boundary condition for smoothed particle hydrodynamics.
Journal of Computational Physics, 231(21):7057–7075,
2012.

Allen, K., Lopez-Guevara, T., Stachenfeld, K. L.,
Sanchez Gonzalez, A., Battaglia, P., Hamrick, J. B., and
Pfaff, T. Inverse design for fluid-structure interactions
using graph network simulators. In Koyejo, S., Mohamed,
S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 35, pp. 13759–13774. Curran Associates, Inc., 2022.

Arpaia, P., Azzopardi, G., Blanc, F., Bregliozzi, G., Buf-
fat, X., Coyle, L., Fol, E., Giordano, F., Giovannozzi,
M., Pieloni, T., Prevete, R., Redaelli, S., Salvachua, B.,
Salvant, B., Schenk, M., Camillocci, M. S., Tomás, R.,

8

A Neural Material Point Method for Particle-based Simulations

Valentino, G., Van der Veken, F., and Wenninger, J. Ma-
chine learning for beam dynamics studies at the cern
large hadron collider. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment, 985:164652,
January 2021.

Bourilkov, D. Machine and deep learning applications in
particle physics. International Journal of Modern Physics
A, 34(35):1930019, December 2019.

Brandstetter, J., Worrall, D. E., and Welling, M. Message
passing neural PDE solvers. In International Conference
on Learning Representations, 2022.

Colburn, S. and Majumdar, A. Inverse design and flexible
parameterization of meta-optics using algorithmic differ-
entiation. Communications Physics, 4(1):65, 3 2021.

Cuturi, M., Meng-Papaxanthos, L., Tian, Y., Bunne, C.,
Davis, G., and Teboul, O. Optimal transport tools (ott):
A jax toolbox for all things wasserstein. arXiv preprint
arXiv:2201.12324, 2022.

Daphalapurkar, N. P., Lu, H., Coker, D., and Komanduri, R.
Simulation of dynamic crack growth using the general-
ized interpolation material point (gimp) method. Interna-
tional Journal of Fracture, 143(1):79–102, 01 2007.

Fessler, J. and Sutton, B. Nonuniform fast fourier trans-
forms using min-max interpolation. IEEE Transactions
on Signal Processing, 51(2):560–574, 2003.

Few, C. G., Dobbs, C., Pettitt, A., and Konstandin, L. Test-
ing hydrodynamics schemes in galaxy disc simulations.
Monthly Notices of the Royal Astronomical Society, 460
(4):4382–4396, 05 2016.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428,
2019.

Forte, A. E., Hanakata, P. Z., Jin, L., Zari, E., Zareei, A.,
Fernandes, M. C., Sumner, L., Alvarez, J., and Bertoldi,
K. Inverse design of inflatable soft membranes through
machine learning. Advanced Functional Materials, 32
(16):2111610, 2022.

Gotoh, H. and Khayyer, A. Current achievements and future
perspectives for projection-based particle methods with
applications in ocean engineering. Journal of Ocean
Engineering and Marine Energy, 2(3):251–278, 8 2016.

He, S., Li, Y., Feng, Y., Ho, S., Ravanbakhsh, S., Chen,
W., and Póczos, B. Learning to predict the cosmolog-
ical structure formation. Proceedings of the National
Academy of Sciences, 116(28):13825–13832, June 2019.

Hu, Y., Fang, Y., Ge, Z., Qu, Z., Zhu, Y., Pradhana, A., and
Jiang, C. A moving least squares material point method
with displacement discontinuity and two-way rigid body
coupling. ACM Trans. Graph., 37(4), 07 2018.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International conference on machine learning, pp. 448–
456. pmlr, 2015.

Ionescu, I., Guilkey, J., Berzins, M., Kirby, R. M., and
Weiss, J. Computational simulation of penetrating trauma
in biological soft tissues using the material point method.
Stud Health Technol Inform, 111:213–218, 2005.

Iserles, A. A First Course in the Numerical Analysis of Dif-
ferential Equations. Cambridge Texts in Applied Mathe-
matics. Cambridge University Press, 2 edition, 2008.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.
A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B.,
Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S.,
Reiman, D., Clancy, E., Zielinski, M., Steinegger, M.,
Pacholska, M., Berghammer, T., Bodenstein, S., Silver,
D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli,
P., and Hassabis, D. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589, 8
2021.

Kegerreis, J. A., Ruiz-Bonilla, S., Eke, V. R., Massey, R. J.,
Sandnes, T. D., and Teodoro, L. F. A. Immediate origin
of the moon as a post-impact satellite. The Astrophysical
Journal Letters, 937(2):L40, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kumar, S., Tan, S., Zheng, L., and Kochmann, D. M.
Inverse-designed spinodoid metamaterials. npj Computa-
tional Materials, 6(1):73, 6 2020.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger,
P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-
Rosen, Z., Hu, W., Merose, A., Hoyer, S., Holland, G.,
Vinyals, O., Stott, J., Pritzel, A., Mohamed, S., and
Battaglia, P. Learning skillful medium-range global
weather forecasting. Science, 382(6677):1416–1421,
2023.

