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ABSTRACT

Variational Auto Encoder (VAE) provide an efficient latent space representation
of complex data distributions which is learned in an unsupervised fashion. Us-
ing such a representation as input to Reinforcement Learning (RL) approaches
may reduce learning time, enable domain transfer or improve interpretability of
the model. However, current state-of-the-art approaches that combine VAE with
RL fail at learning good performing policies on certain RL domains. Typically,
the VAE is pre-trained in isolation and may omit the embedding of task-relevant
features due to insufficiencies of its loss. As a result, the RL approach can not
successfully maximize the reward on these domains. Therefore, this paper in-
vestigates the issues of joint training approaches and explores incorporation of
policy gradients from RL into the VAE’s latent space to find a task-specific la-
tent space representation. We show that using pre-trained representations can lead
to policies being unable to learn any rewarding behaviour in these environments.
Subsequently, we introduce two types of models which overcome this deficiency
by using policy gradients to learn the representation. Thereby the models are able
to embed features into its representation that are crucial for performance on the
RL task but would not have been learned with previous methods.

1 INTRODCTION

Reinforcement Learning (RL) gained much popularity in recent years by outperforming humans in
games such as Atari (Mnih et al. (2015)), Go (Silver et al. (2016)) and Starcraft 2 (Vinyals et al.
(2017)). These results were facilitated by combining novel machine learning techniques such as
deep neural networks (LeCun et al. (2015)) with classical RL methods. The RL framework has
shown to be quite flexible and has been applied successfully in many further domains, for example,
robotics (Andrychowicz et al. (2020)), resource management (Mao et al. (2016)) or physiologically
accurate locomotion (Kidziński et al. (2018)).

The goal of representation learning is to learn a suitable representation for a given application
domain. Such a representation should contain useful information for a particular downstream
task and capture the distribution of explanatory factors (Bengio et al. (2013)). Typically, the
choice of a downstream task influences the choice of method for representation learning. While
Generative Adversarial Network (GAN)s are frequently used for tasks that require high-fidelity re-
constructions or generation of realistic new data, auto-encoder based methods have been more
common in RL. Recently, many such approaches employed the Variational Auto Encoder (VAE)
(Kingma & Welling (2013)) framework which aims to learn a smooth representation of its domain.

Most of these approaches follow the same pattern: First, they build a dataset of states from the RL
environment. Second, they train the VAE on this static dataset and lastly train the RL mode using the
VAE’s representation. While this procedure generates sufficiently good results for certain scenarios,
there are some fundamental issues with this method. Such an approach assumes that it is possible to
collect enough data and observe all task-relevant states in the environment without knowing how to
act in it. As a consequence, when learning to act the agent will only have access to a representation
that is optimized for the known and visited states. As soon as the agent becomes more competent,
it might experience novel states that have not been visited before and for which there is no good
representation (in the sense that the experienced states are out of the original learned distribution
and the mapping is not appropriate).
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(a) Input frame after pre-processing (b) Reconstruction of 1a

Figure 1: A frame from Atari Breakout. The original image 1a was passed through a pre-trained
VAE yielding the reconstruction 1b. Note the missing ball in the lower right hand corner.

Another issue arises from the manner the representation is learned. Usually, the VAE is trained in
isolation, so it decides what features are learned based on its own objective function and not on what
is helpful for the downstream task. Mostly, such a model is tuned for good reconstruction. Without
the information from the RL model, such a representation does not reflect what is important for the
downstream task. As a consequence, the VAE might omit learning features that are crucial for good
performance on the task because they appear negligible with respect to reconstruction (Goodfellow
et al. (2016), Chapter 15, Figure 15.5). For example, small objects in pixel-space are ignored as
they affect a reconstruction based loss only marginally. Thus, any downstream task using such a
representation will have no access to information about such objects. A good example for such a
task is Atari Breakout, a common RL benchmark. Figures 1a and 1b show an original Breakout
frame and its reconstruction. While the original frame contains the ball in the lower right hand
corner, this crucial feature is missing completely in the reconstruction.

