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Abstract

Assessing semantic similarity between SQL
queries is vital for Text-to-SQL evaluation,
query clustering, deduplication, and code au-
diting. Existing metrics—such as Execution
Accuracy and CodeBERTScore—either require
database access or rely on token-level similar-
ity, overlooking deeper structural and logical
equivalence. These limitations hinder their use
in schema-less, privacy-sensitive, or real-time
settings. In this paper, we propose structure-
aware, execution-free evaluation methodolo-
gies, AST-TE and Hybrid-GMN, combining
symbolic and neural methods. AST-TE com-
putes Zhang—Shasha-Style Tree-Edit distance
over normalized SQL Abstract Syntax Trees
to capture structural and semantic differences.
Hybrid GMN encodes ASTs and Relational Op-
erator Trees (ROTs) into a heterogeneous graph,
enabling fine-grained semantic alignment via
cross-graph attention. Experiments on Spider,
BIRD', and internal subquery dataset generated
via a fine-tuned SQLCoder-7B model? demon-
strates significant performance improvements
over existing symbolic and neural baselines.
Specifically, on the Spider dataset, our meth-
ods surpass the state-of-the-art CrystalBLEU
metric by approximately 23% in ROC AUC
and more than 95% in Spearman correlation.
Our findings underscore critical shortcomings
in traditional execution-based and token-level
similarity metrics, establishing AST-TE and
Hybrid GMN as robust, scalable, and schema-
agnostic alternatives for evaluating SQL query
equivalence.

1 Introduction

Evaluating the semantic similarity between struc-
tured SQL queries is crucial in a range of appli-
cations, including Text-to-SQL evaluation, query
deduplication, semantic search, and retrieval-based
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question answering. Traditional evaluation metrics,
such as the accuracy of the exact match, the preci-
sion of the execution and neural similarity scores
such as CodeBERTScore, exhibit substantial limi-
tations. Exact Match is overly brittle, failing on se-
mantically equivalent queries due to minor format-
ting or aliasing differences. Execution Accuracy
depends on access to a live database and cannot
distinguish between logically distinct queries that
coincidentally produce the same result ((Kim et al.,
2025); (Renggli et al., 2025)). Neural metrics like
CodeBERTScore only capture token-level embed-
dings and struggle with structural variations and
logic-based intent ((Renggli et al., 2025)).

Recent work has further underscored these
shortcomings. (Kim et al., 2025) proposed
FLEX to expose high false positive and negative
rates in execution-based metrics, while (Renggli
et al., 2025) argued for more principled evalu-
ation methods that go beyond surface-level and
embedding-based comparisons. These insights
highlight the need for execution-free, structure-
aware evaluation metrics that assess query similar-
ity based solely on syntactic structure and semantic
intent—particularly vital in privacy-constrained,
schema-less, or real-time environments.

While recent graph-based evaluation techniques
(e.g., FuncEvalGMN, (Zhan et al., 2024)) advance
execution-free logical plan alignment, they still rely
solely on Relational Operator Trees (ROT) and lack
symbolic normalization.

In this work, we propose a structure-aware,
execution-free framework for evaluating SQL simi-
larity by integrating symbolic and neural perspec-
tives. Our approach compares both the syntactic
and semantic content of queries using two comple-
mentary techniques:

* AST-TE (Abstract Syntax Tree Tree-Edit):
A symbolic tree-edit distance metric oper-
ating on normalized Abstract Syntax Trees
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(ASTs) of SQL queries. AST-TE captures
fine-grained syntactic and semi-semantic dif-
ferences by computing the minimal sequence
of tree transformations needed to convert one
query to another.

¢ Hybrid GMN (Graph Matching Network):
A neural similarity model that jointly encodes
both the SQL AST and its Rotational Oper-
ator Tree (ROT)—a proxy for logical query
execution—as a heterogeneous graph. By ap-
plying cross-graph attention mechanisms, Hy-
brid GMN captures deeper structural and func-
tional alignment between queries.

By unifying symbolic edit-distance reasoning
with graph-based neural alignment, our frame-
work provides a scalable, interpretable, and
execution-free alternative to existing evaluation
metrics. We validate our approach on both stan-
dard datasets (Spider, BIRD) (Yu et al., 2018) and
internal subquery logs generated via a fine-tuned
SQLCoder-7B model®, demonstrating consistent
improvements over prior symbolic and neural base-
lines.

