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Abstract

The data market design problem is a problem in economic theory to find a set
of signaling schemes (statistical experiments) to maximize expected revenue to
the information seller, where each experiment reveals some of the information
known to a seller and has a corresponding price [7]. Each buyer has their own
decision to make in a world environment, and their subjective expected value for the
information associated with a particular experiment comes from the improvement
in this decision and depends on their prior and value for different outcomes. In
a setting with multiple buyers, a buyer’s expected value for an experiment may
also depend on the information sold to others [12]. We introduce the application of
deep learning for the design of revenue-optimal data markets, looking to expand
the frontiers of what can be understood and achieved. Relative to earlier work on
deep learning for auction design [32], we must learn signaling schemes rather than
allocation rules and handle obedience constraints—these arising from modeling
the downstream actions of buyers—in addition to incentive constraints on bids.
Our experiments demonstrate that this new deep learning framework can almost
precisely replicate all known solutions from theory, expand to more complex
settings, and be used to establish the optimality of new designs for data markets
and make conjectures in regard to the structure of optimal designs.

1 Introduction

Many characterize the current era as the Information Age. Companies such as Google and Meta
(search and social media), Experian and TransUnion (credit agencies), and Amazon and American
Express (commerce) hold vast quantities of data about individuals. In turn, this has led to data
markets, where information about an individual can be purchased in real-time to guide decision-
making (e.g., LiveRamp, Segment, Bloomreach). In this paper, we advance the design of market
rules that govern the structuring and sale of this kind of information. Using machine learning, we
leverage existing theoretical frameworks [7, 12] to replicate all known solutions from theory, expand
to more complex settings, establish the optimality of new designs, and make conjectures in regard
to the structure of optimal designs. Although this is not our focus, there are also important ethical
questions in regard to data markets, in regard to privacy, ownership, informed consent, and the use of
data [2, 11, 8, 5, 19, 33, 1].

In settings with a single buyer, Bergemann et al. [7] introduce a framework in which there is a data
buyer who faces a decision problem under uncertainty, and has a payoff depending on their choice
of action and the underlying state of the world. There is a data seller who knows the world state,
and can disclose information through a menu of statistical experiments, each experiment offering a
stochastic signal that reveals some (or all) of the seller’s information and each of which is associated
with a price. The buyer’s willingness to pay for information is determined by their type, which defines
their prior belief and their value for different outcomes in the world (these arising from the action
that the buyer will choose to take).
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The optimal data market design problem is to find a set of experiments and associated prices with
which to maximize expected revenue, given a distribution over the buyer’s type. Bergemann et al. [7]
characterize the optimal design when there is a binary world state and a buyer with a binary action.
In some settings there may be multiple buyers and buyers may compete downstream, and the more
informed one buyer is, the lower the payoff may become for others. Bonatti et al. [12] take up this
problem, and characterize the optimal design for multiple buyers in the binary state/binary action
setting, and further limited to buyers who each have a common prior on the world state. It remains an
open problem to obtain theoretical results for richer, multi-buyer settings, and this motivates the need
for gaining new understanding and making progress through computational approaches.

Contributions. Inspired by the recent advances in differential economics ([32, 34, 35, 38, 46, 47,
44, 45, 23, 25, 28, 36, 24, 29] etc.), we initiate the use of deep learning for the automated design
of data markets. This market sells information rather than allocates resources, and the value of
information depends on the way in which a buyer will use the information—and this downstream
action by a buyer needs to be modeled. Following the revelation principle for dynamic games ([43],
Section 6.3), it is without loss of generality to model an experiment as generating a recommended
action and insisting on designs in which the buyer will prefer to follow this action. This brings about
new challenges, most notably to extend this framework to handle obedience. While the other aspect
of incentive compatibility that we need to handle is more typical, i.e., that of achieving incentive
alignment so that a buyer will choose to truthfully report their prior beliefs and values for different
outcomes, we also need to ensure there are no useful double deviations, where a buyer simultaneously
misreports their type and acts contrary to the seller’s recommended action.

In settings with a single buyer, we learn an explicit, parameterized representation of a menu of
priced experiments to offer the buyer and with which to model the action choices available to the
buyer. In this way, we extend the RochetNet architecture [32] that has been used successfully for
optimal auction design with a single buyer. This enables us to obtain exact incentive compatibility
for the single buyer setting: a buyer has no useful deviation from a recommended action, no useful
deviation in reporting their type, and no useful double deviation. In settings with multiple buyers,
we seek to learn revenue-maximizing designs while also minimizing deviations in disobeying action
recommendations and misreporting types and including double deviations. This extends the RegretNet
framework [32] that has been used successfully for optimal auction design with multiple buyers and
gives approximate incentive alignment.

Our first experimental result is to show through extensive experiments that these new neural network
architectures and learning frameworks are able to almost exactly recover all known optimal solutions
from Bergemann et al. [7] and Bonatti et al. [12]. Following the economic theory literature on
data market design, we consider the notion of Bayesian incentive compatibility (BIC). To handle
this, we use samples of a buyer’s type to compute an interim experiment and interim payment,
averaging over samples drawn from the type distribution (this builds on the BIC methods for deep
learning for auctions that were used in the context of differentiable economics for budget-constrained
auctions [34]). We give a training method that enables the efficient reuse of computed interim
allocations and interim payments from other samples to swiftly calculate the interim utility of
misreports, dramatically speeding up training.

Whereas analytical results are only available for the BIC setting, which is, in effect, lower-dimensional,
and easier to analyze, we are able to study through computational techniques the design of data
markets in the ex post IC setting, which is a setting without existing theory. A second result, in the
setting of multiple buyers, is to use our framework to conjecture the structure of an optimal design and
prove its optimality (for this, we make use of virtual values analogous to Myerson’s framework [42]).
We see this as an important contribution, as ex post IC is a stronger notion of IC than BIC.

A third result is to demonstrate how our framework extends its utility beyond empirical results and
serves as a toolbox to guide economic theory. To illustrate this, we study how revenue varies with
competition in the multi-buyer setting where the prior information is uncertain. Despite the absence
of existing theoretical results for this particular setting, our framework enables us to derive trends in
revenue effortlessly. We also conjecture the structure of solutions for problems in the single buyer
setting with an enlarged type, where both the buyer payoffs and priors are uncertain. For this case, we
again derive empirical results using our proposed framework and use it to conjecture the properties of
the underlying theoretical solution.
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Related work. Conitzer and Sandholm [20, 21] introduced the use of automated mechanism design
(AMD) for economic design and framed the problem as an integer linear program (or just a linear
program for Bayesian design). Responding to challenges with the enumerative representations used
in these early approaches, Dütting et al. [32] introduced the use of deep neural networks for auction
design, attaining more representational flexibility. Since then, there has been a line of work on
this so-called approach of differentiable economics, including to problems with budget-constrained
bidders [34], for minimizing agents’ payments [47], applying to multi-facility location problems [35],
balancing fairness and revenue ([38]), and applying to two-sided matching [46]. To the best of our
knowledge, none of this work has considered the setting of the design of optimal data markets, which
introduce new challenges in regard to handling agent actions (obedience) as well as incorporating
negative externalities.

In regard to the data market problem, Bergemann et al. [7] build upon the decision-theoretic model
pioneered by Blackwell [10] and study a setting with a single buyer. Cai and Velegkas [13] also
give computational results in this model, making use of linear programs to compute the optimal
menu for discrete type distributions. They also investigate a generalization of this model that allows
multiple agents to compete for useful information. In this setting, at most, one agent receives the
information. While this approach can be used for continuous type distribution by applying the LP to a
discretized valuation space, solving it for even a coarser discretization can be prohibitively expensive.
Further advancing economic theory, Bergemann et al. [9] consider more general type distributions
and investigate both the cardinality of the optimal menu and the revenue achievable when selling
complete information. Bonatti et al. [12] also study the multi-buyer setting modeling competition
through negative externality.

Babaioff et al. [6] give a related framework, with the key distinction that the seller is not required to
commit to a mechanism before the realization of the world state. As a result, the experiments and
prices of the data market can be tailored to the realized state of the world. Chen et al. [18] extend
their setting, considering budget-constrained buyers, formulating a linear program to find the solution
of the problem for a discrete type space.

There exist several other models that study revenue-optimal mechanisms for selling data. For
example, Liu et al. [40] characterize the revenue-optimal mechanism for various numbers of states
and actions, and considering general payoff functions. However, in their setup, the state only impacts
the payoff of the active action taken by a buyer, which provides considerable simplification and may
not be realistic. Li [39] investigates a setting where the buyer can conduct their own costly experiment
at a cost after receiving the signal. Different from the model considered in this paper, after receiving
the signal from the data broker, the agent can subsequently acquire additional information with costs.
The model also assumed that the valuation function of the agent is separable and that the private
type of the agent represents her value of acquiring more information, which is different from the
single buyer model studied in this paper, where the prior belief is also drawn from a distribution and
constitutes a part of the buyer’s type. Agarwal et al. [3] explore data marketplaces where each of
multiple sellers sells data to buyers who aim to utilize the data for machine learning tasks, and Chen
et al. [17] consider scenarios where neither the seller nor the buyer knows the true quality of the data.
Mehta et al. [41] and Agarwal et al. [4] also incorporate buyer externalities into the study of data
marketplaces.

