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Abstract

The ability to understand and reason about spa-001
tial relationships between objects in images002
is an important component of visual reason-003
ing. This skill rests on the ability to recognize004
and localize objects of interest and determine005
their spatial relation. Early vision and language006
models (VLMs) have been shown to struggle007
to recognize spatial relations. We extend the008
previously released What’sUp dataset (Kamath009
et al., 2023) and propose a novel comprehen-010
sive evaluation for spatial relationship under-011
standing that highlights the strengths and weak-012
nesses of 27 different models. In addition013
to the VLMs evaluated in What’sUp, our ex-014
tensive evaluation encompasses 3 classes of015
Multimodal LLMs (MLLMs) that vary in their016
parameter sizes (ranging from 7B to 110B),017
training/instruction-tuning methods, and visual018
resolution to benchmark their performances019
and scrutinize the scaling laws in this task.020

1 Introduction021

Earlier efforts for benchmarking vision and lan-022

guage models (VLMs) were developed for cross-023

modal and/or dual-encoder, end-to-end models,024

like LXMERT (Tan and Bansal, 2019), CLIP (Rad-025

ford et al., 2021), BLIP (Li et al., 2022), with the026

focus on downstream tasks performances such as027

VQA (Antol et al., 2015), GQA (Hudson and Man-028

ning, 2019), referring expressions (Kazemzadeh029

et al., 2014), image-text matching or image/text030

retrieval. While spatial relations are often part of031

VQA datasets, the evaluation of spatial reasoning032

is often conflated with grounding referring expres-033

sions or objects and their attributes1. To isolate034

these issues, authors in (Kamath et al., 2023) in-035

troduced a new benchmark that focuses on spatial036

relationship understanding only. Using image-text037

matching evaluation methodology, they showed038

1VQA example question may be: “Is there a woman to the
left of the person that is wearing a wetsuit?”

Figure 1: LLAMA-3-LLAVA-NEXT-8B achieves the
overall accuracy of 86.1%, compared to 60.4% by
XVLM-COCO, in What’sUp benchmark, reaching the
best trade-off between accuracy and parameters size,
since it performs only 1.1% lower than LLAVA-NEXT-
34B, which has ×4.25 number of parameters.

that contrastive models such as CLIP, BLIP, and 039

their follow-up variants struggle to understand spa- 040

tial relations with the best accuracy around 61%. 041

Recent advances in generative large multi-modal 042

models have shown remarkable visual knowledge 043

and reasoning capabilities. We revisit the spatial re- 044

lationship understanding in the context of MLLMs 045

and extend the existing What’sUp benchmark (Ka- 046

math et al., 2023) to include bounding box anno- 047

tations and depth information. Compositional spa- 048

tial relationship understanding requires success- 049

ful recognition of objects and determining their 050

locations. Furthermore, the knowledge of scene 051

depth helps to disambiguate certain relationships 052

(e.g., "in front of " or "behind"). The availability 053

of this information can support a grounded under- 054

standing of spatial relations and will contribute 055

to the fine-grained evaluation of large generative 056

MLLMs, which lag behind their earlier counter- 057

parts. A few exceptions are multi-task multi-modal 058
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Subset A  Subset B 

Subset B + Depth 

Prompt:
Given the image, what is the correct spatial 
relationship between the dragonfruit and chair in this 
image? The correct answer should be in the format of 
“The dragonfruit is (X) the chair” where (X) is one of 
the below options:
Options: [“on”, “under”, “to the right of”, “to the left 
of”]
Please only output (X). ANSWER:

        LLaMA-3-LLaVA-NeXT-8B: “to the right of”
        LLaVA-NeXT-Yi-34B: “under”

Prompt:
Given the image, what is the correct spatial 
relationship between the bowl and cup in this 
image? The correct answer should be in the 
format of “The bowl is (X) the cup” where (X) is 
one of the below options:
Options: [“to the left of”, “to the right of”, 
“behind”, “in front of”]
Please only output (X). ANSWER:

       LLaMA-3-LLaVA-NeXT-8B: “to the left of”
       LLaVA-NeXT-Yi-34B: “to the left of”

