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Abstract
Causal discovery aims to identify causal rela-
tionships from observational data. Recently,
optimization-based causal discovery methods
have attracted extensive attention in the liter-
ature due to their efficiency in handling high-
dimensional problems. However, we observe that
optimization-based methods often perform well
on certain problems but struggle with others. This
paper identifies a specific characteristic of causal
structural equations that determines the difficulty
of identification in causal discovery and, in turn,
the performance of optimization-based methods.
We conduct an in-depth study of the additive noise
model (ANM) and propose to further divide iden-
tifiable problems into strongly and weakly identifi-
able types based on the difficulty of identification.
We also provide a sufficient condition to distin-
guish the two categories. Inspired by these find-
ings, this paper further proposes GENE, a generic
method for addressing strongly and weakly iden-
tifiable problems in a unified way under the ANM
assumption. GENE adopts an order-based search
framework that incorporates conditional indepen-
dence tests into order fitness evaluation, ensuring
effectiveness on weakly identifiable problems. In
addition, GENE restricts the dimensionality of
the effect variables to ensure scale invariance, a
property crucial for practical applications. Exper-
iments demonstrate that GENE is uniquely effec-
tive in addressing weakly identifiable problems
while also remaining competitive with state-of-
the-art causal discovery algorithms for strongly
identifiable problems.
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1. Introduction
Discovering causal relationships behind variables is crucial
to data science and plays a key role in a wide range of fields,
including telecommunication network fault diagnosis (Li
et al., 2024), education (Schochet, 2013) and human ethol-
ogy (Cai et al., 2017). While randomized controlled trials
(RCTs) are considered the gold standard for studying causal
relationships, they are usually expensive or even impossible
to implement. This limitation motivates causal discovery
methods that can infer causal relationships from observa-
tional data. Recent advances in this field have made causal
discovery an increasingly vital topic (Spirtes et al., 2000;
Pearl, 2009).

Optimization-based causal discovery is a class of methods
that aims to identify causal relationships from observational
data by leveraging optimization techniques. The core idea
behind optimization-based causal discovery is to first assign
a fitness score to a given causal structure based on how
well it fits the observed data. Optimization techniques are
then employed to search for causal graphs with high fitness
scores, thereby facilitating the discovery of causal relation-
ships. In recent years, continuous-optimization-based causal
discovery methods (Zheng et al., 2018; 2020; Lachapelle
et al., 2020; Yu et al., 2019; Liu et al., 2024) have garnered
extensive attention in the literature due to their capability
to deal with high-dimensional problems efficiently, making
them particularly appealing for large-scale data analysis.

However, we observe that even under the same causal
model assumption, namely, the additive noise model
(ANM) (Hoyer et al., 2008), optimization-based causal dis-
covery may perform very differently. Figure 1 presents two
pairs of such examples (a) and (b), where in each pair, the
causal models above and below are both under ANM and
share the same causal structures. For Figure 1 (a.1), where
y = x2 + N and N is a noise term, it is easy to identify
the true causal structure using only regression, as regression
along the correct causal direction fits well but not vice versa.
In contrast, for Figure 1 (a.2), where y = x3+x+N , regres-
sion generally fits well for both directions. Distinguishing
the fitting difference between the two directions may re-
quire an extremely large amount of data; otherwise, a wrong
causal graph is likely to be learned with limited samples. In
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(a.2) � , weakly identifiable

(a.1) � , strongly identifiable

(b.2) � �

, weakly identifiable

(b.1) � � , strongly identifiable

Figure 1. Examples of the strongly and the weakly identifiable
causal models. Here N is a Gaussian noise term.

such cases, additional properties must be utilized (Hoyer
et al., 2008; Zhang & Hyvärinen, 2009). Similar situations
apply to the examples in Figure 1 (b.1) and (b.2). These ex-
amples demonstrate that even for identifiable causal models
with the same causal structure, the difficulty of identification
can vary significantly.

We highlight that this difference arises from the existence
of implicit functions within the structural equations of the
causal model. These implicit functions categorize problems
into strongly and weakly identifiable types. Additionally,
we derive a sufficient condition to distinguish between these
categories. Specifically, strongly identifiable models are
easier to identify, as they yield a clear distinction in the re-
gression process metrics between different causal directions.
Conversely, weakly identifiable models lack this distinction
due to the existence of implicit functions, making them more
difficult to identify. With limited samples, additional criteria,
such as residual independence (Hoyer et al., 2008; Zhang &
Hyvärinen, 2009), are necessary in the identification process
of weakly identifiable models.

Unfortunately, the strength of identifiability can rarely be
known in advance. To address both strongly identifiable
and weakly identifiable problems in a unified manner, this
paper proposes GENE: a generic causal discovery method
for both strongly and weakly identifiable problems under
ANM. GENE employs an order-based search framework
that integrates conditional independence tests into the fit-
ness evaluation of the order, which is vital for enhancing
its effectiveness in addressing weakly identifiable problems.
Interestingly, our results align well with (Reisach et al.,
2021), which points out that certain continuous optimiza-
tion methods may suffer from data rescaling processes, such
as data standardization and changing the units of variables;
furthermore, we reveal that this limitation of continuous
optimization methods arises because their optimization pro-
cess does not explicitly distinguish between cause and effect
in causal relationships, making it unable to control the data
scale during fitting. In contrast, GENE restricts the dimen-

sionality of the effect variable by exploiting R2 instead of
mean square error (MSE) during order estimation. By doing
so, it ensures scale invariance 1, meaning it performs sta-
bly under different data scales, which is a crucial attribute
in practical applications. By leveraging these advantages,
GENE provides a robust solution for causal discovery across
a wide range of scenarios. Refer to Appendix A for a de-
tailed review of related work.

Extensive experiments are conducted on both synthetic and
real-world Sachs (Sachs et al., 2005) datasets. The results
indicate that, compared to the state-of-the-art algorithms
(SOTAs), only GENE is effective for weakly identifiable
problems, while for the strong ones, GENE remains compet-
itive. It is worth noting that, on the real-world Sachs dataset,
GENE is significantly superior to SOTAs.

2. Preliminaries
Before delving into the specifics of our approach, we first
outline the foundational concepts for understanding causal
discovery, identifiability, and order-based methods.