Another line of research studies problems of information design, for example, the problem of Bayesian
Persuasion [37]. There, the model is different in that the sender of information has preferences on the
action taken by the receiver, setting up a game-theoretic problem of strategic misrepresentation by
the sender. Dughmi and Xu [31] studied this from an algorithmic perspective, and Castiglioni et al.
[16] also brought in considerations from mechanism design by introducing hidden types; see also
[30], [27], and [14] for more work on information design and Bayesian persuasion.

2 Preliminaries

Model. We consider a setting with n data buyers, N = {1, . . . , n}, each facing a decision problem
under uncertainty. The state of the world, ω, is unknown and is drawn from a finite state space
Ω = {ω1, . . . ωm}. Each buyer i can choose an action, from a finite set Ai. Let A = Πn

i=1Ai. The
ex post payoff to buyer i for choosing action ai ∈ Ai under state ω is given by Ui(ω, ai). Unless
otherwise specified, we consider the case of matching utility payoffs where the buyer seeks to match
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the state and the action 2. In such settings, we have |Ω| = |Ai| for each i ∈ [n], and the payoff is
given by Ui(ω, ai) = vi · 1{ω = ai} where each vi is drawn independently from a distribution Vi.
Let V = Πn

i=1Vi.

Each buyer i also has an interim belief, θi ∈ ∆(Ω), about the world state. Each buyer’s belief, θi,
is drawn independently from a distribution Θi. Let Θ = Πn

i=1Θi. The type of a buyer is given
by the tuple (vi, θi) and is denoted by ρi. If the buyers don’t vary in vi or their interim beliefs
θi, then ρi = θi or ρi = vi, respectively. Let Pi ≜ Vi × Θi. The utility of a buyer i ∈ [n]
is given by the utility function ui : A × Ω × Pi → R. We assume that the utility of buyer i
depends only on its own type ρi but can depend on other players’ actions as a negative externality.
Additionally, we follow [12] and assume that this externality is separable, thus simplifying our utility
ui(a, ω, ρi) = vi · 1{ai = ω} − E−i(a−i, ω, ρi). In this paper, we consider settings where the
negative externality is given by E−i(a−i, ω, ρi) =

α
n−1

∑
j∈[n]\i vi · 1{aj = ω} where α ∈ R≥0

where α captures the degree of competitiveness among buyers. Let ᾱ = α
n−1

Statistical Experiments. There is a data seller who observes the world state and wishes to sell
information to one or more buyers to maximize expected revenue. The seller sells information through
signaling schemes, where each scheme is called an experiment. The seller chooses, for each buyer
i ∈ [n], a set of signals Si and a signaling scheme σi : Ω → △Si. If state ω ∈ Ω is realized, then the
seller sends a signal drawn from the distribution σi(ω). Upon receiving a signal, the buyers update
their prior beliefs and choose an optimal action accordingly. The signaling scheme σi can also be
represented as a matrix πi − a collection of m row vectors each of dimensions |Si|. The j-th row
vector (for j ∈ [m]) specifies the likelihood of each signal when state ωj is realized. Thus we have
σi(ωj) = πi,j .

The Mechanism Design Problem. The mechanism design goal is to design a set of experiments
and corresponding prices to maximize the expected revenue of the seller. Let B denote a message
(bid) space. Define the signaling schemes for a buyer i ∈ [n] as σi : Ω× B → △Si and a payment
function ti : B → R≥0. Given bids b = (b1, . . . bn) ∈ B, if state ω ∈ Ω is realized, then the
seller sends a signal drawn from the distribution σi(ω, b) to buyer i and collects payment ti(b). The
sequence of interactions between one or more buyers and the seller takes place as follows:

1. The seller commits to a mechanism, M = (σ, t), where σ = (σ1, . . . , σn) is a choice and
t = (t1, . . . , tn).

2. Each buyer i observes their type, ρi. The seller observes the state, ω.
3. Each buyer reports a message bi.
4. The seller sends buyer i a signal, Si ∈ Si, generated according to the signaling scheme

σi(ω, b), and collects payment ti(b).
5. Each buyer i chooses an action ai ∈ Ai, and obtains utility ui(a, ω, ρi) − ti(b), where

a = (a1, . . . , an).

By the revelation principle for dynamic games [43, Section 6.3], as long as we consider incentive-
compatible mechanisms, it is without loss of generality for the message space to be the type space of
buyers, and for the size of the signal space to be the size of the action space, i.e., for each i ∈ [n],
|Si| = |Ai|. In such mechanisms, the seller designs experiments where every signal leads to a
different optimal choice of action. Following [7], we can then replace every signal as an action
recommended by the seller.

Incentive Compatibility. A mechanism (σ, t) is Bayesian incentive compatible (BIC) if the buyer
maximizes their expected utility (over other agents’ reports) by both reporting their true type as well as
by following the recommended actions. For the sake of notational convenience, let Ê−i := Eρ−i∼P−i

denote the operator used for computing the interim representations.

For each (ρi, ρ
′
i) ∈ P2

i and for each deviation function δ : Ai → Ai, a BIC mechanism satisfies:

Ê−i

 E
a∼σ(ω,ρ)

ω∼θi

[ui(a, ω, ρ)− ti(ρ)]

 ≥ Ê−i

 E
a∼σ(ω;ρ′

i,ρ−i)
ω∼θi

[ui(δ(ai), a−i, ω, ρ)− ti(ρ
′
i, ρ−i)]


(1)

2It is easier to extend our approach to non-matching utilities as well
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In particular, this insists that double deviations (misreporting the type and disobeying the recommen-
dation) are not profitable.

We also consider the stronger notion of ex post incentive compatible (IC), which requires, for every
agent i, and for each ρ ∈ P , and assuming that every other agent reports its type truthfully and follows
the recommended action, then for each misreport ρ′i ∈ Pi, and each deviation function, δ : Ai → Ai,
the following condition:

E
a∼σ(ω,ρ)

ω∼θi

[ui(a, ω, ρ)− ti(ρ)] ≥ E
a∼σ(ω;ρ′

i,ρ−i)
ω∼θi

[ui(δ(ai), a−i, ω, ρ)− ti(ρ
′
i, ρ−i)]

(2)

Individual Rationality. A mechanism is interim individually rational (IIR) if reporting an agent’s
true type guarantees at least as much expected utility (in expectation over other agents’ reports) as
opting out of the mechanism. Let σ−i : Ω × P−i → △A−i denote the recommendations to other
participating buyers when buyer i opts out. For each agent i, and each ρi ∈ Pi, IIR requires

Ê−i

 E
a∼σ(ω;ρ)

ω∼θi

[ui(a;ω, ρ)− ti(ρ)]

 ≥ max
ãi∈Ai

Ê−i

 E
a−i∼σ−i(ω;ρ−i),

ω∼θi

[ui(ãi, a−i;ω, ρ)]


 (3)

It is in the seller’s best interest to instantiate the recommendation function to the other buyers when
buyer i opts out, σ−i, to minimize the value of the RHS of this IIR inequality. For this reason, it is
without loss of generality to rewrite the above equation as:

Ê−i

 E
a∼σ(ω;ρ)

ω∼θi

[ui(a;ω, ρ)− ti(ρ)]

 ≥ min
σ−i

max
ãi∈Ai

Ê−i

 E
a∼σ−i(ω;ρ−i)

ω∼θi

[ui(ãi, a−i;ω, ρ)]


 (4)

In particular, and recognizing that a buyer’s utility decreases the more informed other buyers are,
the seller can achieve this by sending optimal recommendations to participating buyers in order to
minimize the utility of a non-participating buyer.

We also consider a stronger version of IR, namely ex post individual rationality (or simply IR). In
this case, for each agent i, and each ρ ∈ P , we require:

E
a∼σ(ω;ρ)

ω∼θi

[ui(a;ω, ρ)− ti(ρ)] ≥ min
σ−i

max
ãi∈Ai

 E
a∼σ−i(ω;ρ−i),

ω∼θi

[ui(ãi, a−i;ω, ρ)]

 (5)

3 Optimal Data Market Design in the Single-Buyer Setting

In this section, we formulate the problem of optimal data market design for a single buyer as an
unsupervised learning problem. We study a parametric class of mechanisms, (σw, tw) ∈ M, for
parameters, w ∈ Rd, where d > 0. For a single buyer, the goal is to learn parameters w that maximize
Eρ∼P [tw(ρ)], such that (σw, tw) satisfy ex post IC and IR.3 By adopting differentiable loss functions,
we can make use of tools from automatic differentiation and stochastic gradient descent (SGD). For
notational convenience, we drop the subscript in this case, as there is only one buyer.

