
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TEMPORAL MISINFORMATION AND CONVERSION
THROUGH PROBABILISTIC SPIKING NEURONS

Anonymous authors
Paper under double-blind review

ABSTRACT

In the context of increasingly large neural network models and their associated
high energy consumption, Spiking Neural Networks (SNNs) present a compelling
alternative to Artificial Neural Networks (ANNs) due to their energy efficiency and
closer alignment with biological neural principles. However, directly training SNNs
with spatio-temporal backpropagation remains challenging due to their discrete
signal processing and temporal dynamics. Alternative methods, notably ANN-
SNN conversion, have enabled SNNs to achieve performance in various machine
learning tasks, comparable to ANNs, but often to the expense of long latency
needed to achieve such performance, especially on large scale complex datasets.
The present work deals with ANN-SNN setting and identifies a new phenomenon
we term “temporal misinformation”, where random spike rearrangement through
time in the converted SNN model improves its performance. To account for this,
we propose bio-plausible, two-phase probabilistic (TPP) spiking neurons to be used
in ANN-SNN conversion. We showcase the benefits of our proposed methods both
theoretically and empirically through extensive experiments on CIFAR-10/100
and a large-scale dataset ImageNet over a variety of architectures, reaching SOTA
performance.

1 INTRODUCTION

T=4 T=8 T=16 T=3268

70

72

74

76

78

80

Ac
cu

ra
cy

 (%
)

Baseline
Baseline + permute

Figure 1: The initial experiment: After ANN-SNN
conversion, we compared the accuracy of the baseline
model with its “permuted” version, i.e. the baseline
model but the output spike trains are permuted after
each layer (setting is VGG16 - CIFAR100, ANN acc.
76.23%).

Spiking neural networks (SNNs), often re-
ferred to as the third generation of neural net-
works Maass (1997), are inspired by and de-
signed to mimic how biological neurons pro-
cess and share information McCulloch & Pitts
(1943); Hodgkin & Huxley (1952); Izhikevich
(2003). The efficiency of biological brains in
terms of both energy use and task performance
has long inspired the development of neural net-
works with similar capabilities. This inspira-
tion has driven the growing interest in SNNs,
particularly in time when large machine learn-
ing models demand increasingly high energy
consumption. The main difference from the ar-
tificial neural networks (ANNs) Braspenning
et al. (1995) comes from the way spiking neu-
rons in an SNN process information. Spiking
neurons communicate through a series of (dis-
crete, often binary) spikes, emulating the biolog-
ical brain’s communication via electrical pulses.
The (weighted) incoming spikes are accumu-
lated in the neuron’s membrane potential, and a
spike is emitted only when the potential reaches
a threshold. This makes SNN processing event-driven and binary, and multiplication, as an energy
demanding operation, is eliminated from the process. In contrast, ANNs process information using
floating-point operations, which rely on multiplication, leading to energy-inefficient deep learning
models at large scales Roy et al. (2019).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Furthermore, recent advancements in neuromorphic chip production Pei et al. (2019); DeBole
et al. (2019); loi; Ma et al. (2023) further emphasize the advantages of SNN models. These chips,
specifically designed to support and embed SNN models in hardware aware and efficient way, have
opened new aspects of interest in SNNs, and various SNN models have been challenging traditional
neural networks in various domains, including object detection Kim et al. (2020b); Cheng et al.
(2020), object tracking Yang et al. (2019), video reconstruction Zhu et al. (2022), event camera and
point clouds Ren et al. (2024), speech recognition Wang et al. (2023a) and generative models Kamata
et al. (2022) such as SpikingBERT Bal & Sengupta (2024) and SpikeGPT Zhu et al. (2023); Wang
et al. (2023b), to name a few.

Training SNNs presents a challenge in itself, due to the very same reasons from which the advantages
of SNNs stem: their discrete processing of information. Unsupervised direct training, inspired by bio-
logical learning mechanisms, leverages local learning rules and spike timing to update weights Diehl
& Cook (2015). While these methods are computationally friendly and could be performed on the
specialized hardware, SNNs trained this way often underperform compared to models trained with
other methods, and there is still plenty of room for the understanding and improvement of this method.

On the other side, supervised training methods can be categorized in two branches: direct training
and ANN-SNN conversion based methods. The main challenge for direct training methods lies
in the discrete nature of spike production. Namely, the operation of comparison of the membrane
potential with the threshold is not differentiable, or, where it is, does not produce useful gradients.
The success of direct training hinges on the development of spatio-temporal backpropagation through
time (BPTT) and surrogate gradient methods O’Connor et al. (2018); Zenke & Ganguli (2018); Wu
et al. (2018); Bellec et al. (2018); Fang et al. (2021a;b); Zenke & Vogels (2021); Mukhoty et al.
(2024). Although, they address and overcome the main problem of non-differentiability of spikes,
these methods encounter further challenges with deep architectures due to gradient instability and
high computational costs during training simulations. Direct training focuses on optimizing not
only synaptic weights but also dynamic parameters like firing thresholds Wei et al. (2023) and leaky
factors Rathi & Roy (2023). Novel loss functions such as rate-based counting loss Zhu et al. (2024)
and distribution-based loss Guo et al. (2022) were proposed to provide sufficient positive gradients and
rectify the distribution of membrane potential during the propagation of binary spikes. Furthermore,
hybrid training methods Wang et al. (2022b) combine ANN-SNN conversion with BPTT to achieve
higher performance with low latency. Recent advancements include Ternary Spike Guo et al. (2024)
for enhanced information capacity and the reversible SNN Zhang & Zhang (2024) to reduce memory
costs during training.

The ground idea of ANN-SNN conversion is to use pre-trained ANN models to train an SNN. This
starts by copying the weights of the ANN model to the SNN model following the same architecture,
and then initializing hyperparameters of the spiking neurons in the SNN layers in such a way that
the rate of the spikes approximate the values of the corresponding activation layers in the ANN.
The advantages of this method lie in the fact that there is (usually) no extra computation needed for
training the SNNs, so the computation of gradients can largely be avoided, or just reduced to the
calculations during fine-tuning of the SNN model. This method (of which we will say more in Section
2) has been behind many of the state of the art performing SNNs, particularly on classification tasks.

The present work explores ideas that belong to the ANN-SNN conversion line of research. We start
by identifying a phenomenon, that is rather counter-intuitive and, to the best of our knowledge, has
gone unnoticed until now. Namely, when performing ANN-SNN conversion, the main assumption
is that the sole carrier of information is the rate of the spiking activity, and precise timing of the
spikes should not affect the performance of the SNN Bu et al. (2023). We challenged this assumption
by using a baseline SNN obtained through ANN-SNN conversion, following methods proposed in
recent literature. Then, when passing the samples to the baseline model, after each spiking layer
we permuted the spike trains by rearranging the spikes in the temporal dimension. Specifically, the
temporal order of spikes within each spike train was randomly shuffled. The permuted spike trains
were then passed to the following layer in the SNN, and this process was continued until the output
layer. The results of one of these initial experiments, comparing the performance of the “permuted”
model with the original model, are presented in Figure 1. For every latency we performed this
experiment, the “permuted” model surpassed the baseline and reached the original ANN accuracy
much earlier. We dubbed this occurrence “the temporal misinformation” in ANN-SNN conversion
and further explored it by giving it a more conceptual flavor in form of the bursting probabilistic
spiking neurons which are designed to mimic the effect of permutations in SNNs. The proposed

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

neurons work in two-phases, in the first phase they collect the input (often beyond the threshold) while
in the second they output spikes in a probabilistic manner with varying temporal probabilities. Two
crucial properties that define our proposed spiking neurons, namely the accumulation of membrane
potential beyond the threshold and entering into a firing phase (bursting), and probabilistic firing are
bio-plausible, and were extensively studied in the neuroscience literature (see Section 3.3).

The main contributions of this paper are summarized as follows:

• We recognize the “temporal misinformation” phenomenon in ANN-SNN conversion, chal-
lenging the underlying assumption of ANN-SNN conversion which states that the spike rate
is the sole carrier of information in the method.

• We propose a framework for its exploitation in ANN-SNN conversion utilizing two-phase
probabilistic spiking neurons. We provide the theoretical insights into their functioning and
superior performance, as well as support for their biological grounding.

• We performed a comprehensive experimental validation that demonstrates that our proposed
method outperforms state-of-the-art conversion as well as the other training methods, in
terms of accuracy on large scale CIFAR-10/100 and ImageNet datasets.

2 PRELIMINARIES

The base model that we use in this paper is Integrate-and-Fire (IF) spiking neuron whose internal
dynamics, after discretization, is given by the equations

v(l)[t] = v(l)[t− 1] +W(l)θ(l−1) · s(l−1)[t]− θ(l) · s[t− 1], (1)

s(l)[t] = H(v(l)[t]− θ(l)). (2)

Here, θ(l) is the threshold (vector), H(·) is the Heaviside function, while the superscript l pertains to
the layer in the SNN. Later on, we will later modify these equations and use more advanced neuron
models, but for now, by unrolling the equations through t = 1, . . . , T , and rearranging the terms, we
obtain

θ(l)
∑T

t=1 s
(l)[t]

T
= W(l)V

(l−1)
th

∑T
t=1 s

(l−1)[t]

T
(3)

+
v(l)[T]− v(l)[0]

T
. (4)

On the ANN side, a passage between the layers takes the form

a(l) = A(l)(W(l)a(l−1)), (5)

where A(l) is the activation function. The ANN-SNN conversion process starts with copying the
weights (and biases) of a pre-trained ANN model to the SNN model following the same architecture.
Then, by comparing the equations for the ANN outputs equation 5 and the average output of the SNN
equation 3 Rueckauer et al. (2017a), one ideally wants a relation of the form

a
(l)
i ≈ V

(l)
th

∑T
t=1 s

(l)
i [t]

T
. (6)

The most commonly used activation function A is ReLU , due to its simplicity and non-negative
output, which aligns well with the properties of IF neurons.

For a successful conversion that leads to minimal conversion error, one can note the importance of
the three components, namely: 1) The threshold value θ, 2) The initialization v[0], 3) The ANN
activation function A.

2.1 RELATED WORK

ANN-SNN conversion leverages pre-trained ANNs to initialize SNNs, aiming to minimize ac-
curacy degradation by aligning ANN activations with SNN firing rates, as demonstrated in early
works Rueckauer et al. (2017a); Cao et al. (2015). Subsequent studies addressed conversion errors

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

and improved temporal accuracy through techniques like weight normalization Diehl et al. (2015),
soft-reset mechanisms Rueckauer et al. (2017b); Han et al. (2020), and dynamic threshold adjust-
ment Stöckl & Maass (2021); Ho & Chang (2021); Wu et al. (2023). Efficient conversion with fewer
spikes was achieved through rate-coding and time-coding methods Kim et al. (2020a), as well as
specialized weight renormalization Sengupta et al. (2018).