2.1. Causal Discovery

Causal discovery, also known as causal structure learning,
aims to discover the graph of the causal graphical model
(CGM) M = (Pv,G) behind the observational data. Our
work primarily considers scenarios in the absence of latent
variables (though see (Wang et al., 2023; Ni et al., 2025) for
approaches addressing causal discovery with latent vari-
ables). Formally, given the sample matrix D ∈ Rn×d

with n i.i.d. observations sampled from the joint prob-
ability distribution Pv over a variable set of d variables
V = {V1, V2, . . . , Vd}, the task is to find a directed acyclic
graph (DAG) G = (V,E) which best describes Pv . A struc-
tural equation model (SEM) is defined as S = (S, Pn). S
is a set of d structural equations, and Pn is the joint proba-
bility distribution of mutually independent noise variables
N = {N1, N2, . . . , Nd}, i.e.,

Si : Vi = fi(Vpa(i), Ni), i = 1, 2, . . . , d , (1)

where Vpa(i) denotes the parents of node i in G, and fi is a
function R|Vpa(i)|+1 → R. Like CGM, SEM also entails Pv ,
as sampling from Pv is equivalent to sampling from Pn and
then propagating the samples through S.

2.2. Causal Identifiability

Definition 2.1 (Identifiability). Given a set of assumptions
A on a CGM M = (Pv,G), graph G is said to be identifiable
from Pv if there exists no other CGM M̂ = (P̂v, Ĝ) satisfy-
ing all assumptions in A such that Ĝ ≠ G and P̂v = Pv .

1Details are discussed in the Causal Order Estimate section.
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Generally speaking, the identifiability of a CGM is deter-
mined by whether multiple distinct DAGs can represent the
same probability distribution Pv; if so, these DAGs are said
to belong to the same equivalence class. In fact, under causal
faithfulness and Markov assumptions, causal discovery of-
ten only recovers a graph up to its Markov equivalence class
(MEC) (Chickering, 1995; Spirtes et al., 2000; Wang et al.,
2024). There are many studies on the causal identifiability
under some specific scenarios, such as linear functions with
non-Gaussian noise (LiNGAM) (Shimizu et al., 2006), non-
linear functions with additive noise (ANM) (Hoyer et al.,
2008), and post-nonlinear functions (Zhang & Hyvärinen,
2009). This paper follows the ANM setting with the SEM
written as:

Vi = fi(Vpa(i)) +Ni, i = 1, 2, . . . , d , (2)

where fi is a non-linear function from R|Vpa(i)| → R. In
ANM, (Hoyer et al., 2008) show that for bivariate case, i.e.,
only consider two variables X and Y , identifiability is acces-
sible through residual independence analysis. Specifically,
we can first apply a non-linear regression of Y on X , and
calculate the residual between the predicted value and the
true value, then test the independence of the residual and
the cause variable (here is X). Do the same thing in another
direction (regress X on Y ). If the regression direction is
correct, the residual should be independent of the cause
variable, and this does not hold if the direction is incorrect
under some mild assumptions (Hoyer et al., 2008). Thus the
causal direction between X and Y is identifiable.

2.3. Order-Search-based Causal Discovery

It is well known that for a CGM, there exists a causal order
π defined on the variable set V = {V1, V2, ..., Vd}. This
order is a permutation of magnitude d that specifies the
cause-effect relation: Only a preceding variable in the order
can be the parent (cause) of a subsequent variable and not
conversely. It is worth noting that there is an intrinsic con-
nection between orders and complete DAGs (also known as
fully connected DAGs): for any order π, we can construct a
complete DAG Cπ , where each variable Vπ(i) has a directed
edge connecting to all Vπ(j) with i < j, i, j = 1, 2, . . . , d.
Besides, for a given DAG G, we define the true order set as:

ΠG = {π | the complete DAG Cπ is a super-DAG of G} ,

where the term a super-DAG of G denotes a DAG that the
edge set of G is a subset of the edge set of this DAG. Evi-
dently, the true order for any incomplete G is not necessarily
unique, i.e., the magnitude of ΠG is possibly greater than 1.

Order-based causal discovery is motivated by the following
fact. If the causal order among the variables is known, the
remaining task is simply variable selection, which can be
handled by multivariate regression. Therefore, the problem

reduces to estimating and searching for the causal order.
This idea can at least date back to Teyssier & Koller (2005);
Schmidt et al. (2007). First, compared to DAG space search,
order-based methods deal with a much smaller search space.
Second, it avoids the issue of enforcing acyclicity since the
order naturally guarantees no cycles in the graph. Third, the
causal order is closely related to identifiability since they
both focus on the cause-effect direction, which means that
the existing identifiability techniques can be incorporated
into order-based methods.

3. Strength of Identifiability
In this section, we propose a formal definition for the
strength of identifiability, dividing SEMs into strongly and
weakly identifiable ones. We further disclose a sufficient
condition to distinguish between strong and weak identi-
fiability, which is proved based on the implicit function
theorem (Rudin et al., 1976).

Given an SEM with its structural equation set S =
{S1, S2, . . . , Sd} that follows the assumptions of ANM as
in Eq. (2), we consider the structural equation Si, which
describes the causal relation between the parent set Vpa(i)

and Vi. It can be rewritten as:

Vi = fi(Vpa(i)) +Ni ,

⇒ Vi − fi(Vpa(i))−Ni = 0 ,

⇒ Fi(Vi,pa(i)1,pa(i)2, . . . ,pa(i)j , Ni) = 0 , (3)

where pa(i)j denotes the jth parent of Vi. Eq. (3) is defined
as the equivalent implicit equation of Si. Now we introduce
the definition of the strength of identifiability.
Definition 3.1 (Strength of Identifiability). Given an SEM S
following the ANM assumptions, with its structural equation
set S = {S1, . . . , Sd}, we consider Si and its equivalent
implicit equation as in Eq. (3). If for every pa(i)k ∈ Vpa(i),
Fi cannot give an implicit function as:

pa(i)k = g(Vi,pa(i)1, . . . , pa(i)k−1,pa(i)k+1, . . . , pa(i)j , Ni) ,

where g(·) denotes a function from R|Vpa(i)+1| → R, that
is, if such an implicit function does not exist for every
pa(i)k, then Si is defined as strongly identifiable. Oth-
erwise, it is weakly identifiable. Moreover, if all Si ∈ S are
strongly identifiable, S is strongly identifiable; otherwise, S
is weakly identifiable.