2 Related Work

Evaluating the similarity or correctness of SQL
queries has mainly depended on metrics that com-
pare the surface form or output of the queries. Com-
mon metrics include Exact Match Accuracy, Exe-
cution Accuracy, and neural similarity scores like
CodeBERTScore.

Exact Match Accuracy (El Maalouly, 2022)
measures whether the predicted query string
matches the ground truth exactly. While it’s easy
to compute, it is quite fragile. Minor changes in
formatting, aliasing, or join order can create false
negatives, even if the queries are semantically the
same. On the other hand, it may produce false posi-
tives when the predicted and reference queries have
the same structure but yield different results due to
differences in logic or hidden assumptions.

Execution Accuracy (Chaudhuri et al., 2004)
checks if the predicted and gold queries return the
same results when run on the target database. It
is widely used in Text-to-SQL benchmarks like
Spider. However, execution-based metrics need
access to the database instance, which may not
be practical in many real-world situations, such as
privacy-restricted, time-sensitive, or schema-less
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environments. Also, execution equivalence alone
doesn’t indicate semantic similarity because two
distinct queries might accidentally yield the same
result on a specific database instance.

CodeBERTScore (Zhou et al., 2023) is a neu-
ral similarity metric based on BERTScore, which
measures semantic similarity between code se-
quences using contextual embeddings from Code-
BERT. It combines the cosine similarity of token-
level embeddings with Fl-based alignment be-
tween predicted and reference queries. While Code-
BERTScore is better than string-based metrics by
capturing some semantic overlap, it still has ma-
jor drawbacks: (i) it is sensitive to tokenization
and vocabulary differences, (ii) it misses deeper
structural equivalence like join paths and logical
operator reordering, and (iii) its F1-based aggrega-
tion doesn’t distinguish between critical and minor
parts of the query (see Appendix B for an example
and configuration of CodeBERTScore) .

CodeBLEU (Ren et al., 2020) is an evalua-
tion metric created specifically for code genera-
tion tasks. Unlike standard BLEU, In addition to
n-gram overlap, it takes into account code-specific
structural details like data-flow matching, syntax-
aware heuristics, and abstract syntax tree (AST)
similarity. As a result, it is more pertinent to the
generated code’s semantic and structural accuracy.
including SQL queries. In this work, (see Ap-
pendix C for implementation details and config-
uration of CodeBLEU) we consider CodeBLEU a
suitable baseline for assessing the functional simi-
larity of SQL generation outputs.

Limitations of Prior Graph-Based Evaluation
Recent work by Wang et al. (Wang et al., 2025)
introduced a database-free evaluation framework
using Relational Operator Tree (ROT) graphs to
approximate the logical semantics of SQL queries.
While this graph-based comparison mitigates cer-
tain drawbacks of execution-dependent metrics, it
presents several limitations.

First, ROT-based methods (Passing et al., 2017)
assume structural rigidity, often failing to recog-
nize semantic equivalence across restructured but
logically identical queries—such as join reordering
or subquery unfolding. Second, they lack symbolic
normalization mechanisms (e.g., alias unification,
syntactic canonicalization), making them sensitive
to superficial variations. Third, these methods rely
on a single modality (ROT), ignoring complemen-
tary syntactic information embedded in Abstract
Syntax Trees (ASTs), which are crucial for under-
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standing clause nesting, scope, and ordering.

These limitations motivate the need for a richer,
multimodal approach that captures both structural
and semantic query intent without execution or
schema dependence.

Our contribution addresses these gaps by intro-
ducing symbolic AST-based edit metrics (AST-TE
and ETM) and proposing a Hybrid Graph Match-
ing Network that fuses AST and ROT features for
joint structural and semantic alignment. This dual-
modality approach bridges the symbolic-neural di-
vide and provides a scalable, interpretable alterna-
tive to execution-based or token-level metrics.

3 From SQL to AST: JSON Trees via
SQLGlot

To structurally compare SQL queries, we first con-
vert each query into an Abstract Syntax Tree (AST)
(Dai et al., 2025). We use the SQLGlot library for
this task, which parses SQL into a nested expres-
sion tree composed of rich Python objects. These
trees capture the full syntactic and semantic struc-
ture of the query—including functions, operators,
literals, subqueries, and joins—and can be intro-
spected, traversed, and serialized into JSON-like
dictionaries.

