
Published as a conference paper at ICLR 2025

BEYOND LINEAR APPROXIMATIONS: A NOVEL PRUN-
ING APPROACH FOR ATTENTION MATRIX

Yingyu Liang∗ Jiangxuan Long† Zhenmei Shi‡ Zhao Song§ Yufa Zhou¶

ABSTRACT

Large Language Models (LLMs) have shown immense potential in enhancing var-
ious aspects of our daily lives, from conversational AI to search and AI assistants.
However, their growing capabilities come at the cost of extremely large model
sizes, making deployment on edge devices challenging due to memory and com-
putational constraints. This paper introduces a novel approach to LLM weight
pruning that directly optimizes for approximating the attention matrix, a core com-
ponent of transformer architectures. Unlike existing methods that focus on linear
approximations, our approach accounts for the non-linear nature of the Softmax
attention mechanism. We provide theoretical guarantees for the convergence of
our Gradient Descent-based optimization method to a near-optimal pruning mask
solution. Our empirical results demonstrate the effectiveness of our non-linear
pruning approach in maintaining model performance while significantly reducing
computational costs, which is beyond the current state-of-the-art methods, i.e.,
SparseGPT and Wanda, by a large margin. This work establishes a new theoreti-
cal foundation for pruning algorithm design in LLMs, potentially paving the way
for more efficient LLM inference on resource-constrained devices.

1 INTRODUCTION

Large Language Models (LLMs) based on the transformer architecture (Vaswani et al., 2017), in-
cluding GPT-4o (OpenAI, 2024a), Claude (Anthropic, 2024), and OpenAI’s recent o1 (OpenAI,
2024b), have shown immense potential to enhance our daily lives. They revolutionize fields like
conversational AI (Liu et al., 2024), AI agents (Xi et al., 2023; Chen et al., 2024b), search AI (Ope-
nAI, 2024b), and AI assistants (Mahmood et al., 2023; Zhang et al., 2023a; Kuo et al., 2024; Feng
et al., 2024). With their growing capabilities, LLMs are powerful tools shaping the future of tech-
nology. However, the current state-of-the-art LLM weights number is extremely large. For instance,
the smallest version of Llama 3.1 (Llama Team, 2024) needs 8 billion parameters, which takes more
than 16GB GPU memory with half float precision and requires significant inference time. Deploying
such models on edge devices such as smartphones becomes challenging due to their large memory
and high computational cost. To reduce the LLM model size, many studies work on pruning the
LLMs model weights to relax the device memory constraint and minimize response latency. The
classical pruning problem in LLMs can be formulated as follows. Given a weight matrix W ∈ Rd×d

and some calibration data X ∈ Rn×d, where n is input token length, and d is feature dimension, the
goal is to find a matrix W̃ under some sparse constraint such that ∥XW −XW̃∥ being small under
some norm function. The above formulation has been widely used in many state-of-the-art pruning
methods, such as SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2024).

However, the current object functions only focus on the approximation of a linear function XW .
Their optimal solutions do not have a good approximation to the attention matrix (see Figure 2 for
details). Note that the attention mechanism is the kernel module of the transformer architecture.
The high-level insight of their bad performance is that the Softmax function is very sensitive to
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Figure 1: Comparison of our Attention Weights Pruning method and Linear Pruning method such
as Wanda and SparseGPT. The top figure illustrates our proposed method of the attention matrix
approximation, where pruning is applied directly to the fused attention weight matrix W , using only
one pruning mask M . The bottom figure describes the Linear Pruning method of the linear function
approximation, where pruning is applied separately to the query weight matrix WQ and key weight
matrix WK , using two different pruning masks MQ and MK , respectively.

the large positive values of the input due to its exp scaling effect, while pruning mask based on
linear approximation cannot capture this sensitivity. Thus, in this work, we directly compute the
pruning mask on weights to approximate the attention matrix, which is a highly non-linear function,
Softmax(XWX⊤) ∈ Rn×n. To the best of our knowledge, this paper is the first work studying
attention weight pruning to directly approximate the attention matrix. We provide a theoretical
guarantee that optimization based on Gradient Descent (GD) on our loss function can converge to a
good pruning mask solution (Theorem 1.3). Furthermore, we preliminarily verified the effectiveness
of our method with empirical support (Section 6). Our theoretical foundation may pave the way for
more efficient LLM inference on resource-constrained devices.

Key background. We introduce some key backgrounds. We define the attention matrix in the
self-attention mechanism as below:
Definition 1.1 (Attention Matrix). Let X ∈ Rn×d be the input. Given query and key weights matrix
WQ,WK ∈ Rd×d, we define W := WQW

⊤
K . Then, we have the Softmax attention matrix being

Softmax(XWX⊤) = D−1 exp(XWX⊤),

where (1) D := diag(exp(XWX⊤) · 1n), (2) exp denotes the exponential function and is applied
entry-wisely, (3) diag() operation takes a vector and outputs a diagonal matrix with the entries of
that vector, and (4) 1n denotes the length-n all ones vector.

Further, we introduce the problem setup of our Attention Weights Pruning. By selectively reducing
the number of non-zero elements in the attention weight matrix W in Definition 1.1, we can preserve
model performance while lowering computational cost and GPU memory usage. Below, we formally
define the Attention Weights Pruning problem and the corresponding loss function:
Definition 1.2 (Attention Weights Pruning). Let M ∈ [0, 1]d×d be the pruning mask. Let X,W

be defined in Definition 1.1. Let A := exp(XWX⊤) and Ã := exp(X(M ◦ W )X⊤), where ◦
is the Hadamard product. Let D := diag(A · 1n) and D̃ := diag(Ã · 1n). Let λ ∈ R+ be the
regularization parameter. We define the Attention Weights Pruning loss function to be

L(M) :=
1

2
∥D−1A− D̃−1Ã∥2F +

1

2
λ∥M∥2F .

Thus, the Attention Weights Pruning optimization problem is minM L(M).
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Our contributions. This is the first work studying the Attention Weights Pruning problem, which
is an approximation problem to a non-linear function. We provide an algorithm for obtaining the
near-optimal pruning mask based on Gradient Descent (GD) with a convergence guarantee.

Theorem 1.3 (Main result, informal version of Theorem 4.1). For any ϵ > 0, our Algorithm 1
can converge to the near-optimal pruning mask for the Attention Weights Pruning problem (Defini-
tion 1.2) in O(dpoly(n)/ϵ) time with O(ξ+ ϵ) error, where ξ is a small term depending on intrinsic
property of the data and weights.

In the above theorem, ξ can be arbitrarily small as ξ → 0 when the regularization coefficient λ→ 0.
Thus, our analysis shows that although the objective function is highly non-linear, the GD training
can converge to a near-optimal pruning mask solution.

Our experiments on synthetic clearly align and support our theoretical analysis (Section 6.1). Fur-
thermore, we evaluate our non-linear pruning method and show it beyond SparseGPT and Wanda
by a large margin on real data (C4 Dataset Raffel et al. (2020)) under real LLM (Llama 3.2-1B Meta
(2024)) in Section 6.2 and Section 6.3.

Our contributions are as follows:

• This is the first work that analyzes the weights pruning problem based on Softmax attention,
which is a non-linear function.

• We provide the closed form of the gradient of Attention Weights Pruning loss function
(Theorem 5.3), and Lipschitz of that gradient (Theorem 5.4),

• We provide Gradient Descent based Algorithm 1 to obtain the near-optimal pruning mask
and its convergence guarantee (Theorem 4.1).

• We conduct experiments to verify the effectiveness of our method (Section 6), showing our
non-linear pruning method is beyond SparseGPT and Wanda by a large margin.

Roadmap. In Section 2, we review the related work. Section 3 introduces key concepts and defini-
tions essential for the subsequent sections. In Section 4, we present our main result. Section 5 offers
a technical overview of the methods employed. Experimental results are discussed in Section 6.
Finally, Section 7 summarizes our findings and offers concluding remarks.

2 RELATED WORK

2.1 PRUNING AND COMPRESSION FOR LLMS

Model compression plays a critical role in improving the efficiency and deployment of large lan-
guage models (LLMs) (Zhu et al., 2023) for its effectiveness in reducing computational overhead
while preserving performance. Common compression techniques include quantization (Park et al.,
2024; Xiao et al., 2023; Hooper et al., 2024), pruning (Chen et al., 2021; Hoefler et al., 2021;
Hubara et al., 2021; Jin et al., 2022; Frantar & Alistarh, 2022; 2023; Sun et al., 2024; Li et al.,
2024a; Zandieh et al., 2024; Zhang et al., 2024c; Xia et al., 2023; Ashkboos et al., 2024; Chen
et al., 2025b), and knowledge distillation (Hsieh et al., 2023; Shridhar et al., 2023; Jiang et al.,
2023; Wang et al., 2023). Specifically, pruning techniques have been developed extensively, such
as unstructured pruning, which removes individual weights (Li et al., 2024a; Sun et al., 2024), and
structured pruning, which eliminates entire components like neurons or attention heads (Michel
et al., 2019; Ashkboos et al., 2024; Xia et al., 2024). Sun et al. (2024) proposed Wanda, a novel
unstructured pruning technique that uses weight-activation products to induce up to 50% sparsity
in LLMs without retraining, achieving competitive results with significantly lower computational
cost. SparseGPT (Frantar & Alistarh, 2023) introduced a one-shot pruning method that achieves
up to 60% sparsity in large GPT-family models with minimal impact on performance. A follow-
up work (Li et al., 2024a) improved the complexity analysis of SparseGPT, reducing the running
time from O(d3) to O(d2.53), enabling faster pruning on LLMs. Together, these techniques con-
tribute to more scalable and resource-efficient LLMs, maintaining competitive performance while
substantially reducing computational resources.
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2.2 ATTENTION ACCELERATION

The attention mechanism has faced criticism due to its quadratic time complexity with respect to
context length (Vaswani et al., 2017). Addressing this criticism, a variety of approaches are em-
ployed, including sparse attention (Hubara et al., 2021; Kurtic et al., 2023; Frantar & Alistarh, 2023;
Li et al., 2024a), low-rank approximations (Razenshteyn et al., 2016; Li et al., 2016; Hu et al., 2022;
Zeng & Lee, 2024; Hu et al., 2024d; Li et al., 2025a), and kernel-based methods (Charikar et al.,
2020; Liu & Zenke, 2020; Deng et al., 2025; Zandieh et al., 2023; Liang et al., 2024b), to reduce
computational overhead and improve scalability. Aggarwal & Alman (2022) enable the derivation of
a low-rank representation of the attention matrix, which accelerates both the training and inference
processes of single attention layer, tensor attention, and multi-layer transformer, achieving almost
linear time complexity (Alman & Song, 2023; 2024a;b; Liang et al., 2024g;c; Ke et al., 2025a; Hu
et al., 2024h). Other approaches like Mamba (Gu & Dao, 2023; Dao & Gu, 2024), Linearizing
Transformers (Zhang et al., 2024b; Mercat et al., 2024), Hopfield Models (Hu et al., 2023; Wu et al.,
2024b; Hu et al., 2024c; Xu et al., 2024a; Wu et al., 2024a; Hu et al., 2024a;b;f), and PolySketch-
Former (Kacham et al., 2023) focus on architectural modifications and implementation optimizations
to enhance performance. System-level optimizations such as FlashAttention (Dao et al., 2022; Dao,
2023; Shah et al., 2024) and block-wise parallel decoding (Stern et al., 2018) further improve effi-
ciency. Collectively, these innovations have significantly augmented transformer models’ ability to
handle longer input sequences, unlocking broader applications across multiple sectors (Chen et al.,
2023; Peng et al., 2023; Ding et al., 2024; Ma et al., 2024; Xu et al., 2024d; An et al., 2024; Jin
et al., 2024; Li et al., 2024c; Liang et al., 2024d; Shi et al., 2024a).

3 PRELIMINARY

Notations. For any positive integer n, we use [n] to denote set {1, 2, · · · , n}. For each a, b ∈ Rn,
we use a ◦ b ∈ Rn to denote the Hadamard product, i.e., the i-th entry of (a ◦ b) is aibi for all
i ∈ [n]. For A ∈ Rm×n, let Ai ∈ Rn denote the i-th row and A∗,j ∈ Rm denote the j-th column
of A, where i ∈ [m] and j ∈ [n]. We use exp(A) to denote a matrix where exp(A)i,j := exp(Ai,j)
for a matrix A ∈ Rn×d. We use ∥A∥F to denote the Frobenius norm of a matrix A ∈ Rn×d, i.e.,
∥A∥F :=

√∑
i∈[n]

∑
j∈[d] |Ai,j |2. For a symmetric matrix A ∈ Rn×n, A ⪰ 0 means that A is

positive semidefinite (PSD), i.e., for all x ∈ Rn, we have x⊤Ax ≥ 0.

Attention weights pruning. We aim to determine a near-optimal pruning mask M for the attention
weights in a self-attention mechanism. Furthermore, we incorporate causal attention masking1 into
our method to be more aligned with the current decoder-only LLM architecture, while our analysis
can be applied to any general attention mask, e.g., block-wise attention mask. To formalize this, we
provide the formal definition of causal attention mask and attention weights pruning in this section.

The causal attention mask ensures that each token in the sequence can attend only to itself and the
preceding tokens. Here, we provide the formal definition of the causal attention mask:

Definition 3.1 (Causal attention mask, Liang et al. (2024c)). We define the causal attention mask as
Mc ∈ {0, 1}n×n, where (Mc)i,j = 1 if i ≥ j and (Mc)i,j = 0 otherwise.

