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Abstract

The ability to understand and reason about spa-
tial relationships between objects in images
is an important component of visual reason-
ing. This skill rests on the ability to recognize
and localize objects of interest and determine
their spatial relation. Early vision and language
models (VLMs) have been shown to struggle
to recognize spatial relations. We extend the
previously released What’sUp dataset (Kamath
et al., 2023) and propose a novel comprehen-
sive evaluation for spatial relationship under-
standing that highlights the strengths and weak-
nesses of 27 different models. In addition
to the VLMs evaluated in What’sUp, our ex-
tensive evaluation encompasses 3 classes of
Multimodal LLMs (MLLMs) that vary in their
parameter sizes (ranging from 7B to 110B),
training/instruction-tuning methods, and visual
resolution to benchmark their performances
and scrutinize the scaling laws in this task.

1 Introduction

Earlier efforts for benchmarking vision and lan-
guage models (VLMs) were developed for cross-
modal and/or dual-encoder, end-to-end models,
like LXMERT (Tan and Bansal, 2019), CLIP (Rad-
ford et al., 2021), BLIP (Li et al., 2022), with the
focus on downstream tasks performances such as
VQA (Antol et al., 2015), GQA (Hudson and Man-
ning, 2019), referring expressions (Kazemzadeh
et al., 2014), image-text matching or image/text
retrieval. While spatial relations are often part of
VQA datasets, the evaluation of spatial reasoning
is often conflated with grounding referring expres-
sions or objects and their attributes!. To isolate
these issues, authors in (Kamath et al., 2023) in-
troduced a new benchmark that focuses on spatial
relationship understanding only. Using image-text
matching evaluation methodology, they showed

'VQA example question may be: “Is there a woman to the
left of the person that is wearing a wetsuit?”
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Figure 1: LLAMA-3-LLAVA-NEXT-8B achieves the
overall accuracy of 86.1%, compared to 60.4% by
XVLM-COCO, in What’sUp benchmark, reaching the
best trade-off between accuracy and parameters size,
since it performs only 1.1% lower than LLAVA-NEXT-
34B, which has x4.25 number of parameters.

that contrastive models such as CLIP, BLIP, and
their follow-up variants struggle to understand spa-
tial relations with the best accuracy around 61%.

Recent advances in generative large multi-modal
models have shown remarkable visual knowledge
and reasoning capabilities. We revisit the spatial re-
lationship understanding in the context of MLLMs
and extend the existing What’sUp benchmark (Ka-
math et al., 2023) to include bounding box anno-
tations and depth information. Compositional spa-
tial relationship understanding requires success-
ful recognition of objects and determining their
locations. Furthermore, the knowledge of scene
depth helps to disambiguate certain relationships
(e.g., "in front of " or "behind"). The availability
of this information can support a grounded under-
standing of spatial relations and will contribute
to the fine-grained evaluation of large generative
MLLMs, which lag behind their earlier counter-
parts. A few exceptions are multi-task multi-modal



Prompt:
Given the image, what is the correct spatial
relationship between the dragonfruit and chair in th

“The dragonfruit is (X) the chair” where (X) is one of
the below options:

Options: [“on”, “under”, “to the right of”, “to the left
of"]

Please only output (X). ANSWER:

+/ LLaMA-3-LLaVA-NeXT-8B: “to the right of”

¥ LLaVA-NeXT-Yi-34B: “under”
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is

image? The correct answer should be in the format of

Prompt:

Given the image, what is the correct spatial
relationship between the bowl and cup in this
image? The correct answer should be in the
format of “The bowl is (X) the cup” where (X) is
one of the below options:

Options: [“to the left of”, “to the right of”",
“behind”, “in front of"]

Please only output (X). ANSWER:

¥ LLaMA-3-LLaVA-NeXT-8B: “to the left of”
X LLaVA-NeXT-Yi-34B: “to the left of”

Subset B + Depth

GroundingDINO

ZoeDepth

.
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Prompt: B

Given the image, what is the correct spatial relationship
between the bowl and cup in this image? The correct
answer should be in the format of “The bowl s (X) the
cup” where (X) is one of the below options:

Options: [“to the left of”, “to the right of”, “behind”, “in
front of "]

HINT: The depth estimator says the average depth value
for the bowl and cup are 100 and 211, respectively,
considering the convention that the larger value means
closer, and smaller value means further away.

