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Abstract001

Assessing semantic similarity between SQL002
queries is vital for Text-to-SQL evaluation,003
query clustering, deduplication, and code au-004
diting. Existing metrics—such as Execution005
Accuracy and CodeBERTScore—either require006
database access or rely on token-level similar-007
ity, overlooking deeper structural and logical008
equivalence. These limitations hinder their use009
in schema-less, privacy-sensitive, or real-time010
settings. In this paper, we propose structure-011
aware, execution-free evaluation methodolo-012
gies, AST-TE and Hybrid-GMN, combining013
symbolic and neural methods. AST-TE com-014
putes Zhang–Shasha-Style Tree-Edit distance015
over normalized SQL Abstract Syntax Trees016
to capture structural and semantic differences.017
Hybrid GMN encodes ASTs and Relational Op-018
erator Trees (ROTs) into a heterogeneous graph,019
enabling fine-grained semantic alignment via020
cross-graph attention. Experiments on Spider,021
BIRD1, and internal subquery dataset generated022
via a fine-tuned SQLCoder-7B model2 demon-023
strates significant performance improvements024
over existing symbolic and neural baselines.025
Specifically, on the Spider dataset, our meth-026
ods surpass the state-of-the-art CrystalBLEU027
metric by approximately 23% in ROC AUC028
and more than 95% in Spearman correlation.029
Our findings underscore critical shortcomings030
in traditional execution-based and token-level031
similarity metrics, establishing AST-TE and032
Hybrid GMN as robust, scalable, and schema-033
agnostic alternatives for evaluating SQL query034
equivalence.035

1 Introduction036

Evaluating the semantic similarity between struc-037

tured SQL queries is crucial in a range of appli-038

cations, including Text-to-SQL evaluation, query039

deduplication, semantic search, and retrieval-based040

1https://github.com/Leon0-0/FuncEvalGMN/tree/
main/GMN/database

2https://huggingface.co/defog/sqlcoder-7b

question answering. Traditional evaluation metrics, 041

such as the accuracy of the exact match, the preci- 042

sion of the execution and neural similarity scores 043

such as CodeBERTScore, exhibit substantial limi- 044

tations. Exact Match is overly brittle, failing on se- 045

mantically equivalent queries due to minor format- 046

ting or aliasing differences. Execution Accuracy 047

depends on access to a live database and cannot 048

distinguish between logically distinct queries that 049

coincidentally produce the same result ((Kim et al., 050

2025); (Renggli et al., 2025)). Neural metrics like 051

CodeBERTScore only capture token-level embed- 052

dings and struggle with structural variations and 053

logic-based intent ((Renggli et al., 2025)). 054

Recent work has further underscored these 055

shortcomings. (Kim et al., 2025) proposed 056

FLEX to expose high false positive and negative 057

rates in execution-based metrics, while (Renggli 058

et al., 2025) argued for more principled evalu- 059

ation methods that go beyond surface-level and 060

embedding-based comparisons. These insights 061

highlight the need for execution-free, structure- 062

aware evaluation metrics that assess query similar- 063

ity based solely on syntactic structure and semantic 064

intent—particularly vital in privacy-constrained, 065

schema-less, or real-time environments. 066

While recent graph-based evaluation techniques 067

(e.g., FuncEvalGMN, (Zhan et al., 2024)) advance 068

execution-free logical plan alignment, they still rely 069

solely on Relational Operator Trees (ROT) and lack 070

symbolic normalization. 071

In this work, we propose a structure-aware, 072

execution-free framework for evaluating SQL simi- 073

larity by integrating symbolic and neural perspec- 074

tives. Our approach compares both the syntactic 075

and semantic content of queries using two comple- 076

mentary techniques: 077

• AST-TE (Abstract Syntax Tree Tree-Edit): 078

A symbolic tree-edit distance metric oper- 079

ating on normalized Abstract Syntax Trees 080
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(ASTs) of SQL queries. AST-TE captures081