According to Definition 3.1, the strength of identifiability
is determined by the existence of an implicit function. If
an implicit function for the parent variables does not ex-
ist, the SEM can be identified through simple regression.
Otherwise, we need to check the independence between the
regression residual and the regressors. However, in practice,
it is still challenging to distinguish between strong and weak
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identifiability because we often do not have access to the
analytic expression of F . Therefore, we further provide a
sufficient condition for distinguishing between strong and
weak identifiability, which is related to the implicit function
theorem (Rudin et al., 1976). Let x denote (x1, x2, . . . , xn).

Lemma 3.2 (Global Existence of Multivariate Implicit
Function). Let F (x1, x2, . . . , xn, y) be continuous on
the set E = {(x1, x2, . . . , xn, y) ∈ Rn+1 | a ≤
x1, x2, . . . , xn ≤ b,−∞ < y < ∞}. Suppose that the
partial derivative function Fy(x1, x2, . . . , xn, y) exists for
all (x1, x2, . . . , xn, y) ∈ E, and there exist positive con-
stants 0 < m < M s.t.

m ≤ Fy(x1, x2, . . . , xn, y) ≤M, ∀(x1, x2, . . . , xn, y) ∈ E ,

then the equation F (x1, x2, . . . , xn, y) = 0 has a solution
y = φ(x1, x2, . . . , xn) which is continuous over [a, b]n.

Proof Sketch: To prove the existence and uniqueness of a
continuous solution y = φ(x) to the equation F (x, y) = 0,
we define an operator T on the space of continuous func-
tions C[a, b]n. By applying the Lagrange mean value the-
orem (Rudin et al., 1976) and the assumptions on F , we
show that T is a contraction mapping. The Banach fixed
point theorem (Rudin et al., 1976) then guarantees the exis-
tence of a unique fixed point of T , which corresponds to the
solution φ(x). The complete proof is in Appendix B.

With Lemma 3.2, we derive a sufficient condition to deter-
mine the strength of identifiability, as Theorem 3.3 below.

Theorem 3.3 (Sufficient Condition for the Strength of Iden-
tifiability). Given a structural equation Si and its equiva-
lent implicit equation Fi(Vi,pa(i)1, . . . ,pa(i)j , Ni) = 0,
if there is a pa(i)k such that Fi and pa(i)k satisfy the con-
dition for F and y in Lemma 3.2, Si is weakly identifiable.

Theorem 3.3 can be proved using Definition 3.1 and
Lemma 3.2. It indicates that a structural equation is weakly
identifiable under a mild condition on the partial derivatives
of its equivalent implicit equation. Theorem 3.3 serves as
an operational condition to determine the strength of iden-
tifiability of a given structural equation. We refer to it as
“operationa” because this theorem only requires knowledge
of the partial derivatives of the equation without needing its
analytic expression. It is worth noting that this condition is
not necessary because the implicit function may exist even
if the condition does not hold. For example, consider the
equation F (x, y) = y3 − x. At the point (x, y) = (0, 0),
the partial derivative Fy = 0. Consequently, the constant m
does not exist. However, the equation F (x, y) = 0 still has
a solution, which is obviously y = φ(x) = 3

√
x.

4. A Generic Approach to Strong and Weak
Identifiability in ANM

In this section, we introduce GENE, a method designed to
address both strongly and weakly identifiable problems in
a unified manner. Broadly, GENE operates in two phases:
order search and parent search. The order search phase
is further divided into order estimation and optimization.
Next we give details of these steps and discuss how GENE
effectively overcomes the limitations of existing methods.

4.1. Causal Order Estimate

In this subsection we present the first step of GENE: estimat-
ing causal orders. First, for any true order of G, there exists
a upper triangular representation of Eq. (2) (Bühlmann et al.,
2014). Formally, given an order π, the SEM equation of
Eq. (2) can be rewritten as:

Vπ(i) = fi(V<π(i)) +Ni, i = 1, 2, . . . , d , (4)

where V<π(i) = {Vj : π(j) < π(i)} refers to the variables
preceding Vi in the causal order π. To estimate such an
order, the first aspect that we should consider is how well
the preceding nodes in the order can be used to predict
subsequent nodes, i.e., the goodness of fit. This task can
be handled using log-likelihood (consider fis and Nis as
parameters, then apply maximum likelihood estimate), as
in CAM (Bühlmann et al., 2014). In this paper, we propose
to apply R2, a metric of goodness of fit ranging from 0 to
1, to evaluate the quality of regression. More specifically,
for each node Vπ(i), we train a fully connected neural net-
works (NN) with 2 hidden layers of size h, parameterized
by σ(i) = {W 1,W 2} where W 1 and W 2 are the weight
matrix. The NN takes {Vπ(1), ..Vπ(i−1)} ∈ Ri−1 as input
to predict Vπ(i). In other words, we use a NN to fit the
potential function between V<π(i) and Vi, and the degree of
fitness is evaluated by

R2(Vπ(i)) = 1−
MSE(f̂i(V<π(i)), Vπ(i))

Var(Vπ(i))
, (5)

where f̂ denotes the approximated function, Var(Vπ(i)) is
the variance of Vπ(i) and MSE refers to the mean square
error between the predictions and the true values of Vπ(i).

It is worth noting that continuous-optimization-based meth-
ods (details in Appendix A.2) perform differently after data
rescaling (Reisach et al., 2021; 2023), whereas GENE is
scale invariant. This is because these methods encode the
entire SEM into a connectivity matrix and then minimize
the overall MSE, implying that they are not able to explicitly
distinguish between cause and effect during optimization.
Consequently, rescaling affects the MSE. In contrast, GENE
controls the variance of the effect variable, as in R2, and is
therefore scale invariant.
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For strongly identifiable SEMs, considering the goodness of
fit in an order-based manner is sufficient for causal discov-
ery. In contrast, for weakly identifiable problems, leveraging
residual independence is necessary. Therefore, after training
a neural network (NN) for variable Vπ(i), we calculate the
residual by subtracting the predicted values from the true val-
ues of Vπ(i). We then apply independence tests to determine
whether the residual is independent of the input variables,
which can be expressed as IT(f̂i(V<π(i)) − Vπ(i), Vπ(j))
for j = 1, 2, . . . , i − 1, where IT refers to the indepen-
dence tests. If variables X and Y are independent, then
P (X,Y ) = P (X) · P (Y ). For the residual and Vπ(j) to
be tested, we discretize them into m bins and calculate the
contingency table. For the null hypothesis that the residual
and Vπ(j) are independent, we apply the statistic χ2 to test it.
The statistic χ2 is used to compute the p-value for the null
hypothesis. We compare the p-value with the significance
level of 0.05 to determine whether the residual is indepen-
dent of Vπ(j). The residual independence term discussed
above is then added as a penalty term, yielding the final
fitness function fit(π) for an order π as follows:

fit(π) =

d∑
i=1

R2 (Vπ(i)