The structured output enables us to extract nodes
and edges for graph-based similarity models. This
AST-based representation is significantly more ro-
bust than comparing raw SQL strings or token se-
quences, as it encodes the actual computation and
data flow semantics of the query.

For example, the SQL query:

SELECT TRIM(b + c, ’ *) FROM jobs

can be parsed in sqlglot using:

from sqlglot import parse_one

ast = parse_one("SELECT TRIM(b + c,
1 1 )

FROM jobs")

print(ast.to_dict())

This representation helps capture the hierarchical
and logical structure of SQL programs, enabling
effective functional similarity modeling. It also fa-
cilitates programmatic transformations, such as nor-
malization, template substitution, or equivalence
checking during training and evaluation.

These JSON ASTs are used both in our symbolic
similarity metric (AST Tree Edit Distance) and as

input to the graph construction module in our Hy-
brid Graph Matching Network (GMN). Their struc-
tural consistency enables us to perform alignment
and similarity scoring across semantically equiv-
alent SQL queries without requiring access to a
database.

4 AST Tree Edit Similarity (AST-TE)

To evaluate SQL similarity structurally, we use a
tree edit distance approach over abstract syntax
trees (ASTs) derived from SQL queries. We parse
SQL strings using the sqlglot library*, which gen-
erates grammar-aware expression trees.As shown
in Figure 1

These expression trees are converted into tree
structures compatible with the Zhang—Shasha Tree
Edit Distance (ZSS) algorithm’, allowing us to
compute structural differences between two SQL
queries. (see Appendix A for an example of the
ZSS algorithm)Each node in the ZSS tree contains
not only the SQL grammar token (e.g., Select,
Where) but also relevant values like identifiers and
literals when available (Zhang and Shasha, 1989).

The conversion process includes:

» Extracting the key of each sqlglot node as
the node label.

* Appending string representations of mean-
ingful fields such as this, expression, and
expressions to enhance value sensitivity.

* Recursively processing child nodes to build
the full tree.

We define cost functions for ZSS as follows:
e Insert cost: 1.0
¢ Remove cost: 1.0

* Update cost: 2.0 if labels differ, 0.0 if they
match

The final similarity score is computed as:

TreeEditDistance(Ty,T»)

Similarity =1 —
Y max(|T1], |T2))

where T; and T5 are the converted ASTs of the two

SQL queries. If both trees are empty, similarity
defaults to 1.0.

4https: //github.com/tobymao/sqlglot
Shttps://github.com/timtadh/zhang-shasha
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Figure 1: Overview of the AST-TE model architecture.

This AST-based comparison captures structural
and literal-level variations, making it more robust
than string-based or token-based approaches in sce-
narios where SQL queries are semantically similar
but syntactically different.

5 Hybrid Graph Matching with AST and
ROT Features

While AST-based similarity captures the syntac-
tic and structural elements of SQL queries, it may
miss deeper semantic equivalences present at the
logical plan level. To address this, we introduce a
hybrid model that combines Abstract Syntax Trees
(ASTs) and Relational Operator Trees (ROTs) us-
ing a Graph Matching Network (GMN) As shown
in Figure 2 for fine-grained SQL similarity evalua-
tion.

5.1 Motivation and Representation

ASTs reflect the surface structure of SQL queries,
while ROTs describe their logical execution plans.
By jointly leveraging both, we aim to model both
syntactic and semantic similarity between SQL
queries. Each SQL query is converted into:

* A tree-structured AST (via sqlglot) captur-
ing tokens and literals.

* A DAG-style ROT capturing relational alge-
bra operations (e.g., Project, Join, Filter,
Aggregate).

These two views are merged into a heteroge-
neous graph with two node types:

* Computation nodes: Represent operators
(e.g., JOIN, SELECT).

* Content nodes: Represent identifiers, column
names, and literals.

5.2 Graph Construction and Matching

The graph is constructed by linking content nodes
to computation nodes according to AST and ROT
structure. For instance, a JOIN operator node con-
nects to its left and right tables, as well as the join
condition. This yields a unified representation of
the SQL query.

We use a Graph Matching Network (GMN) to
compare two such graphs:

* Each node is embedded using a type-specific
encoder: CNN for content nodes and a learned
linear layer for computation nodes.