A recent direction involves modifying the ANN activation functions to reduce conversion errors.
Methods using thresholded ReLU activation Ding et al. (2021) and quantized activation functions Bu
et al. (2022c); Liu et al. (2022); Hu et al. (2023); Shen et al. (2024) have achieved high accuracy at
lower latencies. However, these approaches often reduce the original ANN accuracy, limiting the
potential performance of the converted SNN. Techniques like Li & Zeng (2022); Wang et al. (2022a);
Liu et al. (2022) propose modifications to the inner function of IF neurons to reduce conversion errors.
Notably, a two-phase spiking neuron mechanism similar to ours has been used in Liu et al. (2022).

Membrane potential and threshold initialization play crucial roles in reducing conversion errors. Many
methods utilize layer-wise maximum ANN activations, or some percentile of them, for threshold
initialization Rueckauer et al. (2017a); Deng & Gu (2021a); Li et al. (2021). Detailed studies on
membrane potential initialization and threshold settings are provided in Hao et al. (2023a); Bojkovic
et al. (2024). Post-conversion weight calibration Li et al. (2021); Bojkovic et al. (2024) further
enhances SNN performance, leading to hybrid training methods that combine ANN-SNN conversion
with fine-tuning.

In general, one can argue that ANN-SNN conversion based methods of training SNNs can be classified
in two categories. The first line of thought deals with modification on the ANN side, most notably in
quantization of the ANN activation functions, in order to reduce the conversion error in low latency.
The second line deals with modification on ANN side, where the spiking neuron mechanisms are
modified in order to reduce this error. The advantage in the former case comes from the lower latency
to have a good performance, but the disadvantage comes from the fact that quantization of the ANN
activations in general, yields the poorer ANN performance, hence limits the SNN performance as
well. In the latter case, the situation is reversed, the ANNs utilized have higher performance, but
SNNs sometimes need longer latency to achieve it. Our approach belongs to the second category.

Direct training allows SNNs to exploit precise spike timing and operate within a few timesteps. The
success of direct training hinges on the development of spatio-temporal backpropagation through time
(BPTT) and surrogate gradient methods O’Connor et al. (2018); Zenke & Ganguli (2018); Wu et al.
(2018); Bellec et al. (2018); Fang et al. (2021a;b); Zenke & Vogels (2021); Mukhoty et al. (2024).
However, these methods encounter challenges with deep architectures due to gradient instability
and high computational costs during training simulations. Various gradient-based methods leverage
surrogate gradients O’Connor et al. (2018); Zenke & Ganguli (2018); Wu et al. (2018); Bellec
et al. (2018); Fang et al. (2021a;b); Zenke & Vogels (2021); Mukhoty et al. (2024) to address the
non-differentiable nature of spike functions. Direct training focuses on optimizing not only synaptic
weights but also dynamic parameters like firing thresholds Wei et al. (2023) and leaky factors Rathi &
Roy (2023). Novel loss functions such as rate-based counting loss Zhu et al. (2024) and distribution-
based loss Guo et al. (2022) were proposed to provide sufficient positive gradients and rectify the
distribution of membrane potential during the propagation of binary spikes. Furthermore, hybrid
training methods Wang et al. (2022b) combine ANN-SNN conversion with BPTT to achieve higher
performance with low latency. Recent advancements include Ternary Spike Guo et al. (2024) for
enhanced information capacity and the reversible SNN Zhang & Zhang (2024) to reduce memory
costs during training.

3 MOTIVATION AND PROPOSED METHOD

When performing ANN-SNN conversion, one usually employs constant or rate encoding in the
obtained SNN model, with the underlying idea that the expectation of the input at each time step
is equal to the original input to the ANN model. In particular, there is no temporal information in
the encoding, as the precise timing of spikes does not carry any extra information. In the constant
encoding this is obvious, while in the rate encoding, for a fixed input channel, and for every time step,
the probability of having the spike is constant (and equal to the value of the channel assumed to be
between 0 and 1).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The obtained SNN model is initialized in such a way that it approximates the outputs of the starting
ANN model, through the paradigm that for each spiking neuron, the average number of spikes it
produces, or its expectation of the output, should approximate the output of the corresponding ANN
neuron. In particular, one assumes and expects that there is no temporal information throughout
the SNN model, i.e. the spike train outputs of each SNN layer should not carry any extra temporal
information, other than the spike firing rates.

To our surprise, we discovered that this was not the case (see Figure 1).

3.1 PERMUTING SPIKE TRAINS

To test the initial hypothesis of the absence of “temporal information”, we designed an experiment
where for an SNN model obtained through the ANN-SNN conversion, after each layer we would
collect the output spike trains, and permute them through the temporal dimension. More precisely,
for a fixed latency T and for each spiking layer, we would collect the output spike trains of temporal
length T , permute them, and pass them to the next layer, and continue this process until the output
layer. We used the constant encoding for the input. We further compared the performance of this
model with the original base SNN model, whose output spike trains have not been manipulated
through permutations.

The performance of the base and “permuted” SNN models has been compared in two ways. First, for
the latency T and for the latencies t < T . What we discovered is that if we consider the latency Ttop

where the base model achieves the top accuracy, the performance of the two models is pretty much
the same. However, if we consider the latency T < Ttop, the “permuted” model outperforms the base
model, in some cases drastically. Moreover, the situation becomes more contrasted if we consider the
latencies t < T . The reader can refer to the Figure 1 for more information, while the details of the
experiment are in the Appendix.

The conclusion of these initial experiments is that, contrary to the expectation, ANN-SNN conversion
is not invariant under the temporal manipulation of output spike trains. Moreover, the effect of
permuting the spike trains yields better performance of the converted SNN model, a phenomenon to
which we refer as temporal misinformation in ANN-SNN conversion.

3.2 FROM PERMUTATIONS TO BURSTING PROBABILISTIC SPIKING NEURONS

Permute

A S

A S

A S

4 3 2 1 42 1 3

<latexit sha1_base64="QhaWXmnGoOlgmZu6DZZxvnONEzE=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpl272YTdiVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfju5nffuLaiFg94CThfkSHSoSCUbRSA/ulsltx5yCrxMtJGXLU+6Wv3iBmacQVMkmN6Xpugn5GNQom+bTYSw1PKBvTIe9aqmjEjZ/ND52Sc6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjjZ0IlKXLFFovCVBKMyexrMhCaM5QTSyjTwt5K2IhqytBmU7QheMsvr5LWZcWrVqqNq3LtNo+jAKdwBhfgwTXU4B7q0AQGHJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A47uNAw==</latexit>

t
<latexit sha1_base64="NHl2bVfAcZ9x4LPRxfzTdZQ0TlU=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBDiJeyKRI9BLx4jmAcmMcxOepMhs7PLzKwQlvyFFw+KePVvvPk3TpI9aGJBQ1HVTXeXHwuujet+Oyura+sbm7mt/PbO7t5+4eCwoaNEMayzSESq5VONgkusG24EtmKFNPQFNv3RzdRvPqHSPJL3ZhxjN6QDyQPOqLHSQ/MxLXVQiLNJr1B0y+4MZJl4GSlChlqv8NXpRywJURomqNZtz41NN6XKcCZwku8kGmPKRnSAbUslDVF309nFE3JqlT4JImVLGjJTf0+kNNR6HPq2M6RmqBe9qfif105McNVNuYwTg5LNFwWJICYi0/dJnytkRowtoUxxeythQ6ooMzakvA3BW3x5mTTOy16lXLm7KFavszhycAwnUAIPLqEKt1CDOjCQ8Ayv8OZo58V5dz7mrStONnMEf+B8/gABbZCA</latexit>

W (`)
<latexit sha1_base64="7grS4ZgoCPPQTcjT3uSGlUtpJjw=">AAAB83icbVBNS8NAEJ34WetX1aOXYBEqQklEqseiF48V7Ac0sWy2k3bpZhN2N0IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekHCmtON8Wyura+sbm4Wt4vbO7t5+6eCwpeJUUmzSmMeyExCFnAlsaqY5dhKJJAo4toPR7dRvP6FULBYPepygH5GBYCGjRBvJaz9mFQ85P3fPJr1S2ak6M9jLxM1JGXI0eqUvrx/TNEKhKSdKdV0n0X5GpGaU46TopQoTQkdkgF1DBYlQ+dns5ol9apS+HcbSlND2TP09kZFIqXEUmM6I6KFa9Kbif1431eG1nzGRpBoFnS8KU27r2J4GYPeZRKr52BBCJTO32nRIJKHaxFQ0IbiLLy+T1kXVrVVr95fl+k0eRwGO4QQq4MIV1OEOGtAECgk8wyu8Wan1Yr1bH/PWFSufOYI/sD5/AN2QkPA=</latexit>

W (`+1)

TPP

A S

A S

A S
<latexit sha1_base64="7grS4ZgoCPPQTcjT3uSGlUtpJjw=">AAAB83icbVBNS8NAEJ34WetX1aOXYBEqQklEqseiF48V7Ac0sWy2k3bpZhN2N0IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZekHCmtON8Wyura+sbm4Wt4vbO7t5+6eCwpeJUUmzSmMeyExCFnAlsaqY5dhKJJAo4toPR7dRvP6FULBYPepygH5GBYCGjRBvJaz9mFQ85P3fPJr1S2ak6M9jLxM1JGXI0eqUvrx/TNEKhKSdKdV0n0X5GpGaU46TopQoTQkdkgF1DBYlQ+dns5ol9apS+HcbSlND2TP09kZFIqXEUmM6I6KFa9Kbif1431eG1nzGRpBoFnS8KU27r2J4GYPeZRKr52BBCJTO32nRIJKHaxFQ0IbiLLy+T1kXVrVVr95fl+k0eRwGO4QQq4MIV1OEOGtAECgk8wyu8Wan1Yr1bH/PWFSufOYI/sD5/AN2QkPA=</latexit>

W (`+1)
<latexit sha1_base64="NHl2bVfAcZ9x4LPRxfzTdZQ0TlU=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBDiJeyKRI9BLx4jmAcmMcxOepMhs7PLzKwQlvyFFw+KePVvvPk3TpI9aGJBQ1HVTXeXHwuujet+Oyura+sbm7mt/PbO7t5+4eCwoaNEMayzSESq5VONgkusG24EtmKFNPQFNv3RzdRvPqHSPJL3ZhxjN6QDyQPOqLHSQ/MxLXVQiLNJr1B0y+4MZJl4GSlChlqv8NXpRywJURomqNZtz41NN6XKcCZwku8kGmPKRnSAbUslDVF309nFE3JqlT4JImVLGjJTf0+kNNR6HPq2M6RmqBe9qfif105McNVNuYwTg5LNFwWJICYi0/dJnytkRowtoUxxeythQ6ooMzakvA3BW3x5mTTOy16lXLm7KFavszhycAwnUAIPLqEKt1CDOjCQ8Ayv8OZo58V5dz7mrStONnMEf+B8/gABbZCA</latexit>

W (`)

(a) (b)

Figure 2: (a) The “permutation” layer collects the spike outputs of the layer in the first Accumulation
phase, while in the second Spiking phase it outputs the same number of spikes as the original spike
train, but with permuted firing times. (b) Bursting probabilistic spiking neurons accumulate the
weighted outputs from the previous layer and then output them according to their inner dynamics.