We approach this issue through simultaneously learning representation and RL task, that is by com-
bining the training of both models. As an advantage, this abolishes the need of collecting data
before knowing the environment as it combines VAE and RL objectives. In consequence the VAE
has an incentive to represent features that are relevant to the RL model. The main contributions of
this paper are as follows: First we show that combined learning is possible and that it yields good
performing policies. Second, we show that jointly trained representations incorporate additional,
task-specific information which allows a RL agent to achieve higher rewards then if it was trained
on a static representation. This will be shown indirectly by comparing achieved rewards as well as
directly through an analysis of the trained model and its representation.

2 RELATED WORK

Lange & Riedmiller (2010) explored Auto Encoder (AE) (Lecun (1987); Bourlard & Kamp (1988);
Hinton & Zemel (1994)) as a possible pre-processor for RL algorithms. The main focus in their
work was finding good representations for high dimensional state spaces that enables policy learn-
ing. As input, rendered images from the commonly used grid world environment were used. The
agent had to manoeuvre through a discretized map using one of four discrete movement actions
per timestep. It received a positive reward once reaching the goal tile and negative rewards else-
where. The AE bottleneck consisted only of two neurons, which corresponds to the dimensionality
of the environemnt’s state. Fitted Q-Iteration (FQI) (Ernst et al. (2005)) was used to estimate the
Q-function, which the agent then acted ε-greedy upon. Besides RL, they also used the learned rep-
resentation to classify the agents position given an encoding using a Multi-Layer Perceptron (MLP)
(Rumelhart et al. (1985)). For these experiments, they found that adapting the encoder using MLP
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gradients lead to an accuracy of 99.46%. However, they did not apply this approach to their RL
task.

A compelling example for separate training of meaningful representation is provided by Higgins
et al. (2017b) who proposed a framework called DARLA. They trained RL agents on the encoding
of a β-VAE (Higgins et al. (2016); Higgins et al. (2017a)) with the goal of zero-shot domain transfer.
In their approach, β-VAE and agent were trained separately on a source domain and then evaluated in
a target domain. Importantly, source and target domain are similar to a certain extent and only differ
in some features, e.g. a blue object in the source domain might be red in the target domain. During
training of the β-VAE, the pixel-based reconstruction loss was replaced with a loss calculated in the
latent space of a Denoising Auto Encoder (DAE) (Vincent et al. (2008)). Thereby their approach
avoids missing task relevant feature encodings at the cost of training another model. For one of
their evaluation models, they allowed the RL gradients to adapt the encoder. Their results show
that subsequent encoder learning improves performance of Deep Q-Learning (DQN) but decreases
performance of Asynchronous Advantage Actor-Critic (A3C) (Mnih et al. (2016)).

Ha & Schmidhuber (2018) proposed a combination of VAE, Recurrent Neural Networks (RNN)
(Hochreiter & Schmidhuber (1997)) and a simple policy as a controller. They hypothesized that
by learning a good representation of the environment and having the ability to predict future states,
learning the policy itself becomes a trivial task. Like in most other models, the VAE was pre-trained
on data collected by a random policy. Only the RNN and the controller were trained online. The
compressed representation from the VAE was passed into a RNN in order to estimate a probability
density for the subsequent state. The controller was deliberately chosen as a single linear layer
and could thus be optimized with Covariance Matrix Adaptation - Evolution Strategy (CMA-ES)
(Hansen (2006)).

This work demonstrated how a VAE can provide a versatile representation that can be utilized in
reinforcement learning. In addition, such an approach allows to predict the subsequent encoded
state. While these findings encourage the usage of VAE in conjunction with RL, this is only possible
in environments where the state space can be explored sufficiently by a random policy. However,
if the policy can only discover important features after acquiring a minimal level of skill, sampling
the state space using a random policy will not yield high-performing agents. Learning such features
would only be possible if the VAE is continuously improved during policy training.