Now, we incorporate Attention Weights Pruning (see Definition 1.2) with causal attention mask Mc.

Definition 3.2 (Attention Weights Pruning with Causal Attention Mask). Let Mc ∈ {0, 1}n×n be
the causal attention mask defined in Definition 3.1. Let A := exp(XWX⊤) ◦ Mc and Ã :=

exp(X(M ◦W )X⊤) ◦Mc. Let D := diag(A · 1n) and D̃ := diag(Ã · 1n). We define Attention
Weights Pruning with Causal Attention Mask loss function to be L(M) := Lattn(M) + Lreg(M)

where Lattn(M) := 1
2∥D

−1A− D̃−1Ã∥2F and Lreg(M) := 1
2λ∥M∥

2
F .

1In this paper, we always use pruning mask to refer M ∈ Rd×d, which is our target, and use causal attention
mask to refer Mc ∈ Rn×n, which is a fixed mask for standard self-attention.
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Algorithm 1 Gradient Descent for Pruning Mask (Theorem 4.1). Let X1, X2, . . . , Xk ∈ Rn×d be
our calibration dataset of size k. We iteratively run our GD method on this dataset.

1: procedure PRUNEMASKGD( X1, X2, . . . , Xk ∈ Rn×d, W ∈ Rd×d, Mc ∈ {0, 1}d×d, ρ ∈
[0, 1], λ ∈ [0, 1], ϵ ∈ (0, 0.1)) ▷ Theorem 4.1

2: Initialize M ∈ {1}d×d

3: Initialize η, T by Theorem 4.1
4: for j = 1→ k do ▷ Iterate over the dataset
5: uj ← exp(XjWX⊤

j )

6: fj ← diag((uj ◦Mc) · 1n)
−1(uj ◦Mc)

7: end for
8: for i = 1→ T do ▷ Iterate over T steps
9: for j = 1→ k do ▷ Iterate over the dataset

10: ũj ← exp(Xj(M ◦W )X⊤
j )

11: f̃j ← diag((ũj ◦Mc) · 1n)
−1(ũj ◦Mc)

12: cj ← f̃j − fj
13: p1,j ← cj ◦ f̃j
14: p2,j ← diag(p1,j · 1n)f̃j
15: pj ← p1,j − p2,j
16: end for
17: M ←M − (η/k) · (W ◦ (

∑k
j=1 X

⊤
j pjXj) + λM) ▷ Gradient Descent

18: end for
19: m← vec(M) ▷ Flatten M into a vector
20: msorted ← sort(m) ▷ Sort the elements of M
21: τ ← msorted[⌊ρ · d2⌋] ▷ Get the ρ-th largest element

22: Mij ←
{
1 if Mij > τ

0 otherwise
▷ Set the top ρ entries to 1, others to 0

23: return M
24: end procedure

4 MAIN RESULTS

We provide an Algorithm 1 for Attention Weights Pruning problem based on Gradient Descent (GD).
We also prove the convergence for our GD algorithm in Theorem 4.1.

Theorem 4.1 (Main result, formal version of Theorem 1.3). Let M, X, W, D̃, Ã λ, L, Lattn be
defined in Definition 3.2. Assume XX⊤ ⪰ βI and mini,j∈[n](D̃

−1Ã)i,j ≥ δ > 0. Furthermore,
Let µ = 2mini,j∈[d]{|Wi,j |} · β · δ. Let ξ = 12n−1.5 maxi,j∈[d]{|Wi,j |} · ∥X∥2F · λd/µ. Then, for
any ϵ > 0, provided η < 1/L where L is the Lipschitz constant for ∇ML(M) (see Theorem 5.4),
GD (Algorithm 1) with fixed step size η and run for T = 4L(M (0))/(ηµϵn2) iterations results in
the following guarantee,

1

n2
min
t<T
Lattn(M

(t)) +
λ2

µn2
∥M (t)∥2F ≤ (ξ + ϵ)/2.

Proof. Let g(M) = 2Lattn(M)+ 2λ2

µ ∥M∥
2
F . Note that L(M) satisfies the (g(M), n2ξ, 2, µ)-proxy

PL inequality (Lemma 5.5). Also, we have L(M) is non-negative and has L-Lipschitz gradients
Theorem 5.4. Thus, we finish the proof using Theorem 5.2.

Remark 4.2. The two assumptions in Theorem 4.1 are practical. The first assumption of the positive
definite matrix is widely used in theoretical deep learning analysis, e.g., Li & Liang (2018); Du et al.
(2019); Allen-Zhu et al. (2019b); Arora et al. (2019). The second assumption is natural, as D̃−1Ã
is the pruned attention matrix, where each entry is

exp(X(M ◦W )X⊤)i,j∑n
j=1 exp(X(M ◦W )X⊤)i,j

> 0,
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which has a natural lower bound.

Our error upper bound in Theorem 4.1 is O(ξ + ϵ), where ϵ can be arbitrarily small. For ξ, we
can let it be small by choosing a proper λ, i.e., the ξ error term can be made arbitrarily small by
choosing small λ. However, if we choose a very small λ, the algorithm’s run time gets larger as
T ∝ 1/η ∝ L ∝ (λ + other terms). Thus, although the objective function is highly non-linear,
we can show that the Gradient Descent of our Algorithm 1 can converge to a good solution of the
Attention Weights Pruning problem.

After solving the optimization problem, we obtain a pruning mask with real-valued entries. In prac-
tice, however, this pruning mask must be converted into a binary form, specifically M ∈ {0, 1}d×d.
We define the pruning ratio ρ as the percentage of weights to be pruned. We apply this ratio by
setting the pruning mask entries to zero for weights that fall below the ρ-th percentile and to one for
those above. This ensures that only the specified proportion of weights is pruned.

5 TECHNIQUE OVERVIEW

In Section 5.1, we introduce some useful tools from previous work. In Section 5.2, we derive the
close form of the gradient of Attention Weights Pruning. In Section 5.3, we calculate the Lipschitz
constant of that gradient. In Section 5.4, we prove the PL inequality for our loss function.

5.1 PREVIOUS TOOLS ON CONVERGENCE OF GD

To analyze the convergence behavior of GD for our optimization problem (Definition 3.2), we first
introduce the concept of g-proxy, ξ-optimal Polyak–Łojasiewicz(PL) inequality (Polyak, 1963; Lo-
jasiewicz, 1963; Karimi et al., 2016), under which GD will converge:

Definition 5.1 (g-proxy, ξ-optimal PL inequality, Definition 1.2 in Frei & Gu (2021)). We say that a
function f : Rp → R satisfies a g-proxy, ξ-optimal Polyak–Łojasiewicz inequality with parameters
α > 0 and µ > 0 (in short, fsatisfies the (g, ξ, α, µ)-PL inequality) if there exists a function
g : Rp → R and scalars ξ ∈ R, µ > 0 such that for all w ∈ Rp, ∥∇f(w)∥α ≥ 1

2µ(g(w)− ξ).

PL inequality is a powerful tool for studying non-convex optimization, and it has been used in
recent studies on provable guarantees for neural networks trained by gradient descent (Li & Liang,
2018; Allen-Zhu et al., 2019a;b;c; Frei et al., 2019; Cao & Gu, 2020; Ji & Telgarsky, 2019; Frei
et al., 2021; Shi et al., 2021; 2024b). It provides a proxy convexity property, although the objective
function is non-convex. In detail, for a function with good smoothness property, we can find some
proxy functions and show the convergence by utilizing these proxy functions.

Leveraging this PL inequality, Frei & Gu (2021) derives the following GD convergence guarantees.

Theorem 5.2 (Theorem 3.1 in Frei & Gu (2021)). Suppose f(w) satisfies the (g(·), ξ, α, µ)-proxy
PL inequality for some function g(·) : Rp → R. Assume that f is non-negative and has L-Lipschitz
gradients. Then for any ϵ > 0, provided η < 1/L, GD with fixed step size η and run for T =
2η−1(µϵ/2)−2/αf(w(0)) iterations results in the following guarantee, mint<T g(w(t)) ≤ ξ + ϵ.

The above theorem establishes that under the (g, ξ, α, µ)-PL inequality and Lipschitz continuity of
the gradient, GD converges to a point where the proxy function g(w) is within ϵ of ξ. To apply this
result to our specific problem, we need to verify these conditions for our loss function L(M).

5.2 CLOSED FORM OF GRADIENT

As a first step, we compute the close form of the gradient∇ML(M). The pruning mask M is inside
a non-linear function Softmax, which complicates our calculation. We defer the proof to Section C.

Theorem 5.3 (Closed form of gradient, informal version of Theorem D.5). Let L(M) be defined
in Definition 3.2. Let p be defined in Definition D.1. Let X ∈ Rn×d, M ∈ [0, 1]d×d, W ∈ Rd×d.
Then, we have

dL(M)

dM
= W ◦ (X⊤pX) + λM.
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Based on Theorem 5.3, we calculate the gradient of the pruning mask from Line 10 to Line 15 in
our Algorithm 1.

5.3 LIPSCHITZ OF GRADIENT

Having obtained the close form of gradient, we proceed to investigate its Lipschitz continuity. We
aim to show that the gradient∇ML(M) is Lipschitz continuous with respect to M .
Theorem 5.4 (Lipschitz of the gradient, informal version of Theorem F.8). Let R be some fixed
constant that satisfies R > 1. Let X ∈ Rn×d,W ∈ Rd×d. We have ∥X∥F ≤ R and ∥W∥F ≤ R.
Let L(M) be defined in Definition 3.2. For M,M̃ ∈ Rd×d, we have

∥∇ML(M)−∇ML(M̃)∥F ≤ (λ+ 30dn7/2R6) · ∥M − M̃∥F .

We defer the proof to Section F. Establishing the Lipschitz continuity of the gradient satisfies one of
the necessary conditions for applying Theorem 5.2. The above theorem implicates that the gradient
for M is upper bounded, providing a way to choose step size.

5.4 PL INEQUALITY OF GRADIENT

Next, we need to verify that our loss function satisfies the PL inequality with appropriate parameters.
To complete the verification of the conditions required for convergence, we demonstrate that L(M)
satisfies the PL inequality. We show that∇ML(M) satisfies the PL inequality in this lemma:

Lemma 5.5 (PL inequality, informal version of Lemma G.10). Let M,X,W, D̃, Ã, λ, L, Lattn be
defined in Definition 3.2. Assume that XX⊤ ⪰ βI and mini,j∈[n](D̃

−1Ã)i,j ≥ δ > 0. Also,

• Let µ = 2mini,j∈[d]{|Wi,j |} · β · δ.

• Let ξ = 12
√
nmaxi,j∈[d]{|Wi,j |} · ∥X∥2F · λd/µ.

We have ∥∇ML(M)∥2F ≥ 1
2µ(2Lattn(M) + 2λ2

µ ∥M∥
2
F − ξ).

We defer the proof to Section G. By confirming that L(M) satisfies the PL inequality and that its
gradient is Lipschitz continuous, we then apply Theorem 5.2 to conclude that GD will converge to a
solution within our desired error tolerance, and further prove Theorem 4.1.

To prove the PL inequality, we also need the following two key Lemmas, which introduce our two
assumptions in our Theorem 4.1, XX⊤ ⪰ βI and mini,j∈[n](D̃

−1Ã)i,j ≥ δ > 0.

Lemma 5.6 (Informal version of Lemma G.4). Let B ∈ Rn×n and X ∈ Rn×d. Assume that
XX⊤ ⪰ βI . Then, we have ∥X⊤BX∥F ≥ β∥B∥F .
Lemma 5.7 (Informal version of Lemma G.7). Let B ∈ Rn×n and each row summation is zero,
i.e., B · 1n = 0n. Let B̃ ∈ [0, 1]n×n and each row summation is 1, i.e., B̃ · 1n = 1n. Assume that
mini,j∈[n] B̃i,j ≥ δ > 0. Then, we can show ∥B ◦ B̃ − diag((B ◦ B̃) · 1n)B̃∥F ≥ δ · ∥B∥F .

6 EXPERIMENT

6.1 EVALUATION ON SYNTHETIC DATA

We discuss the synthetic experiments conducted to illustrate the effectiveness of our Algorithm 1.

Method and evaluation. We implement our method following the pseudocode in Algorithm 1, us-
ing NumPy and JAX for acceleration. We evaluate our method on unstructured sparsity, meaning
that zeros can occur anywhere within the attention weight matrix W . Specifically, we use Defini-
tion 3.2 as our loss function, optimizing over the pruning mask M using gradient descent based on
the closed-form expression derived in Theorem 5.3. To accelerate convergence, we leverage mo-
mentum into the optimization process and fix the momentum parameter at 0.9. After obtaining the
optimal pruning mask, we convert M to a binary pruning mask to prune W , maintaining sparsity at
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Figure 2: The comparison among our Algorithm 1, Wanda, and SparseGPT. The y-axis is a relative

error, which is defined as ∥D̃−1Ã−D−1A∥2
F

∥D−1A∥2
F

, where D−1A is original attention matrix and D̃−1Ã is
approximated attention matrix based on three methods. We always use d = 64. We use k = 16 for
the first row and k = 64 for the second row. The x-axis is (a) regularization coefficient λ for the left
column; (b) input sequence length n for the middle column; (c) pruning ratio ρ for the right column.

the desired pruning ratio ρ. We use the relative error as our evaluation metric, which is defined as
∥D̃−1Ã−D−1A∥2F /∥D−1A∥2F , where D̃, Ã, D, A are defined in Definition 3.2.