* Random Walk Positional Encoding (RWPE) is
applied to capture relative structural positions.

* A multi-layer GNN (GraphSAGE or GAT)
encodes local and global features.

* Cross-graph attention is applied to align sub-
structures and compute similarity.



5.3 Contrastive Pretraining and Inference

The GMN is trained using a contrastive loss over
labeled SQL pairs:

L = BCE(sim(G1,G3), y)

where sim(G1, G2) is the predicted similarity
score and y € {0, 1} is the ground-truth similarity
label. During inference, the GMN outputs a simi-
larity score between 0 and 1, indicating structural
and functional closeness of SQL queries.

This hybrid approach improves generalization to
both surface-form and logical variations, offering a
robust measure of SQL similarity without requiring
database execution.

6 Dataset

To evaluate SQL query similarity without execut-
ing against a database, we use publicly available
labeled SQL pair datasets from the FuncEvalGMN
(Zhan et al., 2024) benchmark®. Each dataset con-
tains pairs of SQL queries annotated with binary
similarity labels indicating whether the queries are
functionally equivalent.

6.1 Datasets Used

¢ spider_pair_train: Contains 17,665 SQL
query pairs sampled from the Spider dataset.
Used for training our models.

* spider_pair_dev: Contains 1,744 SQL query
pairs used for validation and evaluation.
Queries target multiple databases and repre-
sent diverse schemas and question intents.

* bird_pair_dev: Contains 2,978 SQL query
pairs curated from the BIRD benchmark, used
to test generalization to queries from unseen
distributions and schemas.

Each sample in these datasets consists of:
* gt (ground truth SQL query),

* answer (predicted or alternative SQL query),
and

* label € {0, 1} indicating functional equiva-
lence.

6h'ctps ://github.com/Leon@-@/FuncEvalGMN/tree/
main/GMN/database

These datasets allow us to assess the ability
of our models (AST-TE and Hybrid-GMN) to
measure semantic similarity between SQL queries
based solely on their structure and content, without
requiring database access or execution.

7 Evaluation and Baselines

We evaluate the performance of our proposed
models—AST Tree Edit (AST-TE) similarity
and Hybrid GMN—on two benchmark datasets:
spider_pair_dev and bird_pair_dev. These
models assess SQL query similarity without requir-
ing execution access to the database. Evaluation is
performed using standard metrics: ROC AUC and
Spearman’s rank correlation coefficient (p).

We compare our approach with the following
baselines widely used for semantic SQL evalua-
tion:

CodeBERTScore uses a pretrained CodeBERT
model to compute similarity based on cosine sim-
ilarity and token-level F1 scores. However, it is
sensitive to surface-level variation and struggles to
capture structural and semantic equivalence. Re-
ported performance:

* Spider: ROC AUC = 0.7044, Spearman p =
0.2966

* BIRD: ROC AUC = 0.7405, Spearman p =
0.3521

CrystalBLEU is a BLEU-style metric that
uses SQL templates to assess structural similar-
ity. Although more structure-aware than Code-
BERTScore, it still lacks functional understanding.
Reported scores:

* Spider: ROC AUC = 0.6521, Spearman p =
0.2627

* BIRD: ROC AUC = 0.7660, Spearman p =
0.3895

8 Results and Discussion

Our models outperform both baselines across all
metrics. AST-TE is particularly effective, lever-
aging tree-edit distance over rich, semantically
grounded SQL ASTs. Hybrid GMN, which in-
tegrates both AST and Relational Operator Tree
(ROT) representations, performs competitively on
Spider. The detailed evaluation results are pre-
sented in Table 1.
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Figure 3: performance of AST and GMN Hybrid.

AST-TE consistently outperforms all other meth-
ods in both, as shown in Figure 4. Its success comes
from its ability to compare SQL queries using tree
edit distance on detailed, semantically labeled ab-
stract syntax trees (ASTs). This approach captures
deeper semantic similarities beyond just matching
tokens. On the Spider dataset, AST-TE achieves
a 23.57% higher ROC AUC and 96.15% higher
Spearman p compared to CrystalBLEU, and also
outperforms CodeBERTScore by 14.39% in ROC
AUC and 46.31% in Spearman p.