Another interesting combination of VAEs and RL was recently proposed by Yang et al. (2019),
with their so called Action-Conditional Variational Auto-Encoder (AC-VAE). Their motivation for
creating this model was to train a transparent, interpretable policy network. Usually, the β-VAEs
decoder is trained to reconstruct the input based on the representation the encoder produced. In this
work though, the decoders objective was to predict the subsequent state st+1. As input it got the
latent space vector z combined with an action-mapping-vector, which is the action vector at with a
zero-padding to match the latent spaces dimensionality. Inspecting the decoder estimates for st+1

when varying one dimension of the latent space showed, that each dimension encoded a possible
subsequent state that is likely to be encountered if the corresponding action from this dimension was
taken. Unfortunately, the authors did not report any rewards they achieved on Breakout, hence it
was not possible for us to compare model performances.

3 COMBINATION OF REINFORCEMENT AND REPRESENTATION LEARNING
OBJECTIVES

In this section, we will first revisit the fundamentals of RL and VAEs and discuss their different
objective functions. Then, we propose a joint objective function that allows for joint training of both
models using gradient descent based learning methods.

3.1 REINFORCEMENT LEARNING WITH POLICY OPTIMIZATION

RL tries to optimize a Markov Decision Process (MDP) (Bellman (1957)) that is given by the tuple
〈S,A, r, p, γ〉. S denotes the state space, A the action space and p : S × R × S × A → [0, 1]
the environment’s dynamics function that, provided a state-action pair, gives the state distribution
for the successor state. r : S × A → R is the reward and γ ∈ [0, 1) the scalar discount factor.
The policy πθ(a|s) is a stochastic function that gives a probability distribution over actions for state
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s. θ denotes the policy’s parameter vector which is typically subject to optimization. A trajectory
τ = (s0, a0, ..., sT , aT ) consisting of an alternating sequence of states and actions can be sampled
in the environment, where T stands for the final timestep of the trajectory and ai ∼ πθ(ai|si).
The overarching goal of RL is to find a policy that maximizes the average collected reward over
all trajectories. This can be expressed as the optimization problem maxEτ∼p(τ)

[∑
t r(s, a)

]
,

which can also be written in terms of an optimal policy parameter vector θ∗ =
argmaxθ Eτ∼p(τ)

[∑
t r(s, a)

]
. When trying to optimize the policy directly be searching

for θ∗, policy optimization algorithms like A3C, Actor-Critic with Experience Replay (ACER)
(Wang et al. (2016a)), Trust Region Policy Optimization (TRPO) (Schulman et al. (2015a)) or
Proximal Policy Optimization (PPO) (Schulman et al. (2017)) are commonly used. The fundamental
idea behind policy optimization techniques is to calculate gradients of the RL objective with respect
to the policy parameters:

∇θJ(θ) = E
τ∼p(τ)

[
∇θ logπθ(τ) r(τ)

]
(1)

where we defined
∑T
t=0 r(s, a) = r(τ) for brevity. However, most policy optimization methods

introduce heavy modifications to this vanilla gradient in order to achieve more stable policy updates.
Throughout our work, we have used PPO as RL algorithm because it is quite sample efficient and
usually produces stable policy updates. For an in-depth description of PPO, we refer to our A.1 or
the original work Schulman et al. (2017).

3.2 LEARNING REPRESENTATIONS USING VARIATIONAL AUTO-ENCODERS

Kingma & Welling (2013) introduced the VAE as a method to perform Variational Inference (VI)
(Jordan et al. (1999)) using function approximators, e.g. deep neural networks. VI tries to approxi-
mate a distribution over the generative factors of a dataset which would otherwise involve calculating
an intractable integral. The authors present an algorithm that utilizes the auto encoder framework,
an unsupervised learning method which learns data encodings by reconstructing its input. There-
fore, the input is first compressed until it reaches a given size and is afterwards decompressed to its
original size. When using deep neural networks, these transformations can be achieved by using for
example fully connected or convolutional layers. In order for the VAE to approximate a distribution
over generative factors, the authors used the so called ”reparametrization trick”. It allows for gradi-
ent based optimization methods to be used in searching for the distribution parameters. For training
the VAE, a gradient based optimizer tries to minimize the following loss:

LV AE(x, φ, ψ) = −DKL(qφ(z|x) || p(z)) + E
qφ(z|x)

[
log pψ(x|z)

]
with z = l(µ,σ, ε) and ε ∼ p(ε)

(2)

where DKL denotes the Kullback-Leibler Divergence (KL) (Kullback & Leibler (1951)) of the ap-
proximated distribution over generative factors produced by the encoder qφ(z|x) and some prior
distribution p(z). The expectation is often referred to as reconstruction loss that is typically calcu-
lated on a per-pixel basis. Lastly, l(µ,σ, ε) is a sampling function that is differentiable w.r.t. the
distribution parameters, for example z = u+ σε.

3.3 JOINT OBJECTIVE FUNCTION

Combining both loss functions such that both models can be trained at the same time is rather
straight-forward. Adding both individual losses and using an optimizer such as ADAM (Kingma &
Ba (2014)) to minimize them is sufficient to achieve joint training. During backpropagation, gradi-
ents from the policy and the VAE are combined in the latent space. Due to different topologies of
the networks, gradient magnitudes differ significantly. Therefore, we introduced the hyperparameter
κ which can be used to either amplify or dampen the gradients and we arrive at the following loss:

Ljoint = κLPG(θk, θk−1, φk) + LV AE(x, φ, ψ, β) (3)

where LPG is some policy gradient algorithm’s objective function. As mentioned before, we used
PPO’s loss LPPO (equation 4 in the appendix).
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4 EXPERIMENTS

In order to test our model with the combined objective function given by equation 3, we have used
the well-known benchmark of Atari Breakout. This environment has several properties that make it
appealing to use: it is easily understandable by humans, used often as a RL task and the conventional
pre-trained methods fail at mastering it. The ball is the most important feature that is required
to be encoded in order to perform well, is heavily underrepresented (approximately 0.1% of the
observation space). Therefore, the VAE’s incentive to encode it is very low whereas our model
succeeds in encoding it. In the following, we compare the pre-trained approach to two different
continuously trained models that use the loss from equation 3.

4.1 DATA COLLECTION AND PRE-PROCESSING

The raw RGB image data produced by the environment has a dimensionality of 210 × 160 × 3
pixels. We employ a similar pre-precessing as Mnih et al. (2015), but instead of cropping the grey-
scaled frames, we simply resize them to 84 × 84 pixels. As we will first train models similar
to those introduced in previous works with a pre-trained VAE, we needed to construct a dataset
containing Breakout states. We used an already trained policy to collect a total of 25, 000 frames,
the approximate equivalent of 50 episodes.

4.2 PRE-TRAINING THE VARIATIONAL AUTO-ENCODER

Our first model is based on those of the previously introduced works which involve isolated pre-
training the VAE on a static dataset. Figure 2 shows the individual parts of the complete training
process. For the first model, PPOfixed, the encoder and decoder (shown in orange and red) are pre-
trained before policy training. During this phase, there is no influence from the RL loss. Once the
VAE training is finished, the decoder shown in red in Figure 2 is discarded completely. Later during
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PPO

VAE

Figure 2: Model combining PPO and a VAE. Depending on the model configuration, the colored
parts are trained differently. X is the VAE’s input and X̂ the reconstructions. PPO receives the mean
vectors U as input and calculates a distribution over actions π. Note that we use capital letters in the
VAE to emphasize that we pass n frames at the same time when a policy is trained.
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policy training, we use n instances of the same encoder with shared weights that receive a sequence
of the last n frames as input. Stacking allows us to incorporate temporal information and for the
policy to predict the ball’s trajectory. By sharing the weights, we ensure that the resulting encodings
originate from the same function. U then represents the concatenated encodings of the sequence.
This weight sharing method has proven to be more time efficient than to query the encoder n times
and concatenate the results afterwards.

Prior to policy training, we trained the VAE on the dataset we have collected before, with hyperpa-
rameters from table 1. Once pre-training was finished, we discarded the decoder weights and used
the stacked encoder as input for the policy MLP. The MLP was then trained 10M steps with hy-
perparameters from table 2. During this training, the encoder weights were not changed by gradient
updates anymore but remained fixed.

