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ABSTRACT

In the realm of autonomous vehicle (AV) perception, comprehending 3D scenes is
paramount for tasks such as planning and mapping. Camera-based 3D Semantic
Occupancy Prediction (OCC) aims to infer scene geometry and semantics from
limited observations. While it has gained popularity due to affordability and rich
visual cues, existing methods often neglect the inherent uncertainty in models. To
address this, we propose an uncertainty-aware camera-based 3D semantic occu-
pancy prediction method (α-OCC). Our approach includes an uncertainty propa-
gation framework (Depth-UP) from depth models to enhance geometry comple-
tion (up to 11.58% improvement) and semantic segmentation (up to 12.95% im-
provement) for a variety of OCC models. Additionally, we propose a hierarchical
conformal prediction (HCP) method to quantify OCC uncertainty, effectively ad-
dressing the high-level class imbalance in OCC datasets. On the geometry level,
we present a novel KL-based score function that significantly improves the oc-
cupied recall of safety-critical classes (45% improvement) with minimal perfor-
mance overhead (3.4% reduction). For uncertainty quantification, we demonstrate
the ability to achieve smaller prediction set sizes while maintaining a defined cov-
erage guarantee. Compared with baselines, it reduces up to 92% set size. Our
contributions represent significant advancements in OCC accuracy and robustness,
marking a noteworthy step forward in autonomous perception systems.

1 INTRODUCTION

Achieving a comprehensive understanding of 3D scenes is crucial for downstream tasks such as
planning and map construction in autonomous vehicles (AVs) and robotics (Wang & Huang, 2021).
3D Semantic Occupancy Prediction (OCC) emerges as a solution that jointly infers the geometry
completion and semantic segmentation from limited observations (Song et al., 2017; Hu et al., 2023),
which is also known as 3D semantic scene completion. OCC approaches typically fall into two
categories based on the sensors they use: LiDAR-based OCC and camera-based OCC. While LiDAR
sensors offer precise depth information (Roldao et al., 2020; Cheng et al., 2021), they are costly and
less portable. Conversely, cameras, with their affordability and ability to capture rich visual cues
of driving scenes, have gained significant attention (Cao & De Charette, 2022; Li et al., 2023b;
Tian et al., 2024; Zhang et al., 2023). For camera-based OCC, depth prediction is essential for
the accurate 3D reconstruction of scenes. However, existing methodologies often ignore errors
inherited from depth models in real-world scenarios (Poggi et al., 2020). Moreover, how to utilize the
propagated depth uncertainty information and rigorously quantify the uncertainty of the final OCC
outputs, especially when a high-level class imbalance exists in OCC datasets, remains challenging
and unexplored. In the rest of this paper, OCC is referred to as camera-based OCC unless otherwise
specified, which is the focus of our work.

We explain the importance of considering depth uncertainty propagation and OCC uncertainty quan-
tification in Fig. 1. The influence of depth estimation uncertainty on OCC accuracy is shown in
Fig. 1(a). We introduced perturbations to the ground-truth depth values by multiplying them by
a factor of (1 + β), ∀β ∈ {0%, 2%, 4%, 6%, 8%, 10%, 20%}, simulating real-world depth estima-
tion uncertainties (errors). Uncertainties of depth estimation significantly reduce the performance
of OCCs, which should be considered in OCCs. In this paper, we propose a flexible uncertainty
propagation framework (Depth-UP) from depth models to improve the performance of a variety of
OCC models.
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Figure 1: (a): Influence of depth estimation uncertainty on the accuracy of OCC (mIoU↑). As
the percentage of depth uncertaintiy increases, the accuracy of OCC decreases significantly. (b):
Example: the influence of high class imbalance on OCC. The percentage next to each class is its
percentage in the SemanticKITTI dataset. Since the safety-critical class “bicyclist” only occupied
0.01%, the trained OCC model fails to detect the bicyclist in front, leading to a crash. However,
after quantifying the uncertainty and post-processing using our HCP, the crash is avoided. This is
because our HCP improves the occupied recall of rare classes. Due to visualization constraints, each
occupied voxel is represented by the nonempty class with the highest probability in our HCP results.

The datasets utilized in OCC tasks often exhibit a high class imbalance, with empty voxels com-
prising a significant proportion (92.91% for the widely used SemanticKITTI (Behley et al., 2019)
dataset), as illustrated in the dotted box of Fig. 1(b). Bicyclist and person voxels, crucial for safety,
only occupy 0.01% and 0.007%. Consequently, neural networks trained on such imbalanced data,
coupled with the maximum posterior classification, may inadvertently disregard infrequent classes
within the dataset (Tian et al., 2020). This leads to reduced accuracy and recall for rare classes. How-
ever, for safety-critical systems such as autonomous vehicles (AV), ensuring occupied recall for rare
classes is important for preventing potential collisions and accidents (Chan et al., 2019). As shown
in Fig. 1(b), the basic OCC model fails to detect the bicyclist in front and causes a crash for the bicy-
clist class is very rare in the dataset. To address this problem, we propose a hierarchical conformal
prediction (HCP) method that improves the occupied recall of rare classes for geometry completion
and generates prediction sets for predicted occupied voxels with class coverage guarantees for se-
mantic segmentation. So after quantifying the uncertainty (prediction set) and post-processing with
our HCP, the OCC model detects the voxels of the rare bicyclist class and avoids the crash.

Through extensive experiments on two OCC models (VoxFormer Li et al. (2023b) and Occ-
Former Zhang et al. (2023)) and two datasets (SemanticKITTI Behley et al. (2019) and KITTI360 Li
et al. (2023a)), we show that our Depth-UP achieves up to 11.58% increase in geometry completion
and 12.95% increase in semantic segmentation. Our HCP achieves 45% increase in the geome-
try prediction for the person class, with only 3.4% IoU overhead. This improves the prediction
of rare safety-critical classes, such as persons and bicyclists, thereby reducing potential risks for
AVs. Compared with baselines, our HCP reduces up to 92% set size and up to 84% coverage gap.
These results highlight the significant improvements in both accuracy and uncertainty quantification
offered by our α-OCC approach.

Our contributions can be summarized as follows:

1. To address the challenging OCC problem for autonomous driving, we recognize the prob-
lem from a fresh uncertainty quantification (UQ) perspective. More specifically, we pro-
pose the uncertainty-aware camera-based 3D semantic occupancy prediction method (α-
OCC), which contains the uncertainty propagation (Depth-UP) from depth models to im-
prove OCC performance and the novel hierarchical conformal prediction (HCP) method to
quantify the uncertainty of OCC.

2. To the best of our knowledge, we are the first attempt to propose the uncertainty propagation
framework Depth-UP to improve the OCC performance, where the uncertainty quantified
by the direct modeling is utilized on both geometry completion and semantic segmentation.
This leads to a solid improvement in common OCC models.

3. To solve the high-level class imbalance challenge on OCC, which results in biased pre-
diction and low recall for rare classes, we propose the HCP. On geometry completion,
a novel KL-based score function is proposed to improve the occupied recall of safety-
critical classes with little performance overhead. For uncertainty quantification, we achieve
a smaller prediction set size under the defined class coverage guarantee. Overall, the pro-
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posed α-OCC, combined with Depth-UP and HCP, has shown that UQ is an integral and
vital part of OCC tasks, with an extendability over to a broader set of 3D scene understand-
ing tasks that go beyond the AV perception.