GroundingDINO 

SAM 

ZoeDepth 

Prompt:
Given the image, what is the correct spatial relationship 
between the bowl and cup in this image? The correct 
answer should be in the format of “The bowl is (X) the 
cup” where (X) is one of the below options:
Options: [“to the left of”, “to the right of”, “behind”, “in 
front of”]
HINT: The depth estimator says the average depth value 
for the bowl and cup are 100 and 211, respectively, 
considering the convention that the larger value means 
closer, and smaller value means further away.
Please only output (X). ANSWER:

        LLaMA-3-LLaVA-NeXT-8B: “behind”
        LLaVA-NeXT-Yi-34B: “behind”

M
ask O

verlay 

AVG
 

Figure 2: Our pipeline overview for spatial relationship understanding prompting, shown in the top two figures, and
our depth-augmented prompting, shown in the bottom figure.

benchmarks like MMBench (Liu et al., 2023d) and059

its related benchmarks that focus on evaluating sev-060

eral MLLMs for both visual recognition tasks and061

description generation. Given the simple structure062

of spatial clauses, we can study separately the abil-063

ity of the model to ground the subject and object064

in the clause, and the effect and means of incorpo-065

rating the depth information. The contributions of066

this work can be summarized as follows:067

• Extended What’sUp spatial relationship068

dataset with depth, masks, and bounding box069

annotations.070

• Design of different prompting strategies071

through structured prompting for the evalu-072

ation of grounding and spatial reasoning.073

• Comprehensive evaluation and comparison074

of 18 VLMs and 9 MLLMs, with vari-075

ous sizes, resolutions, pre-training/instruction-076

tuning, and prompting strategies.077

2 GSR Benchmark078

We extend carefully curated What’sUp dataset (Ka-079

math et al., 2023) that is comprised of Subset A080

containing pairs of objects in unambiguous spatial081

relations, being "on", "under", "left of " or "right082

of " a table, chair, or armchair, and Subset B con-083

taining an object "in front of ", "behind", "left" or084

"right" of another object on a tabletop, and subsets085

of COCO-Spatial and GQA-Spatial with either one086

or two objects occurring, accompanied by spatial087

clauses like "on top of ", "on the bottom of ", "right088

of ", or "left of ". To study the grounding in this 089

context, we annotate the dataset with bounding box 090

coordinates and segmentation masks for all the ob- 091

jects mentioned in the captions and the depth maps 092

for the images. We leverage GroundingDINO (Liu 093

et al., 2023c) as an open-vocabulary object detector, 094

Segment Anything (SAM) (Kirillov et al., 2023) 095

for the object mask segmentation, and ZoeDepth 096

(Bhat et al., 2023) for monocular depth estimation. 097

In the next section, we explain in detail how these 098

additional annotations enable a more rigorous and 099

grounded evaluation of spatial reasoning and its 100

components2. 101

3 GSR-BENCH Experiments 102

Grounded spatial reasoning evaluation is typically 103

done using image-text matching, binary VQA, or 104

multiple-choice VQA. Further evaluations include 105

subject and/or object grounding and localization; 106

and exploring the effect of using depth information. 107

In addition to 18 VLMs that have been evaluated 108

in (Kamath et al., 2023), we focus on the probing 109

of open-source generative MLLMs like LLaVA and 110

InternVL3 using structured generation methodolo- 111

gies of Multiple choice (MC) and Template-based 112

generation (TG). In MC prompting, captions for 113

each image are represented as A, B, C, and D op- 114

tions for Subset A and Subset B, while A and B 115

options for COCO-Spatial and GQA-Spatial Sub- 116

sets. Then, the model is prompted to choose the 117

correct letter as the final answer. In TG prompting, 118

2All the code and data will be publicly available.
3InternVL is the leading model in MMBench.
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MODEL NUM SUBSET A SUBSET B COCO-SPATIAL GQA-SPATIAL TOTAL
AVERAGEPARAMS SUB-OBJ SUB-OBJ ONE-OBJ TWO-OBJ ONE-OBJ TWO-OBJ