fine-grained syntactic and semi-semantic dif-082

ferences by computing the minimal sequence083

of tree transformations needed to convert one084

query to another.085

• Hybrid GMN (Graph Matching Network):086

A neural similarity model that jointly encodes087

both the SQL AST and its Rotational Oper-088

ator Tree (ROT)—a proxy for logical query089

execution—as a heterogeneous graph. By ap-090

plying cross-graph attention mechanisms, Hy-091

brid GMN captures deeper structural and func-092

tional alignment between queries.093

By unifying symbolic edit-distance reasoning094

with graph-based neural alignment, our frame-095

work provides a scalable, interpretable, and096

execution-free alternative to existing evaluation097

metrics. We validate our approach on both stan-098

dard datasets (Spider, BIRD) (Yu et al., 2018) and099

internal subquery logs generated via a fine-tuned100

SQLCoder-7B model3, demonstrating consistent101

improvements over prior symbolic and neural base-102

lines.103

2 Related Work104

Evaluating the similarity or correctness of SQL105

queries has mainly depended on metrics that com-106

pare the surface form or output of the queries. Com-107

mon metrics include Exact Match Accuracy, Exe-108

cution Accuracy, and neural similarity scores like109

CodeBERTScore.110

Exact Match Accuracy (El Maalouly, 2022)111

measures whether the predicted query string112

matches the ground truth exactly. While it’s easy113

to compute, it is quite fragile. Minor changes in114

formatting, aliasing, or join order can create false115

negatives, even if the queries are semantically the116

same. On the other hand, it may produce false posi-117

tives when the predicted and reference queries have118

the same structure but yield different results due to119

differences in logic or hidden assumptions.120

Execution Accuracy (Chaudhuri et al., 2004)121

checks if the predicted and gold queries return the122

same results when run on the target database. It123

is widely used in Text-to-SQL benchmarks like124

Spider. However, execution-based metrics need125

access to the database instance, which may not126

be practical in many real-world situations, such as127

privacy-restricted, time-sensitive, or schema-less128

3https://huggingface.co/defog/sqlcoder-7b

environments. Also, execution equivalence alone 129

doesn’t indicate semantic similarity because two 130

distinct queries might accidentally yield the same 131

result on a specific database instance. 132

CodeBERTScore (Zhou et al., 2023) is a neu- 133

ral similarity metric based on BERTScore, which 134

measures semantic similarity between code se- 135

quences using contextual embeddings from Code- 136

BERT. It combines the cosine similarity of token- 137

level embeddings with F1-based alignment be- 138

tween predicted and reference queries. While Code- 139

BERTScore is better than string-based metrics by 140

capturing some semantic overlap, it still has ma- 141

jor drawbacks: (i) it is sensitive to tokenization 142

and vocabulary differences, (ii) it misses deeper 143

structural equivalence like join paths and logical 144

operator reordering, and (iii) its F1-based aggrega- 145

tion doesn’t distinguish between critical and minor 146

parts of the query (see Appendix B for an example 147

and configuration of CodeBERTScore) . 148

CodeBLEU (Ren et al., 2020) is an evalua- 149

tion metric created specifically for code genera- 150

tion tasks. Unlike standard BLEU, In addition to 151

n-gram overlap, it takes into account code-specific 152

structural details like data-flow matching, syntax- 153

aware heuristics, and abstract syntax tree (AST) 154

similarity. As a result, it is more pertinent to the 155

generated code’s semantic and structural accuracy. 156

including SQL queries. In this work, (see Ap- 157

pendix C for implementation details and config- 158

uration of CodeBLEU) we consider CodeBLEU a 159

suitable baseline for assessing the functional simi- 160

larity of SQL generation outputs. 161

Limitations of Prior Graph-Based Evaluation 162

Recent work by Wang et al. (Wang et al., 2025) 163

introduced a database-free evaluation framework 164

using Relational Operator Tree (ROT) graphs to 165

approximate the logical semantics of SQL queries. 166

While this graph-based comparison mitigates cer- 167

tain drawbacks of execution-dependent metrics, it 168

presents several limitations. 169

First, ROT-based methods (Passing et al., 2017) 170

assume structural rigidity, often failing to recog- 171

nize semantic equivalence across restructured but 172

logically identical queries—such as join reordering 173

or subquery unfolding. Second, they lack symbolic 174

normalization mechanisms (e.g., alias unification, 175

syntactic canonicalization), making them sensitive 176

to superficial variations. Third, these methods rely 177

on a single modality (ROT), ignoring complemen- 178

tary syntactic information embedded in Abstract 179

Syntax Trees (ASTs), which are crucial for under- 180
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standing clause nesting, scope, and ordering.181