Please only output (X). ANSWER:

+/ LLaMA-3-LLaVA-NeXT-8B: “behind”
+/ LLaVA-NeXT-Yi-34B: “behind”

J

Figure 2: Our pipeline overview for spatial relationship understanding prompting, shown in the top two figures, and
our depth-augmented prompting, shown in the bottom figure.

benchmarks like MMBench (Liu et al., 2023d) and
its related benchmarks that focus on evaluating sev-
eral MLLMs for both visual recognition tasks and
description generation. Given the simple structure
of spatial clauses, we can study separately the abil-
ity of the model to ground the subject and object
in the clause, and the effect and means of incorpo-
rating the depth information. The contributions of
this work can be summarized as follows:

* Extended What’sUp spatial relationship
dataset with depth, masks, and bounding box
annotations.

Design of different prompting strategies
through structured prompting for the evalu-
ation of grounding and spatial reasoning.

Comprehensive evaluation and comparison
of 18 VLMs and 9 MLLMs, with vari-
ous sizes, resolutions, pre-training/instruction-
tuning, and prompting strategies.

2 GSR Benchmark

We extend carefully curated What’sUp dataset (Ka-
math et al., 2023) that is comprised of Subset A
containing pairs of objects in unambiguous spatial
relations, being "on", "under", "left of " or "right
of" a table, chair, or armchair, and Subset B con-
taining an object "in front of "', "behind", "left" or
"right" of another object on a tabletop, and subsets
of COCO-Spatial and GQA-Spatial with either one
or two objects occurring, accompanied by spatial

clauses like "on top of ", " right

n.on

on the bottom of ",

of ", or "left of". To study the grounding in this
context, we annotate the dataset with bounding box
coordinates and segmentation masks for all the ob-
jects mentioned in the captions and the depth maps
for the images. We leverage GroundingDINO (Liu
et al., 2023c) as an open-vocabulary object detector,
Segment Anything (SAM) (Kirillov et al., 2023)
for the object mask segmentation, and ZoeDepth
(Bhat et al., 2023) for monocular depth estimation.
In the next section, we explain in detail how these
additional annotations enable a more rigorous and
grounded evaluation of spatial reasoning and its
componentsz.

3 GSR-BENCH Experiments

Grounded spatial reasoning evaluation is typically
done using image-text matching, binary VQA, or
multiple-choice VQA. Further evaluations include
subject and/or object grounding and localization;
and exploring the effect of using depth information.
In addition to 18 VLMs that have been evaluated
in (Kamath et al., 2023), we focus on the probing
of open-source generative MLLMs like LLaVA and
InternVL? using structured generation methodolo-
gies of Multiple choice (MC) and Template-based
generation (TG). In MC prompting, captions for
each image are represented as A, B, C, and D op-
tions for Subset A and Subset B, while A and B
options for COCO-Spatial and GQA-Spatial Sub-
sets. Then, the model is prompted to choose the
correct letter as the final answer. In TG prompting,

2All the code and data will be publicly available.
3InternVL is the leading model in MMBench.