2 RELATED WORK

Semantic Occupancy Prediction. The concept of 3D Semantic Occupancy Prediction (OCC),
which is also known as 3D semantic scene completion, was first introduced by SSCNet (Song et al.,
2017), integrating both geometric and semantic reasoning. Since its inception, numerous studies
have emerged, categorized into two streams: LiDAR-based OCC (Roldao et al., 2020; Cheng et al.,
2021; Yan et al., 2021) and camera-based OCC (Cao & De Charette, 2022; Li et al., 2023b; Tian
et al., 2024; Zhang et al., 2023; Huang et al., 2024; Tang et al., 2024; Vobecky et al., 2024). Re-
cently, camera-based OCC has gained increasing attention owing to cameras’ advantages in visual
recognition and cost-effectiveness (Ma et al., 2024). Depth predictions are instrumental in project-
ing 2D information into 3D space for camera-based OCC tasks. Existing approaches generate query
proposals using depth estimation and leverage them to extract rich visual features from the 3D scene.
However, they overlook depth estimation uncertainty. In this work, we propose an uncertainty prop-
agation framework from depth models to enhance the performance of OCC models.

Uncertainty Quantification and Propagation. Uncertainty quantification (UQ) holds paramount
importance in ensuring the safety and reliability of autonomous systems such as robots (Jasour &
Williams, 2019) and AVs (Meyer & Thakurdesai, 2020). Moreover, UQ for perception tasks can
significantly enhance the planning and control processes for safety-critical autonomous systems (Xu
et al., 2014; He et al., 2023). Different types of UQ methods have been proposed. Monte-Carlo
dropout (Miller et al., 2018) and deep ensemble (Lakshminarayanan et al., 2017) methods require
multiple runs of inference, which makes them infeasible for real-time UQ tasks. In contrast, direct
modeling methods (Feng et al., 2021) can estimate uncertainty in a single inference pass in real-time
perception, which is used to estimate the uncertainty of depth in our work.

Several studies have integrated uncertainty into 3D tasks, but their objectives differ from ours. El-
desokey et al. (2020) improves 3D depth completion with uncertainty by normalized convolutional
neural networks. Cao et al. (2024) used a deep ensemble method to manage uncertainty for LiDAR-
based OCC, which increases computational complexity. While uncertainty propagation (UP) frame-
works from depth to 3D object detection have demonstrated efficacy in enhancing accuracy (Lu
et al., 2021; Wang et al., 2023), no prior works have addressed UP from depth to OCCs for improv-
ing the performance of OCCs. This paper aims to bridge this gap by proposing a novel approach to
UP. We design a depth UP module called Depth-UP based on direct modeling.

Conformal prediction (CP) can construct statistically guaranteed uncertainty sets for model predic-
tions (Angelopoulos & Bates, 2021; Su et al., 2024; Manokhin, 2022), however, there is limited CP
literature for highly class-imbalanced tasks. Rare and safety-critical classes (e.g., person) remain
challenging for OCC models. Hence, we develop a hierarchical conformal prediction method to
quantify uncertainties of OCC characterized by highly imbalanced classes. More related works are
introduced in Appendix A.1 and A.4.

3 METHOD

We design a novel uncertainty-aware camera-based 3D semantic occupancy prediction method (α-
OCC), which contains the uncertainty propagation (Depth-UP) from depth models to improve the
performance of different OCC models and the hierarchical conformal prediction (HCP) to quan-
tify the uncertainty of OCC. Figure 2 presents the whole methodology overview and the structure
of our Depth-UP. Figure 3 presents the structure of our HCP. The major novelties are: (1) Depth-
UP quantifies the uncertainty of depth estimation by direct modeling (DM) and then propagates it
through probabilistic geometry projection (for geometry completion) and depth feature extraction
(for semantic segmentation). (2) HCP calibrates the probability outputs of the OCC model. First, it
predicts the voxels’ occupied state by the quantile on the novel KL-based score function as Eq. 4,
which can improve the occupied recall of rare safety-critical classes. Then it generates prediction
sets for predicted occupied voxels, achieving a better coverage guarantee and smaller sizes of pre-
diction sets.

3
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Figure 2: Overview of our α-OCC method. The non-black colors highlight the novelties and im-
portant techniques in our method. C denotes the concatenation of the depth feature FD and image
feature FI . In the Depth-UP part, we calculate the uncertainty of depth estimation through direct
modeling. Then we propagate it through depth feature extraction (for semantic segmentation) and
building a probabilistic voxel grid map Mp by probabilistic geometry projection (for geometry com-
pletion). Each element of Mp is the occupied probability of the corresponding voxel, computed by
considering the depth distribution of all rays across the voxel.

3.1 PRELIMINARY

OCC predicts a dense semantic scene within a defined volume in front of the vehicle solely from
RGB images (Cao & De Charette, 2022) as shown in Figure 2. Specifically, with an input image
denoted by X ∈ R3×H×W , one OCC model first extracts 2D image features FI using backbone
networks like ResNet (He et al., 2016) and estimates the depth value for each pixel, denoted by
D̂ ∈ RH×W , employing depth models such as monocular depth estimation (Bhat et al., 2021) or
stereo depth estimation (Shamsafar et al., 2022). Subsequently, the model generates a probability
voxel grid Ŷ ∈ [0, 1]M×U×V×D based on FI and D̂, assigning each voxel to the class with the
highest probability. Each voxel within the grid is categorized as either empty or occupied by a
specific semantic class. The ground truth voxel grid is denoted as Y. Here, H and W signify the
height and width of the input image, while U , V and D represent the height, width, and length of the
voxel grid, M denotes the total number of relevant classes (including the empty class), respectively.

3.2 UNCERTAINTY PROPAGATION FRAMEWORK (DEPTH-UP)

In contemporary OCC methods, depth models facilitate the projection from 2D to 3D space, pri-
marily focusing on geometric aspects. Nonetheless, these approaches often overlook the inherent
uncertainty associated with depth prediction. Recognizing the potential to enhance OCC perfor-
mance by harnessing this uncertainty, we introduce a novel framework (Depth-UP) centered on
uncertainty propagation from depth models to OCC models. Our Depth-UP is a flexible framework
applicable to a variety of OCC models. It involves quantifying the uncertainty inherent in depth
models through a direct modeling (DM) method and integrating this uncertainty information into
both geometry completion and semantic segmentation of OCC to improve the final performance.

Direct Modeling (DM). Depth-UP includes a DM technique (Su et al., 2023; Feng et al., 2021) to in-
fer the standard deviation associated with the estimated depth value of each pixel in the image, with
little time overhead. An additional regression header, with a comparable structure as the original
regression header for D̂, is tailored to predict the standard deviation Σ̂. Subsequently, this header is
retrained based on the pre-trained depth model , with all parameters of the original depth model being
frozen. We assume that the estimated depth value is represented as a single-variate Gaussian distribu-
tion, and the ground truth depth follows a Dirac delta function (Arfken et al., 2011). For the retrain-
ing process, we define the regression loss function as the Kullback-Leibler (KL) divergence between
the estimated distribution and the ground truth distribution, where D ∈ RH×W is the ground truth
depth matrix for the image: LKL(D, D̂, Σ̂) = 1

HW

∑H
h=1

∑W
w=1

(dhw−d̂hw)2

2σ̂2
hw

+ log |σ̂hw|.
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Propagation on Geometry Completion. Depth information is used to generate the 3D voxels on
geometry in OCC. There are two key challenges: lens distortion during geometric transformations
and occupied probability estimation for each voxel. Lens distortion is a deviation from the ideal
image formation by a lens, resulting in a distorted image (Zhang, 2000). Existing OCC models,
such as VoxFormer (Li et al., 2023b), solve the lens distortion by projecting depth into a 3D point
cloud, and then generating the binary voxel grid map Mb ∈ {0, 1}U×V×D, where each voxel is
marked as 1 if occupied by at least one point. However, they ignore the uncertainty of depth. Here
we propagate the depth uncertainty into the geometry of OCC to solve the above two challenges.