The previous sections hint at the motivation of the present work. Our aim is to answer the question:
How to incorporate the action of permutation of the output spike trains into the dynamics of the
spiking neurons?

Suppose that we want to permute the spikes trains coming from the layer ℓ. A general idea would be
to have a “permutator”- a layer immediately after, whose goal would be to collect all the spikes, and
outputs them in a permuted fashion, and sends such obtained spike trains to the following layer. One
may refer to Figure 2 (a) for the visual representation of this concept. This immediately suggests the
two-phase nature of the “permutator”, namely, in the first phase the incoming spikes are accumulated
and the firing is delayed until the beginning of the second, firing phase.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The second line of thought concerns the nature of the outputting mechanism of the “permutator”.
In particular, we would like to have a mechanism of spiking neurons which keep the “random”
component of the permutations. This lead us to the probabilistic firing of spiking neurons.

The final question that we consider is, can we make the situation more compact, by using probabilistic
spiking neuron which would collect the weighted input of the previous layer (rather than the spikes
of the spiking layer), and output what would be “permutation” of spike trains (see Figure 2 (b))?

TPP neurons The answer to all of the above is given in form of the proposed two-phase probabilistic
spiking neurons (TPP). Namely, in the first phase, the neurons will only accumulate the (weighted)
input coming from the previous layer, while in the second phase, the neurons will spike. More
precisely, suppose that at a particular layer ℓ the spiking neurons accumulate the whole output of
the previous layer, without emitting spikes. Let us denote the accumulated membrane potential by
v(l)[0]. Then, the spiking phase is described with equations

s(l)[t] = B

(
1

θ(l) · (T − t+ 1)
v(l)[t− 1]

)
,

v(l)[t] = v(l)[t− 1]− θ(l) · s[t],
(7)

and t = 1, . . . , T . Here, B(x) is a Bernoulli random variable with bias x, extended for x ∈ R in a
natural way (B(x) = B(max(min(x, 1), 0))). If the weights of the SNN network are not normalized,
the produced spikes will be scaled with the thresholds θ(l) · s(l)[t], before being sent to the next layer.

One may notice that the presence of T − t+ 1 in the denominator of the bias in B, implying that the
probability of spiking does not only depend on the current membrane potential, but also on the time
step: in the absence of spiking, for the same membrane potential, the probability of spiking increases
through time.

<latexit sha1_base64="CLwOS2nVNO1zoirtEm2t5r5gZqA=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KolI9SIUvXisYD+gDWWz3bRLN5u4OxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrBxwn3I/oQIlQMIpWandxyJFee71S2a24M5Bl4uWkDDnqvdJXtx+zNOIKmaTGdDw3QT+jGgWTfFLspoYnlI3ogHcsVTTixs9m907IqVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzyM6GSFLli80VhKgnGZPo86QvNGcqxJZRpYW8lbEg1ZWgjKtoQvMWXl0nzvOJVK9X7i3LtJo+jAMdwAmfgwSXU4A7q0AAGEp7hFd6cR+fFeXc+5q0rTj5zBH/gfP4AnU+PtQ==</latexit>

✓ = 1

4 3 2 1
4 3 2 1

<latexit sha1_base64="fmYOp/4/XVScFGgUbJvXmj4nU0Q=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRZBEMquSPUiFL14rGA/oF1KNs22oUl2SbJKWfoXvHhQxKt/yJv/xmy7B219MPB4b4aZeUHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QUtHiSK0SSIeqU6ANeVM0qZhhtNOrCgWAaftYHyb+e1HqjSL5IOZxNQXeChZyAg2mfR0feb1yxW36s6AlomXkwrkaPTLX71BRBJBpSEca9313Nj4KVaGEU6npV6iaYzJGA9p11KJBdV+Ort1ik6sMkBhpGxJg2bq74kUC60nIrCdApuRXvQy8T+vm5jwyk+ZjBNDJZkvChOOTISyx9GAKUoMn1iCiWL2VkRGWGFibDwlG4K3+PIyaZ1XvVq1dn9Rqd/kcRThCI7hFDy4hDrcQQOaQGAEz/AKb45wXpx352PeWnDymUP4A+fzB0EFjb0=</latexit>

w = +1

<latexit sha1_base64="oVYZhr87sGRIcyW3QnOouFtzbfY=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2VXSvUiFL14rGA/oF1KNs22sdlkSbJKWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKlloghtEMmlagdYU84EbRhmOG3HiuIo4LQVjG6mfuuRKs2kuDfjmPoRHggWMoKNlZpP6Aqdeb1iyS27M6Bl4mWkBBnqveJXty9JElFhCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVOCIaj+dXTtBJ1bpo1AqW8Kgmfp7IsWR1uMosJ0RNkO96E3F/7xOYsJLP2UiTgwVZL4oTDgyEk1fR32mKDF8bAkmitlbERlihYmxARVsCN7iy8ukeV72quXqXaVUu87iyMMRHMMpeHABNbiFOjSAwAM8wyu8OdJ5cd6dj3lrzslmDuEPnM8f8NCOEw==</latexit>

w = �1

<latexit sha1_base64="CLwOS2nVNO1zoirtEm2t5r5gZqA=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KolI9SIUvXisYD+gDWWz3bRLN5u4OxFK6J/w4kERr/4db/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDv1W09cGxGrBxwn3I/oQIlQMIpWandxyJFee71S2a24M5Bl4uWkDDnqvdJXtx+zNOIKmaTGdDw3QT+jGgWTfFLspoYnlI3ogHcsVTTixs9m907IqVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzyM6GSFLli80VhKgnGZPo86QvNGcqxJZRpYW8lbEg1ZWgjKtoQvMWXl0nzvOJVK9X7i3LtJo+jAMdwAmfgwSXU4A7q0AAGEp7hFd6cR+fFeXc+5q0rTj5zBH/gfP4AnU+PtQ==</latexit>

✓ = 1

4 3 2 1
4 3 2 1

<latexit sha1_base64="fmYOp/4/XVScFGgUbJvXmj4nU0Q=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRZBEMquSPUiFL14rGA/oF1KNs22oUl2SbJKWfoXvHhQxKt/yJv/xmy7B219MPB4b4aZeUHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QUtHiSK0SSIeqU6ANeVM0qZhhtNOrCgWAaftYHyb+e1HqjSL5IOZxNQXeChZyAg2mfR0feb1yxW36s6AlomXkwrkaPTLX71BRBJBpSEca9313Nj4KVaGEU6npV6iaYzJGA9p11KJBdV+Ort1ik6sMkBhpGxJg2bq74kUC60nIrCdApuRXvQy8T+vm5jwyk+ZjBNDJZkvChOOTISyx9GAKUoMn1iCiWL2VkRGWGFibDwlG4K3+PIyaZ1XvVq1dn9Rqd/kcRThCI7hFDy4hDrcQQOaQGAEz/AKb45wXpx352PeWnDymUP4A+fzB0EFjb0=</latexit>

w = +1

<latexit sha1_base64="oVYZhr87sGRIcyW3QnOouFtzbfY=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2VXSvUiFL14rGA/oF1KNs22sdlkSbJKWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKlloghtEMmlagdYU84EbRhmOG3HiuIo4LQVjG6mfuuRKs2kuDfjmPoRHggWMoKNlZpP6Aqdeb1iyS27M6Bl4mWkBBnqveJXty9JElFhCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVOCIaj+dXTtBJ1bpo1AqW8Kgmfp7IsWR1uMosJ0RNkO96E3F/7xOYsJLP2UiTgwVZL4oTDgyEk1fR32mKDF8bAkmitlbERlihYmxARVsCN7iy8ukeV72quXqXaVUu87iyMMRHMMpeHABNbiFOjSAwAM8wyu8OdJ5cd6dj3lrzslmDuEPnM8f8NCOEw==</latexit>

w = �1

(b)

(c)

<latexit sha1_base64="fmYOp/4/XVScFGgUbJvXmj4nU0Q=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRZBEMquSPUiFL14rGA/oF1KNs22oUl2SbJKWfoXvHhQxKt/yJv/xmy7B219MPB4b4aZeUHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QUtHiSK0SSIeqU6ANeVM0qZhhtNOrCgWAaftYHyb+e1HqjSL5IOZxNQXeChZyAg2mfR0feb1yxW36s6AlomXkwrkaPTLX71BRBJBpSEca9313Nj4KVaGEU6npV6iaYzJGA9p11KJBdV+Ort1ik6sMkBhpGxJg2bq74kUC60nIrCdApuRXvQy8T+vm5jwyk+ZjBNDJZkvChOOTISyx9GAKUoMn1iCiWL2VkRGWGFibDwlG4K3+PIyaZ1XvVq1dn9Rqd/kcRThCI7hFDy4hDrcQQOaQGAEz/AKb45wXpx352PeWnDymUP4A+fzB0EFjb0=</latexit>

w = +1

<latexit sha1_base64="oVYZhr87sGRIcyW3QnOouFtzbfY=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2VXSvUiFL14rGA/oF1KNs22sdlkSbJKWfofvHhQxKv/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKlloghtEMmlagdYU84EbRhmOG3HiuIo4LQVjG6mfuuRKs2kuDfjmPoRHggWMoKNlZpP6Aqdeb1iyS27M6Bl4mWkBBnqveJXty9JElFhCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVOCIaj+dXTtBJ1bpo1AqW8Kgmfp7IsWR1uMosJ0RNkO96E3F/7xOYsJLP2UiTgwVZL4oTDgyEk1fR32mKDF8bAkmitlbERlihYmxARVsCN7iy8ukeV72quXqXaVUu87iyMMRHMMpeHABNbiFOjSAwAM8wyu8OdJ5cd6dj3lrzslmDuEPnM8f8NCOEw==</latexit>

w = �1
(a)