Baselines. We compare our method with two linear pruning approaches, namely Wanda (Sun et al.,
2024) and SparseGPT (Frantar & Alistarh, 2023). Wanda is a pruning method that removes weights
with the smallest magnitudes multiplied by the corresponding input activations, achieving sparsity
without requiring retraining or weight updates. SparseGPT is a second-order pruning method that
utilizes the Hessian matrix to prune a portion of the weight matrix while simultaneously updating
the remaining parameters. We implement Wanda and SparseGPT as described in their respective
papers. Notably, since the settings of SparseGPT and Wanda are linear, we do not prune the fused
weight matrix W directly; instead, we prune WQ and WK separately (see Figure 1).

Data. In order to assess the efficacy of different methods in approximating the attention matrix,
we construct the data via a carefully defined generating process. Specifically, we create multiple
independent random Gaussian matrices G ∈ Rd×d, where each entry of G drawn from a normal
distribution, i.e., Gi,j ∼ N (0, 1) for i, j ∈ [d]. Then, we perform singular value decomposition
(SVD) on matrix G, i.e., U, S, V ⊤ = SVD(G). We retain the first four singular values in S and set
others to zero, constraining the rank to four. Our WQ and WK are then constructed as U diag(S)V ⊤.
The weight matrix W used in our setting is formed by taking the product W = WQW

⊤
K . For

X ∈ Rn×d, we generate it as a full-rank Gaussian random matrix.

Setup. In our experiments, the weight matrix dimension d = 64 is kept constant across all figures,
and we simulate two datasets of size k = 16 and k = 64. We set the input sequence length
n = 128 for experiments (a) and (c) in Figure 2. The pruning ratio ρ = 0.5 is set for experiments
(a) and (b) in Figure 2. For our method, the regularization coefficient λ := λ̃/n where we abuse
the notation to denote λ̃ as the same used in Definition 3.2 and λ here is the parameter we really
control in experiments. λ is set as 0.04 for experiments (b) and (c) in Figure 2 (intuition drawn
from experiment (a)). The total number of epochs is set as T = 100. The step size is set as
η = 0.1/λ because Theorem 4.1 indicates that η is inversely proportional to λ with some constant,
i.e., η ∝ 1/L ∝ 1/(λ+ other terms).
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Figure 3: The comparison among our algorithm, Wanda, and SparseGPT on Llama 3.2-1B.

Results. Overall, the results in Figure 2 show that our Algorithm 1 outperforms Wanda and
SparseGPT with a large margin, which supports our theoretical analysis in Theorem 4.1. In the
following, we will discuss each setting in detail.

Relation with regularization coefficient λ. The leftmost column of Figure 2 investigates the impact
of the regularization coefficient λ on relative error. As λ increases from very small values, the
relative error initially decreases sharply for our algorithm, reaching a minimum before gradually
rising again, which forms a U shape curve. This behavior indicates that there is an optimal λ where
our algorithm achieves its best performance around 2−4. The U-shape curve phenomena are well-
known in most hyper-parameter choosing, e.g., regularization coefficient.

Relation with input sequence length n. The center column of Figure 2 explores how the relative
error changes with respect to the input sequence length n. As n increases, the relative error for
all three methods grows, though at different rates. Our method demonstrates a slower increase,
maintaining a significant margin over both Wanda and SparseGPT, particularly for larger values of
n. Wanda, while showing better performance than SparseGPT for larger sequence lengths, becomes
comparable to SparseGPT as n is relatively small.

Relation with pruning ratio ρ. The rightmost column of Figure 2 illustrates the relationship between
the relative error and the pruning ratio ρ for the three methods under comparison: our algorithm,
Wanda, and SparseGPT. As the pruning ratio ρ increases, all methods exhibit a rise in relative error,
indicating a degradation in approximation accuracy. However, our algorithm consistently outper-
forms both Wanda and SparseGPT across the range of ρ, with a lower relative error. SparseGPT and
Wanda follow a similar trend, closely tracking each other.

6.2 EXPERIMENT ON REAL DATASET AND LLMS

In this subsection, we discuss the experiments conducted on the real dataset and LLMs to illustrate
the effectiveness of our method.

Method and evaluation. We evaluate our method on unstructured sparsity, meaning that zeros can
occur anywhere within the attention weight matrices WQ and WK . Specifically, we use the loss
function defined below:

L(MQ,MK) :=
1

2
∥D−1A− D̃−1Ã∥2F +

1

2
(∥MQ∥2F + ∥MK∥2F ) (1)

where D and A are the original attention matrix, MQ,MK are pruning masks, and

Ã := exp(X(MQ ◦WQ)(MK ◦WK)⊤X⊤), D̃ := diag(Ã · 1n).

After obtaining the optimal pruning mask, we convert the pruning mask to a binary pruning mask to
prune WQ and WK , maintaining sparsity at the desired pruning ratio ρ. We use the relative error as
our evaluation metric.

Baselines. The pruning is performed on the last attention layer of the pretrained model Llama 3.2-
1B Meta (2024). The baselines are Wanda and SparseGPT, the same as Section 6.2.

Data. To simulate real-world large language models, we utilize the Colossal Clean Crawled Corpus
(C4 Dataset) Raffel et al. (2020), which is also used as the calibration dataset in our baselines Wanda
and SparseGPT. Additionally, with a primary focus on pruning the attention matrix, we extract the

9



Published as a conference paper at ICLR 2025

input hidden states corresponding to the target attention matrix from the pretrained Llama 3.2 model
using a customized hook function and use these as our input X .

Setup. The weight matrix dimension is d = 2048 in Llama 3.2-1B. For all the experiments, we set
λ as 0.05 and η as 0.005. For the varying n experiment, we set the pruning ratio ρ as 0.7. For the
varying ρ experiment, we set the input sequence length n as 512.

Results. Overall, the results in Figure 3 show that our algorithm outperforms Wanda and SparseGPT
in real-world LLMs, which supports our theoretical analysis in Theorem 4.1 and enhances our pre-
liminary experiment in Section 6. In the following, we will discuss each setting in detail.

Relation with input sequence length n. The left column of Figure 3 shows that our algorithm out-
performs the baselines in different sequence lengths continuously.

Relation with pruning ratio ρ. The right column of Figure 3 illustrates that as the pruning ratio ρ
increases, all methods exhibit a rise in relative error. But our algorithm consistently outperforms
both Wanda and SparseGPT across the range of ρ with a much lower increasing rate.

Assumptions verification. Notice that Theorem 4.1 relies on two assumptions: XX⊤ ⪰ βI and
mini,j∈[n](D̃

−1Ã)i,j ≥ δ > 0. We verify these assumptions using the C4 dataset, obtaining β ≈
0.034 and δ ≈ 0.0025, thereby demonstrating the practicality of our theoretical framework.

6.3 EXPERIMENT ON END-TO-END PERPLEXITY

Table 1: Comparison of different methods based
on Perplexity (PPL).

Method PPL
Dense MLP + Dense Attn 12.487
Dense MLP + SparseGPT Attn 14.269
Dense MLP + Wanda Attn 14.912
Dense MLP + Our Attn 13.885
Wanda MLP + Wanda Attn 30.426
Wanda MLP + SparseGPT Attn 26.074
Wanda MLP + Our Attn 24.427
SparseGPT MLP + Wanda Attn 45.435
SparseGPT MLP + SparseGPT Attn 36.641
SparseGPT MLP + Our Attn 34.946

We present the experiment on end-to-end per-
plexity in this section.

Baselines. As our method focuses on pruning
the attention matrix, it can be seamlessly com-
bined with approaches that perform linear prun-
ing on the MLP, such as Wanda and SparseGPT.
Therefore, we conduct three groups of experi-
ments: (1) using a dense MLP without pruning,
(2) applying SparseGPT to prune the MLP layer,
and (3) using Wanda to prune the MLP layer.
Subsequently, we apply Wanda, SparseGPT, and
our method to prune the attention weights.

Method and data. We use the same method and
data as Section 6.2.

Setup. We use Llama 3.2 1B as the target model to prune, in which the hidden state dimension is
2048. We set the pruning ratio as 0.5 for MLP and 0.5 for Attention Layer, when pruning MLP and
attention weights at the same time, we have pruning ratio ρ of the whole model as 0.5. We use 8
sentences in the C4 training dataset Raffel et al. (2020) as calibration data, and we use 128 sentences
in the C4 validation dataset Raffel et al. (2020) to evaluate perplexity. We set 0.005 as the learning
rate η and 0.05 as the regularization coefficient λ.

Results. As we can see in Table 1, our Attention pruning methods always outperform Wanda
Attention pruning and SparseGPT Attention pruning by a large margin when combined with
Dense/Wanda/SparseGPT MLP pruning methods. These empirical results support our theoretical
analysis that our pruning method can converge. Furthermore, our method is broadly applicable in
the real-world case and can be combined with many other pruning methods.

7 CONCLUSION

This paper introduces a novel approach to LLM weight pruning that directly optimizes for approxi-
mating the attention matrix. We provide theoretical guarantees for the convergence of our Gradient
Descent-based algorithm to a near-optimal pruning mask solution. Experimental results demon-
strated the method’s effectiveness in maintaining model performance while reducing computational
costs. This work establishes a new theoretical foundation for pruning algorithm design in LLMs,
potentially enabling more efficient inference on resource-constrained devices.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

Research is partially supported by the National Science Foundation (NSF) Grants 2023239-DMS,
CCF-2046710, and Air Force Grant FA9550-18-1-0166.

REFERENCES

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials and
gaussian kernel density estimation. In Proceedings of the 37th Computational Complexity Con-
ference, pp. 1–23, 2022.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, 2019b.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. In NeurIPS, 2019c.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024b.

Josh Alman and Zhao Song. Fast rope attention: Combining the polynomial method and fast fourier
transform. manuscript, 2024c.

Chenxin An, Fei Huang, Jun Zhang, Shansan Gong, Xipeng Qiu, Chang Zhou, and Lingpeng Kong.
Training-free long-context scaling of large language models. arXiv preprint arXiv:2402.17463,
2024.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. In The
Twelfth International Conference on Learning Representations, 2024.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.
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Roadmap. The appendix is organized as follows. In Section A, we reviewed more literature re-
lated to our paper. In Section B, we give the preliminary of our paper. In Section C, we provide a
detailed gradient analysis of the loss function. In Section D, we provide details about how we inte-
grate the gradient of loss function into matrix form. In Section E, we bound some basic functions to
be used later. In Section F, we provide proof for the Lipschitz property of the gradient of the loss
function. In Section G, we provide proof of convergence for GD.

A MORE RELATED WORK

Large Language Models. Transformer-based neural networks (Vaswani et al., 2017) have rapidly
emerged as the dominant architecture for natural language processing in machine learning. When
expanded to billions of parameters and trained on vast, diverse datasets, these systems are typically
termed large language models (LLMs) or foundation models (Bommasani et al., 2021). Promi-
nent LLM examples encompass BERT (Devlin et al., 2019), PaLM (Chowdhery et al., 2022),
Llama (Touvron et al., 2023; Meta, 2024), and GPT4o (OpenAI, 2024a), which display adaptable
competencies (Bubeck et al., 2023) across numerous downstream applications. To enhance LLMs
for domain-specific uses, researchers have created multiple adaptation approaches. These include:
adapter modules (Hu et al., 2022; Gao et al., 2023a; Zhang et al., 2023b; Shi et al., 2023); calibration
mechanisms (Zhou et al., 2023; Zhao et al., 2021); multitask refinement (Gao et al., 2021; Von Os-
wald et al., 2023; Xu et al., 2024d; 2023); along with prompt engineering (Lester et al., 2021),
scratchpad approaches (Nye et al., 2021), instruction optimization (Chung et al., 2022; Li & Liang,
2021; Mishra et al., 2022), symbolic adaptation (Wei et al., 2023; Xu et al., 2024b; 2022), black-
box adjustments (Sun et al., 2022), human-aligned reinforcement learning (Ouyang et al., 2022),
and structured reasoning techniques (Khattab et al., 2022; Yao et al., 2023; Wei et al., 2022; Zheng
et al., 2024). Contemporary investigations cover tensor architecture innovations Alman & Song
(2024b); Liang et al. (2024g); Sanford et al. (2024); Zhang et al. (2025), efficiency enhancements
Alman & Song (2024c); Chen et al. (2024c; 2025b); Hu et al. (2024a;b;c;h; 2023); Ke et al. (2024);
Liang et al. (2024a); Li et al. (2024b;c;d;a); Liang et al. (2024d); Shi et al. (2024a); Shen et al.
(2024a;b); Song et al. (2024); Wu et al. (2024a;b); Xu et al. (2024a), plus ancillary studies Chen
et al. (2024a); Demirel et al. (2022); Chang et al. (2024); Deng et al. (2022); Gao et al. (2023b;d); Li
et al. (2025b;d); Liang et al. (2024f); Li et al. (2024e); Shrivastava et al. (2023); Sinha et al. (2023);
Song & Yang (2023); Tan et al. (2023); Xie et al. (2022); Xu et al. (2024c); Zhang (2024); Zhang
et al. (2024a); Chen et al. (2025d); Li et al. (2025c); Ke et al. (2025b); Liang et al. (2025); Chen
et al. (2025a;c); Gao et al. (2023c); Hu et al. (2024g;e); Wu et al. (2024c).