Neural Network Architecture. For the single buyer setting, any IC mechanism can be represented
as a menu of experiments. For this, we extend the RochetNet architecture to represent a menu of
priced statistical experiments. Specifically, the parameters correspond to a menu of P choices, where
each choice p ∈ [P ] is associated with an experiment, with parameters γp ∈ R|Ω|×|A|, and a price,
βp ∈ R. Given this, we define a menu entry as,

πp
ω,j =

exp(γp
ω,j)∑

k∈[m] exp(γ
p
ω,k)

, tp = βp (6)

3For the single bidder settings, ex post IC and IR are the same as BIC and IIR.
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The input layer takes ρ = (v, θ) as input and the network computes the P utility values corresponding
to each menu entry. We do not impose obedience constraint explicitly. However, while computing
the utility of a menu, we take into consideration the best possible deviating action an agent can
take. From the perspective of buyer, if action k is recommended by an experiment choice p, then

Pr[ω = j|ak, θ] =
θjπ

p
j,k

Pr[sk]
. The best action deviation is thus δ(k) = argmaxj∈[m]

θjπ
p
j,k

Pr[sk]
, yielding

a utility of v ·maxj∈[m]
θjπ

p
j,k

Pr[sk]
=

v·maxj∈[m] θjπ
p
j,k

Pr[sk]
. Taking an expectation over all signals, buyer i

receives the following utility for the choice p ∈ [P ]:

hp(ρ) = v ·

 ∑
k∈[m]

maxj∈[m]{θjπp
j,k}

− βp (7)

We also include an additional experiment, π0, which corresponds to a null experiment that generates
the same signal regardless of state, and thus provides no useful information. This menu entry has
a price of t0 = 0, and thus h0(ρ) = v · (maxj∈[m] θj). In particular, this menu entry has the same
utility as that of opting out.
Lemma 3.1. Let p∗(ρ) = argmaxp∈{0,...P} h

p(ρ) denote the optimal menu choice. Then the

mechanism M = (σw, tw) where σw(ω, ρ) = π
p∗(ρ)
ω and tw(ρ) = tp

∗(ρ) satisfies IC and IR.

This mechanism is IC as it is agent optimizing, and is IR as it guarantees a buyer at least the utility of
opting out.

Training Problem. The expected revenue of such an IC and IR mechanism that is parameterized
by γ, β is given by Eρ∼P [β

p∗(ρ)]. Rather than minimizing a loss function that measures errors
against ground truth labels (as in a supervised learning setting), our goal is to minimize expected
negated revenue. To ensure that the objective is differentiable, we replace the argmax operation with
a softmax during training. The loss function, for parameters γ and β, is thus given by L(γ, β) =
Eρ∼P

[
−
∑P

p=1 β
p∇̃p(ρ)

]
where ∇̃p(ρ) = softmax(h

1(ρ)
τ , . . . , hP (ρ)

τ ), and τ > 0 controls the
quality of approximation. Note that, at test time, we revert to using the hard max, so as to guarantee
exact IC and IR from a trained network.

During training, this null experiment (π0, t0) remains fixed, while the parameters γ ∈ Rp×|Ω|×m

and β ∈ Rp are optimized through SGD on the empirical version of the loss calculated over ℓ i.i.d
samples S = {ρ(1), . . . ρ(ℓ)} drawn from P . We report our results on a separate test set sampled from
P . We refer to the Appendix A.2 for more details regarding the hyperparameters.

4 Optimal Data Market Design in the Multi-Buyer Setting

In the multi-buyer setting, the goal is to learn parameters w ∈ Rd that maximize Eρ∼S [
∑n

i=1 t
i
w(ρ)],

for a parametric class of mechanisms, (σw, tw) ∈ M, such that (σw, tw) satisfy IC (or BIC) and IR
(or IIR). By restricting our loss computations to differentiable functions, we can again use tools from
automatic differentiation and SGD. For the multi-buyer setting, we use differentiable approximations
to represent the rules of the mechanism and compute the degree to which IC constraints are violated
during training adopting an augmented Lagrangian method [32].

Neural Network Architecture. The neural network architecture has two components: one that
encodes the experiments and another that encodes payments. We model these components in a
straightforward way as feed-forward, fully connected neural networks with Leaky ReLU activation
functions. The input layer consists of the reported type profile, ρ, encoded as a vector. For both
IC and BIC settings, the component that encodes experiments outputs a matrix π of dimensions
n × |Ω| × |Ω|, which represents an experiment that corresponds to each of the n agents. In order
to ensure feasibility, i.e., the probability values of sending signals for each agent under each state
realization is non-negative and sums up to 1, the neural network first computes an output matrix, π̃, of
the same dimension. For all i, j, ω, we then obtain πi,ω,j by computing exp(π̃i,ω,j)/

∑
k exp(π̃i,ω,k).

For the setting of IC (vs. BIC), we define payments by first computing a normalized payment,
t̃wi (ρ) ∈ [0, 1], for each buyer i, using a sigmoid activation unit. The payment twi (ρ) is computed as
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follows:

twi (ρ) = t̃wi (ρ) · vi ·

 ∑
k∈[m]

πw
i,k,k(ρ)θi,k − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ)θj,k − (max θi − α)

 (8)

Lemma 4.1. Any mechanism M = (σw, tw) where σw
i (ω, ρ) =

(
πw
i,ω(ρ)

)
and tw satisfies Eqn 8 is

ex post IR constraint for any w ∈ Rd.

For the BIC setting we only need to compute the interim payment, as we can replace
Eρ−i∼P−i

[ti(ρi, ρ−i)] by ti(ρi). For this, we compute an interim normalized payment, t̃i ∈ [0, 1],
for each buyer i by using a sigmoid unit. We compute the interim payment as:

twi (ρi) = t̃wi (ρi) ·vi ·Ê−i

 ∑
k∈[m]

πw
i,k,k(ρ)θi,k − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ)θj,k − (max θi − α)

 (9)

Lemma 4.2. Any mechanism M = (σw, tw) where σw
i (ω, ρ) =

(
πw
i,ω(ρ)

)
and tw satisfies Eqn 9 is

interim IR for any w ∈ Rd.

Training Problem. In order to train the neural network, we need to minimize the negated revenue
subject to incentive constraints. Following Dütting et al. [32], we measure the extent to which a
mechanism violates the IC (or BIC) constraints through the notion of ex post regret (or interim
regret) and then appeal to Lagrangian optimization. The regret for an agent is given by the maximum
increase in utility, considering all possible misreports and all possible deviations for a given misreport
in consideration while fixing the truthful reports of others (or in expectation over truthful reports of
others for the BIC setting) when the others are truthful and obedient.

We define the ex post regret for a buyer i as RGTw
i = Eρ∈P

[
maxρ′

i∈Pi
rgtwi (ρ

′
i, ρ)

]
where

rgtwi (ρ
′
i, ρ) is defined as:

rgtwi (ρ
′
i, ρ) = vi ·

 ∑
k∈[m]

max
k′∈[m]

{
πw
i,k′,k(ρ

′
i, ρ−i)θi,k′

}
− ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ

′
i, ρ−i)θj,k


− vi ·

 ∑
k∈[m]

πw
i,k,k(ρ)θi,k − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ)θj,k

− (twi (ρ
′
i, ρ−i)− twi (ρ)) (10)

Lemma 4.3. Any mechanism M = (σw, tw) where σw
i (ω, ρ) =

(
πw
i,ω(ρ)

)
is ex post IC if and only

if RGTw
i = 0 ∀i ∈ [n], except for measure zero events.

We define the interim regret for a buyer i as R̂GT
w

i = Eρ∈P

[
maxρ′

i∈Pi
r̂gt

w

i (ρ
′
i, ρi)

]
where

r̂gt
w

i (ρ
′
i, ρi) is defined as:

r̂gt
w

i (ρ
′
i, ρi) = vi ·

 ∑
k∈[m]

max
k′∈[m]

Ê−i

πw
i,k′,k(ρ

′
i, ρ−i)θi,k′ − ᾱ

∑
j∈[n]\i

πw
j,k,k(ρ

′
i, ρ−i)θj,k


− vi · Ê−i

 ∑
k∈[m]

πw
i,k,k(ρi, ρ−i)θi,k − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρi, ρ−i)θj,k

− (ti(ρ
′
i)− ti(ρi))

(11)

Lemma 4.4. Any mechanism M = (σw, tw) where σw
i (ω, ρ) =

(
πw
i,ω(ρ)

)
is interim IC if and only

if R̂GT
w

i = 0 ∀i ∈ [n], except for measure zero events.

Given regret, we compute the Lagrangian objective on the empirical version of loss and regret over
samples S = {ρ(1), . . . , ρ(L)}. We solve this objective using augmented Lagrangian optimization.
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The BIC setting also involves an inner expectation to compute the interim representations. There, for
each agent i, we sample a separate subset S−i = {ρ(1)−i , . . . , ρ

(K)
−i }, and replace the inner expectations

with an empirical expectation over these samples. We sample several misreports, compute the best
performing misreport among these samples, and use this as a warm-start initialization for the inner
maximization problem. For the BIC setting, rather than sampling fresh misreports and computing
the interim experiments and payments, we re-use the other samples from the minibatch and their
already computed interim values to find the best initialization. This leads to a dramatic speed-up as
the number of forward passes required to compute the regret reduces by an order magnitude of the
number of initialized misreports. This, however, works only for the BIC setting, as the constraints are
only dependent on the interim values.