MODEL NuMm SUBSET A SUBSET B COCO-SPATIAL GQA-SPATIAL TOTAL
PARAMS | SUB-OBJI | SUB-OBJ | ONE-OB]  TWO-OBJ | ONE-OBJ  TWO-OBJ | AVERAGE
CLIP ViT-B/32 (Radford et al., 2021) 151M 30.3 31.6 43.7 51.1 46.5 474 41.8
CLIP ViT-L/14 428M 26.5 25.7 49.2 49.8 46.1 48.5 41.0
NegCLIP (Yuksekgonul et al., 2022) - 32.5 36.3 474 46.4 45.3 46.7 424
RoBERTaCLIP (Kamath et al., 2023) - 25.2 25.0 46.3 53.6 50.8 48.8 41.6
CoCa (Yu et al., 2022) 2.1B 294 294 48.1 45.2 45.0 49.1 41.0
XVLM 4M (Zeng et al., 2021) 216M 40.0 23.0 58.4 65.0 62.8 54.6 50.6
XVLM 16M 216M 50.7 33.1 65.4 64.5 63.2 53.3 55.0
BLIP 14M (Li et al., 2022) 583M 38.8 38.2 542 539 49.1 50.5 47.5
BLIP 129M 583M 30.3 30.4 44.8 53.9 50.5 474 429
BLIP2-ITM (Li et al., 2023) 188M 44.9 30.4 48.3 57.7 46.0 53.6 46.8
BLIP2-ITC 188M 359 22.1 55.6 51.8 52.6 49.5 44.6
FLAVA (Singh et al., 2022) - 33.7 272 50.3 55.0 52.2 51.2 449
CoCa-Caption 2.1B 25.5 22.8 459 514 48.5 50.5 40.8
XVLM-Flickr30K 216M 45.1 43.4 63.1 67.3 64.7 58.1 56.9
XVLM-COCO 216M 41.7 24 68.4 73.6 69.1 67.0 60.4
BLIP-Flickr30K 583M 29.6 38.0 50.0 58.4 50.3 474 45.6
BLIP-COCO 583M 35.7 29.9 46.4 56.4 50.3 52.6 45.2
BLIP-VQA 583M 57.8 37.7 63.6 60.5 63.8 529 56.0
LLAVA-1.5-VICUNA 7B 25.0 31.9 90.4 66.6 91.2 62.9 61.3
LLAVA-1.5-VICUNA 13B ‘ 58.5 ‘ 28.2 ‘ 92.5 78.9 93.1 82.8 72.3
LLAVA-NEXT-MISTRAL 7B 374 22.0 81.1 60.4 89.4 57.0 57.9
LLAVA-NEXT-VICUNA 7B 38.6 26.2 95.5 71.8 97.6 79.0 68.1
LLAVA-NEXT-VICUNA 13B 75.0 20.1 95.6 78.6 97.6 84.9 75.3
LLAMA-3-LLAVA-NEXT 8B 94.2 60.8 95.1 83.9 97.8 85.2 86.1
LLAVA-NEXT-Y1 34B 82.3 75.7 94.8 87.7 91.5 91.1 87.2
LLAVA-NEXT-QWENL.5 110B 93.9 542 90.6 84.1 96.2 94.2 85.4
INTERN-VL-CHAT-1.5 26B | 92.2 | 618 | 951 823 | 978 828 | 853
Random Chance - | 250 | 250 | 500 500 | 500 500 | 417

Table 1: Template-based generation (TG) results using CircularEval. The first two sections come from What’sUp
(Kamath et al., 2023) results. The rest shows our LLaVA 1.5, 1.6, and InternVL-1.5 prompting results. Our
best-performing is shown in bold, 2nd-best with underline, and What’sUp best-performing with italic underline.

as shown in Figure 3, we append the correct format
of the entire caption to the prompt, in which the
spatial clause acts as the placeholder for the correct
spatial relation option. In this way, we are able
to leverage LLMs’ open-ended generation capabil-
ity, handle the models’ verbosity by enforcing the
correct answer structure, and overcome the biases
observed in MC prompting simultaneously (See
Figure 2).