CLIP ViT-B/32 (Radford et al., 2021) 151M 30.3 31.6 43.7 51.1 46.5 47.4 41.8
CLIP ViT-L/14 428M 26.5 25.7 49.2 49.8 46.1 48.5 41.0
NegCLIP (Yuksekgonul et al., 2022) – 32.5 36.3 47.4 46.4 45.3 46.7 42.4
RoBERTaCLIP (Kamath et al., 2023) – 25.2 25.0 46.3 53.6 50.8 48.8 41.6
CoCa (Yu et al., 2022) 2.1B 29.4 29.4 48.1 45.2 45.0 49.1 41.0
XVLM 4M (Zeng et al., 2021) 216M 40.0 23.0 58.4 65.0 62.8 54.6 50.6
XVLM 16M 216M 50.7 33.1 65.4 64.5 63.2 53.3 55.0
BLIP 14M (Li et al., 2022) 583M 38.8 38.2 54.2 53.9 49.1 50.5 47.5
BLIP 129M 583M 30.3 30.4 44.8 53.9 50.5 47.4 42.9
BLIP2-ITM (Li et al., 2023) 188M 44.9 30.4 48.3 57.7 46.0 53.6 46.8
BLIP2-ITC 188M 35.9 22.1 55.6 51.8 52.6 49.5 44.6
FLAVA (Singh et al., 2022) – 33.7 27.2 50.3 55.0 52.2 51.2 44.9

CoCa-Caption 2.1B 25.5 22.8 45.9 51.4 48.5 50.5 40.8
XVLM-Flickr30K 216M 45.1 43.4 63.1 67.3 64.7 58.1 56.9
XVLM-COCO 216M 41.7 42.4 68.4 73.6 69.1 67.0 60.4
BLIP-Flickr30K 583M 29.6 38.0 50.0 58.4 50.3 47.4 45.6
BLIP-COCO 583M 35.7 29.9 46.4 56.4 50.3 52.6 45.2
BLIP-VQA 583M 57.8 37.7 63.6 60.5 63.8 52.9 56.0

LLAVA-1.5-VICUNA 7B 25.0 31.9 90.4 66.6 91.2 62.9 61.3
LLAVA-1.5-VICUNA 13B 58.5 28.2 92.5 78.9 93.1 82.8 72.3

LLAVA-NEXT-MISTRAL 7B 37.4 22.0 81.1 60.4 89.4 57.0 57.9
LLAVA-NEXT-VICUNA 7B 38.6 26.2 95.5 71.8 97.6 79.0 68.1
LLAVA-NEXT-VICUNA 13B 75.0 20.1 95.6 78.6 97.6 84.9 75.3
LLAMA-3-LLAVA-NEXT 8B 94.2 60.8 95.1 83.9 97.8 85.2 86.1
LLAVA-NEXT-YI 34B 82.3 75.7 94.8 87.7 91.5 91.1 87.2
LLAVA-NEXT-QWEN1.5 110B 93.9 54.2 90.6 84.1 96.2 94.2 85.4

INTERN-VL-CHAT-1.5 26B 92.2 61.8 95.1 82.3 97.8 82.8 85.3

Random Chance – 25.0 25.0 50.0 50.0 50.0 50.0 41.7

Table 1: Template-based generation (TG) results using CircularEval. The first two sections come from What’sUp
(Kamath et al., 2023) results. The rest shows our LLaVA 1.5 , 1.6 , and InternVL-1.5 prompting results. Our
best-performing is shown in bold, 2nd-best with underline, and What’sUp best-performing with italic underline.

as shown in Figure 3, we append the correct format119

of the entire caption to the prompt, in which the120

spatial clause acts as the placeholder for the correct121

spatial relation option. In this way, we are able122

to leverage LLMs’ open-ended generation capabil-123

ity, handle the models’ verbosity by enforcing the124

correct answer structure, and overcome the biases125

observed in MC prompting simultaneously (See126

Figure 2).127

Sample Prompt 

Given the image, what is the correct spatial relationship 
between the subject and object in this image? The 
correct answer should be in the format of 
“The subject is (X) the object.”, where (X) is one of the 
below options:
Options: [“on”, “under”, “to the right of”, “to the left of”]
Please only output (X), without any other output. 
ANSWER:

Figure 3: TG sample prompt structure.