We report all our results on a separate test set sampled from P . Please refer to Appendix B.6 for
more details regarding the hyperparameters.

5 Experimental Results for the Single Buyer Setting

In this section, we demonstrate the use of RochetNet to recover known existing results from the
economic theory literature. Additionally, we also show how we can use this approach to conjecture
the optimal menu structure for settings outside the reach of current theory. Further, we give in the
Appendix C.2 representative examples of how we can characterize the differential informativeness of
the menu options when we change different properties of the prior distribution. This builds economic
intuition in regard to the shape of optimal market designs.

0.00 0.25 0.50 0.75 1.00
c

0.20

0.15

0.10

0.05

0.00
q

partial 
info
full 
info

Figure 1: The differential informativeness
q of the menu(s) learned by RochetNet for
Setting D, varying the parameter c that in-
stantiates the economic environment.

Buyers with world prior heterogeneity. We first show
that RochetNet can recover the optimal menu for all the
continuous distribution settings considered in [7] where
the input distributions are a continuum of types. We specif-
ically consider the following settings with binary states
and binary actions with payoffs v = 1 and interim beliefs
drawn from:

A. an unit interval, i.e, θ ∼ U [0, 1].
B. an equal weight mixture of Beta(8, 30) and

Beta(60, 30).

The optimal menus for each of these settings are given
by [7]. For the first setting, the optimal menu consists of
a fully informative experiment with a price of 0.25. For
the second setting, the seller offers two menu options: a
partially informative experiment and a fully informative experiment. In each case, RochetNet recovers
the exact optimal menu. We describe the optimal menus, associated prices, revenue, and RochetNet
revenue in the Appendix C.1.

We also give the results from additional experiments in Appendix C.2, where we demonstrate how the
informativeness of the menu q changes, as we vary different properties of the economic environment.

Buyers with payoff and world prior heterogeneity. We are aware of no theoretical characteriza-
tion of optimal data market designs when both v and θ vary. In such cases, we can use RochetNet
to conjecture the structure of an optimal solution. For this, we consider the following settings with
enlarged buyer types with binary states and binary actions with:

C. v ∼ U [0, 1] and the interim beliefs are drawn from U [0, 1].
D. v ∼ U [c, 1] and the interim beliefs are drawn from an equal weight mixture of Beta(8, 30)

and Beta(60, 30) for c ∈ [0, 1].

For Setting C, RochetNet learns a menu consisting of a single fully informative experiment with a price
of 0.14. For Setting D, RochetNet learns a menu consisting of a single fully informative experiment
when c < 0.55. For higher values of c, RochetNet learns an additional partially informative menu
option. In Figure 1, we show how the differential informativeness q of the partially informative menu
changes with c.
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Figure 2: Experiments learned for Settings E and F, for BIC constraints (top) and ex post IC constraints
(bottom). The plot shows the probability of recommending the correct action to buyer 1 (left subplot) and buyer
2 (right subplot) for varying values of v1 (x-axis) and v2 (y-axis). For each setting, the theoretically optimal
experiments are represented by solid lines separating the regions.

6 Experimental Results for the Multi-Buyer Setting

In this section, we show how we can use RegretNet to recover known existing results for the multi-
buyer, BIC setting. We also use RegretNet to conjecture the optimal solution for a multi-buyer
problem in the ex post IC setting, and then prove the optimality of the design. Lastly, we give results
for a setting where it is analytically hard to compute the optimal solution but RegretNet is used to
understand how revenue varies with changes to the intensity of negative externality, again building
economic intuition for the market design problem.

BIC settings. [12] study the multi-buyer market design problem with two buyers, binary actions,
and fixed interim beliefs, the same for each agent. They show that a deterministic signaling scheme is
optimal, and thus characterize their solution in terms of recommending a correct action (selling a
fully informative menu). Since the obedience constraints are defined on the interim representation,
the optimal mechanism is also able to sometimes recommend incorrect actions to a buyer (in effect
sending recommendations that are opposed with the realized state).

We consider the following settings from [12] with interim beliefs are given by θ1 = θ2 = (0.5, 0.5)
and α = 0.5 and:

E. The payoffs v1, v2 are sampled from the unit interval U [0, 1].

F. The payoffs v1, v2 are sampled from the exponential distribution with λ = 1.

The results for these settings with a BIC constraint are shown in Figure 2 (top). The theoretically
optimum solution contains two kinds of recommendations, those recommending the correct action
(the optimal action to take given the realized state), and those recommending incorrect actions,
separated by the black solid lines. The heatmap showed in the plots denotes our computational
results, which show the probability of recommending the correct action. In particular, we can confirm
visually (and from its expected revenue) that RegretNet is able to recover the optimal revenue as
well the optimal experiment design. The test revenue and regret along with additional results are in
Appendix D.1.

Ex post IC settings. We apply RegretNet to the same three settings, but now adopting ex post
IC constraints. This is of interest because there is no known analytical solution for the optimal
mechanism for two buyers in the ex post IC setting. See Figure 2 (bottom). Based on this, and
additional experiments (in Appendix D.2 ), we were able to conjecture that the structure of the optimal
design in this ex post IC setting, and we prove its optimality by following Myerson’s framework for
single item auctions. We defer the proof to the appendix D.4.
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Theorem 6.1. Consider the setting with Binary State and Binary Actions where the buyers have a
common interim belief θi = θ. The payoff vi for a buyer i is drawn from a regular distribution Vi

with a continuous density function. Define virtual value ϕi(vi) = vi − 1−F (vi)
f(vi)

, for pdf f and cdf
F of distribution Vi. The revenue-optimal mechanism satisfying ex post IC and IR is a mechanism
that sells the fully informative experiment to buyer i if ϕi(vi) ≥ ᾱ

∑
i ̸=j ϕj(vj). Otherwise buyer i

receives an uninformative menu, where the signal corresponds to the most likely state based on the
prior.

Studying the effect of varying the intensity of externalities. Following [12], we study the
effect of the negative externality parameter α on the revenue for the BIC, multi-buyer setting
with a common and known prior for each buyer and payoffs sampled from U [0, 1]. We also con-
sider the case where the payoffs are constant but the interim beliefs are independently sampled
from U [0, 1]. While there is no known analytical characterization for the latter, we show how
easy it is to study the models learnt by RegretNet to analyze economic properties of interest.

0.0 0.5 1.0 1.5 2.0 2.5

0.5

1.0

1.5

2.0

2.5

re
v

Uncertain 
Uncertain v

Figure 3: Effect of α on revenue

Figure 3 shows the effect of α on the revenue. In the con-
text of uncertain priors, we note that the effect on revenue
is similar to the setting where payoffs are uncertain. As we
enhance competition intensity via α, the revenue grows.
Even though the buyers are not recommended the correct
action, the seller manages to generate revenue by threaten-
ing to share exclusive information with a competitor. This
effect becomes fiercer in the settings with uncertain priors.

7 Conclusion

We have introduced a new deep neural network architec-
ture and learning framework to study the design of optimal
data markets. We have demonstrated through experimental
work the flexibility of the framework, showing that it can
adapt to relatively complex scenarios and facilitate the discovery of new optimal designs. Note that
while we have only considered matching utility payoffs in this paper, our approach can easily be
extended to non-matching utility payoffs as well.

We also point out some limitations. First, for our approach to continue to provide insights into the
theoretically optimal design for larger problems (e.g., with more buyers, more signals, more actions),
it will be important to provide interpretability to the mechanisms learned by RegretNet (designs
learned by RochetNet, on the other hand, are immediately interpretable). Second, while our approach
scales well with the number of buyers or states in the ex post IC setting, it does not scale as easily
with the number of buyers in the BIC setting. The challenge in the BIC setting comes from the
interim computations involving conditional expectations over reports of others and scaling beyond
what is studied in this paper will require new techniques, for example, exploiting symmetry. Third,
we are making use of gradient-based approaches, which may suffer from local optima in non-convex
problems. At the same time, deep learning has shown success in various problem domains despite
non-convexity. The experiments reported here align with these observations, with our neural network
architectures consistently recovering optimal solutions, when these are known, and thus optimality
can be verified, and despite non-convex formulations. Fourth, we attain in the multi-buyer setting
only approximate, and not exact, incentive alignment, and this leaves the question of how much
alignment is enough for agents to follow the intended advice of a market design (there is little
practical or theoretical guidance in this regard). Moreover, we do not know for a given solution
whether there is an exact IC solution nearby. While there is some recent guiding theory [22, 26, 15]
that provides transformations between ϵ-BIC and BIC without revenue loss in the context of auction
design, extending these transformations to approximate IC settings and to problems with both types
and actions presents an interesting avenue for future research.

Lastly, we return to where we started, and underline that markets for trading data about individuals
raise substantive ethical concerns [1, 2, 5, 8, 11, 19, 33]. Our hope is that machine learning frameworks
such as those introduced here can be used to strike new kinds of trade-offs, for example allowing
individuals to also benefit directly from trades on data about themselves and to embrace privacy and
fairness constraints.
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A Data Markets in the Single-Buyer Settings

A.1 RochetNet Architecture

v

θ1

...