Sample Prompt \

Given the image, what is the correct spatial relationship
between the subject and object in this image? The
correct answer should be in the format of

“The subject is (X) the object.”, where (X) is one of the
below options:

Options: [“on”, “under”, “to the right of”, “to the left of"]
Please only output (X), without any other output.
ANSWER:

Figure 3: TG sample prompt structure.

We ran each prompt with 4 different permuta-
tions so as to vary the position of the answer among
the choices in MC and the list of options in TG
prompting. An instance is considered correct if
all four options are predicted correctly, known as
CircularEval, introduced in MMBench (Liu et al.,

2023d). As opposed to the CircularEval, there
exists VanillaEval, which only asks the model to
choose the correct answer from a list of options
once and has been shown to be prone to bias in
recent studies. We first ran our experiments using
MC prompting and observed a significant degree
of bias among the models when the position of the
answer varied among the choices of A, B, C, or
D. This bias and sensitivity turned out to be even
more detrimental in smaller models, while larger
models like LLAVA-NEXT-Y1-34B and LLAMA-
3-LLAVA-NEXT-8B showed significantly higher
robustness (See Figure 4 in the Appendix for de-
tails). This phenomenon also corroborates the find-
ings of multiple recent studies in LLMs (Zheng
et al., 2023; Pezeshkpour and Hruschka, 2023;
Wang et al., 2023; Xue et al., 2024; Wang et al.,
2024). According to this observation, we opted for
TG prompting, accompanied by the CircularEval
methodology, inspired by Gemini 1.5 Pro (Reid
et al., 2024). See Table 1 for the TG prompting
results, where rows in section 1 and 2 come from
the What’sUp benchmark (Kamath et al., 2023),
section 3 refers to LLaVA-1.5 models (Liu et al.,
2023Db), section 4 to the LLaVA-NeXT models (Li
et al., 2024; Liu et al., 2024), and section 5 to the



MODEL SUBSET A SUBSET B COCO-SPATIAL GQA-SPATIAL AVG
SuB OBJ | SuB  OBJ | ONE-OBJ | SUB  OBJ | ONE-OBJ | SUB  OBJ | G-SCORE
LLAVA-1.5-VICUNA-7B 9.7 79.4 51.5 25.7 47.4 49.8 48.0 31.9 55.0 47.8 44.62
LLAVA-1.5-VICUNA-13B 13.8 86.1 77.4 323 60.9 61.8 61.0 42.1 722 59.8 56.74
LLAVA-NEXT-VICUNA-7B 14.1 99.0 95.8 66.7 81.9 84.5 77.7 45.5 60.1 56.0 68.13
LLAVA-NEXT-MISTRAL-7B 13.1 82.3 93.9 60.0 87.1 86.8 85.7 69.2 85.9 81.8 74.58
LLAVA-NEXT-VICUNA-13B 15.3 84.0 95.3 67.6 87.1 90.2 83.9 69.6 85.9 80.4 75.93
LLAMA-3-LLAVA-NEXT-8B 19.2 99.3 96.6 73.8 85.7 87.5 83.2 69.0 84.5 80.4 77.92
LLAVA-NEXT-YI-34B 211 1000 | 97.8  78.9 83.7 857 814 70.0 880  83.5 79.01
LLAVA-NEXT-QWENI1.5-110B 294 98.5 98.8 80.1 88.7 88.2 86.4 74.9 86.9 84.2 81.61
GroundingDINO [avg(p)] 58.8 92.0 78.1 70.1 62.3 62.8 59.3 59.4 70.4 65.2 67.84
GroundingDINO [X(p > 0.5)/t] 68.9 100.0 90.0 88.7 71.0 73.6 66.4 59.1 76.3 71.1 76.51

Table 2: Grounding/Localization results. AVG G-SCORE refers to the mean accuracy of IoU > 0.5. The bottom
two rows refer to the GroundingDINO mean confidence scores (p), and mean accuracy of p > 0.5, respectively.

InternVL-1.5 results (Chen et al., 2024).