)
·

(
1− α

i−1∑
j=1

1

i
· IT

(
f̂i(V<π(i))− Vπ(i), Vπ(j)

))
,

(6)
where IT returns 1 if the p-value is less than the significance
level; otherwise, it returns 0. The hyper-parameter α is used
to control the weight of the penalty term. The intuition be-
hind this formula is straightforward: for each potential par-
ent, if it is not independent of the residual, its contribution
to predicting the regressor should be discounted. Generally
speaking, this approach of combining the goodness of fit
with residual independence is both neat and effective. For
strongly identifiable SEMs, R2 is sensitive to the direction
of regression (i.e., R2 differs significantly when regressing
in the correct direction compared to the incorrect direction)
and to the residual independence. In contrast, for weakly
identifiable SEMs, the residual independence remains sensi-
tive. Since in most cases it is unknown in advance whether
a problem is strongly or weakly identifiable, GENE, as a
generic approach, demonstrates its advantage over other
methods that exploit only one of these aspects.

In our implementation, the hyper-parameters are set as fol-
lows: hidden layer size h = 256, number of discretization
bins m = 10, α = 1, and the significance level of the
chi-square test is set to 0.05.

4.2. Greedy Order Search

We now have the fitness function for a given order π. In this
subsection, we describe how to search for the order with the
highest fitness.

Consider starting with a random permutation (order) of
magnitude d, denoted as π0. A straightforward approach
is to apply operations (e.g., changing the position of some
elements in π0) to modify π0 and check if the fitness im-
proves. If so, we save the modification and proceed to the
next operation until no further improvement in fitness is
possible. This process is known as greedy search in the
optimization literature and is widely used in combinatorial
optimization problems and causal discovery, such as Greedy
Equivalence Search (GES) (Chickering, 2002). We define
such an operation as follows:

Definition 4.1 (Operation). Given a permutation of magni-
tude d, denoted as π = (π1, π2, ..., πd), and two integers i,
j, where i, j = 1, 2, ..., d and i ̸= j. A mapping maps π to
π̂ such that

π̂ =

{
(π1, . . . , πi−1, πi+1, . . . , πj , πi, πj+1, . . . , πd), if i < j ,

(π1, . . . , πj−1, πi, πj , . . . , πi−1, πi+1, . . . , πd), if i > j ,

(7)
is defined as an operation OPij , i.e., π̂ = OPij(π).

With the operations defined, the greedy search process can
be described by Algorithm 1 in Appendix D. We wonder
how effective such a greedy optimization strategy is. Fortu-
nately, Theorem 4.3 guarantees that, under a mild assump-
tion, this search process can always find the global optimum,
i.e., a true order π ∈ ΠG , within a finite number of steps.

Before introducing the theorem, we define a metric to mea-
sure the discrepancy between an order and the true causal
order of a DAG. Given an order π and a DAG G, we define
the degree of reversal for π w.r.t. G, denoted as Rev(G, π).
Definition 4.2 (Degree of Reverse). Given a DAG G =
(V,E) and a permutation π on V , the degree of reverse for
π on G i.e., Rev(G, π) is defined as:

Rev(G, π) =∣∣{(Vi, Vj) | a path Vi → Vj exist in G and Vj precedes Vi in π}
∣∣ .

(8)

In other words, Rev(G, π) is defined as the number of vari-
able pairs that form a path in G but are incorrectly ordered
in π. Obviously, for any π ∈ ΠG , Rev(G, π) = 0. Further-
more, for a given DAG G, Rev can be used to measure the
distance between an order π and its true order set ΠG . The
larger Rev(G, π), the less accurately π describes the causal
order. With this definition, we present Theorem 4.3.

Theorem 4.3 (Global Optimality of Greedy Order Search).
Given an order fitness evaluation function fit and a sam-
ple matrix D sampled from the DAG G, if for any or-
ders π1 and π2 with Rev(G, π1) < Rev(G, π2), we have
fit(D,π1) > fit(D,π2), then starting from any initial order
π0 and greedily applying operations until the fitness value
cannot increase (as in Algorithm 1), the final order π∗ will
be in ΠG .
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Figure 2. An overview of GENE. Circles with different colors
stand for different variables.

Proof Sketch: To prove Theorem 4.3, we demonstrate that
for any order π̂ with non-zero Rev, there exists an operation
that can improve its fit. We find a pair of variables (Vi, Vj)
such that a path Vi → Vj exists in G and Vj precedes Vi in
π̂. If Vi and Vj are adjacent in π̂, moving Vi in front of Vj

decreases Rev and increases fit. If they are not adjacent,
we consider two cases: (1) if variables between Vj and Vi

do not form a path to Vi in G, the same operation decreases
Rev; (2) if a variable Vt forms a path Vt → Vi, a path
Vt → Vj must exist due to the definition of a path in DAG.
We recursively consider the pair (Vt, Vj) until the variables
are adjacent or case (1) holds. Thus, an operation exists
to increase fit, and the greedy search will find a π∗ with
Rev(G, π∗) = 0. The complete proof is in Appendix C.

Theorem 4.3 provides a theoretical guarantee for the global
optimality of the greedy order search. Namely, it can always
find the true order under mild assumptions.

4.3. Least Pruning

After the above two steps, we get a causal order. The remain-
ing task is to select appropriate parents for each variable,
which is essentially a variable selection problem. If we
assume an additive SEM, this can be handled by Group
LASSO (Ravikumar et al., 2007) or its improved version
with sparsity-smoothness penalty (Meier et al., 2009). How-
ever, ANM is not additive since here additive means the
effect of each parent is additive, but not additive noise. To
this end, we propose a pruning strategy named least pruning
which applies parent pruning to deal with such a parent
selection issue. The intuition is: Starting from the given
order, we construct its corresponding complete DAG, and
then for each variable we try to prune one parent with least
after-pruning effect. More specifically, for variable Vπ(i),
we first calculate its fully connected R2, i.e., all the vari-
ables preceding Vπ(i) in π, denoted as the set {< Vπ(i)} are
used as input of NN. After that we try to prune each V in
{< Vπ(i)} and calculate R2 respectively, the variable with
highest after-pruning R2 are called candidate since pruning
it casts least effect to the overall R2. We measure whether
the decline of R2 caused by pruning the candidate is less
than a threshold, if so, prune this candidate and find the
next one or else stop pruning for Vπ(i) and start to prune

Vπ(i+1). The above process is depicted in Algorithm 2 in
Appendix E.