We ran each prompt with 4 different permuta-128

tions so as to vary the position of the answer among129

the choices in MC and the list of options in TG130

prompting. An instance is considered correct if131

all four options are predicted correctly, known as132

CircularEval, introduced in MMBench (Liu et al.,133

2023d). As opposed to the CircularEval, there 134

exists VanillaEval, which only asks the model to 135

choose the correct answer from a list of options 136

once and has been shown to be prone to bias in 137

recent studies. We first ran our experiments using 138

MC prompting and observed a significant degree 139

of bias among the models when the position of the 140

answer varied among the choices of A, B, C, or 141

D. This bias and sensitivity turned out to be even 142

more detrimental in smaller models, while larger 143

models like LLAVA-NEXT-YI-34B and LLAMA- 144

3-LLAVA-NEXT-8B showed significantly higher 145

robustness (See Figure 4 in the Appendix for de- 146

tails). This phenomenon also corroborates the find- 147

ings of multiple recent studies in LLMs (Zheng 148

et al., 2023; Pezeshkpour and Hruschka, 2023; 149

Wang et al., 2023; Xue et al., 2024; Wang et al., 150

2024). According to this observation, we opted for 151

TG prompting, accompanied by the CircularEval 152

methodology, inspired by Gemini 1.5 Pro (Reid 153

et al., 2024). See Table 1 for the TG prompting 154

results, where rows in section 1 and 2 come from 155

the What’sUp benchmark (Kamath et al., 2023), 156

section 3 refers to LLaVA-1.5 models (Liu et al., 157

2023b), section 4 to the LLaVA-NeXT models (Li 158

et al., 2024; Liu et al., 2024), and section 5 to the 159
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MODEL SUBSET A SUBSET B COCO-SPATIAL GQA-SPATIAL AVG
G-SCORESUB OBJ SUB OBJ ONE-OBJ SUB OBJ ONE-OBJ SUB OBJ

LLAVA-1.5-VICUNA-7B 9.7 79.4 51.5 25.7 47.4 49.8 48.0 31.9 55.0 47.8 44.62
LLAVA-1.5-VICUNA-13B 13.8 86.1 77.4 32.3 60.9 61.8 61.0 42.1 72.2 59.8 56.74

LLAVA-NEXT-VICUNA-7B 14.1 99.0 95.8 66.7 81.9 84.5 77.7 45.5 60.1 56.0 68.13
LLAVA-NEXT-MISTRAL-7B 13.1 82.3 93.9 60.0 87.1 86.8 85.7 69.2 85.9 81.8 74.58
LLAVA-NEXT-VICUNA-13B 15.3 84.0 95.3 67.6 87.1 90.2 83.9 69.6 85.9 80.4 75.93
LLAMA-3-LLAVA-NEXT-8B 19.2 99.3 96.6 73.8 85.7 87.5 83.2 69.0 84.5 80.4 77.92
LLAVA-NEXT-YI-34B 21.1 100.0 97.8 78.9 83.7 85.7 81.4 70.0 88.0 83.5 79.01
LLAVA-NEXT-QWEN1.5-110B 29.4 98.5 98.8 80.1 88.7 88.2 86.4 74.9 86.9 84.2 81.61

GroundingDINO [avg(ρ)] 58.8 92.0 78.1 70.1 62.3 62.8 59.3 59.4 70.4 65.2 67.84
GroundingDINO [Σ(ρ ≥ 0.5)/t] 68.9 100.0 90.0 88.7 71.0 73.6 66.4 59.1 76.3 71.1 76.51

Table 2: Grounding/Localization results. AVG G-SCORE refers to the mean accuracy of IoU ≥ 0.5. The bottom
two rows refer to the GroundingDINO mean confidence scores (ρ), and mean accuracy of ρ ≥ 0.5, respectively.