Grounding/Localization Evaluation. This ex-
periment aims to measure the MLLMs grounding
ability of the objects mentioned in the captions. Re-
cent studies like (Rajabi and Kosecka, 2023) on
Visual Spatial Reasoning (VSR) benchmark (Liu
et al., 2023a) has demonstrated that there exist mul-
tiple cases where the VLM correctly predicts the
binary I'TM label of 1 using the holistic represen-
tations of the image and caption, while the model
fails to localize the subject and object correctly.
Our experiments aim to quantify these type of be-
haviors in MLLMs. We prompt MLLMs to ex-
tract the normalized bounding box coordinates for
the caption’s objects as "Give me the bounding
box coordinates for the {object}" and com-
pute the IoU between the model’s output and the
GroundingDINO output for each object, assigning
the binary accuracy of 1 if IoU > 0.5, otherwise 0.
See Table 2 for the results.

w/o WITH
MODEL
DEPTH  DEPTH
INTERNVL-CHAT-1.5-26B 26.5 40.7
LLAMA-3-LLAVA-NEXT-8B 534 60.3
LLAVA-NEXT-YI1-34B 64.7 81.9

Table 3: DAP results for behind & in front of cases.

Depth-Augmented Prompting (DAP). The ex-
periments in Table 1 revealed that Subset B is the
lowest-performing, with many instances requiring
reasoning about "behind" and "in front of " spatial
clauses. We propose to incorporate the depth val-
ues of subject and object into the prompt, as a
hint to the model, utilizing our augmented bench-
mark annotations, depicted in Figure 2. We show
that this minimal change improves the accuracy
of top-3 performing models in these instances of
Subset B, reported by CircularEval in Table 3.

4 Discussion

According to Table 1 and 2, there is a positive
correlation, even stronger in grounding, between
scaling the LLLM size & visual resolution, and the
overall accuracy in both tasks. Conversely, there
exist multiple exceptions, which are inevitable to
concretely justify due to various intervening fac-
tors, such as (1) differences in training/fine-tuning
& architectures and (2) release date and further
instruction-tuning of the LLMs, like LLAMA-3-
8B, which has the most-recent knowledge cut-off.

Grounding small objects, which refers to the
SUB column in Subset A, seems challenging for
all, and worst in smaller models, according to Table
2. We also observed a plateau in Table 1, especially
in QWEN-1.5-110B, which is the largest ever re-
leased open-source MLLM at the moment. This
could be a sign of saturation where the reasoning
capability flattens out, although scaling still im-
proves grounding, shown in Table 2.

5 Conclusions

In this work, we introduce a new benchmark
for grounded spatial reasoning by enriching the
What’sUp dataset with additional supervision for a
more fine-grained assessment of MLLM’s spatial
understanding. We also propose a new compo-
sitional evaluation methodology for (1) a stricter
assessment of spatial relationship understand-
ing through CircularEval, and (2) measuring the
model’s grounding capability using the labels we
generate through our cost-effective auto-annotation
pipeline. Our evaluations reveal the superiority of
LLaVA MLLMs over the best-performing VLMs
evaluated in What’sUp, like XVLM, by a signif-
icant margin of ~ +26.8%. Future works may
investigate the remaining gap between the top open-
source MLLMs and human-level accuracy.



Limitations

Small-scale Dataset: Our split sizes remain the
same as the What’sUp dataset in which Subset A
has 412, Subset B has 408, COCO-Spatial-One has
2247, COCO-Spatial-Two has 440, GQA-Spatial-
One has 1160, and GQA-Spatial-Two has 291 in-
stances. Although this benchmark includes 4,958
image instances in total, each instance covering one
or two objects, with various domain shifts in each 6
split, it is smaller than already existing benchmarks
related to spatial reasoning, like Visual Genome
(Krishna et al., 2017), GQA (Hudson and Manning,
2019), VSR (Liu et al., 2022), SpatialSense (Yang
et al., 2019), MMBench (Liu et al., 2023d), etc.
The reason is that this work aims to provide a care-
fully curated benchmark for spatial relationship
understanding evaluation in a controlled setting
to abstract away intervening factors that make the
evaluations noisy.