B PRELIMINARY

In Section B.1, we introduce some notations we use in this paper. In Section B.2, we provide some
basic facts.

B.1 NOTATIONS

For any positive integer n, we use [n] to denote set {1, 2, · · · , n}. For two vectors x ∈ Rn and
y ∈ Rn, we use ⟨x, y⟩ to denote the inner product between x, y, i.e., ⟨x, y⟩ =

∑n
i=1 xiyi. For each

a, b ∈ Rn, we use a◦ b ∈ Rn to denote the Hadamard product, i.e. the i-th entry of (a◦ b) is aibi for
all i ∈ [n]. We use ei to denote a vector where only i-th coordinate is 1, and other entries are 0. We
use 1n to denote a length-n vector where all the entries are ones. We use ∥x∥p to denote the ℓp norm
of a vector x ∈ Rn, i.e. ∥x∥1 :=

∑n
i=1 |xi|, ∥x∥2 := (

∑n
i=1 x

2
i )

1/2, and ∥x∥∞ := maxi∈[n] |xi|.
For A ∈ Rm×n, let Ai ∈ Rn denote the i-th row and A∗,j ∈ Rm denote the j-th column of
A, where i ∈ [m] and j ∈ [n]. For a square matrix A, we use tr[A] to denote the trace of A, i.e.,
tr[A] =

∑n
i=1 Ai,i. For two matrices X,Y ∈ Rm×n, the standard inner product between matrices is

defined by ⟨X,Y ⟩ := tr[X⊤Y ]. We use exp(A) to denote a matrix where exp(A)i,j := exp(Ai,j)
for a matrix A ∈ Rn×d. For k > n, for any matrix A ∈ Rk×n, we use ∥A∥ to denote the spectral
norm of A, i.e. ∥A∥ := supx∈Rn ∥Ax∥2/∥x∥2. We use ∥A∥∞ to denote the ℓ∞ norm of a matrix
A ∈ Rn×d, i.e. ∥A∥∞ := maxi∈[n],j∈[d] |Ai,j |. We use ∥A∥F to denote the Frobenius norm of

a matrix A ∈ Rn×d, i.e. ∥A∥F :=
√∑

i∈[n]

∑
j∈[d] |Ai,j |2. For a symmetric matrix A ∈ Rn×n,
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we use A ⪰ 0 (positive semidefinite (PSD)), if for all x ∈ Rn, we have x⊤Ax ≥ 0. We use
λmin(A) and λmax(A) to denote the minimum and the maximum eigenvalue of the square matrix A,
respectively. Let A ∈ Rn×d. We use a := vec(A) to denote a length nd vector. We stack rows of
A into a column vector, i.e. vec(A) := [a⊤1 , a

⊤
2 , . . . , a

⊤
n ]

⊤ where a⊤i is the i-th row of A, or simply
vec(A)j+(i−1)d := Ai,j for any i ∈ [n], j ∈ [d].

B.2 FACTS

Fact B.1 (Indexing). Suppose we have matrices U ∈ Rn×m, V ∈ Rm×d. We define

X︸︷︷︸
n×d

:= U︸︷︷︸
n×m

V︸︷︷︸
m×d

.

Then, we have the following:

• Indexing for one row: Xi = V ⊤Ui ∈ Rd, i.e. X⊤
i = U⊤

i V , for i ∈ [n].

• Indexing for one column: X∗,j = UV∗,j ∈ Rn for j ∈ [d].
Fact B.2. We have

Part 1.Suppose we have vectors u ∈ Rn, v ∈ Rn. For i ∈ [n], we define

xi := uivi.

Then we have the following:

• x︸︷︷︸
n×1

= u ◦ v︸︷︷︸
n×1

= diag(u)︸ ︷︷ ︸
n×n

v︸︷︷︸
n×1

= diag(v)︸ ︷︷ ︸
n×n

u︸︷︷︸
n×1

Part 2.Suppose we have matrix W ∈ Rn×n, vector u ∈ Rn. For i ∈ [n], we define

X∗,j = W∗,juj .

Then we have the following:

• X = W diag(u)

Fact B.3 (Calculus). We have

Part 1. (Scalar calculus) For any t ∈ R, function f : R→ R, we have

• dfn(t)
dt = nfn−1(t)df(t)dt .

Part 2. (Vector calculus) For any x, y ∈ Rn, t ∈ R, we have

• d(x◦y)
dt = dx

dt ◦ y +
dy
dt ◦ x. (Product rule of vector Hadamard product)

• d⟨x,y⟩
dt = ⟨dxdt , y⟩+ ⟨x,

dy
dt ⟩. (Product rule of inner product)

• dx
dxi

= ei.

Part 3. (Matrix calculus) For any X,Y ∈ Rn×m, Z ∈ Rm×d, t ∈ R which is independent of Z,
function f : R→ Rn×d, functions f1(t), f2(t), . . . , fn(t) : R→ Rn×d, we have

• d(X◦Y )
dt = dX

dt ◦ Y + dY
dt ◦X . (Product rule of matrix Hadamard product)

• d exp(f(t))
dt = exp(f(t)) ◦ df(t)

dt , where exp(·) is applied entry-wise.

• d(XZ)
dt = dX

dt Z.

• d(ZX⊤)
dt = Z dX⊤

dt .
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• d
dt

∑n
i=1 fi(t) =

∑n
i=1

dfi(t)
dt .

•
dX

dXi,j︸ ︷︷ ︸
n×m

= ei︸︷︷︸
n×1

e⊤j︸︷︷︸
1×m

.

Fact B.4 (Basic algebra). Let u ∈ Rn, v ∈ Rn, w ∈ Rn, X ∈ Rn×d, Y ∈ Rn×d, and Z ∈ Rn×n.
Then, we have

• ⟨u, v⟩ = ⟨v, u⟩ = u⊤v = v⊤u

• u ◦ v = v ◦ u = diag(u)v = diag(v)u

• ⟨u, v⟩ = ⟨u ◦ v,1n⟩

• ⟨u ◦ v, w⟩ = ⟨u ◦ w, v⟩ = ⟨w ◦ v, u⟩

• u⊤(v ◦ w) = u⊤ diag(v)w

• (X ◦ Y )⊤ = X⊤ ◦ Y ⊤

• X ◦ eie⊤j = Xi,jeie
⊤
j

• diag(u)Z diag(v) = (uv⊤) ◦ Z

• XY ⊤ =
∑

i∈[d] X∗,iY
⊤
∗,i

• Xi,jYi,j = (X ◦ Y )i,j

•
∑

j∈[n] u ◦A∗,j = u ◦
∑

j∈[n] A∗,j

• ∥X∥2F = tr[XX⊤]

• tr[XY ⊤] = tr[Y ⊤X]

• ∥ diag(u)∥F = ∥u∥2
Fact B.5 (Norm bounds). For a ∈ R, u ∈ Rd, X,Y ∈ Rn×d, Z ∈ Rd×m we have

• ∥aX∥F = |a|∥X∥F (absolute homogeneity).

• ∥X + Y ∥F ≤ ∥X∥F + ∥Y ∥F (triangle inequality).

• |⟨X,Y ⟩| ≤ ∥X∥F · ∥Y ∥F (Cauchy–Schwarz inequality).

• ∥X⊤∥F = ∥X∥F .

• ∥Xu∥2 ≤ ∥X∥ · ∥u∥2

• ∥X ◦ Y ∥F ≤ ∥X∥F · ∥Y ∥F .

• For any i ∈ [n], j ∈ [d], we have |Xi,j | ≤ ∥X∥F .

• ∥X∥ ≤ ∥X∥F ≤
√
k∥X∥ where k is the rank of X .

• ∥Y · Z∥F ≤ ∥Y ∥F · ∥Z∥F .

Fact B.6. For matrices A,B ∈ Rm×n, we have

∥A+B∥2F = ∥A∥2F + ∥B∥2F + 2⟨A,B⟩.

Proof. We can show

∥A+B∥2F = tr[(A+B)⊤(A+B)]

= tr[A⊤A+A⊤B +B⊤A+B⊤B]
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= tr[A⊤A] + tr[B⊤B] + 2 tr[A⊤B]

= ∥A∥2F + ∥B∥2F + 2 tr[A⊤B]

= ∥A∥2F + ∥B∥2F + 2⟨A,B⟩

where the first step follows from tr[A⊤A] = ∥A∥2F for matrix A ∈ Rm×n, the second step follows
from the basic algebra, the third follows from tr[X⊤Y ] = tr[XY ⊤] for matrices X,Y ∈ Rm×n,
the fourth step follows from tr[A⊤A] = ∥A∥2F for matrix A ∈ Rm×n, and the last step follows from
definition of inner product of matrices.

Lemma B.7. Let M ∈ Rn×n. Let X ∈ Rn×n be independent of M . We have

d(M ◦X)

dMi,j
= Xi,jeie

⊤
j

Proof. We can show

d(M ◦X)

dMi,j
=M ◦ dX

dMi,j
+X ◦ dM

dMi,j

= X ◦ dM

dMi,j

= X ◦ (eie⊤j )
= Xi,jeie

⊤
j

where the first step, the second step, and the third step follow from Fact B.3, the fourth step follows
from Fact B.4.

C GRADIENT CALCULATION

C.1 DEFINITIONS

In this section, we introduce some definitions we used to compute dL(M)
dM . First, we introduce the

exponential function.
Definition C.1 (Exponential function u, ũ). If the following conditions hold

• Let X ∈ Rn×d.

• Let W ∈ Rd×d.

• Let M ∈ [0, 1]d×d.

• Let i0 ∈ [n].

We define u ∈ Rn×n as follows

u := exp(XWX⊤).

We define ũ(M) ∈ Rn×n as follows

ũ(M) := exp(X(M ◦W )X⊤).

We define i0-th row of ũ(M) as follows

ũ(M)i0 := exp(X(M ◦W )X⊤)i0 .

Then, we introduce the sum function.
Definition C.2 (Sum function of softmax α, α̃). If the following conditions hold

• Let M ∈ [0, 1]d×d.
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• Let Mc ∈ {0, 1}n×n be the causal attention mask defined in Definition 3.1.

• Let u, ũ(M) be defined as Definition C.1.

• Let i0 ∈ [n].

We define α ∈ Rn as follows

α := (u ◦Mc) · 1n.

We define α̃(M) ∈ Rn as follows

α̃(M) := (ũ(M) ◦Mc) · 1n.

We define i0-th entry of α̃(M) as follows

α̃(M)i0 := ⟨(ũ(M) ◦Mc)i0 ,1n⟩

Then, we introduce the Softmax probability function.

Definition C.3 (Softmax probability function f , f̃ ). If the following conditions hold

• Let M ∈ [0, 1]d×d.

• Let Mc ∈ {0, 1}n×n be the causal attention mask defined in Definition 3.1.

• Let u, ũ(M) be defined as Definition C.1.

• Let α, α̃(M) be defined as Definition C.2.

• Let i0, j0 ∈ [n].

We define f ∈ Rn×n for each j ∈ [n] as follows

f := diag(α)−1(u ◦Mc).

We define f̃(M) ∈ Rn×n for each j ∈ [n] as follows

f̃(M) := diag(α̃(M))−1(ũ(M) ◦Mc).

We define i0-th row of f̃(M) as follows

f̃(M)i0 := α̃(M)−1
i0

(ũ(M) ◦Mc)i0 .

We define the entry in i0-th row, j0-th column of f̃(M) as follows

f̃(M)i0,j0 := α̃(M)−1
i0

(ũ(M) ◦Mc)i0,j0 .

Then, we introduce the one-unit loss function.
Definition C.4 (One unit loss function c). If the following conditions hold

• Let f , f̃ be defined in Definition C.3.

• Let M ∈ [0, 1]d×d.

• Let i0, j0 ∈ [n].

We define c(M) ∈ Rn×n as follows

c(M) := f̃(M)− f

We define i0-th row of c(M) as follows

c(M)i0 := f̃(M)i0 − fi0

We define j0-th column of c(M) as follows

c(M)∗,j0 := f̃(M)∗,j0 − f∗,j0

We define the entry in i0-th row, j0-th column of c(M) as follows

c(M)i0,j0 := f̃(M)i0,j0 − fi0,j0
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Then, we introduce the reconstruction error.
Definition C.5 (Reconstruction Error Lattn). If the following conditions hold

• Let M ∈ [0, 1]d×d.

• Let c(M) be defined in Definition C.4.

We define Lattn(M) ∈ R as follows

Lattn(M) :=
1

2
∥c(M)∥2F =

1

2

n∑
i0=1

n∑
j0=1

c(M)2i0,j0 .

Then, we introduce the regularization term.
Definition C.6 (Regularization Term Lreg). If the following conditions hold

• M ∈ [0, 1]d×d.

We define Lreg(M) ∈ R as follows

Lreg(M) :=
1

2
λ∥M∥2F .

Finally, we introduce the overall loss function.
Definition C.7 (Overall loss function L). If the following conditions hold

• Let M ∈ [0, 1]d×d.

• Let Lattn(M) be defined in Definition C.5.

• Let Lreg(M) be defined in Definition C.6.

• Let λ ∈ R+ be the regularization parameter.