<latexit sha1_base64="CS/Ej6/u1IaQ0wgd7G2yMJ1rjww=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0m0VI9FLx4rWFtIQ9lsN+3SzW7YnQgl5Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5YSK4Adf9dkpr6xubW+Xtys7u3v5B9fDo0ahUU9ahSijdC4lhgkvWAQ6C9RLNSBwK1g0ntzO/+8S04Uo+wDRhQUxGkkecErCS3480odllnjXyQbXm1t058CrxClJDBdqD6ld/qGgaMwlUEGN8z00gyIgGTgXLK/3UsITQCRkx31JJYmaCbH5yjs+sMsSR0rYk4Ln6eyIjsTHTOLSdMYGxWfZm4n+en0J0HWRcJikwSReLolRgUHj2Px5yzSiIqSWEam5vxXRMbApgU6rYELzll1fJ40Xda9ab941a66aIo4xO0Ck6Rx66Qi10h9qogyhS6Bm9ojcHnBfn3flYtJacYuYY/YHz+QNC7JFC</latexit>

3

4
<latexit sha1_base64="daywqnDK1CExTYV6xdRgBsdujZc=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0mkVI9FLx4r2A9IQ9lsN+3SzW7YnQgl5Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5YSK4Adf9dkobm1vbO+Xdyt7+weFR9fika1SqKetQJZTuh8QwwSXrAAfB+olmJA4F64XTu7nfe2LacCUfYZawICZjySNOCVjJH0Sa0MzLs0Y+rNbcursAXideQWqoQHtY/RqMFE1jJoEKYozvuQkEGdHAqWB5ZZAalhA6JWPmWypJzEyQLU7O8YVVRjhS2pYEvFB/T2QkNmYWh7YzJjAxq95c/M/zU4hugozLJAUm6XJRlAoMCs//xyOuGQUxs4RQze2tmE6ITQFsShUbgrf68jrpXtW9Zr350Ki1bos4yugMnaNL5KFr1EL3qI06iCKFntErenPAeXHenY9la8kpZk7RHzifPz/ckUA=</latexit>

1

4

<latexit sha1_base64="POTEcBaz9AlZ2ybX8k7JtjlJC5Y=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0mKVI9FLx4r2A9IQ9lsN+3SzW7YnQgl5Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5YSK4Adf9dkobm1vbO+Xdyt7+weFR9fika1SqKetQJZTuh8QwwSXrAAfB+olmJA4F64XTu7nfe2LacCUfYZawICZjySNOCVjJH0Sa0MzLs0Y+rNbcursAXideQWqoQHtY/RqMFE1jJoEKYozvuQkEGdHAqWB5ZZAalhA6JWPmWypJzEyQLU7O8YVVRjhS2pYEvFB/T2QkNmYWh7YzJjAxq95c/M/zU4hugozLJAUm6XJRlAoMCs//xyOuGQUxs4RQze2tmE6ITQFsShUbgrf68jrpNupes958uKq1bos4yugMnaNL5KFr1EL3qI06iCKFntErenPAeXHenY9la8kpZk7RHzifPzzSkT4=</latexit>

1

2
ReLU

Figure 3: (a) ReLU activation with inputs
of 3

4
and 1

4
, and corresponding weights of

+1 and −1. After summing, the ground truth
output is 1

2
; (b) Baseline case: input spike

trains without permutation yields an ANN-
SNN conversion error 1

4
due to delayed spike

at t = 4 (orange spike); (c) Spike trains with
permutation applied to move delayed spikes
at t = 4 forward to t = 2. This adjustment
heuristically aligns the output with the origi-
nal ANN output 1

2
.

Total output Although the proposed spiking activity is
probabilistic, the total output of the spiking neuron (the
number of spikes) expresses little variability, which is seen
in the following.

Theorem 1. Suppose that for some 0 < t < T , we have
t · θ(l) ≤ v(l)[0] < (t+ 1) · θ(l), and we are in the setting
of equation 7. Then, the probability that the neuron will
spike more than t + 1 times, or less than t times is zero.
Moreover, the probability of having a spike at any given
time step t = 1, . . . , T is non-zero.

The proof is given in the Appendix, but we may note
that the result states that TPP neurons output the exact
number of spikes as they should, and those spikes can
have arbitrary positioning throughout the time steps. In
other words, they act somewhat as a “permutation” on the
output spike trains.

Heuristics behind permutations We come back to the
original motivation, and the mysterious effect of temporal
misinformation. To this end, we notice that permutations
may act as a “uniformizer” of the inputs to the spiking
neuron, which is highly related to notions of phase lag or
unevenness of the inputs (see Li et al. (2022) and Bu et al.
(2022c), respectively).

Theorem 2. Suppose we have N spiking neurons that pro-
duced spike trains si[1], si[2], . . . , si[T], i = 1, . . . , N .
Furthermore, suppose that these spike trains are modu-
lated with weights w1, . . . , wN , and as such give input
to a neuron (say from the following layer) in the form
x[t] =

∑
wisi[t], for t = 1, . . . , T . For a given permuta-

tion π = (π1, . . . , πN), let πsi denote the permutation of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the spike train si. Then, for every t1, t2 ∈ {1, 2, . . . , T},

Eπ[
∑

wiπsi[t1]] = Eπ[
∑

wiπsi[t2]].

The previous result deals with the expected outputs with respect to the permutations. When it comes
to the action of a single permutation, we make the following observation. The effect of a single
permutation is mostly visible on spike trains that have a low number of spikes. This, in turn, is
related to the situation where the input to the neuron is low throughout time, and it takes longer for
a neuron to accumulate enough potential in order to spike, hence the neuron spikes at a later time
during latency. In this case, a single permutation of the output spike(s) actually move the spikes
forward in time (in general) and as such contributes to the elimination of the unevenness error, which
appears when the input to a neuron in the beginning is higher than the average input through time
(hence, the neuron produces superfluous spikes in the beginning, which shouldn’t be the case), see
Figure 3.

3.3 BIO-PLAUSIBILITY AND HARDWARE IMPLEMENTATION OF TPP NEURONS

Our proposed neurons have two distinct properties: The two-phase regime and probabilistic spike
firing. Both of these properties are biologically plausible and extensively studied in the neuroscience
literature. For example, the two phase regime can be related to firing after a delay of biological
spiking neurons, where a neuron collects the input beyond the threshold value and fires after delay or
after some condition is met. It could also be related to the bursting, when a biological neuron starts
emitting bursts of spikes, after a certain condition is met, effectively dumping their accumulated
potential. One can refer to Izhikevich (2007); Connors & Gutnick (1990); Llinás & Jahnsen (1982);
Krahe & Gabbiani (2004) for more details.

On the other side, stochastic firing of biological neurons has been well studied as well, and different
aspects of noise introduction into firing have been proposed. One can refer to Shadlen & Newsome
(1994); Faisal et al. (2008); Softky & Koch (1993); Maass & Natschläger (1997); Pagliarini et al.
(2019); Stein et al. (2005), for some examples.

When it comes to implementation of TPP neurons on neuromorphic hardware, two phase regime can
be easily achieved on many of the modern neuromorphic that support programmable spiking neurons.
The stochastic firing can be achieved through random sampling which is, for example, supported on
IBM TrueNorth Merolla et al. (2014), Intel Loihi Davies et al. (2018), BrainScaleS-2 Pehle et al.
(2022), SpiNNaker Furber et al. (2014) neuromorphic chips.

The probabilistic spiking mechanism we introduce aligns with the stochastic firing behaviors observed
in biological neurons, a feature that has been effectively implemented in neuromorphic hardware
such as IBM’s TrueNorth DeBole et al. (2019); Merolla et al. (2014), Intel’s Loihi loi; Davies et al.
(2018), BrainScaleS-2 Pehle et al. (2022), SpiNNaker and SpiNNaker2. For example, TrueNorth
incorporates stochastic neuron models using on-chip pseudo-random number generators, enabling
probabilistic firing patterns that mirror our approach. Similarly, Loihi Gonzalez et al. (2024) supports
stochastic operations by adding uniformly distributed pseudorandom noise to neuronal variables,
facilitating the implementation of probabilistic spiking neurons.

To reduce the overall latency for processing inputs with our models, which yields linear dependence
on the number of layers (implied by the two phase regime), we note that as soon as a particular layer
has finished the firing phase, it can start receiving the input from the previous layer: The process
of classifying a dataset can be serialized. This has already been observed, for example in Liu et al.
(2022). Neuromophic hardware implementation of this serialization has been proposed as well, see
for example Das (2023); Song et al. (2021); Varshika et al. (2022).

4 EXPERIMENTS

In this section, we verify the effectiveness and efficiency of our proposed methods. We compare
it with state-of-the-art methods for image classification via converting ResNet-20, ResNet-34 He
et al. (2016), VGG-16 Simonyan & Zisserman (2015), RegNet Radosavovic et al. (2020) on CIFAR-
10 LeCun et al. (1998); Krizhevsky et al. (2010), CIFAR-100 Krizhevsky & Hinton (2009), and
ImageNet Deng et al. (2009). Our experiments use PyTorch Paszke et al. (2019), PyTorch vision

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

models maintainers & contributors (2016), and the PyTorch Image Models (Timm) library Wightman
(2019).1

To demonstrate the wide applicability of the TPP neurons and the framework we propose, we combine
them with three representative methods of ANN-SNN conversion from recent literature, each of
which has their own particularities. These methods are: QCFS Bu et al. (2022b), RTS Deng & Gu
(2021a), and SNNC Li et al. (2021). The particularity of QCFS method is that it uses step function
instead of ReLU in ANN models during their training, in order to obtain higher accuracy in lower
latency after the conversion. RTS method uses thresholded ReLU activation in ANN models during
their training, so that the outliers are eliminated among the activation values, which helps to reduce
the conversion error. Finally, SNNC uses standard ANN models with ReLU activation, and performs
grid search on the activation values to find optimal initialization of the thresholds in the converted
SNNs.

We initialize our SNNs following the standard ANN-SNN conversion process described in Section 3
(and detailed in A), starting with a pre-trained model given by the baseline, or with training an ANN
model using default settings in QCFS Bu et al. (2022b), RTS Deng & Gu (2021a), and SNNC Li et al.
(2021). ANN ReLU activations were replaced with layers of TPP neurons initialized properly. All
experiments were conducted using NVIDIA RTX 4090 and Tesla A100 GPUs. For comprehensive
details on all setups and configurations, see Appendix C.2.

4.1 COMPARISON WITH THE STATE-OF-THE-ART ANN-SNN CONVERSION METHODS

We evaluate our approach against previous state-of-the-art ANN-SNN conversion methods, including
ReLU-Threshold-Shift (RTS) Deng & Gu (2021a), SNN Calibration with Advanced Pipeline (SNNC-
AP) Li et al. (2021), Quantization Clip-Floor-Shift activation function (QCFS) Bu et al. (2022b),
SNM Wang et al. (2022a), Burst Li & Zeng (2022), OPI Bu et al. (2022a), SRP Hao et al. (2023a),
DDI Bojkovic et al. (2024) and FTBC et al. (2024).