Hybrid GMN also performs well, especially on
the Spider dataset, thanks to its use of both AST
and relational operator tree features. It shows a
22.73% gain in ROC AUC and 95.89% in Spear-
man p over CrystalBLEU, and performs 13.61%

and 46.11% better than CodeBERTScore on the
same metrics, respectively. The GMN model was
trained on the spider_pair_train dataset, which
explains its strong performance on Spider-related
queries.

However, it is less effective on the BIRD dataset
due to differences in schema variety and relational
complexity. On BIRD, AST-TE still maintains an
edge, performing 2.79% better than CrystalBLEU
in ROC AUC and 12.45% better in Spearman p. It
also outperforms CodeBERTScore by 6.33% and
24.40% respectively. While the Hybrid GMN does
not outperform CodeBERTScore on BIRD, this
can be attributed to its training solely on the Spider
dataset.

By fine-tuning and training on



Method Dataset ROC AUC Spearman p
AST-TE Spider  0.8058 0.5153
AST-TE BIRD 0.7874 0.4380
Hybrid GMN Spider  0.8003 0.5146
Hybrid GMN BIRD 0.6158 0.1610
CrystalBLEU Spider  0.6521 0.2627
CrystalBLEU BIRD 0.7660 0.3895
CodeBERTScore Spider  0.7044 0.3522
CodeBERTScore BIRD 0.7405 0.3521

Table 1:

Evaluation results on the Spider and BIRD datasets using ROC AUC and Spearman’s p correlation

metrics. AST-TE consistently outperforms Hybrid GMN, with strong generalization to BIRD. CodeBLEU and
CodeBERTScore provide lower correlation, highlighting their limitations in capturing SQL semantics.

Method Dataset ROC AUC (Ours) ROC AUC (Paper) Spearman p (Ours) Spearman p (Paper)
RelPM Spider 0.8103 0.8442 0.5578 0.5967
RelPM BIRD 0.7936 0.8357 0.4406 0.4927
ASTPM Spider 0.7965 0.8281 0.5110 0.5718
ASTPM BIRD 0.7501 0.8038 0.3661 0.4457
CodeBERTScore  Spider 0.7044 0.7044 0.3522 0.3522
CodeBERTScore  BIRD 0.7405 0.7405 0.3521 0.3521
FuncEvalGMN Spider 0.8860 0.9750 0.6663 0.8529

Table 2: Benchmarking results on Spider and BIRD datasets. We compare our reproduced implementations of
RelPM, ASTPM, and FuncEvalGMN against reported results in the original paper (Zhan et al., 2024). While our
reimplementations exhibit slight drops in performance, they closely follow the trends established in the original
benchmarks, validating correctness and reproducibility. CodeBERTScore is included as a strong pretrained baseline.

bird_pair_train or similar datasets rich in
schemas, the Hybrid GMN model could improve
and perform better on BIRD as well. This shows
the need for dataset-specific adjustments in neural
SQL similarity models. The detailed evaluation
results are presented in Table 1. Overall, our results
show that structural and semantic representations
of SQL queries, especially ASTs, are more effec-
tive for query similarity than pretrained language
models or surface-level metrics like BLEU or
token-level F1. These findings highlight the value
of compositional and logic-aware methods for
assessing the accuracy of SQL generation systems.

9 Conclusion and Future Work

In this work, we introduced two novel methods for
evaluating SQL query similarity without relying
on execution or database access: AST Tree Edit
(AST-TE) and a Hybrid Graph Matching Network
(GMN). By leveraging the structural and semantic
properties of Abstract Syntax Trees and Relational
Operator Trees, our models provide a robust and
database-agnostic assessment of SQL equivalence.

Experimental results on the Spider and BIRD
benchmarks demonstrate that our methods outper-
form existing baselines such as CodeBERTScore

and CrystalBLEU in both ROC-AUC and Spear-
man correlation. In particular, AST-TE achieves
state-of-the-art performance across both datasets,
showcasing the effectiveness of structure-aware
comparison.

The Hybrid GMN also performs competitively,
especially on the Spider dataset, which it was
trained on. Its relatively lower performance on
the BIRD dataset highlights a key opportunity for
improvement—domain adaptation and further fine-
tuning. With dedicated training on BIRD-like
queries or domain-specific relational structures, we
expect the Hybrid GMN to generalize more effec-
tively.