θ|Ω|

h1

h2

...

hP

h0

IR Option

max u(ρ)

Figure 4: RochetNet: Neural network architecture for learning the optimal menu for a single bidder setting.
The neural network takes in as inputs the buyer’s payoff v and interim belief θ (a distribution on world state)
and computes the utility to the buyer for each of P + 1 menu options, where option 0 corresponds to the
uninformative experiment.

The neural network architecture for the single buyer settings is depicted in Fig 4. In this architecture,
each menu entry p is represented by a matrix πp with dimensions |Ω| × |Ω|, along with an associated
price tp. Instead of explicitly enforcing the obedience constraint, we consider all potential actions an
agent may take to deviate from the recommended action to compute the utility. This utility for the
menu option p is given by Eqn 7 in the main paper.

A.2 Setup and Hyper-parameters

Training: We train RochetNet with P = 1000 possible menu entries. We set the softmax temperature
τ to 1

200 . We train RochetNet for 20, 000 iterations with a minibatch of size 215 sampled online for
every update.

We report all our results on a test-set of 20000 samples that are separate from the train set.

Time: For the settings studied in the paper, RochetNet take 7-8 minutes minutes to train on a single
NVIDIA Tesla V100 GPU.

B Data Markets in the Multi-Buyer Setting

B.1 RegretNet Architecture

The neural network architecture for the multi-buyer ex post IC setting is depicted in Fig 5. For the
BIC setting, the experiment network σ remains the same and the interim experiments are computed
through sampling. They payment network only takes the type corresponding to the buyer as input as
we can replace Ê−i[ti(ρi, ρ−i)] with just ti(ρi). We also have separate payment networks for each
buyer if their type distributions are different.

B.2 Proof of Lemma 4.1

Lemma 4.1. Any mechanism M = (σw, tw) where σw
i (ω, ρ) =

(
πw
i,ω(ρ)

)
and tw satisfies Eqn 8 is

ex post IR constraint for any w ∈ Rd.

Proof. For the ex post IC setting, we first compute a normalized payment, t̃wi (ρ) ∈ [0, 1], for each
buyer i by using a sigmoidal unit. We scale this by the difference between utility achieved by the
buyer when he is truthful and obedient and the utility of opting out. Thus, the payment twi (ρ) is
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Figure 5: RegretNet: Neural network architecture for the multi-buyer ex post IC setting. The inputs are the
reported types ρ of each buyer. The experiment network outputs an experiment of size |Ω| × |Ω| for each buyer,
where a row-wise softmax operation ensures the experiments are well defined. The payment network outputs
the normalized payment t̃wi (ρ) ∈ [0, 1] through a sigmoid activation unit that is used to compute payment via
Equation 8.

computed as follows:

twi (ρ) = t̃wi (ρ) · vi ·

 ∑
k∈[m]

πw
i,k,k(ρ)θi,k − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ)θj,k − (max

k
θi,k − α)

 (12)

To establish ex post IR, we reason about the utility a buyer can obtain when not participating in the
mechanism. As per the discussion in Section 2, in an optimal data market the seller will send optimal
recommendations to participating buyers in the event that buyer i opts out, thus minimizing the utility
of the buyer who opts out. In particular, the recommendation for any j ̸= i, for an opting out buyer i,
is such that Ea∼σ−i(ω;ρ−i)

ω∼θi

[1{aj = ω}] = 1. Given this, the utility of buyer i, when opting out, is

min
σ−i

max
ãi∈Ai

 E
a∼σ−i(ω;ρ−i),

ω∼θi

[ui(ãi, a−i;ω, ρ)]


= max

ãi∈Ai

Ea∼σ−i(ω;ρ−i)
ω∼θi

vi · 1{ãi = ω} − viᾱ
∑

j∈[n]\i

1{ãi = ω}


= max

ãi∈Ai

(Eω∼θi [vi · 1{ãi = ω} − viα])

= vi · (max θi − α)

(13)

Note that
∑

k∈[m] π
w
i,k,k(ρ)θi,k ≥ maxk θi,k and ᾱ

(∑
k∈[m]

∑
j∈[n]\i π

w
j,k,k(ρ)θj,k

)
≤

ᾱ
(∑

j∈[n]\i 1
)
= α. Thus we have

∑
k∈[m] π

w
i,k,k(ρ)θi,k − ᾱ

(∑
k∈[m]

∑
j∈[n]\i π

w
j,k,k(ρ)θj,k

)
−

(maxk θi,k − α) ≥ 0.
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Taking this with the fact that t̃wi (ρ) ∈ [0, 1], we have

twi (ρ) = t̃wi (ρ) · vi ·

 ∑
k∈[m]

πw
i,k,k(ρ)θi,k − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ)θj,k − (max

k
θi,k − α)


≤ vi ·

 E
a∼σw

i (ω;ρ),
ω∼θi

1{ai = ω} − ᾱ
∑

j∈[n]\i

1{aj = ω}

−
(
max

k
θi,k − α)

)
= E

a∼σw
i (ω;ρ),

ω∼θi

vi ·
1{ai = ω} − ᾱ

∑
j∈[n]\i

1{aj = ω}

− vi ·
(
max

k
θi,k − α)

)
= E

a∼σw
i (ω;ρ),

ω∼θi

[ui(a;ω, ρ)]− vi · (max θi − α))

(14)

Rearranging, and substituting vi · (max θi − α) from Eqn 13, we get the IR constraint described in
Eqn 5.

B.3 Proof of Lemma 4.2

Lemma 4.2. Any mechanism M = (σw, tw) where σw
i (ω, ρ) =

(
πw
i,ω(ρ)

)
and tw satisfies Eqn 9 is

interim IR for any w ∈ Rd.

Proof. For the BIC setting, we work with the interim payment, and make use of a normalized interim
payment, t̃i(ρi) ∈ [0, 1], for each buyer i, by using a sigmoidal unit. In this case, we scale this
normalized payment by the difference between the interim utility achieved when the buyer is truthful
and obedient and the interim utility of opting out. Thus, the interim payment is

twi (ρi) = t̃wi (ρi) · vi · Ê−i

 ∑
k∈[m]

πw
i,k,k(ρ)θi,k − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ)θj,k − (max θi − α)


(15)

The utility of the outside option is again computed similarly to the ex post IC set-
ting, recognizing that the seller in the optimal mechanism will make recommendation

Ê−i

[
Ea∼σ−i(ω;ρ−i),

ω∼θi

[1{aj = ω}]
]
= 1 to any agent j ̸= i, in the case that i drops out. In par-

ticular, the utility of buyer i, when opting out, is

min
σ−i

max
ãi∈Ai

Ê−i

 E
a∼σ−i(ω;ρ−i),

ω∼θi

[ui(ãi, a−i;ω, ρ)]




= max
ãi∈Ai

Ê−i

Ea∼σ−i(ω;ρ−i),
ω∼θi

vi · 1{ãi = ω} − viᾱ
∑

j∈[n]\i

1{aj = ω}


= max

ãi∈Ai

(Eω∼θi [vi · 1{ãi = ω} − viα])

= vi · (max θi − α)

(16)

Note that Ê−i

[∑
k∈[m] π

w
i,k,k(ρ)θi,k

]
≥ maxk θi,k and Ê−i

[
ᾱ
(∑

k∈[m]

∑
j∈[n]\i π

w
j,k,k(ρ)θj,k

)]
≤

ᾱ
(∑

j∈[n]\i 1
)
= α. Thus we have

Ê−i

 ∑
k∈[m]

πw
i,k,k(ρ)θi,k − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ)θj,k −

(
max

k
θi,k − α

) ≥ 0

17



Taking this with the fact that t̃wi (ρi) ∈ [0, 1], we have

twi (ρi) = t̃wi (ρi) · vi · Ê−i

 ∑
k∈[m]

πw
i,k,k(ρ)θi,k − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ)θj,k − (max θi − α)


≤ vi · Ê−i

 ∑
k∈[m]

πw
i,k,k(ρ)θi,k − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ)θj,k

− vi · (max θi − α))

= Ê−i

 E
a∼σw

i (ω;ρ),
ω∼θi

vi ·
1{ai = ω} − ᾱ

∑
j∈[n]\i

1{aj = ω}


− vi · (max θi − α))

≤ Ê−i

 E
a∼σw

i (ω;ρ),
ω∼θi

[ui(a;ω, ρ)]

− vi · (max θi − α))

(17)

Rearranging the above and substituting vi · (max θi − α) from Eqn 16, we get the IIR constraint
described in Eqn 4.

B.4 Proof of Lemma 4.3

Lemma 4.3. Any mechanism M = (σw, tw) where σw
i (ω, ρ) =

(
πw
i,ω(ρ)

)
is ex post IC if and only

if RGTw
i = 0 ∀i ∈ [n], except for measure zero events.

Proof. We first prove the forward direction: if any mechanism M = (σw, tw) where σw
i (ω, ρ) =(

πw
i,ω(ρ)

)
is ex post IC, then RGTw

i = 0,∀i ∈ [n].