These limitations motivate the need for a richer,182

multimodal approach that captures both structural183

and semantic query intent without execution or184

schema dependence.185

Our contribution addresses these gaps by intro-186

ducing symbolic AST-based edit metrics (AST-TE187

and ETM) and proposing a Hybrid Graph Match-188

ing Network that fuses AST and ROT features for189

joint structural and semantic alignment. This dual-190

modality approach bridges the symbolic-neural di-191

vide and provides a scalable, interpretable alterna-192

tive to execution-based or token-level metrics.193

3 From SQL to AST: JSON Trees via194

SQLGlot195

To structurally compare SQL queries, we first con-196

vert each query into an Abstract Syntax Tree (AST)197

(Dai et al., 2025). We use the SQLGlot library for198

this task, which parses SQL into a nested expres-199

sion tree composed of rich Python objects. These200

trees capture the full syntactic and semantic struc-201

ture of the query—including functions, operators,202

literals, subqueries, and joins—and can be intro-203

spected, traversed, and serialized into JSON-like204

dictionaries.205

The structured output enables us to extract nodes206

and edges for graph-based similarity models. This207

AST-based representation is significantly more ro-208

bust than comparing raw SQL strings or token se-209

quences, as it encodes the actual computation and210

data flow semantics of the query.211

For example, the SQL query:212

SELECT TRIM(b + c, ’ ’) FROM jobs213

can be parsed in sqlglot using:214

from sqlglot import parse_one215

ast = parse_one("SELECT TRIM(b + c,216

' ')217

FROM jobs")218

print(ast.to_dict())219

This representation helps capture the hierarchical220

and logical structure of SQL programs, enabling221

effective functional similarity modeling. It also fa-222

cilitates programmatic transformations, such as nor-223

malization, template substitution, or equivalence224

checking during training and evaluation.225

These JSON ASTs are used both in our symbolic226

similarity metric (AST Tree Edit Distance) and as227

input to the graph construction module in our Hy- 228

brid Graph Matching Network (GMN). Their struc- 229

tural consistency enables us to perform alignment 230

and similarity scoring across semantically equiv- 231

alent SQL queries without requiring access to a 232

database. 233

4 AST Tree Edit Similarity (AST-TE) 234

To evaluate SQL similarity structurally, we use a 235

tree edit distance approach over abstract syntax 236

trees (ASTs) derived from SQL queries. We parse 237

SQL strings using the sqlglot library4, which gen- 238

erates grammar-aware expression trees.As shown 239

in Figure 1 240

These expression trees are converted into tree 241

structures compatible with the Zhang–Shasha Tree 242

Edit Distance (ZSS) algorithm5, allowing us to 243

compute structural differences between two SQL 244

queries. (see Appendix A for an example of the 245

ZSS algorithm)Each node in the ZSS tree contains 246

not only the SQL grammar token (e.g., Select, 247

Where) but also relevant values like identifiers and 248

literals when available (Zhang and Shasha, 1989). 249

The conversion process includes: 250

• Extracting the key of each sqlglot node as 251

the node label. 252

• Appending string representations of mean- 253

ingful fields such as this, expression, and 254

expressions to enhance value sensitivity. 255

• Recursively processing child nodes to build 256

the full tree. 257

We define cost functions for ZSS as follows: 258

• Insert cost: 1.0 259

• Remove cost: 1.0 260

• Update cost: 2.0 if labels differ, 0.0 if they 261

match 262

The final similarity score is computed as: 263

Similarity = 1− TreeEditDistance(T1, T2)

max(|T1|, |T2|)
264

where T1 and T2 are the converted ASTs of the two 265

SQL queries. If both trees are empty, similarity 266

defaults to 1.0. 267

4https://github.com/tobymao/sqlglot
5https://github.com/timtadh/zhang-shasha
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Figure 1: Overview of the AST-TE model architecture.