The second model we introduce is called PPOadapt, which has the same structure and hyperparame-
ters as the first model. For this model, we also train the VAE in isolation first, however the encoder
weights are not fixed anymore during policy training. Gradients from the RL objective are back
propagated through the encoder, allowing it to learn throughout policy training. We hypothesize
that features that are important for policy performance can be incorporated in an already learned
representation.

Figure 3 compares the median rewards of three rollouts with different random seeds for all models.
PPOfixed was not once able to achieve a reward of 10 or higher, while PPOadapt steadily improved its
performance with final rewards well over 50. The learning curve of PPOadapt shows that the model is
able to learn how to act in the environment, whereas PPOfixed does not. The non-zero rewards from
PPOfixed are similar to those of random agents in Breakout. From these results, we can assume that
training the VAE in isolation on a static dataset for Breakout results in a deficient representation for
RL. Therefore, using policy gradients to adapt an already learned representation can be beneficial
in environments where the VAE fails to encode task-relevant features.

4.3 JOINTLY LEARNING REPRESENTATION AND POLICY

The last model we introduce, PPOVAE, combines a complete VAE with a policy MLP that receives
U, the concatenated state encodings, as input. As opposed to the first two models, all weights are
initialized randomly before policy training and the VAE is not pre-trained. For this procedure an
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Figure 3: Reward of the three proposed models across three random seeds each. PPOfixed is not able
to achieve high rewards while the other two models consistently improve their performance.
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already trained agent that gathers a dataset for the VAE beforehand is not necessary. The decoder
is trained exactly as in the isolated setting, meaning its gradients are also only computed using
the VAE’s loss function. During backpropagation, the gradients coming from Z and h1 are added
together and passed through the encoder. This model has the same network configuration and hy-
perparameters as the first two, with the only difference that we also evaluated different values for
κ from the joint loss equation 3 (see A.3). For the results reported here, we chose κ = 20. All
hyperparameters can be found in table 3.

By simultaneously training representation and policy, we expect the VAE to learn task-relevant
features from the beginning of training. This assumption is supported by the learning curve shown
in figure 3, which compares PPOVAE to the previous two models. The curve shows a steady increase
in reward over the course of training with PPOVAE achieving slightly higher rewards than PPOadapt in
the beginning. This characteristic changes after less than 1M steps and from that point on PPOadapt

consistently outperforms PPOVAE. This difference in performance is likely attributed to the fact, that
in PPOVAE the decoder is trained throughout the complete training. While for PPOadapt, the latent
space can be changed without restrictions, the decoder of PPOVAE constantly produces gradients
do not contain information about the ball. Therefore, PPOVAE has less incentive to achieve higher
rewards, which is reflected by its performance.

4.4 ANALYZING THE VALUE FUNCTION GRADIENTS

Figure 4: The Jacobian of PPO’s
value function. Highlighted areas
mean high importance in terms of
future rewards. Note the high Ja-
cobian values around the ball and
the blocks.

So far, the results imply that PPOVAE and PPOadapt do indeed learn
encodings of the ball. One difficulty when analyzing the represen-
tation is, that the decoder still has no incentive to reconstruct the
ball, even if it is present in the latent space. In a work that enhances
DQN algorithm (Wang et al. (2016b)), the authors visualized the
Jacobian of the value function w.r.t. the input images. These visu-
alizations showed which features or regions from the input space
are considered as important in terms of future reward. As we also
learn a value function, we did the same and visualized what our
model considered important and what not.

In figure 4 we illustrate a pre-processed frame and added the val-
ues of the Jacobian to the blue channel if the were greater than
the mean value of the Jacobian. Only visualizing above-mean Ja-
cobian values removes some noise in the blue channel makes the
images much easier to interpret and only highlights regions of high
relevance. We can clearly see, that the Jacobian has high values at
missing blocks as well as around the ball, meaning that these re-
gions are considered to have high impact on future rewards. By
visualizing the Jacobian we have confirmed that the policy gradi-
ents encourage the VAE to embed task-relevant features.