For the ex post IC setting, the incentive compatibility constraints requires that for every agent i,
and for each ρ ∈ P , and assuming that every other agent reports its type truthfully and follows the
recommended action, then for each misreport ρ′i ∈ Pi, and each deviation function, δ : Ai → Ai, the
following condition:

E
a∼σ(ω,ρ),

ω∼θi

[ui(a, ω, ρ)− ti(ρ)] ≥ E
a∼σ(ω;ρ′

i,ρ−i),
ω∼θi

[ui(δ(ai), a−i, ω, ρ)− ti(ρ
′
i, ρ−i)]

(18)

Note that the above hold for any deviation function δ. Therefore, we can write that

E
a∼σ(ω,ρ),

ω∼θi

[ui(a, ω, ρ)− ti(ρ)] ≥ max
δ

E
a∼σ(ω;ρ′

i,ρ−i),
ω∼θi

[ui(δ(ai), a−i, ω, ρ)− ti(ρ
′
i, ρ−i)]

(19)

We can expand to get the following equation:

vi ·

 ∑
k∈[m]

πw
i,k,k(ρ)θi,k − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ)θj,k

− ti(ρ)

≥ max
δ

vi·

 ∑
k∈[m]

{
πw
i,δ(k),k(ρ

′
i, ρ−i)θi,δ(k)

}
− ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ

′
i, ρ−i)θj,k

−ti(ρ
′
i, ρ−i)

(20)

Pushing the max inside (since other terms don’t involve δ(k)), we note that:

max
δ

∑
k∈[m]

{
πw
i,δ(k),k(ρ

′
i, ρ−i)θi,δ(k)

}
=

∑
k∈[m]

max
k′

{
πw
i,k′,k(ρ

′
i, ρ−i)θi,k′

}
(21)
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Thus we have,

vi ·

 ∑
k∈[m]

πw
i,k,k(ρ)θi,k − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ)θj,k

− ti(ρ)

≥ vi ·

 ∑
k∈[m]

max
k′∈[m]

{
πw
i,k′,k(ρ

′
i, ρ−i)θi,k′

}
− ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ

′
i, ρ−i)θj,k

− ti(ρ
′
i, ρ−i)

(22)

Note that by our definition of ex post regret in Equation 10, the above is equivalent to rgtwi (ρ
′
i, ρ) ≤ 0.

Furthermore, this holds for any deviating report ρ′i. Thus, we can write:

max
ρ′
i∈Pi

rgtwi (ρ
′
i, ρ) ≤ 0 (23)

But note that
max
ρ′
i∈Pi

rgtwi (ρ′i, ρ) ≥ rgtwi (ρi, ρ)

= vi ·

 ∑
k∈[m]

max
k′∈[m]

{
πw
i,k′,k(ρ)θi,k′

}
− ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ)θj,k


− vi ·

 ∑
k∈[m]

πw
i,k,k(ρ)θi,k − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ)θj,k


= vi ·

 ∑
k∈[m]

[
max
k′∈[m]

{
πw
i,k′,k(ρ)θi,k′

}
− πw

i,k,k(ρ)θi,k

]
≥ 0

(24)

where the last step holds since maxk′∈[m]

{
πw
i,k′,k(ρ)θi,k′

}
≥ πw

i,k,k(ρ)θi,k

Combining Equations 23 and 24, we have maxρ′
i∈Pi

rgtwi (ρ
′
i, ρ) = 0. Taking the expectation over

all profiles ρ ∈ P , we have Eρ∈P
[
maxρ′

i∈Pi
rgtwi (ρ′i, ρ)

]
= 0. Thus, RGTw

i = 0,∀i ∈ [n]. Thus,
we’ve shown that if any mechanism M = (σw, tw) where σw

i (ω, ρ) =
(
πw
i,ω(ρ)

)
is ex post IC, then

RGTw
i = 0, as desired.

Next, we consider the reverse direction: if RGTw
i = 0,∀i ∈ [n], we want to show that any mechanism

M = (σw, tw) where σw
i (ω, ρ) =

(
πw
i,ω(ρ)

)
is ex post IC. Starting with RGTw

i = 0,∀i ∈ [n], we
have that by definition:

Eρ∈P

[
max
ρ′
i∈Pi

rgtwi (ρ′i, ρ)

]
= 0 (25)

We showed in Equation 24 that rgtwi (ρi, ρ) ≥ 0. Since ρi ∈ Pi, we have that
maxρ′

i∈Pi
rgtwi (ρ′i, ρ) ≥ 0. Together with the fact that Eρ∈P

[
maxρ′

i∈Pi
rgtwi (ρ′i, ρ)

]
= 0, we

have that maxρ′
i∈Pi

rgtwi (ρ′i, ρ) = 0 =⇒ rgtwi (ρ′i, ρ) ≤ 0.

Plugging in our definition for ex post regret, we have that:

vi ·

 ∑
k∈[m]

max
k′∈[m]

{
πw
i,k′,k(ρ

′
i, ρ−i)θi,k′

}
− ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ

′
i, ρ−i)θj,k


− vi ·

 ∑
k∈[m]

πw
i,k,k(ρ)θi,k − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ)θj,k

− (twi (ρ
′
i, ρ−i)− twi (ρ)) ≤ 0 (26)
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This can be transformed back to:

E
a∼σ(ω,ρ)

ω∼θi

[ui(a, ω, ρ)− ti(ρ)] ≥ max
δ

E
a∼σ(ω;ρ′

i,ρ−i),
ω∼θi

[ui(δ(ai), a−i, ω, ρ)− ti(ρ
′
i, ρ−i)]

≥ E
a∼σ(ω;ρ′

i,ρ−i)
ω∼θi

[ui(δ(ai), a−i, ω, ρ)− ti(ρ
′
i, ρ−i)]

(27)

This is exactly the ex post IC constraint described in Equation 2

B.5 Proof of Lemma 4.4

Lemma 4.4. Any mechanism M = (σw, tw) where σw
i (ω, ρ) =

(
πw
i,ω(ρ)

)
is interim IC if and only

if R̂GT
w

i = 0 ∀i ∈ [n], except for measure zero events.

Proof. We first prove the forward direction: if any mechanism M = (σw, tw) where σw
i (ω, ρ) =(

πw
i,ω(ρ)

)
is interim IC, then R̂GT

w

i = 0,∀i ∈ [n].

For the BIC setting, for each (ρi, ρ
′
i) ∈ P2

i and for each deviation function δ : Ai → Ai, a BIC
mechanism satisfies:

Ê−i

 E
a∼σ(ω,ρ)

ω∼θi

[ui(a, ω, ρ)− ti(ρ)]

 ≥ Ê−i

 E
a∼σ(ω;ρ′

i,ρ−i)
ω∼θi

[ui(δ(ai), a−i, ω, ρ)− ti(ρ
′
i, ρ−i)]


(28)

Note that the above hold for any deviation function δ, therefore we can write that

Ê−i

 E
a∼σ(ω,ρ)

ω∼θi

[ui(a, ω, ρ)− ti(ρ)]

 ≥ max
δ

Ê−i

 E
a∼σ(ω;ρ′

i,ρ−i)
ω∼θi

[ui(δ(ai), a−i, ω, ρ)− ti(ρ
′
i, ρ−i)]


(29)

We can expand to get the following equations:

vi · Ê−i

 ∑
k∈[m]

πw
i,k,k(ρi, ρ−i)θi,k − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρi, ρ−i)θj,k

− ti(ρi)

≥ max
δ

vi · Ê−i

 ∑
k∈[m]

πw
i,δ(k),k(ρ

′
i, ρ−i)θi,δ(k) − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρ

′
i, ρ−i)θj,k

− ti(ρ
′
i)

= max
δ

vi ·

 ∑
k∈[m]

Ê−i

πw
i,δ(k),k(ρ

′
i, ρ−i)θi,δ(k) − ᾱ

∑
j∈[n]\i

πw
j,k,k(ρ

′
i, ρ−i)θj,k

− ti(ρ
′
i)

= vi ·

 ∑
k∈[m]

max
δ

Ê−i

πw
i,δ(k),k(ρ

′
i, ρ−i)θi,δ(k) − ᾱ

∑
j∈[n]\i

πw
j,k,k(ρ

′
i, ρ−i)θj,k

− ti(ρ
′
i)

= vi ·

 ∑
k∈[m]

max
k′∈[m]

Ê−i

πw
i,k′,k(ρ

′
i, ρ−i)θi,δ(k) − ᾱ

∑
j∈[n]\i

πw
j,k,k(ρ

′
i, ρ−i)θj,k

− ti(ρ
′
i)

(30)
The above equations follow from the linearity of expectations and from pushing the max to the inside
(since other terms don’t involve δ(k)).

Note that by our definition of interim regret in Equation 11, the above equation is equivalent to
r̂gt

w

i (ρ′i, ρi) ≤ 0. Furthermore, this holds for any deviating report ρ′i. Therefore, we can write that
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max
ρ′
i∈Pi

r̂gt
w

i (ρ
′
i, ρi) ≤ 0 (31)

But note that

max
ρ′
i∈Pi

r̂gt
w

i (ρ′i, ρ) ≥ r̂gt
w

i (ρi, ρi)

= vi ·

 ∑
k∈[m]

max
k′∈[m]

Ê−i

πw
i,k′,k(ρi, ρ−i)θi,k′ − ᾱ

∑
j∈[n]\i

πw
j,k,k(ρi, ρ−i)θj,k

− ti(ρi)

− vi · Ê−i

 ∑
k∈[m]

πw
i,k,k(ρi, ρ−i)θi,k − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρi, ρ−i)θj,k

+ ti(ρi)

= vi ·

 ∑
k∈[m]

max
k′∈[m]

Ê−i

[
πw
i,k′,k(ρi, ρ−i)θi,k′

]
− Ê−i

[
πw
i,k,k(ρi, ρ−i)θi,k

]
≥ 0

(32)

where the second step follows from linearity of expectation, and the last step holds since we are
taking the max of all possible k′ ∈ [m], which includes k′ = k.