This AST-based comparison captures structural268

and literal-level variations, making it more robust269

than string-based or token-based approaches in sce-270

narios where SQL queries are semantically similar271

but syntactically different.272

5 Hybrid Graph Matching with AST and273

ROT Features274

While AST-based similarity captures the syntac-275

tic and structural elements of SQL queries, it may276

miss deeper semantic equivalences present at the277

logical plan level. To address this, we introduce a278

hybrid model that combines Abstract Syntax Trees279

(ASTs) and Relational Operator Trees (ROTs) us-280

ing a Graph Matching Network (GMN) As shown281

in Figure 2 for fine-grained SQL similarity evalua-282

tion.283

5.1 Motivation and Representation284

ASTs reflect the surface structure of SQL queries,285

while ROTs describe their logical execution plans.286

By jointly leveraging both, we aim to model both287

syntactic and semantic similarity between SQL288

queries. Each SQL query is converted into:289

• A tree-structured AST (via sqlglot) captur-290

ing tokens and literals.291

• A DAG-style ROT capturing relational alge-292

bra operations (e.g., Project, Join, Filter,293

Aggregate).294

These two views are merged into a heteroge- 295

neous graph with two node types: 296

• Computation nodes: Represent operators 297

(e.g., JOIN, SELECT). 298

• Content nodes: Represent identifiers, column 299

names, and literals. 300

5.2 Graph Construction and Matching 301

The graph is constructed by linking content nodes 302

to computation nodes according to AST and ROT 303

structure. For instance, a JOIN operator node con- 304

nects to its left and right tables, as well as the join 305

condition. This yields a unified representation of 306

the SQL query. 307

We use a Graph Matching Network (GMN) to 308

compare two such graphs: 309

• Each node is embedded using a type-specific 310

encoder: CNN for content nodes and a learned 311

linear layer for computation nodes. 312

• Random Walk Positional Encoding (RWPE) is 313

applied to capture relative structural positions. 314

• A multi-layer GNN (GraphSAGE or GAT) 315

encodes local and global features. 316

• Cross-graph attention is applied to align sub- 317

structures and compute similarity. 318
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5.3 Contrastive Pretraining and Inference319