Our Depth-UP generates a probabilistic voxel grid map Mp ∈ [0, 1]U×V×D that considers lens
distortion and depth uncertainty, with {D̂, Σ̂} from DM. For pixel (h,w) with estimated depth mean
d̂hw, we project it into point (x, y, z) in 3D space: x = (h−ch)×z

fu
, y = (w−cw)×z

fv
, z = d̂hw, where

(cu, cv) is the camera center and fu and fv are the horizontal and vertical focal length.

When the estimated depth follows a single-variate Gaussian distribution, the location of the point
may be on any position along a ray starting from the camera. It is difficult to get the exact location
of the point, but we can estimate the probability of one voxel (u, v, d) being occupied by points.
Due to the density of visual information, a single voxel may correspond to multiple pixels, which
means a voxel can be passed by multiple rays. We denote this set of rays as Ψuvd, and a single ray
within this set as ρhw, corresponding to pixel (h,w). When a ray ρhw passes through a voxel, it
has two crosspoints: zs where the ray enters the voxel, and ze where the ray exits the voxel. By
cumulating the probability of the ray inside the voxel using the probability density function, we
obtain the probability of voxel (u, v, d) being occupied by points:

Mp(u, v, d) = min

1,
∑

ρhw∈Ψuvd

∫ ze

zs

N (z|d̂hw, σ̂2
hw)dz

 . (1)

The original binary voxel grid map is replaced by the probabilistic voxel grid map Mp ∈
[0, 1]U×V×D to propagate the depth uncertainty into the geometry completion of OCC.

Propagation on Semantic Segmentation. The extraction of 2D features FI from the input image
has been a cornerstone for OCC to encapsulate semantic information. However, harnessing the depth
uncertainty information on the semantic features is ignored. Here by augmenting the architecture
with an additional lightweight backbone, such as ResNet-18 backbone (He et al., 2016), we extract
depth features FD from the concatenated depth mean and standard deviation {D̂, Σ̂}. These newly
acquired depth features are then seamlessly integrated with the original 2D image features, constitut-
ing a novel set of input features {FI ,FD} as shown in Figure 2. This integration strategy capitalizes
on the extensive insights gained from prior depth predictions, enhancing the OCC performance with
enhanced semantic understanding.

3.3 HIERARCHICAL CONFORMAL PREDICTION (HCP)

3.3.1 PRELIMINARY

Standard Conformal Prediction. For classification, conformal prediction (CP) (Angelopoulos &
Bates, 2021; Ding et al., 2024) is a statistical method to post-process any models by producing
the set of predictions with theoretically guaranteed marginal coverage of the correct class. With M
classes, consider the calibration data (X1,Y1), ..., (XN ,YN ) with N data points that are never seen
during training, the standard CP (SCP) includes the following steps: (1) Define the score function
s(X, y) ∈ R. (Smaller scores indicate better agreement between X and y). The score function is
a vital component of CP. A typical score function of a classifier f is s(X, y) = 1 − f(X)y , where
f(X)y represents the yth softmax output of f(X). (2) Compute q as the ⌈(N+1)(1−α)⌉

N quantile of
the calibration scores, where α ∈ [0, 1] is a user-chosen error rate. (3) Use this quantile to form the
prediction set C(Xtest) ⊂ {1, ...,M} for one new example Xtest (from the same distribution of the
calibration data): C(Xtest) = {y : s(Xtest, y) ≤ q}. The SCP provides a coverage guarantee that
P(Ytest ∈ C(Xtest)) ≥ 1− α which has been proved in Angelopoulos & Bates (2021).

Class-Conditional Conformal Prediction. The SCP achieves the marginal guarantee but may ne-
glect the coverage of some classes, especially on class-imbalanced datasets (Angelopoulos & Bates,
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2021). Class-Conditional Conformal Prediction (CCCP) targets class-balanced coverage under the
user-chosen class error rate αy:

P(Ytest ∈ C(Xtest)|Ytest = y) ≥ 1− αy, ∀y ∈ {1, ...,M}. (2)

Every class y has at least 1 − αy probability of being included in the prediction set when the label
is y. Hence, the prediction sets satisfying Eq. 2 are effectively fair to all classes, even the rare ones.

3.3.2 OUR HIERARCHICAL CONFORMAL PREDICTION

Hierarchical Conformal Prediction (HCP)

OCC Prediction 
Head

cls prob

class1 2 3 4

Argmax

2. vegetation 3. car 4. person1. empty

KL-based Score 
Function

Previous work
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Figure 3: Overview of our Hierarchical Conformal Prediction (HCP) module. We predict voxels’
occupied state by the quantile on the novel KL-based score as Eq. 4, which can improve occupied
recall of rare classes, and then only generate prediction sets for these predicted occupied voxels. The
occupied quantile qyo and semantic quantile qys are computed during the calibration step of HCP.

Current CP does not consider the hierarchical structure of classification, such as the geometry com-
pletion and semantic segmentation in OCCs. And it cannot achieve good coverage for very rare and
safety-critical classes. Here we propose a novel hierarchical conformal prediction (HCP) to address
these challenges, which is shown in Figure 3. The detailed algorithm is shown in Appendix A.3.

Geometric Level. On the geometric level, it is important and safety-critical to guarantee the occu-
pied recall of some sensitive classes, such as the person and bicyclist for AVs. Hence, we define the
occupied coverage for the specific safety-critical class y as:

P(o = T |Ytest = y) ≥ 1− αy
o , (3)

where o = T means the occupancy state is true. The probability of the voxels with label y are
predicted as occupied is guaranteed to be no smaller than 1 − αy

o . The empty class is y = 1
and occupied classes are y ∈ {2, ...,M}. To achieve the above guarantee under the high class-
imbalanced dataset, we propose a novel score function based on the KL divergence. Here we define
the ground-truth distribution for occupancy as O = {ε, 1, ..., 1}M , where ε is the minimum value for
the empty class to avoid the divide-by-zero problem. With the output softmax probability f(X) =
{p1, p2, ..., pM} from the model f , we define the KL-based score function for y ∈ Yr:

skl(X, y) = Dkl(f(X)||O) = p1 log(
p1
ε
) +

M∑
i=2

pi log(pi), (4)

where Yr is the considered rare class set. The quantile qyo for class y is computed as the
⌈(Ny+1)(1−αy

o)⌉
Ny

quantile of the score skl(X, y) on Υy , where Υy is the subset of the calibra-
tion dataset with Y = y and Ny = |Υy|. Then we predict the voxel Xtest as occupied if
∃y ∈ Yr, skl(Xtest, y) ≤ qyo .

Semantic Level. On the semantic level, we need to achieve the same class-balanced coverage as
Eq. 2, under the geometric level coverage guarantee. For all voxels that are predicted as occupied in
the previous step, we generate the prediction set C(Xtest) ⊂ {2, ...,M} to satisfy the guarantee:

P(Ytext ∈ C(Xtest)|Ytext = y, o = T ) ≥ 1− αy
s . (5)

6
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The score function here is s(X, y) = 1 − f(X)y . We compute the quantile qys for class y as the
⌈(Nyo+1)(1−α)⌉

Nyo
quantile of the score on Υy

o , where Υy
o is the subset of the calibration dataset that

has label y and are predicted as occupied on the geometric level of our HCP. Nyo = |Υy
o |.

The prediction set is generated as:
C(Xtest) = {y : skl(X, y) ≤ qyo ∧ s(X, y) ≤ qys} (6)

Proposition 1. For a desired αy value, we select αy
o and αy

s as 1 − αy = (1 − αy
s)(1 − αy

o), then
the prediction set generated as Eq. 6 satisfies P(Ytest ∈ C(Xtest)|Ytest = y) ≥ 1− αy .