Future Work: We plan to extend our models in
several directions:

* Incorporating schema linking and question-
context alignment to improve similarity under-
standing in real-world, multi-turn scenarios.

* Adapting the Hybrid GMN for multilingual
SQL generation and cross-domain evaluation.

* Exploring fine-grained error categorization
(e.g., operator mismatch, column misalign-
ment) to provide interpretable feedback in
SQL learning and debugging tools.
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Figure 4: Performance of AST and GMN Hybrid.

Overall, our approach provides a promising step
toward more reliable and execution-independent
metrics for SQL query evaluation.
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11 Limitations

While our proposed methods demonstrate strong
performance on both the Spider and BIRD datasets,
several limitations remain:

Dataset Size and Diversity: The BIRD dataset,
although valuable for evaluating functional SQL
similarity, is relatively small and lacks the schema
diversity present in Spider. This limits the model’s
generalizability and may cause overfitting. Future
work could explore expanding the BIRD dataset to
include more domains, schemas, and query struc-
tures to better train and evaluate similarity models
in diverse settings.

Training Time and Computation: The Hybrid
GMN model requires non-trivial computational re-
sources. Due to limited GPU access, we were con-
strained to relatively low epoch counts and batch
sizes. Increasing the number of training epochs
and conducting larger-scale hyperparameter tuning

could improve final performance, especially for
the Hybrid GMN which combines multiple graph
modalities.

Graph Construction Bottlenecks: Generating
structured ASTs and ROTs from SQL queries is
currently sequential and parser-dependent. This
preprocessing stage could become a bottleneck in
large-scale or real-time applications. Optimizing or
parallelizing this stage may enable faster training
and inference pipelines.
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Appendices

A AST-Based Tree Edit Distance
(AST-TE)

Our AST similarity model computes tree edit dis-
tance between SQL Abstract Syntax Trees (ASTs).
We use the mo-sql-parsing library to convert
SQL queries into structured, JSON-based ASTs.
These trees represent the syntactic structure of the
SQL query in a hierarchical format that captures
nesting, logical operators, joins, and clause order-
ing.

We use a rule-based transformation pipeline to
normalize the ASTs in order to increase robustness
against structural variations. This entails rearrang-
ing commutative operations (such as conjunctions
in the WHERE clause), normalizing predicate struc-
tures, flattening nested expressions, and standard-
izing join orderings. Logically equivalent queries
are guaranteed to have comparable tree structures
thanks to these transformations.

The Zhang—Shasha (ZSS) tree edit distance al-
gorithm (Zhang and Shasha, 1989) is used to cal-
culate the distance between normalized ASTs. The
least expensive set of edit operations (insertions,
deletions, and substitutions) needed to change one
tree into another is determined by this traditional
dynamic programming algorithm.

Zhang—Shasha Tree Edit Distance The ZSS
algorithm operates on rooted, ordered trees and
defines three basic edit operations:

¢ Insert: Add a node to the tree.
¢ Delete: Remove a node from the tree.

* Substitute: Replace one node label with an-
other.

Each operation is assigned a cost, which we
adapt to the SQL domain. For instance, substituting
a SELECT clause node with a WHERE node incurs a
high penalty, while swapping column names within
the same clause incurs a lower penalty. These cost
functions are designed to reflect the syntactic role
and logical importance of each node.

The ZSS algorithm builds a dynamic program-
ming table to efficiently compute the optimal se-
quence of operations over all subtrees. Its time
complexity is O(n?) in the worst case, where n is
the number of nodes, but optimizations and prun-
ing heuristics are applied in practice to accelerate
computation.
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After computing the raw edit distance, we apply
min-max normalization over the dataset:

where d(T},T5) is the ZSS distance between
trees 77 and 75, and min d, max d are the mini-
mum and maximum distances observed across the
test dataset.

This metric is particularly effective in captur-
ing structural alignment between SQL queries, and
is used in conjunction with other metrics such as
CodeBLEU and RelPM to assess semantic equiva-
lence.

B CodeBERTScore

We evaluate SQL similarity using Code-
BERTScore, a transformer-based automatic
evaluation metric adapted from BERTScore(Zhang
et al., 2019) Unlike traditional n-gram-based
metrics such as BLEU, which often fail to capture
semantic equivalence between syntactically
divergent queries, CodeBERTScore leverages
contextual embeddings from large pretrained
language models specialized for source code, such
as CodeBERT (Zhang et al., 2019). This enables
CodeBERTScore to assess deeper functional and
semantic similarity between SQL queries.