The GMN is trained using a contrastive loss over320

labeled SQL pairs:321

L = BCE(sim(G1, G2), y)322

where sim(G1, G2) is the predicted similarity323

score and y ∈ {0, 1} is the ground-truth similarity324

label. During inference, the GMN outputs a simi-325

larity score between 0 and 1, indicating structural326

and functional closeness of SQL queries.327

This hybrid approach improves generalization to328

both surface-form and logical variations, offering a329

robust measure of SQL similarity without requiring330

database execution.331

6 Dataset332

To evaluate SQL query similarity without execut-333

ing against a database, we use publicly available334

labeled SQL pair datasets from the FuncEvalGMN335

(Zhan et al., 2024) benchmark6. Each dataset con-336

tains pairs of SQL queries annotated with binary337

similarity labels indicating whether the queries are338

functionally equivalent.339

6.1 Datasets Used340

• spider_pair_train: Contains 17,665 SQL341

query pairs sampled from the Spider dataset.342

Used for training our models.343

• spider_pair_dev: Contains 1,744 SQL query344

pairs used for validation and evaluation.345

Queries target multiple databases and repre-346

sent diverse schemas and question intents.347

• bird_pair_dev: Contains 2,978 SQL query348

pairs curated from the BIRD benchmark, used349

to test generalization to queries from unseen350

distributions and schemas.351

Each sample in these datasets consists of:352

• gt (ground truth SQL query),353

• answer (predicted or alternative SQL query),354

and355

• label ∈ {0, 1} indicating functional equiva-356

lence.357

6https://github.com/Leon0-0/FuncEvalGMN/tree/
main/GMN/database

These datasets allow us to assess the ability 358

of our models (AST-TE and Hybrid-GMN) to 359

measure semantic similarity between SQL queries 360

based solely on their structure and content, without 361

requiring database access or execution. 362

7 Evaluation and Baselines 363

We evaluate the performance of our proposed 364

models—AST Tree Edit (AST-TE) similarity 365

and Hybrid GMN—on two benchmark datasets: 366

spider_pair_dev and bird_pair_dev. These 367

models assess SQL query similarity without requir- 368

ing execution access to the database. Evaluation is 369

performed using standard metrics: ROC AUC and 370

Spearman’s rank correlation coefficient (ρ). 371

We compare our approach with the following 372

baselines widely used for semantic SQL evalua- 373

tion: 374

CodeBERTScore uses a pretrained CodeBERT 375

model to compute similarity based on cosine sim- 376

ilarity and token-level F1 scores. However, it is 377

sensitive to surface-level variation and struggles to 378

capture structural and semantic equivalence. Re- 379

ported performance: 380

• Spider: ROC AUC = 0.7044, Spearman ρ = 381

0.2966 382

• BIRD: ROC AUC = 0.7405, Spearman ρ = 383

0.3521 384

CrystalBLEU is a BLEU-style metric that 385

uses SQL templates to assess structural similar- 386

ity. Although more structure-aware than Code- 387

BERTScore, it still lacks functional understanding. 388

Reported scores: 389

• Spider: ROC AUC = 0.6521, Spearman ρ = 390

0.2627 391

• BIRD: ROC AUC = 0.7660, Spearman ρ = 392

0.3895 393

394

8 Results and Discussion 395

Our models outperform both baselines across all 396

metrics. AST-TE is particularly effective, lever- 397

aging tree-edit distance over rich, semantically 398

grounded SQL ASTs. Hybrid GMN, which in- 399

tegrates both AST and Relational Operator Tree 400

(ROT) representations, performs competitively on 401

Spider. The detailed evaluation results are pre- 402

sented in Table 1. 403
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Figure 2: Overview of the hybrid AST+ROT model architecture.

Figure 3: performance of AST and GMN Hybrid.

AST-TE consistently outperforms all other meth-404

ods in both, as shown in Figure 4. Its success comes405

from its ability to compare SQL queries using tree406

edit distance on detailed, semantically labeled ab-407

stract syntax trees (ASTs). This approach captures408

deeper semantic similarities beyond just matching409

tokens. On the Spider dataset, AST-TE achieves410

a 23.57% higher ROC AUC and 96.15% higher411

Spearman ρ compared to CrystalBLEU, and also412

outperforms CodeBERTScore by 14.39% in ROC413

AUC and 46.31% in Spearman ρ.414

Hybrid GMN also performs well, especially on415

the Spider dataset, thanks to its use of both AST416

and relational operator tree features. It shows a417

22.73% gain in ROC AUC and 95.89% in Spear-418

man ρ over CrystalBLEU, and performs 13.61%419

and 46.11% better than CodeBERTScore on the 420

same metrics, respectively. The GMN model was 421

trained on the spider_pair_train dataset, which 422

explains its strong performance on Spider-related 423

queries. 424

However, it is less effective on the BIRD dataset 425

due to differences in schema variety and relational 426

complexity. On BIRD, AST-TE still maintains an 427

edge, performing 2.79% better than CrystalBLEU 428

in ROC AUC and 12.45% better in Spearman ρ. It 429

also outperforms CodeBERTScore by 6.33% and 430

24.40% respectively. While the Hybrid GMN does 431

not outperform CodeBERTScore on BIRD, this 432

can be attributed to its training solely on the Spider 433

dataset. 434

By fine-tuning and training on 435

6



Method Dataset ROC AUC Spearman ρ

AST-TE Spider 0.8058 0.5153
AST-TE BIRD 0.7874 0.4380
Hybrid GMN Spider 0.8003 0.5146
Hybrid GMN BIRD 0.6158 0.1610
CrystalBLEU Spider 0.6521 0.2627
CrystalBLEU BIRD 0.7660 0.3895
CodeBERTScore Spider 0.7044 0.3522
CodeBERTScore BIRD 0.7405 0.3521

Table 1: Evaluation results on the Spider and BIRD datasets using ROC AUC and Spearman’s ρ correlation
metrics. AST-TE consistently outperforms Hybrid GMN, with strong generalization to BIRD. CodeBLEU and
CodeBERTScore provide lower correlation, highlighting their limitations in capturing SQL semantics.