The proof is in Appendix A.2.

4 EXPERIMENTS

OCC Model. We assess the effectiveness of our approach through comprehensive experiments on
two different OCC models VoxFormer (Li et al., 2023b) and OccFormer (Zhang et al., 2023). A
detailed introduction to these two models is in Appendix A.4.

Dataset. The datasets we used are SemanticKITTI (Behley et al. (2019), with 20 classes) and
KITTI360 (Li et al. (2023a), with 19 classes). More details on these two datasets are in Ap-
pendix A.5 and detailed experiment settings are in Appendix A.6.

4.1 UNCERTAINTY PROPAGATION PERFORMANCE

Table 1: Performance evaluation of our Depth-UP on two OCC models. Values in parentheses
indicate the improvement of our Depth-UP compared with the baseline.

Dataset Basic OCC Method IoU ↑ Precision ↑ Recall ↑ mIoU ↑

SemanticKITTI

VoxFormer Base 44.02 62.32 59.99 12.35
Our 45.85 (+1.83) 63.10 (+0.78) 62.64 (+2.65) 13.36 (+1.01)

OccFormer
Base*1 36.50 - - 13.46
Base 37.48 48.71 61.92 12.83
Our 41.64 (+4.16) 53.99 (+5.28) 64.54 (+2.62) 14.56 (+1.73)

KITTI360 VoxFormer Base 38.76 57.67 54.18 11.91
Our 43.25 (+4.49) 65.81 (+7.29) 55.78 (+1.60) 13.55 (+1.64)

1 These results are from the original paper, while the others are tested by ourselves.

Metric. For OCC performance, we employ the intersection over union (IoU) to evaluate the ge-
ometric completion, regardless of the allocated semantic labels. This is very crucial for obstacle
avoidance for AVs. We use the mean IoU (mIoU) of all semantic classes to assess the performance
of semantic segmentation of OCC. Since there is a strong negative correlation between IoU and
mIoU (Li et al., 2023b), the model should achieve excellent performance in both of them.

The experimental results of our Depth-UP on VoxFormer and OccFormer are presented in Table 1.
Since the existing OccFormer is not implemented on the KITTI360 dataset (Zhang et al., 2023),
we only evaluate the OccFormer with our Depth-UP on the SemanticKITTI dataset. These results
demonstrate that Depth-UP effectively leverages quantified uncertainty from the depth model to
enhance OCC model performance, achieving up to a 4.49 (11.58%) improvement in IoU and up to
a 1.73 (12.95%) improvement in mIoU, while also significantly improving both precision and recall
in the geometry completion aspect of OCC. When assessing the performance of OCC models, even
slight improvements in IoU and mIoU mean good progress (Zhang et al., 2023; Huang et al., 2023).
The detailed mIoU results of each class are presented in Appendix A.7.

Figure 4 presents visualizations of the VoxFormer with and without our Depth-UP on Se-
manticKITTI. In this figure, we can also see that our Depth-UP can help OCC models predict rare
classes, such as persons and bicyclists, as highlighted with the orange dashed boxes. Especially for
the third row, our Depth-UP predicts the person crossing the road in the corner, while the baseline
ignores him. Our Depth-UP can significantly reduce the risk of hurting humans for AVs and improve
safety. More visualization results are in Appendix A.7.

1The incorrect ground truth in the third row occurs because SemanticKITTI uses LiDAR temporal fusion
for annotations, which results in ghosting effects for dynamic objects.
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Figure 4: Qualitative results of the base VoxFormer model and that with our Depth-UP1.

4.2 UNCERTAINTY QUANTIFICATION PERFORMANCE

We evaluate our HCP on the geometric level and the final uncertainty quantification. Since we do
not have the labeled test part of SemanticKITTI, we randomly split the original validation part of
SemanticKITTI into the calibration dataset (take up 30%) and the test dataset (take up 70%). For
KITTI360, we use the validation part as the calibration dataset and the test part as the test dataset.

Geometric Level. For the geometric level, the target of methods is to achieve the best trade-
off between IoU performance and the occupied recall of rare classes. To show the effectiveness
of our novel KL-based score function on the geometric level, we compare it with two common
score functions in Angelopoulos & Bates (2021): class score (1 − f(X)y) and occupied score
(1 −

∑M
y=2 f(X)y). Figure 5(a) shows the IoU results across different occupied recalls of the rare

class person for different datasets. Figure 5(b) shows the IoU results across different occupied re-
calls of the rare class bicyclist for different basic OCC models. Here “Our Depth-UP” means the
basic OCC model with our Depth-UP method. We can see that our KL-based score function always
achieves the best geometry performance for the same occupied recall, compared with two baselines.

Our HCP significantly outperforms baselines because it not only considers the occupied probability
across all nonempty classes but also leverages the entire probability distribution. Compared with
the class score, which only considers individual class probabilities, our score function accounts for
all nonempty classes. Predicting rare classes is challenging for models, but they tend to identify
these as occupied, assigning lower probabilities to the empty class and higher probabilities to all
nonempty classes. Therefore, it’s crucial to consider the probability of all nonempty classes. Al-
though the occupied score addresses this by summing probabilities of all nonempty classes, it loses
sensitivity to the distribution. When facing difficult classifications (such as rare classes), deep learn-
ing models tend to produce output probabilities that are more evenly distributed across the possible
classes (Guo et al., 2017). The Kullback-Leibler (KL) divergence measures how one probability
distribution diverges from a reference distribution, considering the entire shape of the probability
distribution (Raiber & Kurland, 2017). This sensitivity to distribution shape enables our KL-based
score function to identify rare classes more effectively.

To achieve the optimal balance between IoU and occupied recall, we can adjust the desired occupied
recall. For instance, in the top right subfigure of Figure 5(a), the OCC model without HCP shows an
IoU of 45.85 and an occupied recall for the person class of 20.69. By setting the occupied recall to
21.75, the IoU improves to 45.94. Increasing the occupied recall beyond 30 (45.0% improvement)
results in a decrease in IoU to 44.38 (3.4% reduction). This demonstrates that our HCP method can
substantially boost the occupied recall of rare classes with a minor reduction in IoU.

Uncertainty Quantification. To measure the quantified uncertainty of different CP methods, we
usually use the average class coverage gap (CovGap) and average set size (AvgSize) of the prediction
sets (Ding et al., 2024) as metrics. For a given class y ∈ Y\{1} with the defined error rate αy , the
empirical class-conditional coverage of class y is cy = 1

|Υy|
∑

i∈Υy I{Yi ∈ C(Xi)}. The CovGap is
defined as 1

|Y|−1

∑
y∈Y\{1} |cy − (1 − αy)|. This measures how far the class-conditional coverage

8
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Figure 5: Compare our KL-based score function with the class score function and the occupied
score function. Evaluate OCC’s geometry performance across different occupied recalls of the rare
class (person or bicyclist). The red dotted line shows the IoU of the OCC model without CP. (a):
Results on basic VoxFormer across different datasets for the considered class person. (b): Results
on SemanticKITTI across different basic OCC models for the considered class bicyclist.

is from the desired coverage 1 − αy . The AvgSize is defined as 1
T

∑T
i=1 |C(Xi)|, where T is the

number of samples in the test dataset and C(Xi) does not contain the empty class. A good UQ
method should achieve both small CovGap and AvgSize.