Combining Equations 31 and 32, we have that maxρ′
i∈Pi

r̂gt
w

i (ρ
′
i, ρi) = 0. Taking the expectation

over all profiles ρ, we have Êρ∈P

[
maxρ′

i∈Pi
r̂gt

w

i (ρ′i, ρi)
]
= 0 =⇒ R̂GT

w

i = 0,∀i ∈ [n]. Thus,

we’ve showed that if any mechanism M = (σw, tw) where σw
i (ω, ρ) =

(
πw
i,ω(ρ)

)
is BIC, then

R̂GT
w

i = 0, as desired.

Next, we consider the reverse direction: if R̂GT
w

i = 0,∀i ∈ [n], we want to show that any mechanism
M = (σw, tw) where σw

i (ω, ρ) =
(
πw
i,ω(ρ)

)
is BIC. Starting with R̂GT

w

i = 0,∀i ∈ [n], we have

that by definition: Êρ∈P

[
maxρ′

i∈Pi
r̂gt

w

i (ρ′i, ρi)
]
= 0

We showed in Equation 32 that r̂gt
w

i (ρi, ρi) ≥ 0. Since ρi ∈ Pi, we have that
maxρ′

i∈Pi
r̂gt

w

i (ρ′i, ρi) ≥ 0. Together with the fact that Êρ∈P

[
maxρ′

i∈Pi
r̂gt

w

i (ρ′i, ρi)
]
= 0, we

have that maxρ′
i∈Pi

r̂gt
w

i (ρ′i, ρi) = 0 =⇒ r̂gt
w

i (ρ′i, ρi) ≤ 0. Plugging in our definition for interim
regret, we have that:

vi ·

 ∑
k∈[m]

max
k′∈[m]

Ê−i

πw
i,k′,k(ρ

′
i, ρ−i)θi,k′ − ᾱ

∑
j∈[n]\i

πw
j,k,k(ρ

′
i, ρ−i)θj,k

− ti(ρ
′
i)

≤ vi · Ê−i

 ∑
k∈[m]

πw
i,k,k(ρi, ρ−i)θi,k − ᾱ

∑
k∈[m]

∑
j∈[n]\i

πw
j,k,k(ρi, ρ−i)θj,k

− ti(ρi) (33)

This can be transformed back to:

Ê−i

 E
a∼σ(ω,ρ)

ω∼θi

[ui(a, ω, ρ)− ti(ρ)]

 ≥ max
δ

Ê−i

 E
a∼σ(ω;ρ′

i,ρ−i)
ω∼θi

[ui(δ(ai), a−i, ω, ρ)− ti(ρ
′
i, ρ−i)]


≥ Ê−i

 E
a∼σ(ω;ρ′

i,ρ−i)
ω∼θi

[ui(δ(ai), a−i, ω, ρ)− ti(ρ
′
i, ρ−i)]


(34)
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This is exactly the interim IC constraint described in Equation 1

B.6 Setup and Hyper-parameters

Training: For the multi-buyer setting, all our neural networks consist of 3 hidden layers with 200
hidden units each. For the IC setting, we sample a minibatch of 1024 samples online to update the
parameters of the neural networks. We sample 100 misreports for every sample to compute the best
initialization. For the BIC setting, we use a minibatch of 128 samples. We compute the interim values
wherever required over 512 samples drawn from P−i.

We observe that sampling alone is sufficient to approximate the regret while training and do not
perform any additional gradient descent steps, as this does not improve the training performance
(however we anticipate this step would be necessary for larger settings).

We train the neural networks for 20000 iterations and make parameter updates using the Adam
Optimizer with a learning rate of 0.001. The Lagrangian parameters (λ1, . . . λn) are set to 10.0. The
coefficient of the penalty term is initialized to 1.0. The Lagrangian updates are performed once every
100 iteration.

Testing: We report all our results on a test size of 20000 samples. For the ex post setting, we use
100 misreports as initialization to warm-start the inner maximization to compute regret. For the
BIC setting, we use other samples of the minibatch to compute a defeating misreport as noted in
the previous subsection. We then run 100 steps of gradient ascent with a learning rate of 0.005 to
compute the defeating misreport and the regret more accurately.

Training time: RegretNet takes 11 - 12 minutes per experiment for training for all the settings
studied in this paper. All our experiments were run on a single NVIDIA Tesla V100 GPU.

C Experimental Results for the Single Buyer Setting

C.1 Buyers with world prior heterogeneity

We present optimal menus, associated prices, revenue, and RochetNet revenue for the Single Buyer
Setting A and B in Figure 6

Distribution Rochet Menu Rochet OptExperiment Price rev rev

Setting A
[
1.00 0.00
0.00 1.00

]
0.25 0.125 0.125

Setting B

[
0.78 0.22
0 1.00

]
0.14

0.167 0.166[
1.00 0.00
0.00 1.00

]
0.26

Figure 6: Menu(s) and associated prices learned by RochetNet, RochetNet revenue and Optimal revenue on test
data in Settings A and B. RochetNet recovers the optimal menu’s for both these settings

C.2 Additional Experiments for Buyers with world prior heterogeneity

We design additional experiments where we use RochetNet to study how the informativeness of
learned experiments vary when we change different properties of the prior distributions. For this, we
consider the mixture of Beta distributions considered in setting B. This is a bimodal distribution
with modes at θL =

(
7
36 ,

29
36

)
and θH =

(
59
88 ,

29
88

)
. We call the former “low type" and the latter

“high type" following the analysis of [7] for the case of binary types, and order this way because
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Figure 7: Results for Experiment G (Left) and H (Right). For both experiments, the vertical axis is the differential
informativeness q of the experiment used by θL. For Experiment G (left), the horizontal axis is the frequency of
the high type, and for Experiment H (right), the horizontal axis is the precision of the low type’s prior belief
|θL − 0.5|.

|θL − 0.5| ≥ |θH − 0.5|. We also call the value (|θ − 0.5|) the precision of a type’s prior belief. We
design two experiments:

G. Single buyer, Binary State, and Binary Actions, where the payoffs v1 = 1 and the interim
beliefs are drawn from a mixture of Beta(8, 30) and Beta(60, 30) weighted by (1− γ, γ)
for γ ∈ [0, 1].

H. Single buyer, Binary State, and Binary Actions, where the payoffs v1 = 1 and the interim
beliefs are drawn from an equal weight mixture of Beta(a1, b1) and Beta(60, 30). We vary
a1, b1 so that the mode of Beta(a1, b1) decreases (therefore the precision of the low type’s
prior belief |θL− 0.5| increases) while ensuring that the ratio of values at the modes of these
distributions stays constant.

In particular, the modes of the two distributions are θL =
(

a−1
a+b−2 ,

b−1
a+b−2

)
and θH =

(
59
88 ,

29
88

)
in the case if Experiment G.4. θL and θH are non-congruent types, i.e., without the supplemental
information, a buyer with type θL takes action 0 while the other takes action 1. θH also values a fully
informative experiment more than θL. In the first experiment, we change the likelihood of type θH
with respect to type θL. In the second experiment, we change the precision of the belief of one type
while keeping the other fixed (we vary values of a, b while numerically ensuring that the probability
distribution function of all the plotted points have the same height at the mode).

The results are given in Figure 7. For Experiment G, increasing the high type’s frequency decreases
the low type experiment’s informativeness. For Experiment H, increasing the precision of the
low type’s prior belief decreases the low type experiment’s informativeness. [7] characterize the
informativeness of the optimal experiment for similar settings, but for discrete distributions with two
types. In particular, Proposition 3 from [7] states that informativeness of the low type π1,1, decreases
when the frequency of the high type or with the precision of low type’s prior belief |θL − 0.5|. It
is interesting, then, that we observe the same behaviour in the RochetNet results for a continuous
analog of their discrete distribution set-up. This suggests a new target for economic theory.

D Experimental Results for the Multi Buyer Setting

We consider the following multi-buyer data market design problem with two buyers, binary action
and fixed interim beliefs, adopting all possible combinations of the following choices in regard to the
configuration of the economy:

• θ = (0.5, 0.5) or θ = (0.75, 0.25)

4This also requires | a−1
a+b−2

− 0.5| ≥ | 59
88

− 0.5|, otherwise Beta(a, b) becomes the high type instead. For
our experiments, we only consider data points at which this condition holds, in other words, we only consider
combinations of a, b such that Beta(a, b) is the low type with mode at θL and Beta(60, 30) is the high type
with mode at θH .