Method Dataset ROC AUC (Ours) ROC AUC (Paper) Spearman ρ (Ours) Spearman ρ (Paper)
RelPM Spider 0.8103 0.8442 0.5578 0.5967
RelPM BIRD 0.7936 0.8357 0.4406 0.4927
ASTPM Spider 0.7965 0.8281 0.5110 0.5718
ASTPM BIRD 0.7501 0.8038 0.3661 0.4457
CodeBERTScore Spider 0.7044 0.7044 0.3522 0.3522
CodeBERTScore BIRD 0.7405 0.7405 0.3521 0.3521
FuncEvalGMN Spider 0.8860 0.9750 0.6663 0.8529

Table 2: Benchmarking results on Spider and BIRD datasets. We compare our reproduced implementations of
RelPM, ASTPM, and FuncEvalGMN against reported results in the original paper (Zhan et al., 2024). While our
reimplementations exhibit slight drops in performance, they closely follow the trends established in the original
benchmarks, validating correctness and reproducibility. CodeBERTScore is included as a strong pretrained baseline.

bird_pair_train or similar datasets rich in436

schemas, the Hybrid GMN model could improve437

and perform better on BIRD as well. This shows438

the need for dataset-specific adjustments in neural439

SQL similarity models. The detailed evaluation440

results are presented in Table 1. Overall, our results441

show that structural and semantic representations442

of SQL queries, especially ASTs, are more effec-443

tive for query similarity than pretrained language444

models or surface-level metrics like BLEU or445

token-level F1. These findings highlight the value446

of compositional and logic-aware methods for447

assessing the accuracy of SQL generation systems.448

9 Conclusion and Future Work449

In this work, we introduced two novel methods for450

evaluating SQL query similarity without relying451

on execution or database access: AST Tree Edit452

(AST-TE) and a Hybrid Graph Matching Network453

(GMN). By leveraging the structural and semantic454

properties of Abstract Syntax Trees and Relational455

Operator Trees, our models provide a robust and456

database-agnostic assessment of SQL equivalence.457

Experimental results on the Spider and BIRD458

benchmarks demonstrate that our methods outper-459

form existing baselines such as CodeBERTScore460

and CrystalBLEU in both ROC-AUC and Spear- 461

man correlation. In particular, AST-TE achieves 462

state-of-the-art performance across both datasets, 463

showcasing the effectiveness of structure-aware 464

comparison. 465

The Hybrid GMN also performs competitively, 466

especially on the Spider dataset, which it was 467

trained on. Its relatively lower performance on 468

the BIRD dataset highlights a key opportunity for 469

improvement—domain adaptation and further fine- 470

tuning. With dedicated training on BIRD-like 471

queries or domain-specific relational structures, we 472

expect the Hybrid GMN to generalize more effec- 473

tively. 474

Future Work: We plan to extend our models in 475

several directions: 476

• Incorporating schema linking and question- 477

context alignment to improve similarity under- 478

standing in real-world, multi-turn scenarios. 479

• Adapting the Hybrid GMN for multilingual 480

SQL generation and cross-domain evaluation. 481

• Exploring fine-grained error categorization 482

(e.g., operator mismatch, column misalign- 483

ment) to provide interpretable feedback in 484

SQL learning and debugging tools. 485
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Figure 4: Performance of AST and GMN Hybrid.