Table 2 compares our HCP method with standard conformal prediction (SCP) and class-conditional
conformal prediction (CCCP), as introduced in Subsection 3.3.1. Our results demonstrate that HCP
consistently achieves robust empirical class-conditional coverage and produces smaller prediction
sets. In contrast, the performance of SCP and CCCP varies across different OCC models. Specif-
ically, for our Depth-UP based on VoxFormer and KITTI360, HCP reduces the set size by 92%
and the coverage gap by 84%, compared to SCP. For our Depth-UP based on VoxFormer and Se-
manticKITTI, HCP reduces the set size by 79% and the coverage gap by 64%, compared to CCCP.
As noted in Subsection 3.3.1, SCP consistently fails to provide conditional coverage, although some-
times it provides a very small set size. Both SCP and CCCP tend to generate nonempty C(X) for
most voxels, potentially obstructing AVs. In contrast, HCP only generates nonempty C(X) for
these selected occupied voxels, thereby minimizing prediction set sizes while maintaining reliable
class-conditional coverage.

Table 2: Compare our HCP (referred to as “Ours”) with the standard conformal prediction (SCP)
and class-conditional conformal prediction (CCCP) on CovGap and AvgSize.

Dataset SemanticKITTI KITTI360

Basic OCC VoxFormer OccFormer VoxFormer

Method Base Our Depth-UP Base Our Depth-UP Base Our Depth-UP

CP SCP CCCP Ours SCP CCCP Ours SCP CCCP Ours SCP CCCP Ours SCP CCCP Ours SCP CCCP Ours

CovGap ↓ 0.22 0.03 0.04 0.26 0.11 0.04 0.26 0.03 0.04 0.31 0.04 0.03 0.64 0.26 0.10 0.62 0.25 0.10
AvgSize ↓ 1.53 1.71 1.13 0.97 6.43 1.36 0.10 3.42 0.94 0.10 2.96 1.24 6.30 1.03 0.56 13.24 1.51 1.12

4.3 ABLATION STUDY

Table 3: Ablation study on our Depth-UP framework with VoxFormer and SemanticKITTI.
PGC PSS IoU ↑ Precision ↑ Recall ↑ mIoU ↑ FPS ↑ Params (MB) ↓

44.02 62.32 59.99 12.35 8.85 59.98

✓ 44.91 63.76 60.30 12.58 7.14 60.09

✓ 44.40 62.69 60.35 12.77 8.76 71.53

✓ ✓ 45.85 63.10 62.64 13.36 7.08 71.53

Uncertainty Propagation. We conducted an ablation study to assess the contributions of each
technique proposed in our Depth-UP, as detailed in Table 3. The best results are shown in bold.
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The results indicate that Propagation on Geometry Completion (PGC) significantly enhances IoU,
precision, and recall, which are key metrics for geometry. Additionally, Propagation on Semantic
Segmentation (PSS) markedly improves mIoU, a crucial metric for semantic accuracy. Notably, the
combined application of both techniques yields performance improvements that surpass the sum of
their individual contributions.
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Figure 6: Compare our HCP with SCP and CCCP on CovGap and AvgSize based on VoxFormer.
Each point represents one desired class error rate setting. Lower values indicate better performance
for both CovGap and AvgSize. (a): The results of CovGap vs. AvgSize on different settings across
different datasets. (b): The results of CovGap vs. scale and AvgSize vs. scale on the SemanticKITTI
dataset where the scale represents the desired class error rate.

Uncertainty Quantification. We compare our HCP with SCP and CCCP under different de-
sired class-specific error rate αy settings with the basic model VoxFormer, as shown in Figure 6.
For each class, the desired error rate is set by multiplying the original error rate of OCC mod-
els with the scale λ < 1, which raises the coverage requirement. We consider five settings with
λ ∈ {0.86, 0.89, 0.92, 0.95, 0.98}. The points of our HCP are always located in the left bottom
corner of subfigures in Figure 6(a) which means our HCP achieves the best performance on set
size and coverage gap under all error rate settings. In Figure 6(b), our HCP always achieves low
CovGap indicating it can always satisfy the coverage guarantee even under high requirements. For
all CP approaches, as the desired error rate becomes smaller, the set size tends to be larger. CPs
increase the set size to satisfy the coverage guarantee. The results on other OCC models are shown
in Appendix A.8, where our HCP is applied to one LiDAR-based OCC to show its scalability.

Limitation. Regarding frames per second (FPS), our Depth-UP results in a 20% decrease. However,
this reduction does not significantly impact the overall efficiency of OCC models. It is important
to note that we have not implemented any specific code optimization strategies to enhance runtime.
Consequently, the computational overhead introduced by our framework remains acceptable.

5 CONCLUSION

This paper introduces a novel approach to enhancing camera-based 3D Semantic Occupancy Pre-
diction (OCC) for AVs by incorporating uncertainty inherent in models. Our proposed framework,
α-OCC, integrates the uncertainty propagation (Depth-UP) from depth models to improve OCC
performance in both geometry completion and semantic segmentation. A novel hierarchical con-
formal prediction (HCP) method is designed to quantify OCC uncertainty effectively under high-
level class imbalance. Our extensive experiments demonstrate the effectiveness of our α-OCC. The
Depth-UP significantly improves prediction accuracy, achieving up to 11.58% increase in IoU and
up to 12.95% increase in mIoU. The HCP further enhances performance by achieving robust class-
conditional coverage and small prediction set sizes. Compared to baselines, it reduces up to 92%
set size and up to 84% coverage gap. These results highlight the significant improvements in both
accuracy and uncertainty quantification offered by our approach, especially for rare safety-critical
classes, such as persons and bicyclists, thereby reducing potential risks for AVs. In the future, we
will extend HCP to other highly imbalanced classification tasks.
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and Josef Sivic. Pop-3d: Open-vocabulary 3d occupancy prediction from images. Advances in
Neural Information Processing Systems, 36, 2024.

Lele Wang and Yingping Huang. A survey of 3d point cloud and deep learning-based approaches for
scene understanding in autonomous driving. IEEE Intelligent Transportation Systems Magazine,
14(6):135–154, 2021.

Yuqi Wang, Yuntao Chen, and Zhaoxiang Zhang. Frustumformer: Adaptive instance-aware resam-
pling for multi-view 3d detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5096–5105, 2023.

Yuqi Wang, Yuntao Chen, Xingyu Liao, Lue Fan, and Zhaoxiang Zhang. Panoocc: Unified
occupancy representation for camera-based 3d panoptic segmentation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 17158–17168, 2024.

Songlin Wei, Haoran Geng, Jiayi Chen, Congyue Deng, Cui Wenbo, Chengyang Zhao, Xiaomeng
Fang, Leonidas Guibas, and He Wang. D3roma: Disparity diffusion-based depth sensing for
material-agnostic robotic manipulation. In ECCV 2024 Workshop on Wild 3D: 3D Modeling,
Reconstruction, and Generation in the Wild, 2024.

Wenda Xu, Jia Pan, Junqing Wei, and John M Dolan. Motion planning under uncertainty for on-
road autonomous driving. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pp. 2507–2512. IEEE, 2014.

Xu Yan, Jiantao Gao, Jie Li, Ruimao Zhang, Zhen Li, Rui Huang, and Shuguang Cui. Sparse single
sweep lidar point cloud segmentation via learning contextual shape priors from scene completion.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 3101–3109,
2021.

Yunpeng Zhang, Zheng Zhu, and Dalong Du. Occformer: Dual-path transformer for vision-based
3d semantic occupancy prediction. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 9433–9443, 2023.

Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transactions on pattern
analysis and machine intelligence, 22(11):1330–1334, 2000.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 MORE RELATED WORK

Class Imbalance. In real-world applications like robotics and autonomous vehicles (AVs), datasets
often face the challenge of class imbalance (Chen et al., 2018). Rare classes, typically encompassing
high safety-critical entities such as persons, are significantly outnumbered by lower safety-critical
classes like trees and buildings. Various strategies have been proposed to tackle class imbalance.
Data-level methods involve random under-sampling of majority classes and over-sampling of minor-
ity classes during training (Van Hulse et al., 2007). However, they struggle to address the pronounced
class imbalance encountered in OCC (Megahed et al., 2021), as shown in Section 1. Algorithm-
level methods employ cost-sensitive losses to adjust the training process for different tasks, such as
depth estimation (Eigen & Fergus, 2015) and 2D segmentation (Badrinarayanan et al., 2017). While
algorithm-level methods have been widely implemented in current OCC models (Voxformer (Li
et al., 2023b) utilizes Focal Loss (Lin et al., 2017) as the loss function), they still fall short in ac-
curately predicting minority classes. In contrast, classifier-level methods postprocess output class
probabilities during the testing phase through posterior calibration (Buda et al., 2018; Tian et al.,
2020). In this paper, we propose a hierarchical conformal prediction method falling within this
category, aimed at enhancing the recall of rare safety-critical classes in the OCC task.

A.2 PROOF OF PROPOSITION 1

Proposition 1. For a desired αy value, we select αy
o and αy

s as 1−αy = (1−αy
s)(1−αy

o), then the
prediction set generated as Eq. 6 satisfies that P(Ytest ∈ C(Xtest)|Ytest = y) ≥ 1− αy .

Proof.

P(Ytest ∈ C(Xtest)|Ytest = y) =
∑
o

P(Y ∈ C(X)test)|Ytest = y, o)P(o|Ytest = y)

=P(Ytest ∈ C(Xtest)|Ytest = y, o = T )P(o = T |Ytest = y)

+ P(Ytest ∈ C(Xtest)|Ytest = y, o = F )P(o = F |Ytest = y)

=P(Ytest ∈ C(Xtest)|Ytest = y, o = T )P(o = T |Ytest = y) ≥ (1− αy
s)(1− αy

o)

⇒P(Ytest ∈ C(Xtest)|Ytest = y) ≥ 1− αy,when 1− αy = (1− αy
s)(1− αy

o)

A.3 ALGORITHM OF HCP

Algo. 1 shows the detailed algorithm of our hierarchical conformal prediction (HCP).

A.4 INTRODUCTION ON OCC MODELS

Camera-based OCC has garnered increasing attention owing to cameras’ advantages in visual recog-
nition and cost-effectiveness. Depth predictions from depth models are instrumental in projecting
2D information into 3D space for OCC tasks. Existing methodologies can be classified into two
paradigms based on their utilization of depth information: querying 2D from 3D and lifting 2D to
3D. The former (Li et al., 2023b; 2022) generates query proposals using depth estimation and lever-
ages them to extract rich visual features from the 3D scene. The latter (Tian et al., 2024; Zhang et al.,
2023), meanwhile, projects multi-view 2D image features into depth-aware frustums, as proposed
by LSS (Philion & Fidler, 2020). However, these methods overlook depth estimation uncertainty.
Despite leveraging latent depth distribution, lifting 2D to 3D technique sacrifices precise informa-
tion and neglects lens distortion issues during geometry completion (Lucas et al., 2013). During the
experiments, we used two OCC models: VoxFormer (Li et al., 2023b) and OccFormer (Zhang et al.,
2023). VoxFormer is the querying 2D from 3D approach and OccFormer is the lifting 2D to 3D
approach. So we have considered both paradigms that utilize depth information on OCC models in
our experiments.
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Algorithm 1: Our Hierarchical Conformal Prediction (HCP)
Data: number of classes is M , calibration dataset Dcali(X,Y) with N samples, test dataset

Dtest(X) with T samples, the considered rare class set Yr, the occupied error rate
αy
o ∀y ∈ Yr ,desired class-specifical error rate αy ∀y ∈ Y\{1}, the OCC model f .

Result: Prediction set C(Xi), ∀Xi ∈ Dtest

1 /* Calibration Step: Geometric Level */
2 Sy = ∅ ∀y ∈ Yr; O = {ε, 1, ..., 1}M ;
3 for (Xi,Yi) ∈ Dcali do
4 skl(X, y) = Dkl(f(Xi)||O) y = Yi ∈ Yr as Eq. 4; add skl(X, y) into Sy;
5 end
6 qyo = Quantile( ⌈(Ny+1)(1−αy

o)⌉
Ny

,Sy) where Ny = |Sy|, ∀y ∈ Yr;
7 /* Calibration Step: Semantic Level */
8 Sy

o = ∅, tpy = 0 and fny = 0 ∀y ∈ Y\{1};
9 for (Xi,Yi) ∈ Dcali and Yi ∈ Y\{1} do

10 if ∃y ∈ Yr, skl(Xi, y) ≤ qyo then
11 add 1− f(Xi)Yi into SYi

o and tpYi = tpYi + 1;
12 else
13 fnYi

= fnYi
+ 1;

14 end
15 end
16 for y ∈ Y\{1} do
17 αy

o = 1− tpy

tpy+fny
if y /∈ Yr

18 αy
s = 1− 1−αy

1−αy
o

; qys = Quantile( ⌈(Nyo+1)(1−αy
s )⌉

Nyo
,Sy

o ) where Ny
o = |Sy

o |
19 end
20 /* Test Step */
21 for Xi ∈ Dtest do
22 if ∃y ∈ Yr, skl(X, y) ≤ qyo then
23 C(Xi) = {y : 1− f(Xi)y ≤ qys}
24 else
25 C(Xi) = ∅ which means it is empty class.
26 end
27 end

A.5 INTRODUCTION ON DATASETS

During the experiments, we use two datasets: SemanticKITTI (Behley et al., 2019) and
KITTI360 (Li et al., 2023a). SemanticKITTI provides dense semantic annotations for each LiDAR
sweep composed of 22 outdoor driving scenarios based on the KITTI Odometry Benchmark (Geiger
et al., 2012). Regarding the sparse input to an OCC model, it can be either a single voxelized LiDAR
sweep or an RGB image. The voxel grids are labeled with 20 classes (19 semantics and 1 empty),
with the size of 0.2m × 0.2m × 0.2m. We only used the train and validation parts of SemanticKITTI
as the annotations of the test part are not available. SSCBench-KITTI-360 provides dense semantic
annotations for each image based on KITTI360 (Liao et al., 2022), which is also called KITTI360
for simplification. The voxel grids are labeled with 19 classes (18 semantics and 1 empty), with the
size of 0.2m × 0.2m × 0.2m. Both SemanticKITTI and KITTI360 are interested in a volume of
51.2m ahead of the car, 25.6m to left and right side, and 6.4m in height.

A.6 EXPERIMENTAL SETTING

We used two different servers to conduct experiments on the SemanticKITTI and KITTI360 datasets.
For the SemanticKITTI dataset, we employed a system equipped with four NVIDIA Quadro RTX
8000 GPUs, each providing 48GB of VRAM. The system was configured with 128GB of system
RAM. The training process required approximately 30 minutes per epoch, culminating in a total
training duration of around 16 hours for 30 epochs. The software environment included the Linux
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operating system (version 18.04), Python 3.8.19, CUDA 11.1, PyTorch 1.9.1+cu111, and CuDNN
8.0.5.

For the KITTI360 dataset, we used a different system equipped with eight NVIDIA GeForce RTX
4090 GPUs, each providing 24GB of VRAM, with 720GB of system RAM. The training process
required approximately 15 minutes per epoch, culminating in a total training duration of around
8 hours for 30 epochs. The software environment comprised the Linux operating system(version
18.04), Python 3.8.16, CUDA 11.1, PyTorch 1.9.1+cu111, and CuDNN 8.0.5. These settings ensure
the reproducibility of our experiments on similar hardware configurations.