5 CONCLUSION

This paper focused on the issue of pre-training VAEs with the purpose of learning a policy for a
downstream task based on the VAE’s representation. In many environments, the VAE has little to
no incentive to learn task-relevant features if they are small in observation space. Another issue
arises if the observation of these features depends on policy performance and as a result, they are
underrepresented in a dataset sampled by a random agent. In both cases, fixing encoder weights
during policy training prevents the VAE to learn these important features and policy performance
will be underwhelming.

We carried out experiments on the popular RL benchmark Atari Breakout. The goal was to an-
alyze whether policy gradients guide representation learning towards incorporating performance-
critic features that a VAE would not learn on a pre-recorded dataset. First experiments confirmed,
that the common pre-trained approach did not yield well-performing policies in this environment.
Allowing the policy gradients to adapt encoder weights in two different models showed significant
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improvements in terms of rewards. With policy gradients guiding the learned representation, agents
consistently outperformed those that were trained on a fixed representation.

Our work verifies that the fundamental issue with pre-trained representations still exists and shows
possible solutions in RL scenarios. Nonetheless, future work can still explore a variety of improve-
ments to our models. For once, training not only the encoder but also the decoder with RL gradients
can improve interpretability of the VAE and enable it to be used as a generator again that also gen-
erates task-relevant features. Another direction is to impose further restrictions on the latent space
during joint training of VAE and policy. The goal there would be to maintain the desired latent space
characteristics of VAEs while still encoding task-relevant features.
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A APPENDIX

A.1 STABLE POLICY LEARNING WITH PROXIMAL POLICY OPTIMIZATION

Most actor-critic algorithms successfully reduce the variance of the policy gradient, however they
show high variance in policy performance during learning and are at the same time very sample
inefficient. Natural gradient (Amari (1998)) methods such as TRPO from Schulman et al. (2015a)
greatly increase sample efficiency and learning robustness. Unfortunately, they are relatively com-
plicated to implement and are computationally expensive as the require some second order approxi-
mations. PPO (Schulman et al. (2017)) is a family of policy gradient methods that form pessimistic
estimates of the policy performance. By clipping and therefore restricting the policy updates, PPO
prohibits too large of a policy change as they have been found to be harmful to policy performance
in practice. PPO is often combined with another type of advantage estimation (Schulman et al.
(2015b)) that produces high accuracy advantage function estimates.

We define the PPO-Clip objective is defined as

JPPO(θk, θk−1) = E
[

min
(
o(θ)Aπθk (s, a), clip

(
o(θ), 1− ε, 1 + ε

)
Aπθk (s, a)

)]
s.t. δMB < δtarget

(4)

where o(θ) = πθk (a|s)
πθk−1

(a|s) denotes the probability ratio of two policies.

This objective is motivated by the hard KL constraint that TRPO enforces on policy updates. Should
a policy update result in a policy that deviates too much from its predecessor, TRPO performs a line
search along the policy gradient direction that decreases the gradient magnitude. If the constraint is
satisfied during the line search, the policy is updated using that smaller gradient step. Otherwise the
update is rejected after a certain number of steps. This method requires to calculate the second order
derivative of the KL divergence, which is computationally costly. PPO uses its clipping objective to
implicitly constrain the deviation of consecutive policies. In some settings, PPO still suffers from
diverging policy updates (OpenAI Spinning Up - PPO (2018)), so we included a hard KL constrained
on policy updates. The constraint can be checked after each mini-batch update analytically and is
therefore not very computationally demanding.