Table 1: Comparison between our method and the other ANN-SNN conversion methods on ImageNet.
We provide the average accuracy and the associated standard deviation across 5 experiments (for our
methods, we need extra c steps for summation, see Section 3.2).

Architecture Method ANN T=4 T=8 T=16 T=32 T=64 T=128

ResNet-34

RTS Deng & Gu (2021a) 75.66 – – – 33.01 59.52 67.54
SNNC-AP*Li et al. (2021) 75.66 – – – 64.54 71.12 73.45
QCFS Bu et al. (2022b) 74.32 – – 59.35 69.37 72.35 73.15
SRP Hao et al. (2023a) 74.32 66.71 67.62 68.02 68.40 68.61 –

FTBC(+QCFS) et al. (2024) 74.32 49.94 65.28 71.66 73.57 74.07 74.23

Ours (TPP) + QCFS 74.32 37.23 (0.07) 67.32 (0.06) 72.03 (0.02) 72.97 (0.03) 73.24 (0.02) 73.30 (0.02)

Ours (TPP)*+ SNNC w/o Cali. 75.65 2.69 (0.03) 49.24 (0.23) 69.97 (0.10) 74.07 (0.06) 75.23 (0.03) 75.51 (0.05)

VGG-16

SNNC-AP*Li et al. (2021) 75.36 – – – 63.64 70.69 73.32
SNM*Wang et al. (2022a) 73.18 – – – 64.78 71.50 72.86
RTS Deng & Gu (2021a) 72.16 – – 55.80 67.73 70.97 71.89
QCFS Bu et al. (2022b) 74.29 – – 50.97 68.47 72.85 73.97
Burst Li & Zeng (2022) 74.27 – – – 70.61 73.32 73.00
OPI*Bu et al. (2022a) 74.85 – 6.25 36.02 64.70 72.47 74.24

SRP Hao et al. (2023a) 74.29 66.47 68.37 69.13 69.35 69.43 –
FTBC(+QCFS) et al. (2024) 73.91 58.83 69.31 72.98 74.05 74.16 74.21

Ours (TPP) + RTS 72.16 30.50 (1.19) 56.69(0.67) 67.34 (0.25) 70.63 (0.11) 71.75 (0.05) 72.05 (0.03)

Ours (TPP) + QCFS 74.22 68.39 (0.08) 72.99 (0.05) 73.98 (0.07) 74.23 (0.03) 74.29 (0.00) 74.33 (0.01)

Ours (TPP)*+ SNNC w/o Cali. 75.37 54.14 (0.59) 69.75 (0.27) 73.44 (0.02) 74.72 (0.06) 75.14 (0.02) 75.25 (0.03)

RegNetX-4GF
RTS Deng & Gu (2021a) 80.02 – – – 0.218 3.542 48.60
SNNC-AP*Li et al. (2021) 80.02 – – – 55.70 70.96 75.78

Ours (TPP)*+ SNNC w/o Cali. 78.45 – – 22.71 (2.98) 66.51 (0.44) 75.54 (0.07) 77.83 (0.04)
* Without modification to ReLU of ANNs.

ImageNet dataset: Table 1 compares the performance of our proposed methods with state-of-the-
art ANN-SNN conversion methods on ImageNet. Our method outperforms the baselines across
all simulation time steps for VGG-16, and RegNetX-4GF. For instance, on VGG-16 at T = 32,
our method achieves 74.72% accuracy, surpassing other baselines even at T = 128. Moreover, at
T = 128, our method nearly matches the original ANN performance with only a 0.12% drop in
VGG-16 and a 0.14% drop in ResNet-34.

1https://github.com/huggingface/pytorch-image-models

8

https://github.com/huggingface/pytorch-image-models

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

We see similar patterns in combining our methods with RTS and QCFS baselines, which use modified
ReLU activations to reduce conversion errors. Table 1 shows these results. For instance, applying
TPP with QCFS on ResNet-34 at T = 16 improves performance from 59.35% to 72.03%, a 12.68%
increase. Similarly, for VGG-16 at T = 16, combining TPP with QCFS boosts performance from
50.97% to 73.98%, a 23.01% increase. Using TPP with RTS also shows significant improvements,
such as a 12.82% increase for VGG-16 at T = 16. These results demonstrate the benefits of
integrating TPP with other optimization approaches, solidifying its role as a comprehensive solution
for ANN-SNN conversion challenges.

Table 2: Comparison between our proposed method and other ANN-SNN conversion methods on
CIFAR-100 dataset. The average accuracy and standard deviation of the TPP method are reported
over 5 experiments (for our methods, we need extra c steps for summation, see Section 3.2).

Architecture Method ANN T=4 T=8 T=16 T=32 T=64 T=128

ResNet-20

TSC*Han & Roy (2020) 68.72 – – – – – 58.42
RMP*Han et al. (2020) 68.72 – – – 27.64 46.91 57.69

SNNC-AP*Li et al. (2021) 77.16 – – 76.32 77.29 77.73 77.63
RTS Deng & Gu (2021a) 67.08 – – 63.73 68.40 69.27 69.49

OPI*Bu et al. (2022a) 70.43 – 23.09 52.34 67.18 69.96 70.51
QCFS+Bu et al. (2022b) 67.09 27.87 49.53 63.61 67.04 67.87 67.86
Burst*Li & Zeng (2022) 80.69 – – – 76.39 79.83 80.52

Ours (TPP) + QCFS 67.10 46.88 (0.40) 64.77 (0.20) 67.25 (0.12) 67.74 (0.06) 67.77 (0.05) 67.79 (0.04)

Ours (TPP)*+ SNNC w/o Cali. 81.89 39.67 (0.99) 71.05 (0.68) 78.97 (0.24) 81.06 (0.05) 81.61 (0.08) 81.62 (0.05)

VGG-16

TSC*Han & Roy (2020) 71.22 – – – – – 69.86
SNM*Wang et al. (2022a) 74.13 – – – 71.80 73.69 73.95
SNNC-AP*Li et al. (2021) 77.89 – – – 73.55 77.10 77.86
RTS◦Deng & Gu (2021a) 76.13 23.76 43.81 56.23 67.61 73.45 75.23

OPI*Bu et al. (2022a) 76.31 – 60.49 70.72 74.82 75.97 76.25
QCFS+Bu et al. (2022b) 76.21 69.29 73.89 75.98 76.53 76.54 76.60

DDI Bojkovic et al. (2024) 70.44 51.21 53.65 57.12 61.61 70.44 73.82
FTBC(+QCFS) et al. (2024) 76.21 71.47 75.12 76.22 76.48 76.48 76.48

Ours (TPP) + RTS 76.13 37.88 (0.35) 65.81 (0.27) 73.05 (0.12) 75.17 (0.17) 75.64 (0.12) 75.9 (0.08)

Ours (TPP) + QCFS 76.21 73.93 (0.22) 76.03 (0.23) 76.43 (0.07) 76.55 (0.03) 76.55 (0.07) 76.52 (0.04)

Ours (TPP)*+ SNNC w/o Cali. 77.87 59.23 (0.65) 73.16 (0.17) 76.05 (0.26) 77.16 (0.09) 77.56 (0.13) 77.64 (0.04)
* Without modification to ReLU of ANNs.
+ Using authors’ provided models and code.
◦ Self implemented.

CIFAR dataset: We further evaluate the performance of our methods on CIFAR-100 dataset and
present the results in Table 2. We observe similar patterns as with the ImageNet. When comparing
our method with ANN-SNN conversion methods which use non-ReLU activations, e.g. QCFS and
RTS, our method constantly outperforms RTS on ResNet-20 and VGG16. QCFS baseline suffers
from necessity to train ANN models from scratch with custom activations, while our method is
applicable to any ANN model with ReLU -like activation. Furthermore, custom activation functions
sometimes sacrifice the ANN performance as can be seen from the corresponding ANN accuracies.

4.2 COMPARISON WITH OTHER TYPES OF SNN TRAINING METHODS AND MODELS

We compare our approach with several state-of-the-art direct training and hybrid training methods
as presented in Table 3. The comparison is founded on performance metrics like accuracy and
the number of timesteps utilized during inference on the CIFAR-100 and ImageNet datasets. We
benchmark our method against prominent approaches such as LM-H Hao et al. (2023b), SEENN Li
et al. (2023), Dual-Phase Wang et al. (2022b), TTS Guo et al. (2024), RMP-Loss Guo et al. (2023),
RecDis-SNN Guo et al. (2022), SpikeConv Liu et al. (2022), and GAC-SNN Qiu et al. (2024).
We showcase the best accuracy comparable to state-of-the-art methods achieved by our approach
with minimal timesteps. We prioritize accuracy, but direct training and hybrid training opt for a
lower number of timesteps and sacrifice accuracy. We outperform LM-H Hao et al. (2023b) and
Dual-Phase Wang et al. (2022b) for VGG-16 on CIFAR-100. For ResNet-20 on CIFAR-100, we
have higher accuracy but longer timesteps. Additionally, for ResNet-34 on the ImageNet dataset,
the accuracy of our method with QCFS with 16 timesteps is higher than that of SpikeConv Liu et al.
(2022) with the same number of timesteps. We also achieve higher accuracy with longer timesteps
as expected. Overall, our approach demonstrates promising performance and competitiveness in
comparison with the existing SNN training methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Comparison with direct and hybrid training methods for SNNs on CIFAR-100 and ImageNet
datasets. For baselines, we report their highest reported accuracy and the corresponding latency.

Dataset Architecture Method Category Timesteps Accuracy

CIFAR-100

VGG-16

LM-H Hao et al. (2023b) Hybrid Training 4 73.11
SEENN-II *Li et al. (2023) Direct Training 1.15* 72.76

Dual-Phase Wang et al. (2022b) Hybrid Training 4 / 8 70.08 / 75.06
Ours (TPP) + QCFS ANN-SNN 4 / 8 73.93 / 76.03

ResNet-20
LM-H Hao et al. (2023b) Hybrid Training 4 57.12

TTS Guo et al. (2024) Direct Training 4 74.02
Ours (TPP) + SNNC w/o Cali. ANN-SNN 16 78.97

ImageNet ResNet-34

SEENN-I Li et al. (2023) Direct Training 3.38 * 64.66
RMP-Loss Guo et al. (2023) Direct Training 4 65.17

RecDis-SNN Guo et al. (2022) Direct Training 6 67.33
SpikeConv Liu et al. (2022) Hybrid Training 16 70.57
GAC-SNN Qiu et al. (2024) Direct Training 6 70.42

TTS Guo et al. (2024) Direct Training 4 70.74
SEENN-I Li et al. (2023) Direct Training 29.53 * 71.84

Ours (TPP) + QCFS ANN-SNN 16 72.03
Ours (TPP)+ SNNC w/o Cali. ANN-SNN 32 74.07

* The average number of timesteps during inference on the test dataset.