CodeBERTScore computes cosine similarity be-
tween token embeddings of the candidate and
reference queries, with each token’s contribution
weighted by its Inverse Document Frequency (IDF).
This approach is more robust to variations in vari-
able names, keyword ordering, and surface syntax,
making it well-suited for evaluating functionally
equivalent SQL queries written in different styles.

The metric demonstrates a strong correlation
with human judgments of functional correctness.
For example, in the original study, when compar-
ing two candidate code snippets against a refer-
ence, BLEU incorrectly rated a syntactically simi-
lar but incorrect candidate higher, whereas Code-
BERTScore correctly favored the functionally ac-
curate alternative. This illustrates its utility for as-
sessing approximate equivalence in code and SQL
generation.

B.1 Implementation and Usage

The official implementation is publicly
available via PyPI and supports evaluation
in multiple programming and query lan-
guages. Models fine-tuned for different
languages (e.g., neulab/codebert-python,
neulab/codebert-java) are automatically



selected using the 1ang parameter.
A typical usage example is as follows:

import code_bert_score

pred_results = code_bert_score.score
(cands=predictions, refs=references,
lang="'sql")

This returns a 4-tuple of scores: precision, re-
call, F1, and F3. The F3 score is a variant of F1
that weights recall three times more heavily than
precision, aligning with the intuition that failing
to match relevant code tokens is more critical than
overpredicting extra ones.

B.2 Advanced Features

The following features are also supported by Code-
BERTScore:

item Source-aware encoding: The embed-
dings can be contextualized by passing natural
language descriptions (such as questions) via
the sources= argument, but similarity is only
calculated on the code tokens.IDF weighting:
Reduces the weight of common tokens to im-
prove performance. The tools offered can be
used to generate or supply precomputed IDF
dictionaries. Layer tuning: The num_layers
parameter allows you to customize the embed-
ding layer that is used to calculate similarity;
this layer is usually between layers 5 and 10.

CodeBERTScore has been shown to align well
with human evaluations in natural language to code
generation tasks, and is particularly suited for eval-
uating SQL query similarity in scenarios where
surface-level matching is insufficient to judge cor-
rectness.

C CodeBLEU

CodeBLEU is a composite metric originally de-
signed for evaluating code generation by combin-
ing multiple dimensions of similarity: lexical, syn-
tactic, and semantic. It extends the classic BLEU
metric by integrating weighted n-gram match, syn-
tax match via AST (Abstract Syntax Tree) align-
ment, and data-flow match to capture logic-level
equivalence.

For the SQL domain, we modified the Code-
BLEU scoring script’. We discovered CodeBLEU
to be a helpful stand-in for evaluating both struc-
tural and functional similarity in SQL queries,

"https://github.com/sola-st/crystalbleu
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despite the fact that it was initially developed
for general-purpose programming languages like
Python, Java, and C++. This makes it useful not
only for lexical token overlap but also as a sec-
ondary metric to validate functional similarity judg-
ments.

Four components are weighted averaged by
CodeBLEU:

* BLEU: standard n-gram precision match;

* Weighted n-gram match: modifies the con-
tribution of rare or informative tokens;

* Syntax match: compares the AST structures
of reference and predicted code.

¢ Data-flow match: evaluates the coherence of
variable usage and dependencies.

The official implementation is accessible via
pip and parses code in multiple languages us-
ing tree-sitter. We make use of the most re-
cent version from the XLCoST/CodeBLEU reposi-
tory, which offers precompiled tree-sitter grammars
for a number of languages and supports platform-
independent builds.

All sub-metrics and the final CodeBLEU score
are calculated by the calc_codebleu function. To
handle SQL-specific constructs like joins, sub-
queries, and group-by clauses, we extend the AST
and data-flow parsers and employ a custom tok-
enizer in our SQL adaptation.

Compared to more conventional metrics like
BLEU and accuracy, CodeBLEU has demonstrated
a stronger correlation with human assessment of se-
mantic and logical correctness, making it a promis-
ing option for code and query evaluation tasks.


https://github.com/sola-st/crystalbleu
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