In our training, we used the AdamW optimizer with a learning rate of 2e-4 and a weight decay of
0.01. The learning rate schedule followed a Cosine Annealing policy with a linear warmup for the
first 500 iterations, starting at a warmup ratio of 1

3 . The minimum learning rate ratio was set to 1e-3.
We applied gradient clipping with a maximum norm of 35 to stabilize the training.

The user-defined target error rate αy for each class y is decided according to the prediction error
rate of the original model. For each class, It is set by multiplying the original prediction error rate
of OCC models with the scale λ < 1, which raises the coverage requirement. For example, for the
person class, if the original model has 90% prediction error rate and we set the scale λ = 0.9, the
user-defined target error rate αperson of person is decided as 90% ∗ 0.9 = 81%.

A.7 MORE RESULTS ON DEPTH-UP

Table 4 presents a comparative analysis of our Depth-UP models against various OCC models,
providing detailed mIoU results for different classes. Our Depth-UP demonstrates superior perfor-
mance in geometry completion and semantic segmentation, outperforming all other OCC models
and even surpassing LiDAR-based OCC models on the SemanticKITTI dataset. The VoxFormer
with our Depth-UP achieves the best IoU on SemanticKITTI and the OccFormer with our Depth-
UP achieves the best mIoU on SemanticKITTI. This improvement is attributed to the significant
influence of depth estimation on geometry performance and depth feature extraction, which utilizes
inherent uncertainty in depth. Notably, on the KITTI360 dataset, our Depth-UP achieves the highest
mIoU for bicycle, motorcycle, and person classes, which are crucial for safety.

For the person and bicyclist categories on the SemanticKITTI dataset, our Depth-UP decreases the
mIoU. This issue primarily stems from annotation defects, particularly for dynamic objects such as
persons and bicyclists. The SemanticKITTI dataset generates annotations using LiDAR temporal
fusion, which introduces ghosting effects for moving objects. This problem has been documented
in Figure 2 of the SSCBench (Li et al., 2023a). While cars are also affected, most are stationary,
so the impact is minimal. However, nearly all persons and bicyclists in the SemanticKITTI vali-
dation set are moving, leading to erroneous annotations. SSCBench has acknowledged this issue,
and thus KITTI360 proposed in SSCBench does not suffer from ghosting problems. Our Depth-UP
shows mIoU improvements in both person and bicyclist categories on KITTI360, aligning with our
expectations. This may also explain why our Depth-UP enhances VoxFormer significantly more on
KITTI360 compared to SemanticKITTI, showing a 1.64 mIoU improvement versus a 1.01 mIoU
improvement.

Figure 7 provides additional visualizations of the OCC model’s performance with and without our
Depth-UP on the SemanticKITTI dataset. These visualizations demonstrate that our Depth-UP en-
hances the model’s ability to predict rare classes, such as persons and bicyclists, which are high-
lighted with orange dashed boxes. Notably, in the fourth row, our Depth-UP successfully predicts
the presence of a person far from the camera, whereas the baseline model fails to do so. This in-
dicates that Depth-UP improves object prediction in distant regions. By enhancing the detection of
such critical objects, our Depth-UP significantly reduces the risk of accidents, thereby improving
the safety of autonomous vehicles.

A.8 MORE RESULTS ON HCP

We compare our HCP with SCP and CCCP under different desired class-specific error rate settings
on more OCC models: the basic OccFormer, the OccFormer with our Depth-UP, and the LiDAR-
based OCC model LMSCNet (Roldao et al., 2020) to show the scalability of our HCP. The dataset
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Table 4: Separate results on SemanticKITTI and KITTI360. We evaluate our Depth-UP models
on two datasets. The default evaluation range is 51.2×51.2×6.4m3. Due to the label differences
between the two subsets, missing labels are replaced with “-”. “Depth-UP∗” means the VoxFormer
with our Depth-UP method. “Depth-UP†” means the OccFormer with our Depth-UP method.
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LMSCNet L 38.36 9.94 23.62 0.00 0.00 1.69 0.00 0.00 54.9 9.89 25.43 0.00 14.55 3.27 20.19 32.3 2.04 0.00 0.00 1.06 0.00

SSCNet L 40.93 10.27 22.32 0.00 0.00 4.69 2.43 0.00 51.28 9.07 22.38 0.02 15.2 3.57 22.24 31.21 4.83 1.49 0.01 4.33 0.00

MonoScene C 36.80 11.30 23.29 0.28 0.59 9.29 2.63 2.00 55.89 14.75 26.50 1.63 13.55 6.60 17.98 29.84 3.91 2.43 1.07 2.44 0.00

VoxFormer C 44.02 12.35 25.79 0.59 0.51 5.63 3.77 1.78 54.76 15.50 26.35 0.70 17.65 7.64 24.39 29.96 7.11 4.18 3.32 5.08 0.00

TPVFormer C 35.61 11.36 23.81 0.36 0.05 8.08 4.35 0.51 56.50 20.60 25.87 0.85 13.88 5.94 16.92 30.38 3.14 1.52 0.89 2.26 0.00

OccFormer C 36.50 13.46 25.09 0.81 1.19 25.53 8.52 2.78 58.85 19.61 26.88 0.31 14.40 5.61 19.63 32.62 4.26 2.86 2.82 3.93 0.00

Depth-UP∗ (ours) C 45.85 13.36 28.51 0.12 3.57 12.01 4.23 2.24 55.72 14.38 26.20 0.10 20.58 7.70 26.24 30.26 8.03 5.81 1.18 7.03 0.00

Depth-UP† (ours) C 41.97 14.56 26.53 1.12 1.54 10.64 9.37 2.63 62.38 21.58 29.79 1.97 18.85 7.69 24.68 34.09 7.86 5.82 1.61 7.40 0.00

K
IT

T
I-

36
0

LMSCNet L 47.53 13.65 20.91 0 0 0.26 0 0 62.95 13.51 33.51 0.2 43.67 0.33 40.01 26.80 0 0 - - -

SSCNet L 53.58 16.95 31.95 0 0.17 10.29 0.58 0.07 65.7 17.33 41.24 3.22 44.41 6.77 43.72 28.87 0.78 0.75 - - -

MonoScene C 37.87 12.31 19.34 0.43 0.58 8.02 2.03 0.86 48.35 11.38 28.13 3.22 32.89 3.53 26.15 16.75 6.92 5.67 - - -

VoxFormer C 38.76 11.91 17.84 1.16 0.89 4.56 2.06 1.63 47.01 9.67 27.21 2.89 31.18 4.97 28.99 14.69 6.51 6.92 - - -

Depth-UP∗ (ours) C 43.25 13.55 22.32 1.96 1.58 9.43 2.27 3.13 53.50 11.86 31.63 3.20 34.49 6.11 32.01 18.78 11.46 13.65 - - -

used here is SemanticKITTI. For each class, the desired error rate is set by multiplying the original
error rate of OCC models with the scale λ, λ ∈ {0.86, 0.89, 0.92, 0.95, 0.98}, which raises the
coverage requirement. Figure 8 shows the CovGap vs, AvgSize results. We can see that our HCP
always outperforms the two baselines for the points of our HCP are located in the left bottom corner,
compared with points of SCP and CCCP. Figure 9 shows the detailed results of CovGap vs. scale
and AvgSize vs. scale. For most cases, as the desired error rate becomes smaller, the set size tends
to be larger in order to satisfy the coverage guarantee. The results on the LiDAR-based OCC model
LMSCNet (Roldao et al., 2020) show that our HCP is effective in LiDAR-based OCCs, even though
they are not the primary focus of our work.