4.3 SPIKE ACTIVITY

The event driven nature of various neuromorphic chips implies that the energy consumption is
directly proportional to the spiking activity, i.e., the number of spikes produced throughout the
network: the energy is consumed in the presence of spikes. To this end, we tested our proposed
method (TPP) for the spike activity and compared with the baselines. For a given model, we
counted the average number of spikes produced after each layer, per sample, for both the baseline
and our method. Figure 5 shows the example of RTS and RTS + TPP. Both the baseline and
our method exhibit similar spike counts. In particular, our method constantly outperforms the
baselines, and possibly in doing so it needs longer average latency per sample (T + c). However,
the energy consumed is approximately the same as that for the baseline in time T . The complete
tables are present in Appendix E.4, where we provide more detailed picture of spike activities.

1 3 5 7 9 11 13 15
Layer

6
7

9

11

13

15

Sp
ike

 c
ou

nt
 a

fte
r t

im
e

T
(lo

ga
rit

hm
ic

sc
al

e) T=8
T=16
T=32

T=64
T=128

Baseline
TPP

Figure 4: Spike counts of VGG-16 on CIFAR-100 of
RTS baseline compared with RTS+TPP. Note: The bar
height from bottom indicates the spike counts after each
timestep T (see Appendix E.4)

5 CONCLUSIONS
AND FUTURE WORK

This work identified the phenomenon of “tempo-
ral misinformation” in ANN-SNN conversion,
where random spike rearrangement enhances
performance. We introduced two-phase proba-
bilistic (TPP) spiking neurons, designed to in-
trinsically perform the effect of spike permuta-
tions. We show biological plausibility of such
neurons as well as the hardware friendlines of
the underlying mechanisms. We demonstrate
their effectiveness through exhaustive experi-
ments on large scale datasets, showing their com-
peting performance compared to SOTA ANN-
SNN conversion and direct training methods.

In the future work, we aim to study the effect of permutations and probabilistic spiking in combination
with directly trained SNN models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Taking Neuromorphic Computing to the Next Level with Loihi 2. https:
//download.intel.com/newsroom/2021/new-technologies/
neuromorphic-computing-loihi-2-brief.pdf. Accessed: 16-05-2023.

Malyaban Bal and Abhronil Sengupta. Spikingbert: Distilling bert to train spiking language models
using implicit differentiation. In Proceedings of the AAAI conference on artificial intelligence,
2024.

Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. Long
short-term memory and learning-to-learn in networks of spiking neurons. 2018.

Velibor Bojkovic, Srinivas Anumasa, Giulia De Masi, Bin Gu, and Huan Xiong. Data driven threshold
and potential initialization for spiking neural networks. In International Conference on Artificial
Intelligence and Statistics, 2024.

Petrus J Braspenning, Frank Thuijsman, and Antonius Jozef Martha Maria Weijters. Artificial neural
networks: an introduction to ANN theory and practice, volume 931. Springer Science & Business
Media, 1995.

Tong Bu, Jianhao Ding, Zhaofei Yu, and Tiejun Huang. Optimized potential initialization for low-
latency spiking neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
2022a.

Tong Bu, Wei Fang, Jianhao Ding, Penglin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ANN-
SNN conversion for high-accuracy and ultra-low-latency spiking neural networks. In The Tenth
International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29,
2022, 2022b.

Tong Bu, Wei Fang, Jianhao Ding, PengLin Dai, Zhaofei Yu, and Tiejun Huang. Optimal ANN-SNN
conversion for high-accuracy and ultra-low-latency spiking neural networks. In International
Conference on Learning Representations, 2022c.

Tong Bu, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Rate gradient approximation attack threats
deep spiking neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 7896–7906, 2023.

Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for
energy-efficient object recognition. International Journal of Computer Vision, 113(1):54–66, 2015.

Xiang Cheng, Yunzhe Hao, Jiaming Xu, and Bo Xu. Lisnn: Improving spiking neural networks with
lateral interactions for robust object recognition. In IJCAI, pp. 1519–1525, 2020.

Barry W Connors and Michael J Gutnick. Intrinsic firing patterns of diverse neocortical neurons.
Trends in neurosciences, 13(3):99–104, 1990.

Anup Das. A design flow for scheduling spiking deep convolutional neural networks on heterogeneous
neuromorphic system-on-chip. ACM Transactions on Embedded Computing Systems, 2023.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Michael V DeBole, Brian Taba, Arnon Amir, Filipp Akopyan, Alexander Andreopoulos, William P
Risk, Jeff Kusnitz, Carlos Ortega Otero, Tapan K Nayak, Rathinakumar Appuswamy, et al.
Truenorth: Accelerating from zero to 64 million neurons in 10 years. Computer, 52(5):20–29,
2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

11

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021, 2021a.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. International Conference on Learning Representations, 2021b.

Peter U Diehl and Matthew Cook. Unsupervised learning of digit recognition using spike-timing-
dependent plasticity. Frontiers in computational neuroscience, 9:99, 2015.

Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and Michael Pfeiffer.
Fast-classifying, high-accuracy spiking deep networks through weight and threshold balancing. In
2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. ieee, 2015.

Jianhao Ding, Zhaofei Yu, Yonghong Tian, and Tiejun Huang. Optimal ann-snn conversion for fast
and accurate inference in deep spiking neural networks. In International Joint Conference on
Artificial Intelligence, pp. 2328–2336, 2021.

Wu X. et al. Ftbc: Forward temporal bias correction for optimizing ann-snn conversion. ECCV, 2024.

A Aldo Faisal, Luc PJ Selen, and Daniel M Wolpert. Noise in the nervous system. Nature reviews
neuroscience, 9(4):292–303, 2008.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. Advances in Neural Information Processing Systems,
34:21056–21069, 2021a.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian.
Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF international conference on computer vision, 2021b.

Steve B Furber, Francesco Galluppi, Steve Temple, and Luis A Plana. The spinnaker project.
Proceedings of the IEEE, 102(5):652–665, 2014.

Hector A Gonzalez, Jiaxin Huang, Florian Kelber, Khaleelulla Khan Nazeer, Tim Langer, Chen Liu,
Matthias Lohrmann, Amirhossein Rostami, Mark Schöne, Bernhard Vogginger, et al. Spinnaker2:
A large-scale neuromorphic system for event-based and asynchronous machine learning. arXiv
preprint arXiv:2401.04491, 2024.

Yufei Guo, Xinyi Tong, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Zhe Ma, and Xuhui Huang. Recdis-
snn: Rectifying membrane potential distribution for directly training spiking neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

Yufei Guo, Xiaode Liu, Yuanpei Chen, Liwen Zhang, Weihang Peng, Yuhan Zhang, Xuhui Huang,
and Zhe Ma. Rmp-loss: Regularizing membrane potential distribution for spiking neural networks.
In IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris, France, October
1-6, 2023, 2023.

Yufei Guo, Yuanpei Chen, Xiaode Liu, Weihang Peng, Yuhan Zhang, Xuhui Huang, and Zhe
Ma. Ternary spike: Learning ternary spikes for spiking neural networks. In Thirty-Eighth
AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, 2024.

Bing Han and Kaushik Roy. Deep spiking neural network: Energy efficiency through time based
coding. In European Conference on Computer Vision. Springer, 2020.

Bing Han, Gopalakrishnan Srinivasan, and Kaushik Roy. RMP-SNN: Residual membrane potential
neuron for enabling deeper high-accuracy and low-latency spiking neural network. In Proceedings
of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR), pp. 13558–
13567, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zecheng Hao, Tong Bu, Jianhao Ding, Tiejun Huang, and Zhaofei Yu. Reducing ANN-SNN
conversion error through residual membrane potential. In Thirty-Seventh AAAI Conference on
Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artificial Intelligence,
EAAI 2023, Washington, DC, USA, February 7-14, 2023, 2023a.

Zecheng Hao, Xinyu Shi, Zihan Huang, Tong Bu, Zhaofei Yu, and Tiejun Huang. A progressive
training framework for spiking neural networks with learnable multi-hierarchical model. In The
Twelfth International Conference on Learning Representations, 2023b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Nguyen-Dong Ho and Ik-Joon Chang. Tcl: an ann-to-snn conversion with trainable clipping layers.
In 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 2021.

Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of physiology, 117(4):500, 1952.

Yangfan Hu, Qian Zheng, Xudong Jiang, and Gang Pan. Fast-snn: fast spiking neural network by
converting quantized ann. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions on neural networks, 14
(6):1569–1572, 2003.

Eugene M Izhikevich. Dynamical systems in neuroscience. MIT press, 2007.

Hiromichi Kamata, Yusuke Mukuta, and Tatsuya Harada. Fully spiking variational autoencoder. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 7059–7067, 2022.

Jinseok Kim, Kyungsu Kim, and Jae-Joon Kim. Unifying activation- and timing-based learning rules
for spiking neural networks. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020a.

Seijoon Kim, Seongsik Park, Byunggook Na, and Sungroh Yoon. Spiking-yolo: spiking neural
network for energy-efficient object detection. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 11270–11277, 2020b.

Rüdiger Krahe and Fabrizio Gabbiani. Burst firing in sensory systems. Nature Reviews Neuroscience,
5(1):13–23, 2004.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
https://www.cs.toronto.edu/ kriz/cifar.html, 2009.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research). URL http://www. cs. toronto. edu/kriz/cifar. html, 2010.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yang Li and Yi Zeng. Efficient and accurate conversion of spiking neural network with burst spikes.
In Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI
2022, Vienna, Austria, 23-29 July 2022, 2022.

Yang Li, Dongcheng Zhao, and Yi Zeng. Bsnn: Towards faster and better conversion of artificial neural
networks to spiking neural networks with bistable neurons. Frontiers in Neuroscience, 16, 2022.
ISSN 1662-453X. doi: 10.3389/fnins.2022.991851. URL https://www.frontiersin.
org/articles/10.3389/fnins.2022.991851.

Yuhang Li, Shikuang Deng, Xin Dong, Ruihao Gong, and Shi Gu. A free lunch from ann: Towards
efficient, accurate spiking neural networks calibration. In International Conference on Machine
Learning, pp. 6316–6325. PMLR, 2021.