InternVL-1.5 results (Chen et al., 2024).160

Grounding/Localization Evaluation. This ex-161

periment aims to measure the MLLMs grounding162

ability of the objects mentioned in the captions. Re-163

cent studies like (Rajabi and Kosecka, 2023) on164

Visual Spatial Reasoning (VSR) benchmark (Liu165

et al., 2023a) has demonstrated that there exist mul-166

tiple cases where the VLM correctly predicts the167

binary ITM label of 1 using the holistic represen-168

tations of the image and caption, while the model169

fails to localize the subject and object correctly.170

Our experiments aim to quantify these type of be-171

haviors in MLLMs. We prompt MLLMs to ex-172

tract the normalized bounding box coordinates for173

the caption’s objects as "Give me the bounding174

box coordinates for the {object}" and com-175

pute the IoU between the model’s output and the176

GroundingDINO output for each object, assigning177

the binary accuracy of 1 if IoU ≥ 0.5, otherwise 0.178

See Table 2 for the results.179

MODEL
W/O

DEPTH
WITH
DEPTH

INTERNVL-CHAT-1.5-26B 26.5 40.7
LLAMA-3-LLAVA-NEXT-8B 53.4 60.3
LLAVA-NEXT-YI-34B 64.7 81.9

Table 3: DAP results for behind & in front of cases.

Depth-Augmented Prompting (DAP). The ex-180

periments in Table 1 revealed that Subset B is the181

lowest-performing, with many instances requiring182

reasoning about "behind" and "in front of " spatial183

clauses. We propose to incorporate the depth val-184

ues of subject and object into the prompt, as a185

hint to the model, utilizing our augmented bench-186

mark annotations, depicted in Figure 2. We show187

that this minimal change improves the accuracy188

of top-3 performing models in these instances of189

Subset B, reported by CircularEval in Table 3.190

4 Discussion 191

According to Table 1 and 2, there is a positive 192

correlation, even stronger in grounding, between 193

scaling the LLM size & visual resolution, and the 194

overall accuracy in both tasks. Conversely, there 195

exist multiple exceptions, which are inevitable to 196

concretely justify due to various intervening fac- 197

tors, such as (1) differences in training/fine-tuning 198

& architectures and (2) release date and further 199

instruction-tuning of the LLMs, like LLAMA-3- 200

8B, which has the most-recent knowledge cut-off. 201

Grounding small objects, which refers to the 202

SUB column in Subset A, seems challenging for 203

all, and worst in smaller models, according to Table 204

2. We also observed a plateau in Table 1, especially 205

in QWEN-1.5-110B, which is the largest ever re- 206

leased open-source MLLM at the moment. This 207

could be a sign of saturation where the reasoning 208

capability flattens out, although scaling still im- 209

proves grounding, shown in Table 2. 210

5 Conclusions 211

In this work, we introduce a new benchmark 212

for grounded spatial reasoning by enriching the 213

What’sUp dataset with additional supervision for a 214

more fine-grained assessment of MLLM’s spatial 215

understanding. We also propose a new compo- 216

sitional evaluation methodology for (1) a stricter 217

assessment of spatial relationship understand- 218

ing through CircularEval, and (2) measuring the 219

model’s grounding capability using the labels we 220

generate through our cost-effective auto-annotation 221

pipeline. Our evaluations reveal the superiority of 222

LLaVA MLLMs over the best-performing VLMs 223

evaluated in What’sUp, like XVLM, by a signif- 224

icant margin of ∼ +26.8%. Future works may 225

investigate the remaining gap between the top open- 226

source MLLMs and human-level accuracy. 227
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Limitations228