A.9 UNCERTAINTY VS. DISTANCE

Figure 10 illustrates the relationship between uncertainty and distance in the occupancy prediction
model. In Figure 10(a), we show the correlation between the estimated standard deviation (uncer-
tainty) of depth and the distance from the camera to the object. For clarity, we divided the distance
into 256 bins, each 0.2 meters in length, and calculated the average estimated standard deviation for
each bin. The results reveal that the depth uncertainty is highest when the object is very close to
the camera. This phenomenon arises because, in stereo vision systems, objects at close range result
in minimal disparity between the two images, making depth estimation inherently challenging (Wei
et al., 2024). The uncertainty reaches its lowest point at approximately 15 meters, beyond which it
increases with distance. This trend aligns with the inverse relationship between depth and disparity,
as well as the reduced pixel resolution available for objects further away from the camera (Wei et al.,
2024). These observations confirm that the depth uncertainty estimation in our model is consistent
with theoretical expectations.

Figure 10(b) presents the relationship between the Expected Calibration Error (ECE) metric of the
VoxFormer model and the distance to the voxels. ECE is a standard metric for assessing the cali-
bration of uncertainty estimates in probabilistic models (Feng et al., 2021). In this case, we applied
the voxel-based ECE computation method described in Cao et al. (2024). The results show that
the OCC uncertainty is minimized at approximately 15 meters, consistent with the depth uncertainty
trend observed in Figure 10(a). When voxels are very close to the camera, the OCC ECE is relatively
high, likely due to depth estimation errors. Similarly, when voxels are far from the camera, the OCC
ECE increases, attributed to the limited pixel resolution for distant objects.
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Figure 7: Qualitative results of the baseline OCC model and that with our Depth-UP method.
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Figure 8: The results of CovGap vs, AvgSize for our HCP, SCP and CCCP on SemanticKITTI.
The considered OCC models are the basic OccFormer, the OccFormer with our Depth-UP, and the
LiDAR-based OCC model LMSCNet.

Notably, the similarity in the shapes of the curves in Figure 10(a) and 10(b) highlights the signifi-
cant influence of depth uncertainty on OCC performance, as discussed in Section 1. These findings
reinforce the importance of utilizing the depth uncertainty in improving final OCC performance.

A.10 UNCERTAINTY QUANTIFICATION ON DEPTH-UP

Table 5 presents the uncertainty performance of our Depth-UP method applied to the VoxFormer
and OccFormer models. To evaluate uncertainty, we employ two widely recognized metrics: Ex-
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Figure 9: The results of CovGap vs. scale and AvgSize vs. scale for our HCP, SCP and CCCP
on SemanticKITTI. The considered OCC models are the basic OccFormer, the OccFormer with our
Depth-UP, and the LiDAR-based OCC model LMSCNet. The scale represents the desired class error
rate.

(a) (b)

Figure 10: (a) The estimated depth standard deviation from the direct modeling method, represent-
ing uncertainty, varies with distance. (b) The Expected Calibration Error (ECE) uncertainty of the
VoxFormer model output, representing OCC ECE, varies with distance.

Table 5: Uncertainty performance evaluation of our Depth-UP on two OCC models.
Dataset Basic OCC Method ECE ↓ NLL ↓

SemanticKITTI

VoxFormer Base 0.27 2.14
Our 0.26 (-0.01) 2.08(-0.06)

OccFormer
Base*1 - -
Base 0.58 2.37
Our 0.58 (0.00) 2.36 (-0.01)

KITTI360 VoxFormer Base 0.23 1.64
Our 0.23 (0.00) 1.62 (-0.02)

1 These results are from the original paper, while the others
are tested by ourselves.

pected Calibration Error (ECE) and Negative Log Likelihood (NLL), both of which are commonly
used to assess the calibration of uncertainty estimates in probabilistic models (Feng et al., 2021).
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Table 6: Separate results of our Depth-UP on the Occ3D-nuScenes dataset (Caesar et al., 2020) and
the BEVStereo (Li et al., 2023c) model.
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Our 19.96 9.43 7.66 1.71 54.01 26.84 29.76 26.19 19.14 14.44 31.74 0.01 32.55 33.43 14.25 10.00 25.02 3.10

The voxel-level ECE and NLL are computed using the methods described in Cao et al. (2024), with
lower values indicating better uncertainty calibration and predictive confidence. From the results,
it is evident that Depth-UP achieves a modest but consistent reduction in uncertainty across most
cases, particularly for the NLL metric. This improvement is noteworthy given that Depth-UP was
primarily designed to enhance the accuracy performance of the original OCC models.

A.11 EXPERIMENTS ON OCC3D-NUSCENES DATASET

To demonstrate the scalability of our α-OCC approach, we applied it to the Occ3D-nuScenes
dataset (Caesar et al., 2020) and the OCC model BEVStereo (Li et al., 2023c).

The Occ3D-nuScenes dataset consists of 1,000 outdoor driving scenes captured using six surround-
view cameras. The sparse input to the OCC model comprises six RGB images from these cameras.
The dataset features voxel grids labeled with 17 classes (16 semantic classes and 1 empty class) at
a resolution of 0.4m × 0.4m × 0.4m. We utilized only the training and validation sets of NuScenes,
as the test set annotations are unavailable. The 3D volume of interest covers a range of 40m ahead
and behind the vehicle, 40m to the left and right sides, 1m below, and 5.4m above the vehicle.
BEVStereo (Li et al., 2023c) serves as a commonly used OCC baseline for the Occ3D-nuScenes
dataset in many works, such as RenderOcc (Pan et al., 2024) and PanoOcc (Wang et al., 2024). Due
to time and computational constraints, both the base BEVStereo model and BEVStereo with our
Depth-UP were trained for 12 epochs and 20 batch sizes on the server with 4 Tesla V100 GPUs
while the original work trained on 32 batch sizes. The input image size here is 416 × 704 while the
original work used the 512 × 1408 input image size.

Table 6 presents the mIoU across all classes and the IoU for each individual class for both the base
BEVStereo model and BEVStereo enhanced with our Depth-UP on the Occ3D-nuScenes dataset.
Depth-UP demonstrates notable improvements over the base OCC model, achieving a 1.61 (8.77%)
increase in mIoU. Furthermore, our Depth-UP significantly enhances performance for small, safety-
critical classes, including a 9.43 IoU improvement for the motorcycle class and a 1.09 IoU im-
provement for the person class. These improvements are attributed to the effective integration of
uncertainty information from the depth model into the OCC model.

Table 7 compares our HCP method with SCP and CCCP on the Occ3D-nuScenes dataset using the
BEVStereo model, similar to Table 2. The results demonstrate that HCP consistently achieves robust
empirical class-conditional coverage while generating smaller prediction sets. Compared to SCP, it
reduces the set size by up to 87% and the coverage gap by up to 97%. Similarly, compared to CCCP,
it achieves reductions of up to 10% set size and 6% coverage gap. These findings are consistent with
experimental results on the SemanticKITTI and KITTI360 datasets, further validating the scalability
of our approach.
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Table 7: Compare our HCP (referred to as “Ours”) with the standard conformal prediction (SCP) and
class-conditional conformal prediction (CCCP) on CovGap and AvgSize for the Occ3D-nuScenes
dataset and the BEVStereo model.

Method Base Our Depth-UP

CP SCP CCCP Ours SCP CCCP Ours

CovGap ↓ 0.1931 0.0070 0.0069 0.2058 0.0075 0.0070
AvgSize ↓ 0.2481 0.0341 0.0316 0.2585 0.0376 0.0336
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