We define L(M) as follows

L(M) := Lattn(M) + Lreg(M)

C.2 GRADIENT FOR EACH ROW OF X(M ◦W )X⊤

We introduce the Lemma of gradient for each row of X(M ◦W )X⊤.
Lemma C.8. Let i1 ∈ [d], j1 ∈ [d], i0 ∈ [n], we have

d(X(M ◦W )X⊤)i0
dMi1,j1︸ ︷︷ ︸

n×1

= Wi1,j1︸ ︷︷ ︸
scalar

Xi0,i1︸ ︷︷ ︸
scalar

X∗,j1︸ ︷︷ ︸
n×1

Proof. We can simplify the derivative expression

d(X(M ◦W )X⊤)i0
dMi1,j1

=
dX(X(M ◦W ))i0

dMi1,j1

=
dX(M ◦W )⊤Xi0

dMi1,j1

= X
d(M ◦W )⊤

dMi1,j1

Xi0 (2)

where the first and second step follows from Fact B.1, the third step follows from Fact B.3.

We further compute Eq. (2):

d(M ◦W )⊤

dMi1,j1

=
dM⊤ ◦W⊤

dMi1,j1
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=
dM⊤ ◦W⊤

d(M⊤)j1,i1

= (W⊤)j1,i1ej1e
⊤
i1

=Wi1,j1ej1e
⊤
i1 (3)

where the first follows from Fact B.4, the second step follows from for any matrix X , Xi,j =
(X⊤)j,i, the third step follows from Fact B.7, and the fourth step follows from for any matrix X ,
Xi,j = (X⊤)j,i.

Finally, we have

d(X(M ◦W )X⊤)i0
dMi1,j1

= XWi1,j1ej1e
⊤
i1Xi0

= Wi1,j1(Xej1)(e
⊤
i1Xi0)

= Wi1,j1X∗,j1Xi0,i1

where the first step follows from Eq. (2) and Eq. (3), and the second step and the third step follow
from basic algebra.

We introduce the Lemma of the gradient for each row of ũ(M).

C.3 GRADIENT FOR EACH ROW OF ũ(M)

Lemma C.9. If the following conditions hold:

• Let ũ(M) be defined in Definition C.1.

Let i1 ∈ [d], j1 ∈ [d], i0 ∈ [n], we have

dũ(M)i0
dMi1,j1︸ ︷︷ ︸

n×1

= ũ(M)i0︸ ︷︷ ︸
n×1

◦(Wi1,j1︸ ︷︷ ︸
scalar

Xi0,i1︸ ︷︷ ︸
scalar

X∗,j1︸ ︷︷ ︸
n×1

)

Proof. We have

dũ(M)i0
dMi1,j1︸ ︷︷ ︸

n×1

=
d exp(X(M ◦W )X⊤)i0

dMi1,j1︸ ︷︷ ︸
n×1

= exp( X︸︷︷︸
n×d

(M ◦W )︸ ︷︷ ︸
d×d

X⊤︸︷︷︸
d×1

)i0 ◦
d(X(M ◦W )X⊤)i0

dMi1,j1︸ ︷︷ ︸
n×1

= ũ(M)i0︸ ︷︷ ︸
n×1

◦ d(X(M ◦W )X⊤)i0
dMi1,j1︸ ︷︷ ︸

n×1

= ũ(M)i0︸ ︷︷ ︸
n×1

◦(Wi1,j1︸ ︷︷ ︸
scalar

Xi0,i1︸ ︷︷ ︸
scalar

X∗,j1︸ ︷︷ ︸
n×1

)

where the first step follows from Definition C.1, the second step follows from Fact B.3, the third
step follows from Definition C.1, and the fourth step follows from Lemma C.8.

C.4 GRADIENT FOR EACH ENTRY OF α̃(M)

We introduce the Lemma of gradient for each entry of α̃(M).

Lemma C.10. If the following conditions hold:

29



Published as a conference paper at ICLR 2025

• Let ũ(M) be defined in Definition C.1.

• Let α̃(M) be defined in Definition C.2.

Let i1 ∈ [d], j1 ∈ [d], i0 ∈ [n], we have

dα̃(M)i0
dMi1,j1︸ ︷︷ ︸
scalar

= ⟨ũ(M)i0 ◦ (Mc)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

Proof. We have

dα̃(M)i0
dMi1,j1︸ ︷︷ ︸
scalar

=
d⟨(ũ(M) ◦Mc)i0 ,1n⟩

dMi1,j1︸ ︷︷ ︸
scalar

= ⟨d(ũ(M) ◦Mc)i0
dMi1,j1

,1n⟩

= ⟨dũ(M)i0
dMi1,j1

◦ (Mc)i0 ,1n⟩

= ⟨ũ(M)i0 ◦ (Wi1,j1Xi0,i1X∗,j1) ◦ (Mc)i0 ,1n⟩
= ⟨ũ(M)i0 ◦ (Mc)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

where the first step follows from Definition C.2, the second step follows from the product rule of
inner product in Fact B.3, the third step follows from the product rule of Hadamard product in
Fact B.3, the fourth step follows from Lemma C.9, and the last step follows from Fact B.4.

C.5 GRADIENT FOR EACH ENTRY OF f̃(M)

We introduce the Lemma of the gradient for each entry of f̃(M).
Lemma C.11. If the following conditions hold:

• Let ũ(M) be defined in Definition C.1.

• Let α̃(M) be defined in Definition C.2.

• Let f̃(M) be defined in Definition C.3.

Let i1 ∈ [d], j1 ∈ [d], i0 ∈ [n], j0 ∈ [n], we have

df̃(M)i0,j0
dMi1,j1

= f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 − f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

Proof. We have

df̃(M)i0,j0
dMi1,j1

=
dα̃(M)−1

i0
(ũ(M) ◦Mc)i0,j0
dMi1,j1

=
dα̃(M)−1

i0

dMi1,j1

(ũ(M) ◦Mc)i0,j0 +
d(ũ(M) ◦Mc)i0,j0

dMi1,j1

α̃(M)−1
i0

(4)

where the first step follows from Definition C.3, and the second step follows from Fact B.3.

In the following part, we compute the two terms separately.

For the first term above, we have

dα̃(M)−1
i0

dMi1,j1

(ũ(M) ◦Mc)i0,j0
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= (ũ(M) ◦Mc)i0,j0(−1)α̃(M)−2
i0

dα̃(M)i0
dMi1,j1

= − (ũ(M) ◦Mc)i0,j0⟨ũ(M)i0 ◦ (Mc)i0 ,Wi1,j1Xi0,i1X∗,j1⟩/α̃(M)2i0

= − (α̃(M)−1
i0

(Mc)i0,j0 ũ(M)i0,j0)⟨α̃(M)−1
i0

ũ(M)i0 ◦ (Mc)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

= − f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩ (5)

where the first step follows from Fact B.3, the second step follows from Lemma C.10, the third step
follows from basic algebra, and the fourth step follows from Definition C.3.

For the second term above, we have

d(ũ(M) ◦Mc)i0,j0
dMi1,j1

α̃(M)−1
i0

=
dũ(M)i0,j0(Mc)i0,j0

dMi1,j1

α̃(M)−1
i0

= (Mc)i0,j0(
dũ(M)i0
dMi1,j1

)j0 α̃(M)−1
i0

= ((Mc)i0,j0 ũ(M)i0,j0 α̃(M)−1
i0

)Wi1,j1Xi0,i1Xj0,j1

= f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 (6)

where the first step and the second step follow from basic algebra, the third step follows from
Lemma C.9, and the fourth step follows from Definition C.3.

So, we have

df̃(M)i0,j0
dMi1,j1

=
dα̃(M)−1

i0

dMi1,j1

(ũ(M) ◦Mc)i0,j0 +
d(ũ(M) ◦Mc)i0,j0

dMi1,j1

α̃(M)−1
i0

= f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 − f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

where the first step follows from Eq. (4), and the second step follows from Eq. (5) and Eq. (6).

C.6 GRADIENT FOR EACH ENTRY OF C(M)

We introduce the Lemma of gradient for each entry of c(M).

Lemma C.12. If the following conditions hold:

• Let f̃(M), f be defined in Definition C.3.

• Let c(M) be defined in Definition C.4.

Let i1 ∈ [d], j1 ∈ [d], i0 ∈ [n], j0 ∈ [n], we have

dc(M)i0,j0
dMi1,j1

= f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 − f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

Proof. We have

dc(M)i0,j0
dMi1,j1

=
d(f̃(M)i0,j0 − fi0,j0)

dMi1,j1

=
df̃(M)i0,j0
dMi1,j1

= f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 − f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

where the first step follows from Definition C.4, the second step follows from Fact B.3, and the third
step follows from Lemma C.11.
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C.7 GRADIENT FOR Lattn(M)

We introduce the Lemma of the gradient for Lattn(M).
Lemma C.13. If the following conditions hold:

• Let f̃(M) be defined in Definition C.3.

• Let c(M) be defined in Definition C.4.

• Let Lattn(M) be defined in Definition C.5.

Let i1 ∈ [d], j1 ∈ [d], i0 ∈ [n], j0 ∈ [n], we have

dLattn(M)

dMi1,j1

=

n∑
i0=1

n∑
j0=1

B1(M) +B2(M)

where we have definitions:

• B1(M) := c(M)i0,j0 f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1

• B2(M) := −c(M)i0,j0 f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

Proof. We have

dLattn(M)

dMi1,j1

=
1

2

d∥c(M)∥2F
dMi1,j1

=
1

2

d
∑n

i0=1

∑n
j0=1(c(M)i0,j0)

2

dMi1,j1

=
1

2

n∑
i0=1

n∑
j0=1

d(c(M)i0,j0)
2

dMi1,j1

=

n∑
i0=1

n∑
j0=1

c(M)i0,j0
dc(M)i0,j0
dMi1,j1

where the first step follows from Definition C.5, the second step follows from the definition of
Frobenius’s norm of the matrix, the third step follows from Fact B.3, and the fourth step follows
from Fact B.3.

Following Lemma C.12, we have
n∑

i0=1

n∑
j0=1

c(M)i0,j0
dc(M)i0,j0
dMi1,j1

=

n∑
i0=1

n∑
j0=1

c(M)i0,j0(f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 − f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩)

= c(M)i0,j0 f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 − c(M)i0,j0 f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

:=

n∑
i0=1

n∑
j0=1

B1(M) +B2(M)

where the second step follows from basic algebra.

C.8 GRADIENT FOR Lreg(M)

We introduce the Lemma of the gradient for Lreg(M).
Lemma C.14. If the following conditions hold:
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• Let Lreg(M) be defined in Definition C.6.

Let i1 ∈ [d], j1 ∈ [d], we have

dLreg(M)

dMi1,j1

= B3(M)

where we have the definition:

• B3(M) := λMi1,j1

Proof. We have

dLreg(M)

dMi1,j1

=
1

2
λ
d∥M∥2F
dMi1,j1

=
1

2
λ(

d

dMi1,j1

d∑
i0=1

d∑
j0=1

M2
i0,j0)

= λMi1,j1

:= B3(M)

where the first step follows from Definition C.6, the second step follows from the definition of
Frobenius’s norm of the matrix, and the third step follows from Fact B.3.

C.9 GRADIENT FOR L(M)

We introduce the Lemma of the gradient for L(M).
Lemma C.15. If the following conditions hold:

• Let ũ(M) be defined in Definition C.1.

• Let α̃(M) be defined in Definition C.2.

• Let f̃(M) be defined in Definition C.3.

• Let Lattn(M) be defined in Definition C.5.

• Let Lreg(M) be defined in Definition C.6.

• Let L(M) be defined in Definition C.7.

Let i1 ∈ [d], j1 ∈ [d], i0 ∈ [n], j0 ∈ [n], we have

dL(M)

dMi1,j1

=

n∑
i0=1

n∑
j0=1

(B1(M) +B2(M)) +B3(M)

where we have definitions:

• B1(M) := c(M)i0,j0 f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1

• B2(M) := −c(M)i0,j0 f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

• B3(M) := λMi1,j1

Proof.

dL(M)

dMi1,j1

=
dLattn(M) + Lreg(M)

dMi1,j1

=
dLattn(M)

dMi1,j1

+
dLreg(M)

dMi1,j1
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=

n∑
i0=1

n∑
j0=1

(B1(M) +B2(M)) +B3(M)

where the first step follows from Definition C.7, the second step follows from Fact B.3, and the third
step follows from Lemma C.13 and Lemma C.14.

D MATRIX FORM

D.1 MATRIX FORM OF B(M)

Given the matrix form, we define p to simplify the calculation.
Definition D.1. If the following conditions hold

• Let X ∈ Rn×d.

• Let M ∈ [0, 1]d×d.

• Let W ∈ Rd×d.

• Let c(M) be defined in Definition C.4.

• Let f̃(M) be defined in Definition C.3.

We define p1 as follows

p1 := c(M) ◦ f̃(M)

We define the j0-th column of p1 as follows

(p1)∗,j0 := (c(M) ◦ f̃(M))∗,j0

We define p2 as follows

p2 := diag(p1 · 1n)f̃(M)

We define the i0-th row of p2 as follows

(p2)i0 := 1⊤
n (p1)i0 f̃(M)i0 = f̃(M)i0c(M)⊤i0 f̃(M)i0

We define p as follows

p := p1 − p2 = c(M) ◦ f̃(M)− diag((c(M) ◦ f̃(M)) · 1n)f̃(M)

We introduce the matrix view of B1(M) and its summation.
Lemma D.2 (Matrix view of B1(M)). If we have the below conditions,

• Let B1(M, i1, j1) := c(M)i0,j0 f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 , which is defined in
Lemma C.15

• We define C1(M) ∈ Rd×d. For all i1, j1 ∈ [d], let C1(i1, j1) denote the (i1, j1)-th entry of
C1(M). We define C1(i1, j1) = B1(M, i1, j1).