The overall framework of the least pruning is simple yet
effective. There are mainly two points: How to evaluate the
parent with least after-pruning effect and how to determine
whether prune it or not. In this implementation we use
the difference in R2 before and after a pruning to measure
its influence. The insight is that a variable with the least
difference is with the least possibility to be the parent.

Based on the above aspects, we show the process of GENE
in Figure 2. In the next section, we present experimental
results on both synthetic datasets and real-world application.

5. Experiments
In this section, we present experimental results of perfor-
mance comparison between GENE and several algorithms
on synthetic datasets as well as a real-world application.

The baselines are chosen from different categories of
methods: continuous-optimization-based methods in-
clude Notears-MLP (Zheng et al., 2020) and Gran-
DAG (Lachapelle et al., 2020). For combinatorial-
optimization-based methods in DAG space, we choose
SELF (Cai et al., 2018), GSF (Huang et al., 2018) (Chick-
ering, 2002), and PC-ANM, which respectively represent
score-based and hybrid methods (pure constraint-based
methods are not included since they can only output
graphs with undirected edges). For order-based methods,
R2Sort (Reisach et al., 2023), CAM (Bühlmann et al., 2014),
RESIT (Peters et al., 2014), CaPS (Xu et al., 2024) and
NHTS (Hiremath et al., 2024) are included.

For evaluation, we choose F1 Score and SHD (Structural
Hamming Distance) as metrics. The F1 Score ranges from 0
to 1 and provides an intuitive and comprehensive assessment
of the prediction quality, while the SHD is an integer that
indicates the number of missing and unexpected edges. All
the experiments are conducted on a computer equipped with
an AMD Ryzen 5 3600 6-Core processor, 16 GB of RAM,
and a 512 GB SSD. The operating system was Windows
11, 64-bit. All computational analyses were performed
using Python 3.8. This setup provided a robust environment
for running the extensive simulations and data processing
required for the study (note that our experiments do not
necessarily require GPU).

The codes and datasets involved in our experiments are avail-
able at https://github.com/ECNU-ILOG/GENE.

5.1. On Synthetic Datasets

To study the performance of our proposed GENE for prob-
lems with different features, we follow the popular exper-
iment pipeline in the causal discovery community, which
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Figure 3. Effectiveness of the compared methods. The higher F1 the better, the lower SHD the better.

randomly generates DAGs and samples from them. We then
attempt to infer the underlying DAG from the sampled data.

We evaluate the compared methods and GENE with the
assumption of ANM, whose SEM is of the form Eq. (2).
Specifically, we generate samples according to the fol-
lowing configurations: The graph sampling scheme is
Erdös Rényi (ER), the number of nodes d = {10, 20},
the density of the graph (the number of edges divided by
the number of nodes) density = {1, 2, 4}, the sample size
n = 3000, the non-linear function f has 3 forms: trigono-
metric function, randomized Gaussian process (GP) and
randomized NN denoted as MIM, GP and MLP respectively,
where MIM and GP are considered as strongly identifiable
and MLP is weakly identifiable. They are given as

MIM : Vi =tan(Vpa(i) ·W1) + sin(Vpa(i) ·W2)+

cos(Vpa(i) ·W3) + c ·Ni ,

MLP : Vi =Sigmoid(Vpa(i) ·W1) ·W2 + c ·Ni ,

GP : Vi =GP (Vpa(i)) + c ·Ni ,

(9)

where W are random weight matrix in which the weights
are calculated by w = ±2k where k is uniformly distributed
in range(−1, 1) and the sign is evenly divided, c is the noise
coefficient which is set to 1 and Ni ∼ N(0, 1).

All in all, there are 2× 3× 3 = 18 settings in total, for each
setting we generate 10 different graphs and sample from
them, so we get 10 sample matrix (10 problems) for each
setting. All the results for one setting shown below are aver-
aged over 10 times independent repetition on each of these
10 problems. The data generation process are implemented
using the gcastle python toolkit (Zhang et al., 2021).

5.1.1. EFFECTIVENESS

The performance measured by F1 Score and SHD is given
in Figure 3. If a curve for a particular baseline is missing
in a graph, it indicates that the method is unable to produce
results within 2 hours under the corresponding setting. From
the figure, we observe that for F1 Score (shown in the upper
part), GENE has advantages over other methods in terms of
both F1 Score and stability to problem density in MIM and
GP when d = 10, and in MIM when d = 20. However, in
MLP, Notears-MLP achieves a higher F1 Score. This can
be explained by information leakage, as discussed before,
where its performance varies significantly after standardiza-
tion. Related experiments are discussed later. The results of
the performance estimated by SHD are shown in the lower
part of Figure 3. From the figure, we observe that in (b.1)
and (b.5), GENE achieves superior performance compared
to other methods. In (b.2) and (b.4), GENE is only outper-
formed by Notears-MLP, whose performance is unreliable
(as it drops significantly after standardization, which we will
demonstrate later).

It is worth noting that methods relying solely on good-
ness of fit, namely CAM, Notears-MLP, R2Sort, CaPS, and
NHTS, demonstrate universally and significantly better per-
formance on strongly identifiable problems (GP and MIM)
compared to weakly identifiable problems (MLP). This phe-
nomenon further support the meaningfulness of the division
between strong and weak identifiability. Besides, Figure 3
suggests the performance of GENE and CAM is very close,
even in weakly identifiable cases. To address this point, we
conduct an ablation experiment comparing only the quality
of orders given by order-based methods in Section 5.1.5.
From this, it is clear that the quality of orders given by
GENE far exceeds that of CAM and RESIT. Therefore, we
infer that the closeness of F1 Score and SHD is due to
differences in pruning.
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5.1.2. STANDARDIZATION

This part serves as a supplement to the effectiveness anal-
ysis discussed above. As discussed above, continuous-
optimization-based methods are sensitive to data scaling.
(Reisach et al., 2021) show this for the linear case, and we
extend their results to the non-linear case.