13

https://www.frontiersin.org/articles/10.3389/fnins.2022.991851
https://www.frontiersin.org/articles/10.3389/fnins.2022.991851

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yuhang Li, Tamar Geller, Youngeun Kim, and Priyadarshini Panda. SEENN: towards temporal
spiking early exit neural networks. In Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023, 2023.

Fangxin Liu, Wenbo Zhao, Yongbiao Chen, Zongwu Wang, and Li Jiang. Spikeconverter: An
efficient conversion framework zipping the gap between artificial neural networks and spiking
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
1692–1701, 2022.

Rodolfo Llinás and Henrik Jahnsen. Electrophysiology of mammalian thalamic neurones in vitro.
Nature, 297(5865):406–408, 1982.

De Ma, Xiaofei Jin, Shichun Sun, Yitao Li, Xundong Wu, Youneng Hu, Fangchao Yang, Huajin Tang,
Xiaolei Zhu, Peng Lin, and Gang Pan. Darwin3: A large-scale neuromorphic chip with a novel
ISA and on-chip learning. CoRR, 2023.

Wolfgang Maass. Networks of spiking neurons: The third generation of neural network mod-
els. Neural Networks, 10(9):1659–1671, 1997. ISSN 0893-6080. doi: https://doi.org/10.
1016/S0893-6080(97)00011-7. URL https://www.sciencedirect.com/science/
article/pii/S0893608097000117.

Wolfgang Maass and Thomas Natschläger. Networks of spiking neurons can emulate arbitrary
hopfield nets in temporal coding. Network: Computation in Neural Systems, 8(4):355–371, 1997.

TorchVision maintainers and contributors. Torchvision: Pytorch’s computer vision library. https:
//github.com/pytorch/vision, 2016.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115–133, 1943.

Paul A Merolla, John V Arthur, Rodrigo Alvarez-Icaza, Andrew S Cassidy, Jun Sawada, Filipp
Akopyan, Bryan L Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. A million spiking-
neuron integrated circuit with a scalable communication network and interface. Science, 345
(6197):668–673, 2014.

Bhaskar Mukhoty, Velibor Bojković, William de Vazelhes, Xiaohan Zhao, Giulia De Masi, Huan
Xiong, and Bin Gu. Direct training of snn using local zeroth order method. Advances in Neural
Information Processing Systems, 36, 2024.

Peter O’Connor, Efstratios Gavves, Matthias Reisser, and Max Welling. Temporally efficient deep
learning with spikes. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018.

Samuel N Pagliarini, Sudipta Bhuin, Mehmet Meric Isgenc, Ayan Kumar Biswas, and Larry Pileggi.
A probabilistic synapse with strained mtjs for spiking neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 31(4):1113–1123, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Christian Pehle, Sebastian Billaudelle, Benjamin Cramer, Jakob Kaiser, Korbinian Schreiber, Yannik
Stradmann, Johannes Weis, Aron Leibfried, Eric Müller, and Johannes Schemmel. The brainscales-
2 accelerated neuromorphic system with hybrid plasticity. Frontiers in Neuroscience, 16:795876,
2022.

Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip
architecture. Nature, 572(7767):106–111, 2019.

14

https://www.sciencedirect.com/science/article/pii/S0893608097000117
https://www.sciencedirect.com/science/article/pii/S0893608097000117
https://github.com/pytorch/vision
https://github.com/pytorch/vision

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Xuerui Qiu, Rui-Jie Zhu, Yuhong Chou, Zhaorui Wang, Liang-Jian Deng, and Guoqi Li. Gated atten-
tion coding for training high-performance and efficient spiking neural networks. In Thirty-Eighth
AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances
in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada, 2024.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick, Kaiming He, and Piotr Dollár. Design-
ing network design spaces. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, 2020.

Nitin Rathi and Kaushik Roy. DIET-SNN: A low-latency spiking neural network with direct input
encoding and leakage and threshold optimization. IEEE Trans. Neural Networks Learn. Syst.,
2023.

Hongwei Ren, Yue Zhou, Yulong Huang, Haotian Fu, Xiaopeng Lin, Jie Song, and Bojun Cheng.
Spikepoint: An efficient point-based spiking neural network for event cameras action recognition.
2024.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607–617, 2019.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Conver-
sion of continuous-valued deep networks to efficient event-driven networks for image classification.
Frontiers in Neuroscience, 11, 2017a. ISSN 1662-453X. doi: 10.3389/fnins.2017.00682. URL
https://www.frontiersin.org/articles/10.3389/fnins.2017.00682.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Conver-
sion of continuous-valued deep networks to efficient event-driven networks for image classification.
Frontiers in neuroscience, 11:682, 2017b.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: Vgg and residual architectures. Frontiers in Neuroence, 2018.

Michael N Shadlen and William T Newsome. Noise, neural codes and cortical organization. Current
opinion in neurobiology, 4(4):569–579, 1994.

Guobin Shen, Dongcheng Zhao, Tenglong Li, Jindong Li, and Yi Zeng. Are conventional snns really
efficient? a perspective from network quantization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 27538–27547, 2024.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition, 2015.

William R Softky and Christof Koch. The highly irregular firing of cortical cells is inconsistent with
temporal integration of random epsps. Journal of neuroscience, 13(1):334–350, 1993.

Shihao Song, M Lakshmi Varshika, Anup Das, and Nagarajan Kandasamy. A design flow for mapping
spiking neural networks to many-core neuromorphic hardware. In 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), pp. 1–9. IEEE, 2021.

Richard B Stein, E Roderich Gossen, and Kelvin E Jones. Neuronal variability: noise or part of the
signal? Nature Reviews Neuroscience, 6(5):389–397, 2005.

Christoph Stöckl and Wolfgang Maass. Optimized spiking neurons can classify images with high
accuracy through temporal coding with two spikes. Nature Machine Intelligence, 3(3):230–238,
2021.

M Lakshmi Varshika, Adarsha Balaji, Federico Corradi, Anup Das, Jan Stuijt, and Francky Catthoor.
Design of many-core big little µbrains for energy-efficient embedded neuromorphic computing.
In 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1011–1016.
IEEE, 2022.

15

https://www.frontiersin.org/articles/10.3389/fnins.2017.00682

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Qingyu Wang, Tielin Zhang, Minglun Han, Yi Wang, Duzhen Zhang, and Bo Xu. Complex dynamic
neurons improved spiking transformer network for efficient automatic speech recognition. In
Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference on
Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, 2023a.

Yuchen Wang, Malu Zhang, Yi Chen, and Hong Qu. Signed neuron with memory: Towards
simple, accurate and high-efficient ann-snn conversion. In Lud De Raedt (ed.), Proceedings of
the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, pp. 2501–
2508. International Joint Conferences on Artificial Intelligence Organization, 7 2022a. doi:
10.24963/ijcai.2022/347. URL https://doi.org/10.24963/ijcai.2022/347. Main
Track.

Ziming Wang, Shuang Lian, Yuhao Zhang, Xiaoxin Cui, Rui Yan, and Huajin Tang. Towards lossless
ANN-SNN conversion under ultra-low latency with dual-phase optimization. CoRR, 2022b.

Ziqing Wang, Yuetong Fang, Jiahang Cao, Qiang Zhang, Zhongrui Wang, and Renjing Xu. Masked
spiking transformer. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023b.

Wenjie Wei, Malu Zhang, Hong Qu, Ammar Belatreche, Jian Zhang, and Hong Chen. Temporal-coded
spiking neural networks with dynamic firing threshold: Learning with event-driven backpropaga-
tion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Jibin Wu, Yansong Chua, Malu Zhang, Guoqi Li, Haizhou Li, and Kay Chen Tan. A tandem learning
rule for effective training and rapid inference of deep spiking neural networks. IEEE Trans. Neural
Networks Learn. Syst., 2023.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Zheyu Yang, Yujie Wu, Guanrui Wang, Yukuan Yang, Guoqi Li, Lei Deng, Jun Zhu, and Luping
Shi. Dashnet: a hybrid artificial and spiking neural network for high-speed object tracking. arXiv
preprint arXiv:1909.12942, 2019.

Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking neural
networks. MIT Press One Rogers Street, Cambridge, MA 02142-1209, USA journals-info . . . ,
2018.

Friedemann Zenke and Tim P Vogels. The remarkable robustness of surrogate gradient learning for
instilling complex function in spiking neural networks. Neural computation, 33(4):899–925, 2021.

Hong Zhang and Yu Zhang. Memory-efficient reversible spiking neural networks. In Proceedings of
the AAAI conference on artificial intelligence, 2024.

Lin Zhu, Xiao Wang, Yi Chang, Jianing Li, Tiejun Huang, and Yonghong Tian. Event-based video
reconstruction via potential-assisted spiking neural network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3594–3604, 2022.

Rui-Jie Zhu, Qihang Zhao, and Jason K. Eshraghian. Spikegpt: Generative pre-trained language
model with spiking neural networks. CoRR, 2023.

Yaoyu Zhu, Wei Fang, Xiaodong Xie, Tiejun Huang, and Zhaofei Yu. Exploring loss functions for
time-based training strategy in spiking neural networks. 2024.

16

https://doi.org/10.24963/ijcai.2022/347
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A CONVERSION STEPS

Copying ANN architecture and weights. ANN-SNN conversion process starts with a pre-trained
ANN model, whose weights (and biases) will be copied to an SNN model following the same
architecture. In this process, one considers ANN models whose non-activation layers become linear
during the inference. In particular, these include fully connected, convolutional, batch normalization
and average pooling layers.

Approximating ANN activation functions. The second step of the process considers the activation
layers and their activation functions in ANN. Here, the idea is to initialize the spiking neurons in the
corresponding SNN layer in such a way that their average spiking rate approximates the values of the
corresponding activation functions. For the ReLU (or ReLU -like such as quantized or thresholded
ReLU) activations, this process is rather well understood. The spiking neuron threshold is usually set
to correspond to the maximum activation ANN channel or layerwise, or to be some percentile of it. If
we denote by f the ANN actiavtion, then ideally, after setting the thresholds, one would like to have

f(v[T]) ≈ θ

T
·

T∑
t=1

s[t]. (8)

If we recall the equations for the IF neuron (equations equation 1 in the article)

v(l)[t] = v(l)[t− 1] +W(l)θ(l−1) · s(l−1)[t]− θ(l) · s[t− 1], (9)

s(l)[t] = H(v(l)[t]− θ(l)), (10)

we see that the value with which we are comparing the membrane potential (threshold) is the same
as the value with which we are scaling the output spikes. In particular, as soon as our membrane
potential has reached θ, it will produce the value θ. This can be loosely described as, whatever the
input is, the output will be approximately that value (or zero, if the input is negative), which is exactly
what ReLU does.