Then, we can show that

• Part 1. For i0, j0 ∈ [n]

C1(M) = c(M)i0,j0 f̃(M)i0,j0︸ ︷︷ ︸
scalar

(W ◦ (Xi0X
⊤
j0))

• Part 2.
n∑

i0=1

n∑
j0=1

C1(M) = W ◦ (X⊤p1X)
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Proof. Part 1. We have

C1(i1, j1) = c(M)i0,j0 f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1

= c(M)i0,j0 f̃(M)i0,j0︸ ︷︷ ︸
scalar

(Xi0︸︷︷︸
d×1

)i1(W∗,j1︸ ︷︷ ︸
d×1

)i1 (Xj0)j1︸ ︷︷ ︸
scalar

= c(M)i0,j0 f̃(M)i0,j0︸ ︷︷ ︸
scalar

(diag(Xi0)W∗,j1︸ ︷︷ ︸
d×1

)i1 (Xj0)j1︸ ︷︷ ︸
scalar

where the first step follows from the definition of C1, the second step follows from Fact B.1, and the
third step follows from Fact B.2.

Following from Fact B.1, we can get j1-th column of C1

C1(∗, j1) = c(M)i0,j0 f̃(M)i0,j0︸ ︷︷ ︸
scalar

diag(Xi0)︸ ︷︷ ︸
d×d

W∗,j1︸ ︷︷ ︸
d×1

(Xj0)j1︸ ︷︷ ︸
scalar

= c(M)i0,j0 f̃(M)i0,j0︸ ︷︷ ︸
scalar

diag(Xi0)︸ ︷︷ ︸
d×d

( W︸︷︷︸
d×d

diag(Xj0)︸ ︷︷ ︸
d×d

)∗,j1

where the second step follows from Fact B.2.

Following from Fact B.1, we can get C1(M)

C1(M) = c(M)i0,j0 f̃(M)i0,j0︸ ︷︷ ︸
scalar

diag(Xi0)︸ ︷︷ ︸
d×d

W︸︷︷︸
d×d

diag(Xj0)︸ ︷︷ ︸
d×d

= c(M)i0,j0 f̃(M)i0,j0︸ ︷︷ ︸
scalar

(W ◦ (Xi0X
⊤
j0)) (7)

where the second step follows from Fact B.4.

Part 2. We further compute the summation of C1(M).
n∑

i0=1

n∑
j0=1

C1(M) =

n∑
i0=1

n∑
j0=1

c(M)i0,j0 f̃(M)i0,j0︸ ︷︷ ︸
scalar

(W ◦Xi0X
⊤
j0)

=

n∑
i0=1

n∑
j0=1

(W ◦ (c(M)i0,j0 f̃(M)i0,j0Xi0X
⊤
j0))

= W ◦
n∑

i0=1

n∑
j0=1

c(M)i0,j0 f̃(M)i0,j0Xi0X
⊤
j0

= W ◦
n∑

j0=1

n∑
i0=1

((p1)∗,j0)i0Xi0X
⊤
j0

where the first step follows from Eq. (7), the second step follows from basic algebra, the third step
follows from Fact B.4, and the fourth step follows from Definition D.1.

Then following from Fact B.2, we have

W ◦
n∑

j0=1

n∑
i0=1

((p1)∗,j0)i0Xi0X
⊤
j0

= W ◦
n∑

j0=1

X⊤(p1)∗,j0X
⊤
j0

= W ◦ (X⊤p1X)
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We introduce the matrix view of B2(M) and its summation.
Lemma D.3 (Matrix view of B2(M)). If we have the below conditions,

• Let B2(M, i1, j1) := −c(M)i0,j0 f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩ be defined in
Lemma C.15.

• We define C2(M) ∈ Rd×d. For all i1, j1 ∈ [d], let C2(i1, j1) denote the (i1, j1)-th entry of
C2(M). We define C2(i1, j1) = B2(M, i1, j1).

Then, we can show that

• Part 1. For i0, j0 ∈ [n]

C2(M) = − c(M)i0,j0 f̃(M)i0,j0 diag(Xi0)︸ ︷︷ ︸
d×d

W︸︷︷︸
d×d

diag(X⊤f̃(M)i0)︸ ︷︷ ︸
d×d

• Part 2.
n∑

i0=1

n∑
j0=1

C2(M) = −W ◦ (X⊤p2X)

Proof. Part 1. We have

−C2(i1, j1) = c(M)i0,j0 f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩

= c(M)i0,j0 f̃(M)i0,j0 f̃(M)⊤i0︸ ︷︷ ︸
1×n

X∗,j1Wi1,j1Xi0,i1︸ ︷︷ ︸
n×1

= c(M)i0,j0 f̃(M)i0,j0 f̃(M)⊤i0︸ ︷︷ ︸
1×n

X∗,j1(Xi0)i1(W∗,j1)i1︸ ︷︷ ︸
n×1

= c(M)i0,j0 f̃(M)i0,j0 f̃(M)⊤i0︸ ︷︷ ︸
1×n

X∗,j1(diag(Xi0)W∗,j1)i1︸ ︷︷ ︸
n×1

where the first step follows from the definition of C2, the second step, the third step, and the fourth
step follow from Fact B.4.

Following from Fact B.1, we can get j1-th column of C2

−C2(∗, j1) = diag(Xi0)︸ ︷︷ ︸
d×d

W∗,j1︸ ︷︷ ︸
d×1

c(M)i0,j0 f̃(M)i0,j0 f̃(M)⊤i0︸ ︷︷ ︸
1×n

X∗,j1︸ ︷︷ ︸
n×1

= c(M)i0,j0 f̃(M)i0,j0 diag(Xi0)︸ ︷︷ ︸
d×d

W∗,j1︸ ︷︷ ︸
d×1

f̃(M)⊤i0︸ ︷︷ ︸
1×n

X∗,j1︸ ︷︷ ︸
n×1

= c(M)i0,j0 f̃(M)i0,j0 diag(Xi0)︸ ︷︷ ︸
d×d

W∗,j1︸ ︷︷ ︸
d×1

(X⊤f̃(M)i0)j1︸ ︷︷ ︸
scalar

= c(M)i0,j0 f̃(M)i0,j0 diag(Xi0)︸ ︷︷ ︸
d×d

(W diag(X⊤f̃(M)i0)︸ ︷︷ ︸
d×d

)∗,j1

where the second step and the fourth step follows from Fact B.4, and the third step follows from
Fact B.1.

Following from Fact B.1, we can get C2.

−C2(M) = c(M)i0,j0 f̃(M)i0,j0 diag(Xi0)︸ ︷︷ ︸
d×d

W︸︷︷︸
d×d

diag(X⊤f̃(M)i0)︸ ︷︷ ︸
d×d

(8)

Part 2. We further compute the summation of C2

−
n∑

i0=1

n∑
j0=1

C2(M) =

n∑
i0=1

n∑
j0=1

c(M)i0,j0 f̃(M)i0,j0 diag(Xi0)︸ ︷︷ ︸
d×d

W︸︷︷︸
d×d

diag(X⊤f̃(M)i0)︸ ︷︷ ︸
d×d
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=

n∑
i0=1

n∑
j0=1

c(M)i0,j0 f̃(M)i0,j0((Xi0 f̃(M)⊤i0X) ◦W )

= W ◦
n∑

i0=1

(Xi0 f̃(M)⊤i0X)

n∑
j0=1

((p1)i0)j0

where the first step follows from Eq. (8), the second step and the third step follow from Fact B.4.

Following from Fact B.2, we have

W ◦
n∑

i0=1

(Xi0 f̃(M)⊤i0X)

n∑
j0=1

((p1)i0)j0

= W ◦
n∑

i0=1

(Xi0 f̃(M)⊤i0X)1⊤
n (p1)i0

= W ◦ (X⊤ diag(p1 · 1n)f̃(M)X)

= W ◦ (X⊤p2X)

where the third step follows from Definition D.1.

We introduce the matrix view of B3(M).

Lemma D.4 (Matrix view of B3(M)). If the following conditions hold

• Let B3(M, i1, j1) := λMi1,j1 be defined in Lemma C.15.

• We define C3(M) ∈ Rd×d. For all i1, j1 ∈ [d], let C3(i1, j1) denote the (i1, j1)-th entry of
C3(M). We define C3(i1, j1) = B3(M, i1, j1).

We can show that

C3(M) = λM.

Proof. The proof is straightforward. By the definition of C3(M), for all i1, j1 ∈ [d], the (i1, j1)-th
entry of C3(M) is given by C3(i1, j1) = B3(M, i1, j1) = λMi1,j1 . Thus, the entire matrix C3(M)
has entries that correspond to those of λM . Therefore, we can conclude that C3(M) = λM as
required.

D.2 MATRIX FORM OF d
dML(M)

We introduce the matrix form of the overall loss function.

Theorem D.5 (Close form of gradient, formal version of Theorem 5.3). If the following conditions
hold

• Let L(M) be defined in Definition C.7.

• Let p be defined in Definition D.1.

• Let X ∈ Rn×d.

• Let M ∈ [0, 1]d×d.

• Let W ∈ Rd×d.

We can show that

dL(M)

dM
= W ◦ (X⊤pX) + λM.
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Proof. We have

dL(M)

dM
=

n∑
i0=1

n∑
j0=1

(C1(M) + C2(M)) + C3(M)

= W ◦ (X⊤p1X)−W ◦ (X⊤p2X) + λM

= W ◦ (X⊤(p1 − p2)X) + λM

= W ◦ (X⊤pX) + λM

where the first step follows from Lemma C.15, the second step follows from Lemma D.2,
Lemma D.3, and Lemma D.4, the third step follows from basic algebra, and the fourth step fol-
lows from Definition D.1.

E BOUNDS FOR BASIC FUNCTIONS

E.1 BASIC ASSUMPTIONS

Here, we introduce our bounded parameters assumption.

Assumption E.1 (Bounded parameters). We assume the following conditions

• Let R be some fixed constant satisfies R > 1.

• Let X ∈ Rn×d,W ∈ Rd×d. We have ∥X∥F ≤ R and ∥W∥F ≤ R.

Here, we present the lemma of bounds for M and Mc.

Lemma E.2 (Bounds for M and Mc). Let M ∈ [0, 1]d×d and Mc ∈ {0, 1}n×n be the causal
attention mask defined in Definition 3.1. For M , we have

∥M∥F ≤ d

For Mc, we have

∥Mc∥F ≤ n

Proof. This Lemma simply follows from the definition of the Frobenius norm, given that the max
value of each entry in M and Mc is 1.

E.2 BOUNDS FOR BASIC FUNCTIONS

We first introduce the lemma of bounds for basic functions.

Lemma E.3. Under Assumption E.1, for all i0 ∈ [n], j0 ∈ [n], i1 ∈ [d], j1 ∈ [d], we have the
following bounds

• Part 1.

∥f̃(M)∥F ≤
√
n

• Part 2.

∥c(M)∥F ≤ 2
√
n

• Part 3.

∥(c(M) ◦ f̃(M))∥F ≤ 2
√
n

• Part 4.

|f̃(M)i0,j0 | ≤ 1
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• Part 5.

|Wi1,j1 | ≤ R

• Part 6.

|Xi0,i1 | ≤ R

• Part 7.

∥f̃(M)i0∥2 ≤ 1

• Part 8.

|f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 | ≤ R3

• Part 9.

|f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩| ≤ R3

• Part 10.

∥ diag((c(M) ◦ f̃(M)) · 1n)∥F ≤ 2n

Proof. Proof of Part 1. Each entry in f̃(M) present a probability, thus for i0 ∈ [n], j0 ∈ [n], we
have

0 ≤ f̃(M)i0,j0 ≤ 1.

For any i0-th row of f̃(M), following from the definition of Softmax function, we know
n∑

j0=1

f̃(M)i0,j0 = 1.

So we have
n∑

j0=1

f̃(M)2i0,j0 ≤ 1

which follows from f̃(M)i0,j0 ≤ (f̃(M)i0,j0)
2. Then, we can show

∥f̃(M)∥F =

√√√√ n∑
i0=1

n∑
j0=1

f̃(M)2i0,j0 ≤
√
n

Proof of Part 2. Following from Part 1., we can show

∥f̃(M)∥F ≤
√
n

and

∥f∥F ≤
√
n.

Then we have

∥c(M)∥F = ∥f̃(M)− f∥F
≤ ∥f̃(M)∥F + ∥f∥F
≤ 2
√
n

where the first step follows from Definition C.4, the second step follows the triangle inequality.

Proof of Part 3. We have 0 ≤ f̃(M)i0,j0 ≤ 1, so we have

∥(c(M) ◦ f̃(M))∥F ≤ ∥c(M)∥F
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≤ 2
√
n

where the second step follows from Part 2..

Proof of Part 4. See Proof of Part 1..

Proof of Part 5. The proof simply follows from Assumption E.1 and Fact B.5.

Proof of Part 6. The proof simply follows from Assumption E.1 and Fact B.5.

Proof of Part 7. See Proof of Part 1..

Proof of Part 8. The proof simply follows from Part 4., Part 5., Part 6. and Part 7..

Proof of Part 9. The proof simply follows from Part 4., Part 5., Part 6. and Part 7..