Specifically, for problems with d = 10 and density = 2,
we standardize the sample matrix (i.e., each variable is sub-
tracted by its mean and divided by its standard deviation)
to examine whether the performance of the above methods
is influenced. The results are shown in Figure 4. From
the figure, we observe that continuous-optimization-based
methods, namely Notears-MLP and Gran-DAG, are greatly
affected by standardization, while others remain largely
unaffected. This observation aligns with our expectations.
Moreover, for strongly identifiable problems, the average
F1 Score decline ratio is 34%, while for weakly identifiable
problems, this number is 52%. This suggests that standard-
ization has a larger impact on weakly identifiable problems
for continuous-optimization-based methods.

5.1.3. EFFICIENCY

To study the efficiency of the compared methods, we report
the average after standardization F1 Score vs. wall-clock
execution time in two-objective Pareto graphs on problems
with d = 10 and d = 20, as shown in Figure 8 in Ap-
pendix F.1. The result suggests that GENE is on the Pareto
front of effectiveness and efficiency, i.e., nondominated by
other methods w.r.t. these two objectives.

5.1.4. ABLATION STUDY

Figure 5 shows the result of the ablation study for GENE
where we consider the case density = 2. In this experiment,
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Figure 5. The F1 Score before and after removing the residual
independence term in GENE, d = {10, 20}, density = 2.

we try to only exploit the goodness of fit and ignore the resid-
ual independence in order estimation, more specifically, we
use f̂ it(D,π) =

∑d
i=1 R

2
(
Vπ(i)

)
in place of Eq. (6) and

keep other settings the same. From the results we can tell
that for strongly identifiable problems (GP, MIM), the per-
formance is not influenced (results are even slightly better
for GP and MIM in 10-node case ) while for MLP, which
is considered weakly identifiable, the performance drops
significantly. This phenomenon supports the discussions
about the strength of identifiability.

5.1.5. EFFECTIVENESS OF ORDER SEARCH

The performance of order-search-based methods (namely
CAM, RESIT, CaPS, NHTS and GENE) are not only af-
fected by the quality of obtained order, but also by the parent
search (pruning) process. Thus to study the effectiveness
of order search, i.e., only consider the quality of orders ob-
tained by these methods, we drop the pruning process and
only compare the ability to search for correct causal orders
of these methods, which can be evaluated by the degree
of reverse Rev (defined in Section 4.2) of the found order.
Specifically, we conduct experiments for order-search-based
methods on problems with the graph sampling scheme ER,
the number of nodes d = 10 and density = {1, 2, 4}, the
sample size n = 3000 and the non-linear form MIM, GP
and MLP. and the output is an order rather than a DAG, for
which we calculate its degree of reverse Rev as in Eq. (8).
The result is shown in Figure 6.

From Figure 6, we can see it more clearly about the power
of Eq. (6): In (b) which is considered as weakly identifi-
able, GENE performs apparently better than other compared
methods (its Rev is almost a half of that of CAM and a quar-
ter of RESIT) and in (a) and (c) which are considered as
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strongly identifiable, GENE can find orders with Rev nearly
equals to 0, that means the order found by GENE is very
close to the true order. It is worth noting that even in strongly
identifiable case ((a) and (c)), GENE performs better than
CAM especially when density = 4, it means that even for
strongly identifiable problems the residual independence
term also provide some help to find the true order, this is
what we do not expected before.

For more experimental results and analysis, including the re-
sults of efficiency and analysis of hyper-parameter influence,
please refer to Appendix F. In the next subsection, we will
verify how the proposed GENE performs in a real-world
application with bioinformatics background.

5.2. On Real-World Application

Causal discovery has significant and far-reaching applica-
tions in causal protein signaling networks (Sachs et al.,
2005). Pathways in protein signaling networks can be sim-
ply understood as a series of enzyme-catalyzed reaction
pathways through which molecular signals are transmitted
from outside the cell through the cell membrane to the inside
of the cell to produce an effect. The various biochemical
reaction pathways that perform different functions in the
cell are composed of a series of different proteins, and the
regulation of the activation or inhibition state of different
proteins is mainly achieved by adding or removing phos-
phate groups. The above problems can be solved with the
idea of causal graphical models (Sachs et al., 2005), which
illustrates the causal relations between the components of
the pathway in the form of a DAG-represented causal graph.

We consider a popular causal protein signaling network
dataset in causal discovery community named Sachs (Sachs
et al., 2005). Sachs contains 7466 observational and inter-
ventional samples of a protein signaling network based on
expression levels of proteins and phospholipids. The ground
truth causal graph is labeled by domain experts and it has
11 nodes and 17 edges (Sachs et al., 2005). Sachs is widely
used in the community of causal discovery, and it is chal-
lenging for the most causal discovery methods. Herein, we
use the 853 observational data to conduct causal discovery.

Table 1. Results on Sachs (bold means the best).

Method F1 Score SHD

GENE 0.65 11
Notears-MLP 0.24 19
Gran-DAG 0.33 16
CAM 0.38 16
RESIT 0.15 23
PC-ANM 0.1 18
GSF 0.23 20
R2Sort 0.35 17
CaPS 0.07 17
NHTS 0.17 19

The results are shown in Table 1. From which, GENE re-
markably outperforms other methods on both F1 Score and
SHD. The comparison between the causal graphs discovered
by GENE and the ground truth is in Figure 7.

PKC

PKA

Erk

Jnk

P38

Raf

Mek

Akt

Plcg

PIP3

PIP2

Correct Edges

Missing Edges

Unexpected 
Edges

Reversed 
Edges

Figure 7. The protein signaling graph discovered by GENE.

6. Conclusion & Discussion
This paper focuses on the additive noise causal discovery
problems and proposes to divide identifiability into strong
and weak ones. The existence of implicit functions making
a large difference on the difficulty of a causal discovery
problem, and the existing methods mainly perform well on
causal models with strong identifiability. We show that this
failure is due to the ignorance of residual independence.
Based on this observation, we propose GENE, a unified and
generic approach for both the strong and the weak ones.
GENE takes the residual independence into account and
thus is able to deal with both types of problems.

For the future work, the performance of pruning strategy
in GENE can be further enhanced. Besides, the strength of
identifiability can be considered and generalized under other
assumptions and scenarios, e.g., the post-nonlinear case.
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Appendix

A. Detailed Related Work
From the perspective of optimization, the existing causal
discovery methods can be divided into two types:
combinatorial-optimization-based methods and continuous-
optimization-based methods. The task of causal discovery
is naturally a combinatorial optimization problem since the
search space of DAG is discrete. However, Zheng et al.
(2018) present another possibility for causal discovery. They
reformulate the problem in continuous space via transform-
ing the discrete objective function and constraint into con-
tinuous and differentiable ones. In this section, we briefly
introduce these two classes of causal discovery methods
respectively.