Lemos, P., Jeffrey, N., Cranmer, M., Ho, S., and Battaglia, P.
Rediscovering orbital mechanics with machine learning.
Machine Learning: Science and Technology, 4(4):045002,
10 2023.

Li, S. and Liu, W. K. Meshfree and particle methods and
their applications. Applied Mechanics Reviews, 55(1):
1–34, 01 2002.

9

A Neural Material Point Method for Particle-based Simulations

Li, Z., Kovachki, N. B., Azizzadenesheli, K., liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier neu-
ral operator for parametric partial differential equations.
In International Conference on Learning Representations,
2021.

Lind, S. J., Rogers, B. D., and Stansby, P. K. Review of
smoothed particle hydrodynamics: towards converged
lagrangian flow modelling. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sci-
ences, 476(2241):20190801, 2020.

Liu, Z., Zhu, D., Rodrigues, S. P., Lee, K.-T., and Cai, W.
Generative model for the inverse design of metasurfaces.
Nano Letters, 18(10):6570–6576, 10 2018.

Llano Serna, M. A., Muniz-de Farias, M., and Martı́nez-
Carvajal, H. E. Numerical modelling of alto verde land-
slide using the material point method. DYNA, 82(194):
150–159, 11 2015.

Loshchilov, I. and Hutter, F. SGDR: Stochastic gradient
descent with warm restarts. In International Conference
on Learning Representations, 2017.

Lu, H., Daphalapurkar, N., Wang, B., Roy, S., and Ko-
manduri, R. Multiscale simulation from atomistic to
continuum – coupling molecular dynamics (md) with the
material point method (mpm). Philosophical Magazine,
86:2971–2994, 2006.

Lyu, H.-G., Sun, P.-N., Huang, X.-T., Zhong, S.-Y., Peng,
Y.-X., Jiang, T., and Ji, C.-N. A review of sph techniques
for hydrodynamic simulations of ocean energy devices.
Energies, 15(2), 2022.

Monaghan, J. Smoothed particle hydrodynamics and its
diverse applications. Annual Review of Fluid Mechanics,
44(Volume 44, 2012):323–346, 2012.

Morton, K. W. and Mayers, D. F. Numerical Solution of Par-
tial Differential Equations: An Introduction. Cambridge
University Press, 2 edition, 2005.

Nasser, M. and Yusof, U. K. Deep learning based methods
for breast cancer diagnosis: A systematic review and
future direction. Diagnostics (Basel), 13(1), January
2023.

Nguyen, V. P., Vaucorbeil, A. d., and Bordas, S. The Mate-
rial Point Method: Theory, Implementations and Applica-
tions (Scientific Computation) 1st ed. 2023 Edition. 02
2023. ISBN 3031240693.

Nourian, P., Gonçalves, R., Zlatanova, S., Ohori, K. A., and
Vu Vo, A. Voxelization algorithms for geospatial appli-
cations: Computational methods for voxelating spatial
datasets of 3d city models containing 3d surface, curve
and point data models. MethodsX, 3:69–86, 2016.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. Learning mesh-based simulation with graph
networks. In International Conference on Learning Rep-
resentations, 2021.

Prantl, L., Ummenhofer, B., Koltun, V., and Thuerey,
N. Guaranteed conservation of momentum for learning
particle-based fluid dynamics. In Koyejo, S., Mohamed,
S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 35, pp. 6901–6913. Curran Associates, Inc., 2022.

Rakhsha, M., Kees, C. E., and Negrut, D. Lagrangian vs.
eulerian: An analysis of two solution methods for free-
surface flows and fluid solid interaction problems. Fluids,
6(12), 2021.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmenta-
tion. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international confer-
ence, Munich, Germany, October 5-9, 2015, proceedings,
part III 18, pp. 234–241. Springer, 2015.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. Learning to simulate com-
plex physics with graph networks. In III, H. D. and Singh,
A. (eds.), Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 8459–8468. PMLR,
7 2020.

Schröder, A. and Schanz, D. 3d lagrangian particle tracking
in fluid mechanics. Annual Review of Fluid Mechanics,
55(Volume 55, 2023):511–540, 2023. ISSN 1545-4479.

Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle,
A. A material point method for snow simulation. ACM
Trans. Graph., 32(4), 07 2013.

Sulsky, D., Chen, Z., and Schreyer, H. L. A particle method
for history-dependent materials. Computer Methods in
Applied Mechanics and Engineering, 118:179–196, 1993.