Small-scale Dataset: Our split sizes remain the229

same as the What’sUp dataset in which Subset A230

has 412, Subset B has 408, COCO-Spatial-One has231

2247, COCO-Spatial-Two has 440, GQA-Spatial-232

One has 1160, and GQA-Spatial-Two has 291 in-233

stances. Although this benchmark includes 4,958234

image instances in total, each instance covering one235

or two objects, with various domain shifts in each 6236

split, it is smaller than already existing benchmarks237

related to spatial reasoning, like Visual Genome238

(Krishna et al., 2017), GQA (Hudson and Manning,239

2019), VSR (Liu et al., 2022), SpatialSense (Yang240

et al., 2019), MMBench (Liu et al., 2023d), etc.241

The reason is that this work aims to provide a care-242

fully curated benchmark for spatial relationship243

understanding evaluation in a controlled setting244

to abstract away intervening factors that make the245

evaluations noisy.246

Limited Spatial Prepositions: Following the247

What’sUp dataset, our benchmark is also confined248

to the primitive spatial clauses of on, under, behind,249

in front of, to the left of, to the right of, below and250

above, when having two objects involved in the251

caption, and, on the top, on the bottom, on the left252

and on the right when having only one object in253

the caption, like in COCO-Spatial-One and GQA-254

Spatial-One.255

Lack of Robustness in MC Prompting: In ad-256

dition to the similar findings of MC noisiness in257

LLMs that we discussed earlier, we hypothesize258

that the higher degree of variance in multiple-259

choice results in the last two subsets (COCO and260

GQA), which is more significant in the smaller261

models, could be due to the language domain dis-262

tribution shift. Most of the LLMs and MLLMs263

are being trained and evaluated with 4 options in264

the multiple-choice settings. Conversely, in the265

last two subsets, we have two captions per image,266

which means we only provide options A and B to267

the model in the prompt instead of ABCD without268

any fine-tuning for this task or this specific type of269

prompting.270

Intern-VL-1.5 Poor Grounding Observation:271

An unexpected, significant noisiness in the output272

of grounding/localization prompting of InternVL-273

1.5 model prevented us from analyzing and report-274

ing the results for this model, which requires fur-275

ther investigation since a similar behavior has been276

observed through our interaction with the InternVL- 277

1.5 demo, as well. 278

Depth Augmentation Nuances: The issue we 279

noticed in the DAP experiment was the distraction 280

the depth hint can cause in cases where multiple 281

correct relationships hold in the image. For in- 282

stance, object A can be to the left of object B, and 283

also in front of object B, at the same time. So, in 284

these ambiguous cases, incorporating depth could 285

make the model’s decision biased towards the in 286

front of preposition, while the ground-truth might 287

be to the left of in this case. Therefore, we believe 288

that trying both prompts, with and w/o depth hint, 289

would be helpful for disambiguation in such cases. 290

No Human Annotation: Due to the resource 291

constraints, our extended benchmark relies on the 292

pseudo-labels we generate using state-of-the-art, 293

off-the-shelf models like GroundingDINO, SAM, 294

and ZoeDepth. Future works could incorporate hu- 295

man inspection and labeling for further robustness 296

in annotations. 297
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A Appendix442

The appendix is organized as follows:443

• Figure 4 demonstrates the biases of multiple-444

choice (MC) prompting.445

• Figures 5 - 11 depict the distributions of ob-446

jects occurring in the captions.447

• Figure 12 shows sample failures in grounding448

small objects in Subset A.449
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Figure 4: Sensitivity of the models to different permutations of choice order, in the multiple-choice (MC) experiment,
which is more significant in the smaller models, and when having two choices of A and B instead of regular 4-choice
of A, B, C, and D. LLAVA-NEXT-YI-34B demonstrates an excellent robustness against this issue.

Figure 5: Subset A - subjects and objects distributions.

Figure 6: Subset B - subjects and objects distributions.

Figure 7: COCO Spatial One - objects distribution.
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Figure 8: COCO Spatial Two - subjects distribution.

Figure 9: COCO Spatial Two - objects distribution.

Figure 10: GQA Spatial Two - subjects distribution.

Figure 11: GQA Spatial Two - objects distribution.
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(a) toy cactus on chair (b) wineglass under armchair

(c) tape under armchair (d) sunglasses on table

(e) spatula on chair (f) remote on armchair

(g) orange right of armchair (h) ball of yarn left of table

(i) wineglass on table (j) banjo under armchair

Figure 12: Sample failures in small objects grounding (i.e., IoU < 0.5), which refers to the SUB column results of
Subset A in Table 2. The pseudo-ground-truth bounding box, which is the GroudningDINO output, is indicated
in green , and the output of LLAVA-NEXT-QWEN-1.5-110B, which is the best-performing MLLM in our

grounding/localization experiment, is demonstrated in yellow .
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