Proof of Part 10. We have

∥ diag((c(M) ◦ f̃(M)) · 1n)∥F = ∥(c(M) ◦ f̃(M)) · 1n∥2
≤ ∥1n∥2∥(c(M) ◦ f̃(M))∥F
=
√
n · 2
√
n

= 2n

where the first step follows from Fact B.4 the second step follows from Fact B.5, the third step
follows from Part 3., and the last step follows from simple algebra.

E.3 BOUNDS FOR GRADIENT OF f̃(M)

We introduce the lemma of bounds for the gradient of f̃(M).

Lemma E.4. If the following conditions hold

• Let f̃(M) be defined in Definition C.3.

• Assumption E.1 holds.

Then we have

∥d vec(f̃(M))

d vec(M)
∥F ≤ 2dnR3

Proof. We have

|df(M)i0,j0
dMi1,j1

|

= |f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 − f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩|

≤ |f̃(M)i0,j0Wi1,j1Xi0,i1Xj0,j1 |+ |f̃(M)i0,j0⟨f̃(M)i0 ,Wi1,j1Xi0,i1X∗,j1⟩|
≤ 2R3

For d vec(f̃(M))
d vec(M) , we can show

∥d vec(f̃(M))

d vec(M)
∥F =

√√√√ n2∑
i2=1

d2∑
j2=1

|d vec(f̃(M))i0
d vec(M)j0

|

≤ 2ndR3
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F LIPSCHITZ OF GRADIENT

F.1 USEFUL FACTS

Here, we introduce the fact of the mean value theorem for matrix function.
Fact F.1 (Mean value theorem for matrix function, Fact C.6 in Liang et al. (2024e)). If the following
conditions hold

• Let X,Y ∈ C ⊂ Rd×d where C is an open convex domain.

• Let g(X) : C → Rn×n be a differentiable matrix function on C.

• Let ∥d vec(g(X))
d vec(X) ∥F ≤ R for all x ∈ C.

We have

∥g(Y )− g(X)∥F ≤ R∥Y −X∥F .

Proof. For the convenience of proof, we define x and y as follows:

• x := vec(X) and y := vec(Y ).

• h(x) := vec(g(X)) and h(y) := vec(g(Y )).

• h′(a) denotes a matrix which its (i, j)-th term is dh(a)j
dai

.

Assume we have 1-variable function γ(c) = f(x+ c(y − x)), we can apply Mean Value Theorem:

f(y)− f(x) = γ(1)− γ(0) = γ′(t)(1− 0) = ∇f(x+ t(y − x))⊤(y − x) (9)

where t ∈ [0, 1]. Let G(c) := (h(y)− h(x))⊤h(c), we have

∥g(Y )− g(X)∥2F = G(y)−G(x)

=∇G(x+ t(y − x))⊤(y − x)

= (h′(x+ t(y − x))︸ ︷︷ ︸
d2×n2

·h(y)− h(x)︸ ︷︷ ︸
n2×1

)⊤ · (y − x)

≤ ∥h′(x+ t(y − x))∥ · ∥h(y)− h(x)∥2 · ∥y − x∥2
where the second step follows from Eq. (9), the third step follows from the chain rule, the fourth
step follows from the Cauchy-Schwartz inequality.

By definition of matrix Frobenius norm and vector ℓ2 norm, we have

∥g(Y )− g(X)∥F = ∥h(y)− h(x)∥2
and

∥Y −X∥F = ∥y − x∥2
so we can show

∥g(Y )− g(X)∥F ≤ R∥Y −X∥F

which follows from ∥d vec(g(X))
d vec(X) ∥F ≤ R for all x ∈ C.

Here, we introduce the fact of Lipschitz for the product of functions.
Fact F.2 (Lipschitz for product of functions, Fact H.2 in Deng et al. (2023)). Under following
conditions

• Let {fi(x)}ni=1 be a sequence of functions with the same domain and range.
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• For each i ∈ [n], we have

– fi(x) is bounded: ∀x, ∥fi(x)∥F ≤ Ri with Ri ≥ 1.
– fi(x) is Lipschitz continuous: ∀x, y, ∥fi(x)− fi(y)∥F ≤ Li∥x− y∥F .

Then we have

∥
n∏

i=1

fi(x)−
n∏

i=1

fi(y)∥F ≤ 2n−1 ·max
i∈[n]
{Li} · (

n∏
i=1

Ri) · ∥x− y∥F

F.2 LIPSCHITZ OF f̃(M)

We introduce the lemma about Lipschitz of f̃(M).

Lemma F.3 (Lipschitz of f̃(M)). Under the following conditions

• Assumption E.1 holds.

• Let f̃(M) be defined as Definition C.3.

For M,M̃ ∈ Rd×d, we have

∥f̃(M)− f̃(M̃)∥F ≤ 2dnR3∥M − M̃∥F

Proof. We have

∥f̃(M)− f̃(M̃)∥F ≤ ∥∇f̃(M)∥F · ∥M − M̃∥F
≤ 2dnR3 · ∥M − M̃∥F

where the first step follows from Fact F.1, the second step follows from Lemma E.4.

F.3 LIPSCHITZ OF c(M)

We introduce the lemma about Lipschitz of c(M).
Lemma F.4 (Lipschitz of c(M)). Under the following conditions

• Assumption E.1 holds.

• Let c(M) be defined as Definition C.4.

For M,M̃ ∈ Rd×d, we have

∥c(M)− c(M̃)∥F ≤ 2dnR3∥M − M̃∥F

Proof. We have

∥c(M)− c(M̃)∥F ≤ ∥∇c(M)∥F · ∥M − M̃∥F
= ∥∇f̃(M)∥F · ∥M − M̃∥F
≤ 2dnR3 · ∥M − M̃∥F

where the first step follows from Fact F.1, the second step follows from Lemma C.12, the third step
follows from Lemma E.4.

F.4 LIPSCHITZ OF f̃(M) ◦ c(M)

We introduce the lemma about Lipschitz of f̃(M) ◦ c(M).

Lemma F.5 (Lipschitz of f̃(M) ◦ c(M)). Under the following conditions
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• Assumption E.1 holds.

• Let c(M) be defined as Definition C.4.

• Let f̃(M) be defined as Definition C.3.

For M,M̃ ∈ Rd×d, we have

∥f̃(M) ◦ c(M)− f̃(M̃) ◦ c(M̃)∥F ≤ 6dn3/2R3∥M − M̃∥F

Proof. We have

LHS ≤ ∥f̃(M) ◦ c(M)− f̃(M) ◦ c(M̃)∥F + ∥f̃(M) ◦ c(M̃)− f̃(M̃) ◦ c(M̃)∥F
≤ ∥f̃(M)∥F · ∥c(M)− c(M̃)∥F + ∥c(M̃)∥F · ∥f̃(M)− f̃(M̃)∥F
≤
√
n · ∥c(M)− c(M̃)∥F + 2

√
n · ∥f̃(M)− f̃(M̃)∥F

≤
√
n · 2dnR3∥M − M̃∥F + 2

√
n · 2dnR3∥M − M̃∥F

where the first step follows from triangle inequality, the second step follows from Fact B.5, the third
step follows from Lemma E.3, the fourth step follows from Lemma F.4 and Lemma F.3.

So we have

∥f̃(M) ◦ c(M)− f̃(M̃) ◦ c(M̃)∥F ≤ 6dn3/2R3∥M − M̃∥F

F.5 LIPSCHITZ OF diag((f̃(M) ◦ c(M)) · 1n)

We introduce the lemma about Lipschitz of diag((f̃(M) ◦ c(M)) · 1n).

Lemma F.6 (Lipschitz of diag((f̃(M) ◦ c(M)) · 1n)). If the following conditions hold

• Assumption E.1 holds.

• Let c(M) be defined as Definition C.4.

• Let f̃(M) be defined as Definition C.3.

For M, M̃ ∈ Rd×d, we have

∥ diag((f̃(M) ◦ c(M)) · 1n)− diag((f̃(M̃) ◦ c(M̃)) · 1n)∥F ≤ 6dn2R3∥M − M̃∥F

Proof. We have

LHS = ∥(f̃(M) ◦ c(M)) · 1n − (f̃(M̃) ◦ c(M̃)) · 1n∥2
= ∥((f̃(M) ◦ c(M))− (f̃(M̃) ◦ c(M̃))) · 1n∥2
≤ ∥f̃(M) ◦ c(M)− f̃(M̃) ◦ c(M̃)∥ · ∥1n∥2
=
√
n∥f̃(M) ◦ c(M)− f̃(M̃) ◦ c(M̃)∥ (10)

where the first step follows from Fact B.4, the second step follows from basic algebra, the third step
follows from Fact B.5, and the fourth step follows from ∥1n∥2 =

√
n.

Then we have

∥f̃(M) ◦ c(M)− f̃(M̃) ◦ c(M̃)∥ ≤ ∥f̃(M) ◦ c(M)− f̃(M̃) ◦ c(M̃)∥F (11)

which follows from Fact B.5.

Following Eq. (10), Eq. (11) and Lemma F.5, we have

LHS ≤
√
n · 6dn3/2R3∥M − M̃∥F = 6dn2R3∥M − M̃∥F
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F.6 LIPSCHITZ OF diag((f̃(M) ◦ c(M)) · 1n)f̃(M)

We introduce the lemma about Lipschitz of diag((f̃(M) ◦ c(M)) · 1n)f̃(M).

Lemma F.7 (Lipschitz of diag((f̃(M) ◦ c(M)) · 1n)f̃(M)). If the following conditions hold

• Assumption E.1 holds.

• Let c(M) be defined as Definition C.4.

• Let f̃(M) be defined as Definition C.3.

For M, M̃ ∈ Rd×d, we have

∥ diag((f̃(M) ◦ c(M)) · 1n)f̃(M)− diag((f̃(M̃) ◦ c(M̃)) · 1n)f̃(M̃)∥F ≤ 24dn7/2R3∥M − M̃∥F

Proof. Following Fact F.2, we have

∥ diag((f̃(M) ◦ c(M)) · 1n)f̃(M)− diag((f̃(M̃) ◦ c(M̃)) · 1n)f̃(M̃)∥F
≤ 21 ·max{6dn2R3, 6dn3/2R3} · (

√
n · 2n)∥M − M̃∥F

= 24dn7/2R3∥M − M̃∥F

where we have the upper bound in Lemma E.3, the Lipschitz of diag((f̃(M) ◦ c(M)) and f̃(M) in
Lemma F.3 and Lemma F.6.

F.7 LIPSCHITZ OF GRADIENT

We introduce the lemma about Lipschitz of the gradient.
Theorem F.8 (Lipschitz of the gradient, formal version of Theorem 5.4). We can show ∇ML(M)
is L-Lipschitz.

If the following conditions hold

• Assumption E.1 holds.

• Let c(M) be defined as Definition C.4.

• Let f̃(M) be defined as Definition C.3.

For M,M̃ ∈ Rd×d, we have

∥∇ML(M)−∇ML(M̃)∥F ≤ (λ+ 30dn7/2R6) · ∥M − M̃∥F

Proof. We have

∥∇ML(M)−∇ML(M̃)∥F
= ∥W ◦ (X⊤(c(M) ◦ f̃(M)− diag(c(M) ◦ f̃(M) · 1n)f̃(M)

− c(M̃) ◦ f̃(M̃) + diag(c(M̃) ◦ f̃(M̃) · 1n)f̃(M̃))X) + λM − λM̃∥F
≤ ∥W ◦ (X⊤(c(M) ◦ f̃(M)− diag(c(M) ◦ f̃(M) · 1n)f̃(M)

− c(M̃) ◦ f̃(M̃) + diag(c(M̃) ◦ f̃(M̃) · 1n)f̃(M̃))X)∥F + ∥λ(M − M̃)∥F (12)

where the first step follows from Theorem D.5, and the second step follows the triangle inequality.
Now, we proof these two terms separately.

For the first term, we have

∥W ◦ (X⊤(c(M) ◦ f̃(M)− diag(c(M) ◦ f̃(M) · 1n)f̃(M)

− c(M̃) ◦ f̃(M̃) + diag(c(M̃) ◦ f̃(M̃) · 1n)f̃(M̃))X)∥F
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≤ ∥W∥F · ∥X⊤(c(M) ◦ f̃(M)− diag(c(M) ◦ f̃(M) · 1n)f̃(M)

− c(M̃) ◦ f̃(M̃) + diag(c(M̃) ◦ f̃(M̃) · 1n)f̃(M̃))X∥F
≤ ∥W∥F · ∥X∥2F · ∥c(M) ◦ f̃(M)− diag(c(M) ◦ f̃(M) · 1n)f̃(M)

− c(M̃) ◦ f̃(M̃) + diag(c(M̃) ◦ f̃(M̃) · 1n)f̃(M̃)∥F
≤ ∥W∥F · ∥X∥2F · (∥c(M) ◦ f̃(M)− c(M̃) ◦ f̃(M̃)∥F

+ ∥ diag(c(M) ◦ f̃(M) · 1n)f̃(M)− diag(c(M̃) ◦ f̃(M̃) · 1n)f̃(M̃)∥F )

= R3 · (∥c(M) ◦ f̃(M)− c(M̃) ◦ f̃(M̃)∥F
+ ∥ diag(c(M) ◦ f̃(M) · 1n)f̃(M)− diag(c(M̃) ◦ f̃(M̃) · 1n)f̃(M̃)∥F )

where the first step and the second step follow from Fact B.5, the third step follows from triangle
inequality, and the fourth step follows from Assumption E.1.