Tan, Z., Sun, P.-N., Liu, N.-N., Li, Z., Lyu, H.-G., and Zhu,
R.-H. Sph simulation and experimental validation of the
dynamic response of floating offshore wind turbines in
waves. Renewable Energy, 205:393–409, 2023.

Ummenhofer, B., Prantl, L., Thuerey, N., and Koltun, V.
Lagrangian fluid simulation with continuous convolutions.
In International Conference on Learning Representations,
2020.

10

A Neural Material Point Method for Particle-based Simulations

Vacondio, R., Altomare, C., De Leffe, M., Hu, X., Le Touzé,
D., Lind, S., Marongiu, J.-C., Marrone, S., Rogers, B. D.,
and Souto-Iglesias, A. Grand challenges for smoothed
particle hydrodynamics numerical schemes. Computa-
tional Particle Mechanics, 8(3):575–588, 5 2021.

Wissing, R. and Shen, S. Numerical dependencies of the
galactic dynamo in isolated galaxies with sph. Astronomy
and Astrophysics, 673:A47, May 2023.

Xu, Y., Tong, X., and Stilla, U. Voxel-based representa-
tion of 3d point clouds: Methods, applications, and its
potential use in the construction industry. Automation in
Construction, 126:103675, 2021.

York II, A. R., Sulsky, D., and Schreyer, H. L.
Fluid–membrane interaction based on the material point
method. International Journal for Numerical Methods in
Engineering, 48(6):901–924, 2000.

Zhao, Q., Lindell, D. B., and Wetzstein, G. Learning to solve
PDE-constrained inverse problems with graph networks.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C.,
Niu, G., and Sabato, S. (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pp.
26895–26910. PMLR, 7 2022.

11

A Neural Material Point Method for Particle-based Simulations

G
ro

un
d

Tr
ut

h
O

ur
s

G
N

S
D

M
C

F

Figure 6. Example of a WATERRAMPS trajectory against baselines. We select a random test trajectory that was not seen during training
and unroll predictions from NeuralMPM and the two baselines, starting from the same initial conditions. We display six snapshots, spaced
evenly in time over the 600-step sequence.

A. Training details
Hardware. We run all our experiments using the same hardware: 4 CPUs, 24GB of RAM, and an NVIDIA RTX A5000
GPU with 24GB of VRAM. For reproducing the results of DMCF, we kept the A5000 GPU but it required up to 96GB of
RAM for training.

Data Preprocessing. Similar to (Prantl et al., 2022), we slightly alter the original MPM datasets to add boundary particles,
as the original data from (Sanchez-Gonzalez et al., 2020) does not have them. We define the velocity at a timestep to be
vt = vt − vt−1. We therefore skip the first step during training for which no velocity is available.

Implementation. Our implementation, training scripts, experiment configurations, and instructions for reproducing results
are publicly available at [URL]. We implement NeuralMPM using PyTorch (Paszke et al., 2019), and use PyTorch Geometric
(Fey & Lenssen, 2019) for implementing efficient particle-to-grid functions, more specifically from the Scatter and Cluster
modules. For memory efficiency, we do not store all (up to) 1,000 training trajectories in memory, and rather use a buffer of
about 16 trajectories over which several epochs are performed before loading a new buffer of random trajectories.

Baselines. We use the official implementations and training instructions of GNS (Sanchez-Gonzalez et al., 2020) and
DMCF (Prantl et al., 2022) to reproduce their results and conduct new experiments. More specifically, we train GNS as
instructed for 5 million steps on all four datasets, using their provided configuration. For DMCF, we follow their default
configurations, conducting 50k training iterations for WBC-SPH and 40k for WATERRAMPS, SANDRAMPS, and GOOP.

Normalization. We normalize the input of the model over each channel individually. We investigated computing the
statistics across a buffer, resembling (Ioffe & Szegedy, 2015), and precomputing them on the whole training set and found
no difference in performance. During inference, we use the precomputed statistics.

B. Supplementary results
Figure 6 shows snapshots on WaterRamps taken from rollouts of the best models for NeuralMPM, GNS, and DMCF.

12

A Neural Material Point Method for Particle-based Simulations

Although we have used a U-Net architecture for the grid-to-grid processor, NeuralMPM can be used with any grid-to-grid
processor and is not limited to that network. For example, in Figure 7 and Table 3 we present qualitative and quantitative
ablation results, respectively, for NeuralMPM using an FNO network (Li et al., 2021) as the grid-to-grid processor. Results
show that the FNO processor is slightly worse than the U-Net processor.

Goop SandRamps WaterRamps
0

5

10

15

M
S

E
(1

0−
3)

Without noise

Goop SandRamps WaterRamps

With noise

Figure 7. FNO processor. NeuralMPM with an FNO processor and default architecture. Rollout MSE (×10−3) for different datasets.