A.1. Combinatorial-Optimization-based Methods

The combinatorial-optimization-based methods address the
causal discovery problem via searching for a graph repre-
sented by a connectivity matrix in the DAG space. They
can be further classified by its search space, i.e., the DAG
space and the order space. For methods searching in the
DAG space, there are three categories: constraint-based,
score-based and hybrid methods.

Constraint-based methods apply independent tests and con-
ditional independence tests to infer the independence prop-
erty between variables. Particularly, when considering non-
linear problems, kernel-based independence tests are of-
ten applied, such as (Zhang et al., 2011). Representative
constraint-based algorithms include Peter-Clark algorithm
(PC) (Spirtes et al., 2000), inductive causation algorithm
(IC) (Verma & Pearl, 1990). The main drawback of this
kind of methods is that they cannot identify graphs in the
same MEC, and thus there may exist undirected edges in the
output graph. Besides, constraint-based methods also suf-
fer from a series of problems of conditional independence
tests including conflict handing, sample inefficiency, and
hyper-parameter sensitivity, etc.

The second category is score-based methods, which first
define a score function using to evaluate the fitness degree
of the input DAG and the observational data. For non-
linear causal discovery task, the generalized score function
(GSF) (Huang et al., 2018) and the structural equational like-
lihood framework (SELF) (Cai et al., 2018) are proposed.
SELF takes the both two aspects into account. However,
SELF does not discuss the relationships between the two
aspects and identifiability. After defining the score func-
tion, score-based methods then conduct a searching process
to find the DAG that maximizes the score. The popular
search strategies include hill climbing (HC), greedy equiva-
lence search (GES) (Chickering, 2002). The defect of this
kind of methods is that they formulate the whole problem

as an optimization problem and do not explicitly discuss
the identifiability of the output graph. Besides, due to the
use of gradient-free optimization to search for structures
across the entire DAG space, score-based methods often
have significant efficiency shortcomings.

The hybrid methods first apply constraint-based methods to
identify the V-structure. The remaining undirected edges
are seen as cause-effect pairs and the direction is deter-
mined following those identifiability results such as ANM
aforementioned in the introduction (details will be intro-
duced in Section 2.2). Representative algorithms include
PC-ANM (Hoyer et al., 2008), scalable causation discov-
ery algorithm (SADA) (Cai et al., 2013). However, due
to the aforementioned drawbacks of conditional indepen-
dence tests, especially kernel-based independence tests for
non-linear problems, the performance of constraint-based
methods is not stable, which indeed infects the effectiveness
of hybrid methods.

Except for searching in a DAG space, an alternative is
searching in an order space. The proposed GENE belongs
to this class. In the order-search-based non-linear causal
discovery, representative algorithms include causal additive
model (CAM) (Bühlmann et al., 2014), regression with sub-
sequent independence test algorithm (RESIT) (Peters et al.,
2014), causal discovery with parent score (CaPS) (Xu et al.,
2024) and causal discovery for non-linear ANMs with local
ancestor-descendent relationships (NHTS) (Hiremath et al.,
2024).

On the one hand, CAM applies a log-likelihood-based mea-
surement which captures the goodness of fit to estimate
an order. With such measurement, CAM just greedily
adds edges to maximize this log-likelihood until getting
a complete directed graph, which yields an order as the
result. NHTS (Hiremath et al., 2024) propose a hybrid ap-
proach that first establishes a top-down hierarchical ordering
leveraging ancestral relationships, applicable to both linear
and nonlinear additive noise models, and subsequently em-
ploys a nonparametric constraint-based algorithm with local
search for pruning spurious edges. Similarly, CaPS (Xu
et al., 2024) is presented as an ordering-based algorithm
specifically designed to handle a mixture of linear and non-
linear relations. CaPS introduces a novel identification cri-
terion for topological ordering and incorporates a parent
score, quantifying the strength of average causal effects, to
optimize its pruning stage. Unfortunately, these methods
only consider the goodness of fit, and thus they can only
handle strongly identifiable problems.

On the other hand, RESIT considers the problem from an-
other perspective. For each node Vi, the corresponding
noise term Ni is independent from all non-descendants of
Vi. Thus for the leaf node Vleaf , its noise Nleaf is inde-
pendent of all other variables. Based on the above obser-
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vation, RESIT proposes to iteratively pick one node with
least dependency between other variables and its residual
regressing on all other variables. This process undoubtedly
yields an order (from leaf to root). This leaf-node-based
order search method is also applied by recently proposed
score matching causal discovery algorithms (Rolland et al.,
2022; Sanchez et al., 2023). However, RESIT does not work
well for strongly identifiable problems since it ignores the
information from the goodness of fit.

The existing order-search-based approaches only consider
one of the two aspects to estimate the causal order, and
both of them have limitations. This motivates the work
in this paper, i.e., unifying these two aspects under one
framework and proposing a generic method for both strongly
and weakly identifiable problems.

A.2. Continuous-Optimization-based Methods

Unlike combinatorial methods which solve the problem
in discrete spaces, Zheng et al. (2018) propose to con-
duct causal discovery via optimizing a mean square error
(MSE) based loss function subject to an equivalent continu-
ous acyclicity constraint. This idea achieves a remarkable
performance on popular benchmarks and many successful
extensions have been proposed including (Lachapelle et al.,
2020; Bhattacharya et al., 2021; Pamfil et al., 2020; Yu
et al., 2019; Brouillard et al., 2020; Ng et al., 2020; Wei
et al., 2020; Lee et al., 2020; Zheng et al., 2020). Vow-
els et al. (2021) provide a comprehensive review of these
continuous-optimization-based methods.

However, Reisach et al. (2021) point out that these
continuous-optimization-based methods may exploit infor-
mation inadvertently leaked by the data generating process
to achieve such extraordinary performance. Reisach et al.
(2021) show that under the linear model with additive noise
case, the performance of continuous-optimization-based
methods drop significantly after data rescaling, i.e., chang-
ing the units of measurement for variables (e.g., multiply-
ing 1000 from kilometer to meter) or data standardization.
This result also holds under non-linear settings (Reisach
et al., 2023), which is also shown in our experiment sec-
tion. Apparently the existence of causal relationships should
not depend on the scale of data. This phenomenon is be-
cause these continuous-optimization-based methods treat
the DAG connectivity matrix as a whole during optimiza-
tion, which means that they do not explicitly distinguish
between the cause variables and the effect variable. How-
ever, in GENE the cause variables and the effect variable
are clear when conducting regression. Hence GENE is scale
invariant. Besides, these methods are also lack of discussion
about identifiability.