Then we have

R3 · (∥c(M) ◦ f̃(M)− c(M̃) ◦ f̃(M̃)∥F
+ ∥ diag(c(M) ◦ f̃(M) · 1n)f̃(M)− diag(c(M̃) ◦ f̃(M̃) · 1n)f̃(M̃)∥F )

≤ R3 · (24dn7/2R3∥M − M̃∥F + 6dn3/2R3∥M − M̃∥F )

≤ R3 · (30dn7/2R3∥M − M̃∥F )

= 30dn7/2R6∥M − M̃∥F (13)

where the first step follows from Lemma F.5 and Lemma F.7, the second step follows from n ≥ 1.

For the second term, we have

∥λ(M − M̃)∥F = λ∥M − M̃∥F (14)

which follows from Fact B.5.

Finally, we have

∥∇ML(M)−∇ML(M̃)∥F ≤ (λ+ 30dn7/2R6) · ∥M − M̃∥F
which follows from Eq. (12), Eq. (13), and Eq. (14).

G CONVERGENCE OF GRADIENT DESCENT

G.1 HELPFUL STATEMENTS

Here, we present useful facts that we use to prove our convergence result.
Fact G.1. We can show that for a, b ∈ R

• Part 1. √
a2 + b2 ≥ |a|+ |b|√

2

• Part 2. Suppose |a| > |b| √
|a| − |b| ≥

√
|a| −

√
|b|

Proof. Proof of Part 1. Square both side of the inequality in Part 1., we have

LHS = a2 + b2

and

RHS =
a2 + 2|a| · |b|+ b2

2
.
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So we just need to prove

LHS− RHS = a2 + b2 − a2 + 2|a| · |b|+ b2

2

=
a2 + b2 − 2|a| · |b|

2

=
(|a| − |b|)2

2
≥0

which is hold because for any x ∈ R, x2 ≥ 0.

Proof of Part 2. Square both side of the inequality in Part 2., we have

LHS = |a| − |b|

and

RHS = |a|+ |b| − 2
√
|a||b|

So we just need to prove

LHS− RHS = |a| − |b| − |a| − |b|+ 2
√
|a||b|

= 2
√
|a||b| − 2|b|

= 2
√
|b|(

√
|a| −

√
|b|)

≥ 0

which is hold because |a| > |b| and |b| ≥ 0.

G.2 LOWER BOUND ON FROBENIUS NORM

In this section, we present the lemma for the lower bound on the Frobenius norm.
Lemma G.2. If the following conditions hold

• Let B ∈ Rd×d.

• Let M ∈ [0, 1]d×d.

• Let λ ∈ [0, 1] be some constant.

• Suppose that ∥B∥F ≤ R.

Then, we can show

• Part 1.

∥B + λM∥2F ≥ ∥B∥2F + λ2∥M∥2F − 2Rλd

• Part 2.

∥B + λM∥F ≥
1√
2
(∥B∥F + λ∥M∥F )−

√
2Rλd

Proof. Proof of Part 1. We can show that

∥B + λM∥2F = ∥B∥2F + λ2∥M∥2F + 2⟨B, λM⟩
≥ ∥B∥2F + λ2∥M∥2F − 2∥B∥F · ∥λM∥F
≥ ∥B∥2F + λ2∥M∥2F − 2Rλd (15)

where the first step follows from Fact B.6, the second step follows from Fact B.5, the third step
follows from the upper bound of ∥B∥F and ∥M∥F .
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Proof of Part 2. Taking the square root on both sides, we get

∥B + λM∥F ≥
√
∥B∥2F + λ2∥M∥2F − 2Rλd

≥
√
∥B∥2F + λ2∥M∥2F −

√
2Rλd

≥ 1√
2
(∥B∥F + λ∥M∥F )−

√
2Rλd

where the first step follows from Eq. (15), the second step follows from Part 2. of Fact G.1, and the
third step follows from Part 1. of Fact G.1.

G.3 SANDWICH LOWER BOUND ON FROBENIUS NORM

Here, we introduce a sandwich trace fact.

Fact G.3. If A ⪰ βI , then tr[B⊤AB] ≥ β tr[B⊤B].

Proof. As A ⪰ βI , we have A − βI ⪰ 0. Multiplying both sides by B⊤ on the left and B on the
right (noting that these operations preserve the positive semidefiniteness), we have

B⊤(A− βI)B ⪰ 0.

Taking the trace and utilizing the property that the trace of a positive semidefinite matrix is non-
negative, we have

tr[B⊤AB − βB⊤B] ≥ 0,

which simplifies to

tr[B⊤AB]− β tr[B⊤B] ≥ 0.

This concludes the proof.

We establish a sandwich lower bound on the Frobenius norm.

Lemma G.4 (Formal version of Lemma 5.6). If the following conditions hold

• Let B ∈ Rn×n and X ∈ Rn×d.

• Assume that XX⊤ ⪰ βI .

Then, we have

∥X⊤BX∥F ≥ β∥B∥F

Proof. We can show that

∥X⊤BX∥2F = tr[X⊤BXX⊤B⊤X]

≥ β · tr[X⊤BB⊤X]

= β · tr[B⊤XX⊤B]

≥ β2 · tr[B⊤B]

= β2 · ∥B∥2F
where the first step, the third step, and the fifth step follow from Fact B.4, the second step and the
fourth step follows from Fact G.3 and XX⊤ ⪰ βI .

Taking the square root of both sides, we finish the proof.
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G.4 LOWER BOUND ON HADAMARD PRODUCT BETWEEN TWO MATRICES

We present the lemma for the lower bound on the Hadamard product between two matrices in this
section.
Lemma G.5. If the following conditions hold

• Let B,W ∈ Rd×d.

Then, we have

max
i,j∈[d]

{|Wi,j |} · ∥B∥F ≥ ∥W ◦B∥F ≥ min
i,j∈[d]

{|Wi,j |} · ∥B∥F .

Proof. The proof directly follows from the definition of the Frobenius norm.

G.5 FINAL BOUND

We introduce some useful lemmas that we use to prove the final bound.
Lemma G.6. If the following conditions hold

• Let b ∈ Rn and ⟨b,1n⟩ = 0.

• Let f ∈ [δ, 1]n and ⟨f,1n⟩ = 1.

Then we have

∥(b− ⟨b, f⟩1n) ◦ f∥2 ≥ δ∥b∥2.

Proof. Note that ⟨b,1n⟩ = 0 so that b and 1n are orthogonal with each other. Then, we have

∥(b− ⟨b, f⟩1n) ◦ f∥2 ≥ δ∥b− ⟨b, f⟩1n∥2

= δ
√
∥b∥22 + ∥⟨b, f⟩1n∥22

≥ δ∥b∥2,
where the second step is from the Pythagorean theorem.

We present our final bound for proving the PL inequality.
Lemma G.7 (Formal version of Lemma 5.7). If the following conditions hold

• Let B ∈ Rn×n and each row summation is zero, i.e., B · 1n = 0n.

• Let f̃(M) ∈ [0, 1]n×n and each row summation is 1, i.e., f̃(M) · 1n = 1n.

• Assume that mini,j∈[n] f̃(M)i,j ≥ δ > 0.

Then, we can show

∥B ◦ f̃(M)− diag((B ◦ f̃(M)) · 1n)f̃(M)∥F ≥ δ · ∥B∥F

Proof. For any i ∈ [n], let Bi ∈ Rn be the i-th row of B, and we have ⟨Bi,1n⟩ = 0 by the first
condition.

For any i ∈ [n], let f̃(M)i ∈ Rn be the i-th row of f̃(M), and we have ⟨f̃(M)i,1n⟩ = 1 by the
second condition and f̃(M)i,j ∈ [δ, 1] by the third condition.

By Lemma G.6, for any i ∈ [n], we have

∥(Bi − ⟨Bi, f̃(M)i⟩1n) ◦ f̃(M)i∥2 ≥ δ∥Bi∥2.
Then, we have

∥B ◦ f̃(M)− diag((B ◦ f̃(M)) · 1n)f̃(M)∥2F
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=
∑
i∈[n]

∥(Bi − ⟨Bi, f̃(M)i⟩1n) ◦ f̃(M)i∥22

≥
∑
i∈[n]

δ2∥Bi∥22

= δ2∥B∥2F .

G.6 PL INEQUALITY

Here, we present the bound for one unit loss function.
Lemma G.8. If the following conditions hold

• Let c(M) be defined in Definition C.4.

We have

∥c(M)∥F ≤ 2
√
n.

Proof. We have

∥c(M)∥F ≤ ∥f̃(M)∥F + ∥f∥F
≤ 2
√
n,

where the first step follows from Definition C.4 and triangle inequality, the second step follows
x2
1 + · · ·+ x2

n ≤ (x1 + · · ·+ xn)
2 when xi ≥ 0 for any i ∈ [n].

We present the lemma to prove the PL inequality.
Lemma G.9. If the following conditions hold

• Let f̃(M) be defined in Definition C.3.

• Let c(M) be defined in Definition C.4.

We have

∥ diag((c(M) ◦ f̃(M)) · 1n)f̃(M)∥F ≤
√
n.

Proof. We have

∥ diag((c(M) ◦ f̃(M)) · 1n)f̃(M)∥F ≤max
i∈n
{|(c(M)i ◦ f̃(M)i) · 1n|} · ∥f̃(M)∥F

≤ ∥f̃(M)∥F
≤
√
n,

where the first step is by Frobenius norm definition and the second step follows from ⟨f̃(M)i,1n⟩ =
1 and c(M)i ∈ [−1, 1]n for any i ∈ [n].

Finally, we can show the lemma for PL inequality.
Lemma G.10 (PL inequality, formal version of 5.5). If the following conditions hold,

• Let M ∈ [0, 1]d×d .

• Let λ ∈ [0, 1] be some constant.

• Assume that XX⊤ ⪰ βI .

• Assume that mini,j∈[n] f̃(M)i,j ≥ δ > 0.
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• Let L(M) be defined in Definition C.7.

Furthermore,

• Let α = 2.

• Let µ = 2mini,j∈[d]{|Wi,j |} · β · δ.

• Let ξ = 12
√
nmaxi,j∈[d]{|Wi,j |} · ∥X∥2F · λd/µ.

We have

∥∇ML(M)∥αF ≥
1

2
µ(∥c(M)∥2F +

2λ2

µ
∥M∥2F − ξ).

Proof. We have f̃(M) · 1n = 1n and f · 1n = 1n by Definition C.3. Note that c(M) = f̃(M)− f
by Definition C.4. Thus, we have c(M) · 1n = 0n.

On the other hand, we have

∥W ◦ (X⊤(c(M) ◦ f̃(M)− diag((c(M) ◦ f̃(M)) · 1n)f̃(M))X)∥F
≤ max

i,j∈[d]
{|Wi,j |} · ∥X⊤(c(M) ◦ f̃(M)− diag((c(M) ◦ f̃(M)) · 1n)f̃(M))X∥F

≤ max
i,j∈[d]

{|Wi,j |} · ∥X∥2F · ∥c(M) ◦ f̃(M)− diag((c(M) ◦ f̃(M)) · 1n)f̃(M)∥F

≤ max
i,j∈[d]

{|Wi,j |} · ∥X∥2F · (∥c(M) ◦ f̃(M)∥F + ∥diag((c(M) ◦ f̃(M)) · 1n)f̃(M)∥F )

≤ max
i,j∈[d]

{|Wi,j |} · ∥X∥2F · (∥c(M)∥F + ∥ diag((c(M) ◦ f̃(M)) · 1n)f̃(M)∥F )

≤ max
i,j∈[d]

{|Wi,j |} · ∥X∥2F · (2
√
n+
√
n)

= max
i,j∈[d]

{|Wi,j |} · ∥X∥2F · 3
√
n

where the first and fourth steps follow Lemma G.5, the second step follows from Frobenius norm
property, the third step follows from triangle inequality, the fifth step follows from Lemma G.8 and
Lemma G.9.

Let α = 2. We have the following

∥∇ML(M)∥2F
= ∥W ◦ (X⊤(c(M) ◦ f̃(M)− diag((c(M) ◦ f̃(M)) · 1n)f̃(M))X) + λM∥2F
≥ ∥W ◦ (X⊤(c(M) ◦ f̃(M)− diag((c(M) ◦ f̃(M)) · 1n)f̃(M))X)∥2F + λ2∥M∥2F − α1

≥ α2 · ∥X⊤(c(M) ◦ f̃(M)− diag((c(M) ◦ f̃(M)) · 1n)f̃(M))X∥2F + λ2∥M∥2F − α1

≥ α2 · α3 · ∥c(M) ◦ f̃(M)− diag((c(M) ◦ f̃(M)) · 1n)f̃(M)∥2F + λ2∥M∥2F − α1

≥ α2 · α3 · α4 · ∥c(M)∥2F + λ2∥M∥2F − α1

=
1

2
µ(∥c(M)∥2F +

2λ2

µ
∥M∥2F − ξ),

where the second step follows from Lemma G.2 and α1 = 6
√
nmaxi,j∈[d]{|Wi,j |} · ∥X∥2F · λd,

the third step follows from Lemma G.5 and α2 = mini,j∈[d]{|Wi,j |}, the fourth step follows from
Lemma G.4 and α3 = β, the fifth step follows from Lemma G.7 and α4 = δ, and the last step
follows from µ = 2α2 · α3 · α4 and ξ = 2α1/µ.
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