23



• α = 0.5 or α = 2.0

• Both payoffs drawn from UNF, EXP, or Asym UNF

UNF is the uniform distribution over the unit interval U [0, 1]. EXP is the exponential distribution
with λ = 1. For the Asym UNF, the payoff for buyer i is uniform over the interval [0, i+ 1]. In the
next two subsections, we present our results for the BIC and ex post IC settings, respectively.

D.1 BIC Settings

Figures 8, 9, and 10 show the optimal data market design and the data marker learned by RegretNet
for the BIC settings described above, and Figure 11 gives the test revenue and regret obtained by
RegretNet and the revenue of the optimal mechanism.
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Figure 8: Experiments learned for BIC constraints when the payoffs are drawn from UNF
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Figure 9: Experiments learned for BIC constraints when the payoffs are drawn from EXP

D.2 Ex post IC Settings

Figures 12, 13, and 14 show the optimal data market design and the data market learned by RegretNet
for the ex post IC settings described above, and Figure 15 gives the test revenue and test regret
obtained by RegretNet along with the revenue of the optimal mechanism.
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Figure 10: Experiments learned for BIC constraints when the payoffs are drawn from Asym UNF

Distribution α θ
RegretNet Opt

rev rgt rev

UNF
0.5

(0.5, 0.5) 0.400

<0.001

0.395
(0.75, 0.25) 0.237 0.237

2.0
(0.5, 0.5) 1.056 1.042

(0.75, 0.25) 0.763 0.75

EXP
0.5

(0.5, 0.5) 0.632

<0.001

0.632
(0.75, 0.25) 0.448 0.447

2.0
(0.5, 0.5) 1.603 1.613

(0.75, 0.25) 1.390 1.415

Asym UNF
0.5

(0.5, 0.5) 0.614

<0.001

0.609
(0.75, 0.25) 0.366 0.369

2.0
(0.5, 0.5) 1.599 1.594

(0.75, 0.25) 1.139 1.135

Figure 11: Test Revenue and Test Regret obtained by RegretNet for the BIC Settings.
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Figure 12: Experiments learned for ex post IC constraints when the payoffs are drawn from UNF
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Figure 13: Experiments learned for ex post IC constraints when the payoffs are drawn from EXP
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Figure 14: Experiments learned for ex post IC constraints when the payoffs are drawn from Asym UNF

Distribution α θ
RegretNet Opt

rev rgt rev

UNF
0.5

(0.5, 0.5) 0.277

<0.001

0.27
(0.75, 0.25) 0.14 0.135

2.0
(0.5, 0.5) 0.553 0.541

(0.75, 0.25) 0.278 0.270

EXP
0.5

(0.5, 0.5) 0.405

<0.001

0.405
(0.75, 0.25) 0.204 0.202

2.0
(0.5, 0.5) 0.801 0.809

(0.75, 0.25) 0.418 0.405

Asym UNF
0.5

(0.5, 0.5) 0.426

<0.001

0.423
(0.75, 0.25) 0.421 0.21

2.0
(0.5, 0.5) 0.84 0.841

(0.75, 0.25) 0.423 0.42

Figure 15: Test Revenue and Test Regret for RegretNet for the ex post IC Settings.
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D.3 Additional Results for the Irregular Distributions

We present additional results for both BIC and ex post IC settings for two buyers, binary actions, and
interim beliefs θ = (0.5, 0.5), the same for each buyer. We set α = 0.5, and the payoffs are drawn
from the irregular distribution whose pdf f(v) is:

f(v) =

{
2.5 if 0 ≤ v < 0.3

0.5 0.3 ≤ v < 0.8
(35)

The optimal solutions for these problems make use of ironed virtual values as the payoff distribution
is irregular (see Fig 16).
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Figure 16: Experiments learned for BIC and ex post IC constraints when the payoffs are drawn from an irregular
distribution whose pdf is given by Eqn 35. For both these settings, we use the ironed virtual value functions to
compute the optimal data market design.

D.4 Proof of Theorem 6.1

Theorem 6.1. Consider the setting with Binary State and Binary Actions where the buyers have a
common interim belief θi = θ. The payoff vi for a buyer i is drawn from a regular distribution Vi

with a continuous density function. Define virtual value ϕi(vi) = vi − 1−F (vi)
f(vi)

, for pdf f and cdf
F of distribution Vi. The revenue-optimal mechanism satisfying ex post IC and IR is a mechanism
that sells the fully informative experiment to buyer i if ϕi(vi) ≥ ᾱ

∑
i ̸=j ϕj(vj). Otherwise buyer i

receives an uninformative menu, where the signal corresponds to the most likely state based on the
prior.

Proof. We consider a setting with binary states, binary actions, and where each buyer has the same
interim belief, set to (θ, 1−θ). Without loss of generality, let θ ≥ (1−θ). Since the interim beliefs are
fixed, we will just represent buyer types with vi instead of ρi. Let xi(v) = Ea∼σ(ω;ρ),

ω∼θi

[1{ai = ω}].

Let πi(v) be the matrix representation of the experiment assigned to buyer i i.e. πi,ω(v) = σi(ω, v)

We first show that a mechanism is obedient if and only if the experiment assigned to the buyer satisfies
xi(v) ≥ θ. If a mechanism is obedient, then θ · πi,1,1(v) ≥ (1− θ)πi,2,1(v) and (1− θ)πi,2,2(v) ≥
θ · πi,1,2(v). We have xi(v) = θ · πi,1,1(v) + (1 − θ)πi,2,2(v) ≥ θ · πi,1,1(v) + θ · πi,1,2(v) =
θ(πi,1,1(v) + πi,1,2(v)) = θ.

In the other direction, consider when xi(v) ≥ θ. In this case, we show that both θ · πi,1,1(v) ≥
(1 − θ)πi,2,1(v) and (1 − θ)πi,2,2(v) ≥ θ · πi,1,2(v) need to hold for obedience. Assume to the
contrary, one of these fails to hold when xi(v) ≥ θ. We have one of,

• (1 − θ)πi,2,2(v) < θ · πi,1,2(v), and we have xi(v) = θ · πi,1,1(v) + (1 − θ)πi,2,2(v) <
θ · πi,1,1(v) + θ · πi,1,2(v) = θ(πi,1,1(v) + πi,1,2(v)) = θ.

• θ · πi,1,1(v) < (1 − θ)πi,2,1(v), and we have xi(v) = θ · πi,1,1(v) + (1 − θ)πi,2,2(v) <
(1− θ)πi,2,1(v) + (1− θ)πi,2,2(v) = (1− θ)(πi,2,1(v) + πi,2,2(v)) = (1− θ) ≤ θ.

In either case, we have a contradiction.

Since our payoff is linear, from Proposition 3.5 in [7], the IC constraints are satisfied only when the
truthfulness and obedience constraints are satisfied. Denote x̃i(v) = xi(v) − α

n−1

∑
j∈[n]\i xj(v).
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Thus, the optimal design problem to solve is:

Ev∼V

∑
i∈[n]

ti(vi)


s.t. vix̃i(v)− ti(v) ≥ vix̃i(v

′
i; v−i)− ti(v

′
i; v−i) ∀v ∈ V, v′i ∈ Vi, i ∈ [n]

vix̃i(v)− ti(v) ≥ vi(θ − α) ∀v ∈ V, i ∈ [n]

xi(v) ≥ θ ∀v ∈ V, i ∈ [n]

The first constraint corresponds to truthfulness for the IC setting, the second is the IR constraint,
and the third is the obedience constraint. We have thus reduced the data market design problem
to that of Myerson’s revenue maximizing single-item auction problem. Instead of x̃i(v) denoting
the probability of allocating an item, it denotes expected payoff after accounting for the negative
externalities. Also, rather than allocative constraints, we have obedience constraints on xi(v) which
requires xi(v) ≥ θ. Thus, by Myerson’s theory, the total expected revenue is equal to the expected
virtual welfare minus some constant K (stemming from IR constraints) for some x̃i(vi, v−i) that is
non-decreasing in vi. Thus, we have:

Ev∼V

∑
i∈[n]

[ti(vi)]

 = Ev∼V

∑
i∈[n]

ϕi(vi)x̃i(v)

−K (36)

= Ev∼V

∑
i∈[n]

ϕi(vi)

xi(v)−
α

n− 1

∑
j∈[n]\i

xj(v)

−K (37)

= Ev∼V

∑
i∈[n]

ϕi(vi)−
α

n− 1

∑
j∈[n]\i

ϕj(vj)

xi(v)

−K (38)

In order to maximize the revenue, we need to maximize the virtual welfare. Thus we can set
xi(v) = 1 (a fully informative experiment) when ϕi(vi)−

∑
j∈[n]\i ϕj(vj) ≥ 0 and we xi(v) = θ

(an uninformative experiment that always sends the same signal regardless of the state) otherwise.
This is precisely the mechanism described in the theorem.

Note that such an x̃i(vi, v−i) is non-decreasing in vi (since xi(vi, v−i) is non-decreasing in vi and
xj(vi, v−i) for j ∈ [n] \ i is non-increasing in vi for regular distributions Vi and Vj). Moreover,
xi(v) ≥ θ is also satisfied.
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