Overall, our approach provides a promising step486

toward more reliable and execution-independent487

metrics for SQL query evaluation.488
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11 Limitations494

While our proposed methods demonstrate strong495

performance on both the Spider and BIRD datasets,496

several limitations remain:497

Dataset Size and Diversity: The BIRD dataset,498

although valuable for evaluating functional SQL499

similarity, is relatively small and lacks the schema500

diversity present in Spider. This limits the model’s501

generalizability and may cause overfitting. Future502

work could explore expanding the BIRD dataset to503

include more domains, schemas, and query struc-504

tures to better train and evaluate similarity models505

in diverse settings.506

Training Time and Computation: The Hybrid507

GMN model requires non-trivial computational re-508

sources. Due to limited GPU access, we were con-509

strained to relatively low epoch counts and batch510

sizes. Increasing the number of training epochs511

and conducting larger-scale hyperparameter tuning512

could improve final performance, especially for 513

the Hybrid GMN which combines multiple graph 514

modalities. 515

Graph Construction Bottlenecks: Generating 516

structured ASTs and ROTs from SQL queries is 517

currently sequential and parser-dependent. This 518

preprocessing stage could become a bottleneck in 519

large-scale or real-time applications. Optimizing or 520

parallelizing this stage may enable faster training 521

and inference pipelines. 522
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Appendices590