B. Proof of Lemma 3.2
Proof. Consider T : C[a, b]n → C[a, b]n defined by

(Tφ)(x) = φ(x)− 1

M
F (x, φ(x)),

for allx ∈ [a, b]n andφ ∈ C[a, b]n .

T is a contraction on C[a, b]n since∣∣(Tφ2)(x)− (Tφ1)(x)
∣∣

=
∣∣φ2(x)− 1

M F (x, φ2(x))− φ1(x) +
1
M F (x, φ1(x))

∣∣
=

∣∣∣(1− 1
M Fy

(
x, φ1(x) + θ(φ2(x)− φ1(x))

))
· (φ2(x)− φ1(x))

∣∣∣
≤ (1− m

M )
∣∣φ2(x)− φ1(x)

∣∣ ,
where the second equation holds because of the Lagrange
mean value theorem (Rudin et al., 1976). The fact that T is
a contraction implies

dis(Tφ2, Tφ1) ≤ α · dis(φ2, φ1) ,

where dis is a metric on space C[a, b]n and α ∈
(0, 1). Hence, by the Banach fixed point theorem (Rudin
et al., 1976), there exists a unique φ ∈ C[a, b]n that
F (x, φ(x)) ≡ 0 on [a, b]n, and the lemma holds.

C. Proof of Theorem 4.3
Proof. Theorem 4.3 states that, under the assumption that
if an order is with lower Rev, it is with higher fit, then
a greedy order search procedure will result in a correct
causal order. To prove this, it is equivalent to prove the
following statement. For any π with non-zero Rev, there
exist some operations can increase its fit. If this statement
holds, obviously the greedy search will finally find a π∗ with
Rev(G, π∗) = 0, i.e., π∗ ∈ ΠG . Without loss of generality,
we consider a π̂ that Rev(G, π̂) > 0. From the definition of
Rev, we can at least find a pair of variables (Vi, Vj) such
that a path Vi → Vj exists in G and Vj precedes Vi in π̂.
If there are no variables between Vi and Vj , i.e., they are
adjacent in π̂, then the operation that moves Vi in front of
Vj can make Rev minus 1 and fit increases. This means
that such an operation exists, and thus the statement holds.

Else if Vi and Vj are not adjacent in π̂, we still consider the
above operation, i.e., moving Vi in front of Vj . Now there
are two cases. For the first case, if all variables between Vj

and Vi do not form a path to Vi in G, then such an operation
still makes Rev minus 1. For the second case, if there exists
a variable Vt forming a path Vt → Vi in G, then such an
operation no longer decreases Rev since it introduces a new
pair (Vi, Vt) which is reversed after the operation. However,
from the definition of path in DAG, we know that if a path
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Vi → Vj and another path Vt → Vi both exist, then a path
Vt → Vj exists. So we can consider the pair (Vt, Vj) just
like considering the pair (Vi, Vj) before. This is a recursive
process until we find that the pair of variables are adjacent
in π̂ or the pair of variables are not adjacent but variables
between them do not form path to the latter one (as the first
case). Therefore the operation exists under both of the two
circumstances, and the theorem holds.

D. Greedy Order Search
The pseudocode of the greedy search algorithm described
in the main text ’Greedy Order Search’ section is shown in
Algorithm 1.

Algorithm 1 Greedy Search for Order

Input: the sample matrix D ∈ Rn×d, the fitness evaluation
function fit.

1: initialize the current best order π∗ ← Random Order,
the best fitness value bestfit← fit(D,π∗),a Boolean
value continue← True

2: while continue = True do
3: continue← False
4: for i = 1→ d do
5: for j = 1→ d, j ̸= i do
6: π̂∗ = OPij(π

∗)
7: if fit(D, π̂∗) > bestfit then
8: π∗ ← π̂∗, bestfit← fit(D, π̂∗)
9: continue← True

10: end if
11: end for
12: end for
13: end while
14: Output: the order found with the highest fitness π∗

E. Least Pruning
The pseudocode of the least pruning algorithm described
in the main text ’Least Pruning’ section is shown in Algo-
rithm 2.

F. Additional Experimental Results
F.1. Efficiency

The results of efficiency are shown in Figure 8, the related
analysis is available in Section 5.1 Efficiency part.

F.2. Hyper-parameter Analysis

We investigate the influence of hyper-parameters, namely α
in Eq. (6) which is used to control the ratio of the penalty
term given by residual independence. Specifically, we set

Algorithm 2 Least Pruning

Input: the sample matrix D ∈ Rn×d, an order π, and a
threshold θ

1: G ← ∅
2: for i = 1→ d do
3: the parent set Pa← V<π(i)

4: regress Vπ(i) over V<π(i) and calculate R2, fit ←
R2

5: while
∣∣Pa

∣∣ > 0 do
6: for j = 1→ i do
7: remove Vπ(j) from Pa and calculate R2

j

8: end for
9: find the parent Vleast with the least fit−R2

least

10: if fit−R2
least < θ then

11: prune it, Pa ← Pa \ Vπ(least), fit ← fit −
R2

least

12: else
13: break While
14: end if
15: end while
16: for each parent p left in Pa, add edge p→ Vi to G
17: end for
18: Output: the causal graph G
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Figure 8. The wall-clock time vs. after standardization F1 score
when d = 10 and d = 20.

α = 1 as default in previous experiments, here we change
it to {0.2, 0.5, 2, 5} and report the performance on datasets
generated by MLP, MIM and GP with d = 10, density = 2.
The results are shown in Figure 9.
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Figure 9. The performance of GENE with different values of hyper-
parameter α when d = 10, density = 2.

We can observe from Figure 9 that for MIM and GP, which
are strong identifiable problems, the smaller α seems to
perform better and when α = 0.2, 0.5, 1, the performance
is close. For MLP, the weakly identifiable one, too small α
(e.g., 0.1) may lead a poor performance since the residual
independence term plays an essential role for weak prob-
lems. Generally speaking, GENE is not sensitive to the
hyper-parameter α in a proper range (from 0.5 to 2) and we
recommend to set α in this range.
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