Data FNO without noise FNO with noise
WATERRAMPS 16.8 16.3

SANDRAMPS 5.5 3.5
GOOP 4.3 3.8

Table 3. Rollout MSE (×10−3) for NeuralMPM with an FNO processor and default architecture, with and without noise.

Table 4 reports the exact MSE rollout values that were reported in Figure 3 for GOOP.

Parameter Value MSE (×10−3)

K (No noise)

1 3.2
2 3.3
3 2.4
4 2.2

K (With noise)

1 3.5
2 2.5
3 2.4
4 3.0

Time bundling m

1 6.6
2 4.5
4 3.5
8 2.1
16 2.9
32 3.5

Grid size
32 5.5
64 2.4
128 7.1

Parameter Value MSE (×10−3)

Grid noise
0 3.2

0.001 2.4
0.005 6.9

Particle noise

0 2.2
0.0003 2.4
0.0006 2.4
0.001 2.1

U-Net Depth

2 3.3
3 3.0
4 2.4
5 2.3

U-Net Width
32 2.6
64 2.3

128 2.2

Table 4. Ablation results for GOOP.

Finally, Figure 8 shows the error during rollouts for each dataset, both in terms of MSE and EMD. With both metrics, the

13

A Neural Material Point Method for Particle-based Simulations

error starts low and slowly accumulates over time. For the EMD, we use the Sinkhorn algorithm provided by (Cuturi et al.,
2022).

0 200 400
0

2

4

6

8

M
S

E
(1

0−
3)

Goop

0 250 500
0

10

20

30

40
WaterRamps

0 200 400
0

2

5

8

10

SandRamps

0 500 1000
0

10

20

MultiMaterial

0 200 400
Timestep

20

40

60

80

100

E
M

D
(1

0−
3)

0 250 500
Timestep

60

80

100

120

0 200 400
Timestep

60

80

100

Figure 8. Error propagation during rollout. Shown is the mean and standard deviation of the MSE and EMD, computed over particles
and simulations, at each timestep during the rollout. The accuracy decreases as errors accumulate.

C. Additional predicted trajectories
In addition to the trajectories in Figures 2 and 6, we show additional trajectories emulated with NeuralMPM for all datasets
in Figures 9, 10, 11, 12, and 13. We also show trajectories on WATERDROP-XL emulated using a model that was trained on
WATERRAMPS (see Section 4.3). We also release videos in the supplementary material, which we recommend watching to
better see the details and limitations of NeuralMPM. This includes about 10 videos of emulated trajectories on held-out test
simulations. Notably, we can observe the specific limitations of NeuralMPM on WBC-SPH, as shown in the latest trajectory
depicted in Figure 13.

14

A Neural Material Point Method for Particle-based Simulations

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 9. Additional WATERRAMPS predicted trajectories. Evenly spaced in time snapshots of predicted unrolled trajectories against
ground truth. All trajectories are from the held-out test set.

15

A Neural Material Point Method for Particle-based Simulations

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 10. Additional SANDRAMPS predicted trajectories. Evenly spaced in time snapshots of predicted unrolled trajectories against
ground truth. All trajectories are from the held-out test set.

16

A Neural Material Point Method for Particle-based Simulations

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 11. Additional GOOP predicted trajectories. Snapshots of predicted unrolled trajectories against ground truth. All trajectories
are from the held-out test set. Due to GOOP quickly reaching equilibrium, more snapshots are taken in the first half of the trajectory.

17

A Neural Material Point Method for Particle-based Simulations

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 12. Additional MULTIMATERIAL predicted trajectories. Evenly spaced in time snapshots of predicted unrolled trajectories
against ground truth. All trajectories are from the held-out test set. The first trajectory illustrates a rare failure where the shape of sand
particles is not retained, even though all particles are supposed to maintain the same velocity while airborne, as they are thrown against
the wall.

18

A Neural Material Point Method for Particle-based Simulations

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 13. Additional WBC-SPH predicted trajectories. Snapshots of predicted trajectories against ground truth. All trajectories come
from the held-out test set. To better show the differences of these longer sequences, we select the following timesteps not even in time:
t ∈ {0, 100, 300, 500, 700, 3199}. In the last trajectory, NeuralMPM struggles to follow the gravity direction and breaks down over
time.

19

A Neural Material Point Method for Particle-based Simulations

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

G
ro

un
d

Tr
ut

h
Pr

ed
ic

tio
n

Figure 14. Additional WATERDROP-XL predicted generalization trajectories. Snapshots of predicted trajectories emulated using a
model trained solely on WATERRAMPS, against ground truth. All trajectories come from the held-out test set of WATERDROP-XL. To
better show the differences of these longer sequences, we select the following timesteps not even in time: t ∈ {0, 75, 125, 200, 400, 999}.
We can observe that the generalizing model struggles to retain the shape of water while it’s falling.

20