PPO extends the policy gradient objective function from Kakade (2002). With the probability ratio
o(θ), we utilize importance sampling in order to use samples collected with any policy to update
our current one. Thereby we can use samples more often than in other algorithms, making PPO
more sample efficient. Using importance sampling, we still have a correct gradient estimate. Com-
bining the new objective with actor-critic methods yields algorithm 1. K denotes the number of
optimization epoch per set of trajectories and B denotes the mini-batch size. In the original paper, a
combined objective function is also given with:

LPPO(θk, θk−1, φk) = E
[
c1J

PPO(θk,θk−1)− c2LV
πθ
(φk) +H(πθk)

]
s.t. δMB < δtarget

(5)

whereH(πθk) denotes the policy entropy. Encouraging the policy entropy not to decrease too much
prohibits the policy from specializing on one action. As discussed in OpenAI Spinning Up - PPO
(2018), there are two cases for JPPO(θk, θ): either the advantage function was positive or negative.
In case the advantage is positive, it can be written as:

JPPO(θk, θ) = E
[
min (o(θ), (1 + ε))Aπθk (s, a)

]
(6)

Aπθk (s, a) > 0 indicates that the action yields higher reward than other actions in this state, hence
we want its probability πθk(a|s) to increase. This increase is clipped to (1 + ε) once πθk(a|s) >
πθk−1

(a|s)(1 + ε). Note however, that updates that would worsen policy performance are neither
clipped nor bound. If the the advantage is negative, it can be expressed as:

JPPO(θk, θ) = E
[
max (o(θ), (1− ε))Aπθk (s, a)

]
(7)

This equation behaves conversely to 6: Aπθk (s, a) < 0 indicates that we chose a suboptimal action,
thus we want to decrease its probability. Once πθk(a|s) < πθk−1

(a|s)(1 − ε), the max bounds the
magnitude by which the action’s probability can be decreased.
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Algorithm 1 Proximal Policy Optimisation with KL constraint

1: Initialize policy parameters θ0 and value function parameters φ0
2: for k = 0, 1, 2, ... do
3: Collect set of trajectories Dk = {τi} with πθk and compute R̂t
4: δMB ← 0
5: for 0, 1, 2, ...K do
6: for each mini-batch of size B in {τi} do
7: Update the policy by maximizing the PPO-Clip objective 4
8: Minimize LV πθ on the mini-batch
9: end for

10: end for
11: if δMB > δtarget then
12: θk+1 = θk
13: end if
14: end for

A.2 HYPERPARAMETER TABLES

Parameter Value
epochs 100

batch size 128
input size (84, 84, 1)
optimizer ADAM

learning rate 1× 10−4

encoder Conv2D 32 × 4 × 4 (stride 2) - 64 × 4 × 4 (stride 2) -
FC 512 (ReLU)

latents 20 (linear)
decoder FC 512 (ReLU) - 64×4×4 (stride 2) - 32×4×4 (stride

2) Conv2D Transpose

Table 1: Hyperparameter table for VAE training on Breakout

Parameter Value

timesteps 1× 107

environments 16
batch size 32
tmax 2048
K 10
c1 1.0
c2 0.5
c3 0.0
γ 0.99
λ 0.95

network FC 64 (tanh) -
FC 64 (tanh)

optimizer ADAM
learning rate 3× 10−4

Table 2: Policy hyperparameters of PPOfixed

and PPOadapt

Parameter Value

timesteps 1× 107

environments 16
batch size 32
tmax 2048
K 10
c1 1.0
c2 0.5
c3 0.0
γ 0.99
λ 0.95

network FC 64 (tanh) -
FC 64 (tanh)

optimizer ADAM
learning rate 3× 10−4

κ (1, 10, 20)

Table 3: Policy hyperparameter table of
PPOVAE

12



Under review as a conference paper at ICLR 2021

A.3 CHOOSING APPROPRIATE VALUES FOR κ

In equation 3, we introduced the hyperparameter κ to balance VAE and PPO gradients. We found
empirically, that tuning κ is straight forward and requires only few trials. In order to simplify the
search for κ, one can evaluate gradient magnitudes of the different losses at the point where they are
merged at U. Our experiments showed PPO’s gradients to be significantly smaller, thus scaling up
the loss function was appropriate. This will likely differ if the networks are configured differently.
Increasing κ from 1 to 10 led to considerably higher rewards, however the difference in performance
was small when increasing κ further to 20. Therefore, we chose κ = 20 in our reported model
performances.
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Figure 5: Performance comparison of PPOVAE with different values for κ
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