A AST-Based Tree Edit Distance591

(AST-TE)592

Our AST similarity model computes tree edit dis-593

tance between SQL Abstract Syntax Trees (ASTs).594

We use the mo-sql-parsing library to convert595

SQL queries into structured, JSON-based ASTs.596

These trees represent the syntactic structure of the597

SQL query in a hierarchical format that captures598

nesting, logical operators, joins, and clause order-599

ing.600

We use a rule-based transformation pipeline to601

normalize the ASTs in order to increase robustness602

against structural variations. This entails rearrang-603

ing commutative operations (such as conjunctions604

in the WHERE clause), normalizing predicate struc-605

tures, flattening nested expressions, and standard-606

izing join orderings. Logically equivalent queries607

are guaranteed to have comparable tree structures608

thanks to these transformations.609

The Zhang–Shasha (ZSS) tree edit distance al-610

gorithm (Zhang and Shasha, 1989) is used to cal-611

culate the distance between normalized ASTs. The612

least expensive set of edit operations (insertions,613

deletions, and substitutions) needed to change one614

tree into another is determined by this traditional615

dynamic programming algorithm.616

Zhang–Shasha Tree Edit Distance The ZSS617

algorithm operates on rooted, ordered trees and618

defines three basic edit operations:619

• Insert: Add a node to the tree.620

• Delete: Remove a node from the tree.621

• Substitute: Replace one node label with an-622

other.623

Each operation is assigned a cost, which we624

adapt to the SQL domain. For instance, substituting625

a SELECT clause node with a WHERE node incurs a626

high penalty, while swapping column names within627

the same clause incurs a lower penalty. These cost628

functions are designed to reflect the syntactic role629

and logical importance of each node.630

The ZSS algorithm builds a dynamic program-631

ming table to efficiently compute the optimal se-632

quence of operations over all subtrees. Its time633

complexity is O(n3) in the worst case, where n is634

the number of nodes, but optimizations and prun-635

ing heuristics are applied in practice to accelerate636

computation.637

After computing the raw edit distance, we apply 638

min-max normalization over the dataset: 639

where d(T1, T2) is the ZSS distance between 640

trees T1 and T2, and min d, max d are the mini- 641

mum and maximum distances observed across the 642

test dataset. 643

This metric is particularly effective in captur- 644

ing structural alignment between SQL queries, and 645

is used in conjunction with other metrics such as 646

CodeBLEU and RelPM to assess semantic equiva- 647

lence. 648

B CodeBERTScore 649

We evaluate SQL similarity using Code- 650

BERTScore, a transformer-based automatic 651

evaluation metric adapted from BERTScore(Zhang 652

et al., 2019) Unlike traditional n-gram-based 653

metrics such as BLEU, which often fail to capture 654

semantic equivalence between syntactically 655

divergent queries, CodeBERTScore leverages 656

contextual embeddings from large pretrained 657

language models specialized for source code, such 658

as CodeBERT (Zhang et al., 2019). This enables 659

CodeBERTScore to assess deeper functional and 660

semantic similarity between SQL queries. 661

CodeBERTScore computes cosine similarity be- 662

tween token embeddings of the candidate and 663

reference queries, with each token’s contribution 664

weighted by its Inverse Document Frequency (IDF). 665

This approach is more robust to variations in vari- 666

able names, keyword ordering, and surface syntax, 667

making it well-suited for evaluating functionally 668

equivalent SQL queries written in different styles. 669

The metric demonstrates a strong correlation 670

with human judgments of functional correctness. 671

For example, in the original study, when compar- 672

ing two candidate code snippets against a refer- 673

ence, BLEU incorrectly rated a syntactically simi- 674

lar but incorrect candidate higher, whereas Code- 675

BERTScore correctly favored the functionally ac- 676

curate alternative. This illustrates its utility for as- 677

sessing approximate equivalence in code and SQL 678

generation. 679

B.1 Implementation and Usage 680

The official implementation is publicly 681

available via PyPI and supports evaluation 682

in multiple programming and query lan- 683

guages. Models fine-tuned for different 684

languages (e.g., neulab/codebert-python, 685

neulab/codebert-java) are automatically 686
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selected using the lang parameter.687

A typical usage example is as follows:688

import code_bert_score689

pred_results = code_bert_score.score690

(cands=predictions, refs=references,691

lang='sql')692

This returns a 4-tuple of scores: precision, re-693

call, F1, and F3. The F3 score is a variant of F1694

that weights recall three times more heavily than695

precision, aligning with the intuition that failing696

to match relevant code tokens is more critical than697

overpredicting extra ones.698

B.2 Advanced Features699

The following features are also supported by Code-700

BERTScore:701

item Source-aware encoding: The embed-702

dings can be contextualized by passing natural703

language descriptions (such as questions) via704

the sources= argument, but similarity is only705

calculated on the code tokens.IDF weighting:706

Reduces the weight of common tokens to im-707

prove performance. The tools offered can be708

used to generate or supply precomputed IDF709

dictionaries. Layer tuning: The num_layers710

parameter allows you to customize the embed-711

ding layer that is used to calculate similarity;712

this layer is usually between layers 5 and 10.713

CodeBERTScore has been shown to align well714

with human evaluations in natural language to code715

generation tasks, and is particularly suited for eval-716

uating SQL query similarity in scenarios where717

surface-level matching is insufficient to judge cor-718

rectness.719

C CodeBLEU720

CodeBLEU is a composite metric originally de-721

signed for evaluating code generation by combin-722

ing multiple dimensions of similarity: lexical, syn-723

tactic, and semantic. It extends the classic BLEU724

metric by integrating weighted n-gram match, syn-725

tax match via AST (Abstract Syntax Tree) align-726

ment, and data-flow match to capture logic-level727

equivalence.728

For the SQL domain, we modified the Code-729

BLEU scoring script7. We discovered CodeBLEU730

to be a helpful stand-in for evaluating both struc-731

tural and functional similarity in SQL queries,732

7https://github.com/sola-st/crystalbleu

despite the fact that it was initially developed 733

for general-purpose programming languages like 734

Python, Java, and C++. This makes it useful not 735

only for lexical token overlap but also as a sec- 736

ondary metric to validate functional similarity judg- 737

ments. 738

Four components are weighted averaged by 739

CodeBLEU: 740

••• BLEU: standard n-gram precision match; 741

• Weighted n-gram match: modifies the con- 742

tribution of rare or informative tokens; 743

• Syntax match: compares the AST structures 744

of reference and predicted code. 745

• Data-flow match: evaluates the coherence of 746

variable usage and dependencies. 747

The official implementation is accessible via 748

pip and parses code in multiple languages us- 749

ing tree-sitter. We make use of the most re- 750

cent version from the XLCoST/CodeBLEU reposi- 751

tory, which offers precompiled tree-sitter grammars 752

for a number of languages and supports platform- 753

independent builds. 754

All sub-metrics and the final CodeBLEU score 755

are calculated by the calc_codebleu function. To 756

handle SQL-specific constructs like joins, sub- 757

queries, and group-by clauses, we extend the AST 758

and data-flow parsers and employ a custom tok- 759

enizer in our SQL adaptation. 760

Compared to more conventional metrics like 761

BLEU and accuracy, CodeBLEU has demonstrated 762

a stronger correlation with human assessment of se- 763

mantic and logical correctness, making it a promis- 764

ing option for code and query evaluation tasks. 765
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