Limited Spatial Prepositions: Following the
What’sUp dataset, our benchmark is also confined
to the primitive spatial clauses of on, under, behind,
in front of, to the left of, to the right of, below and
above, when having two objects involved in the
caption, and, on the top, on the bottom, on the left
and on the right when having only one object in
the caption, like in COCO-Spatial-One and GQA-
Spatial-One.

Lack of Robustness in MC Prompting: In ad-
dition to the similar findings of MC noisiness in
LLMs that we discussed earlier, we hypothesize
that the higher degree of variance in multiple-
choice results in the last two subsets (COCO and
GQA), which is more significant in the smaller
models, could be due to the language domain dis-
tribution shift. Most of the LLMs and MLLMs
are being trained and evaluated with 4 options in
the multiple-choice settings. Conversely, in the
last two subsets, we have two captions per image,
which means we only provide options A and B to
the model in the prompt instead of ABCD without
any fine-tuning for this task or this specific type of
prompting.

Intern-VL-1.5 Poor Grounding Observation:
An unexpected, significant noisiness in the output
of grounding/localization prompting of InternVL-
1.5 model prevented us from analyzing and report-
ing the results for this model, which requires fur-
ther investigation since a similar behavior has been

observed through our interaction with the InternVL-
1.5 demo, as well.

Depth Augmentation Nuances: The issue we
noticed in the DAP experiment was the distraction
the depth hint can cause in cases where multiple
correct relationships hold in the image. For in-
stance, object A can be fo the left of object B, and
also in front of object B, at the same time. So, in
these ambiguous cases, incorporating depth could
make the model’s decision biased towards the in
front of preposition, while the ground-truth might
be to the left of in this case. Therefore, we believe
that trying both prompts, with and w/o depth hint,
would be helpful for disambiguation in such cases.

No Human Annotation: Due to the resource
constraints, our extended benchmark relies on the
pseudo-labels we generate using state-of-the-art,
off-the-shelf models like GroundingDINO, SAM,
and ZoeDepth. Future works could incorporate hu-
man inspection and labeling for further robustness
in annotations.
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A Appendix
The appendix is organized as follows:

* Figure 4 demonstrates the biases of multiple-
choice (MC) prompting.

* Figures 5 - 11 depict the distributions of ob-
jects occurring in the captions.

* Figure 12 shows sample failures in grounding
small objects in Subset A.
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Figure 4: Sensitivity of the models to different permutations of choice order, in the multiple-choice (MC) experiment,

which is more significant in the smaller models, and when having two choices of A and B instead of regular 4-choice

of A, B, C, and D. LLAVA-NEXT-Y1-34B demonstrates an excellent robustness against this issue.
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Figure 5: Subset A - subjects and objects distributions.
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Figure 6: Subset B - subjects and objects distributions.
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Figure 7: COCO Spatial One - objects distribution.
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Figure 10
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(b) wineglass under armchair

(c) tape under armchair (d) sunglasses on table

(f) remote on armchair

(h) ball of yarn left of table

(i) wineglass on table (j) banjo under armchair

Figure 12: Sample failures in small objects grounding (i.e., IoU < 0.5), which refers to the SUB column results of
Subset A in Table 2. The pseudo-ground-truth bounding box, which is the GroudningDINO output, is indicated
in -, and the output of LLAVA-NEXT-QWEN-1.5-110B, which is the best-performing MLLM in our

grounding/localization experiment, is demonstrated in yellow .

10



	Introduction
	GSR Benchmark
	GSR-Bench Experiments
	Discussion
	Conclusions
	Appendix