Absorbing thresholds. Finally, we notice that, once we produce a spike s(l)[t], the value θ(l) ·s(l)[t]
will be sent to the next layer, and will further be weighted with weights W (l+1) and the bias b(l+1)

will be applied. As we want SNNs to operate only using ones and zeros (to avoid multiplication due
to energy efficiency), the values θ(l) will be absorbed into W (l+1), i.e. W (l+1) ← θ(l)W (l+1).

B PROOF OF THE THEORETICAL RESULTS

We prove the main theorems from the article, which we restate here.

Theorem 1. Suppose that for some 0 < t < T , we have t · θ(l) ≤ v(l)[0] < (t + 1) · θ(l), and we
are in the setting of equation 7. Then, the probability that the neuron will spike more than t + 1
times, or less than t times is zero. Moreover, the probability of having a spike at any given time step
t = 1, . . . , T is non-zero.

Proof. Notice that whenever there is a spike, the membrane potential decreases by θ(l). In particular,
after at most t+ 1 spikes, by the condition in the Theorem, the membrane potential will be negative.
Hence, probability of having a spike will be 0. On the other side, if for T − t time steps, we did not
have a spike, this would mean that the bias x of the Bernoulli variable B(x) is larger than 1, which
consequently will yield a spike with probability 1. Furthermore, after spiking, the bias remains bigger
than 0. This means that we will have t spikes with probability 1. The other cases are done in a similar
way. The rest of the claim is easy.

Theorem 2. Suppose we have N spiking neurons that produced spike trains si[1], si[2], . . . , si[T],
i = 1, . . . , N . Furthermore, suppose that these spike trains are modulated with weights w1, . . . , wN ,
and as such give input to a neuron (say from the following layer) in the form x[t] =

∑
wisi[t], for

t = 1, . . . , T . For a given permutation π = (π1, . . . , πN), let πsi denote the permutation of the spike
train si. Then, for every t1, t2 ∈ {1, 2, . . . , T},

Eπ[
∑

wiπsi[t1]] = Eπ[
∑

wiπsi[t2]].

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof. It is enough to prove that for each i = 1, . . . , N ,

Eπ[si[t1]] = Eπ[si[t2]]. (11)

Let A(ti) be the cardinality of the set of all the permutations that end up with a spike in step ti, and
note that the probability of having a spike at ti is then A(ti)

T ! . But, for each permutation that ends up
with a spike at ti, one can find a permutation that ends up with a spike at t2 (by simply applying a
cyclic permutation) and moreover this correspondence is bijective. In particular A(ti) is independent
of i. The equation equation 11 and the statement follow.

C EXPERIMENTS DETAILS

C.1 DATASETS

CIFAR-10: The CIFAR-10 dataset Krizhevsky et al. (2010) contains 60,000 color images of 32x32
pixels each, divided into 10 distinct classes (e.g., airplanes, cars, birds), with each class containing
6,000 images. The dataset is split into 50,000 training images and 10,000 test images.

CIFAR-100: The CIFAR-100 dataset Krizhevsky et al. (2010) consists of 60,000 color images of
32x32 pixels, distributed across 100 classes, with each class having 600 images. Similar to CIFAR-10,
it is divided into 50,000 training images and 10,000 test images.

ImageNet: The ImageNet dataset Deng et al. (2009) comprises 1,281,167 images spanning 1,000
classes in the training set, with a validation set and a test set containing 50,000 and 100,000 images,
respectively. Unlike the CIFAR datasets, ImageNet images vary in size and resolution. The validation
set is frequently used as the test set in various applications.

C.2 CONFIGURATION AND SETUPS

C.2.1 OURS + QCFS

CIFAR: We followed the original paper’s training configurations to train ResNet-20 and VGG-16
on CIFAR-100. The Stochastic Gradient Descent (SGD) optimizer with a momentum of 0.9 was
used. The initial learning rate was set to 0.02, with a weight decay of 5 × 10−4. A cosine decay
scheduler adjusted the learning rate over 300 training epochs. The quantization steps L were set to 8
for ResNet-20 and 4 for VGG-16. All models were trained for 300 epochs.

ImageNet: We utilized checkpoints for ResNet-34 and VGG-16 from the original paper’s GitHub
repository. For ImageNet, L was set to 8 and 16 for ResNet-34 and VGG-16, respectively.

C.2.2 OURS + RTS

CIFAR: We trained models using the recommended settings from the original paper.

ImageNet: We used pre-trained checkpoints for ResNet-34 and VGG-16 from the original paper’s
GitHub repository. Subsequently, all ReLU layers were replaced with spiking neuron layers.

For all datasets, we initialize TPP membrane potential to zero, while in the baselines we do as they
propose.

C.2.3 OURS + SNNC W/O CALIBRATION

CIFAR: We adhered to the original paper’s configurations to train ResNet-20 and VGG-16 on
CIFAR-100. The SGD optimizer with a momentum of 0.9 was used. The initial learning rate was
set to 0.01, with a weight decay of 5× 10−4 for models with batch normalization. A cosine decay
scheduler adjusted the learning rate over 300 training epochs. All models were trained for 300 epochs
with a batch size of 128.

ImageNet: We used pre-trained checkpoints for ResNet-34 and VGG-16 from the original paper’s
GitHub repository. Subsequently, all ReLU layers were replaced with our proposed spiking neuron
layers.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D ALGORITHMS

The baseline SNN neuron forward function (Algorithm 1) initializes the membrane potential to zero
and iteratively updates it by adding the layer output at each timestep. Spikes are generated when
the membrane potential exceeds a defined threshold, θ, and the potential is reset accordingly. This
function captures the core dynamics of spiking neurons. The Shuffle Mode (Algorithm 2) is an
extension of the baseline forward function. After generating the spikes across the simulation length,
this mode shuffles the spike train.

The TPP Mode (Algorithm 3) introduces a probabilistic component to the spike generation process.
Instead of a deterministic threshold-based spike generation, it uses a Bernoulli process where the
probability of spiking is determined by the current membrane potential relative to the threshold
adjusted for the remaining timesteps.

Algorithm 1 SNN Neuron Forward Function and Additional Modes

Require: SNN Layer ℓ; Input tensor x; Threshold θ; Simulation length T .
1: function BASELINESNN(ℓ,x, θ, T)
2: v← 0 {Initialize membrane potential}
3: for t = 1 to T do
4: v← v + ℓ(x(t))
5: s← (v ≥ θ)× θ
6: v← v − s
7: Store s(t)
8: end for
9: return s

10: end function

Algorithm 2 SNN Neuron Forward Function of Shuffle Mode

Require: SNN Layer ℓ; Input tensor x; Threshold θ; Simulation length T .
1: function SHUFFLEMODE(ℓ,x, θ, T)
2: v← 0 {Initialize membrane potential}
3: for t = 1 to T do
4: v← v + ℓ(x(t))
5: s← (v ≥ θ)× θ
6: v← v − s
7: Store s(t)
8: end for
9: Shuffle the stored spikes s(1), s(2), . . . , s(T)

10: return shuffled s
11: end function

Algorithm 3 SNN Neuron Forward Function of TPP Mode

Require: SNN Layer ℓ; Input tensor x; Threshold θ; Simulation length T .
1: function TPPMODE(ℓ,x, θ, T)
2: v←∑T

t=1 x(t) {Initialize membrane potential with the sum of inputs}
3: for t = 1 to T do
4: p← Clamp(v/(θ × (T − t+ 1)), 0, 1)
5: s← Bernoulli(p)× θ
6: v← v − s
7: Store s(t)
8: end for
9: return s

10: end function

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E ADDITIONAL EXPERIMENTS

E.1 SNNC

We show extra experiment results about the comparison among permutation method and two-phase
probabilistic method. We validated ResNet-20 and VGG-16 on the CIFAR-10/100 dataset , and
ResNet-34, VGG-16 and RegNetX-4GF on ImageNet with batch and channel-wise normalization
enabled. Using a batch size of 128, the experiment was run five times with different random seeds to
ensure reliable and reproducible results.

Table 4: Comparison between our proposed methods and ANN-SNN conversion SNNC method on
CIFAR-10. The average accuracy and standard deviation of the TPP method are reported over 5
experiments.

Architecture Method ANN T=1 T=2 T=4 T=8 T=16 T=32 T=64

ResNet-20
SNNC-AP Li et al. (2021) 96.95 51.20 66.07 83.60 92.79 95.62 96.58 96.85

Ours (Permute) 96.95 34.05 61.46 90.54 95.05 96.12 96.62 96.77
Ours (TPP) 96.95 10.05 (0.02) 17.30 (0.52) 79.19 (0.67) 93.72 (0.05) 95.87 (0.09) 96.67 (0.04) 96.80 (0.01)

VGG-16

SNNC-AP Li et al. (2021) 95.69 60.72 75.82 82.18 91.93 93.27 94.97 95.40
Ours (Permute) 95.69 38.01 64.40 84.65 92.24 92.80 93.33 94.10

Ours (TPP) 95.69 11.46 (0.35) 32.24 (1.40) 86.85 (0.42) 94.34 (0.12) 94.86 (0.06) 95.48 (0.03) 95.60 (0.04)

Table 5: Comparison between our proposed methods and ANN-SNN conversion SNNC method on
CIFAR-100. The average accuracy and standard deviation of the TPP method are reported over 5
experiments.

Architecture Method ANN T=1 T=2 T=4 T=8 T=16 T=32 T=64

ResNet-20
SNNC-AP Li et al. (2021) 81.89 17.91 34.08 54.78 72.28 78.57 81.20 81.95

Ours (Permute) 81.89 5.64 19.54 52.46 75.21 79.76 81.12 81.52
Ours (TPP) 81.89 1.94 (0.11) 5.15 (0.44) 39.67 (0.99) 71.05 (0.68) 78.97 (0.24) 81.06 (0.05) 81.61 (0.08)

VGG-16

SNNC-AP Li et al. (2021) 77.87 28.64 34.87 50.95 64.30 71.93 75.39 77.05
Ours (Permute) 77.87 12.50 34.98 60.81 69.42 72.78 73.50 75.14

Ours (TPP) 77.87 2.05 (0.27) 15.90 (0.71) 59.23 (0.65) 73.16 (0.17) 76.05 (0.26) 77.16 (0.09) 77.56 (0.13)

Table 6: Comparison between our proposed methods and ANN-SNN conversion SNNC method
on ImageNet. The average accuracy and standard deviation of the TPP method are reported over 5
experiments.

Architecture Method ANN T=4 T=8 T=16 T=32 T=64 T=128

ResNet-34
SNNC-AP Li et al. (2021) 75.65 – – – 64.54 71.12 73.45

Ours (Permute) 75.65 10.51 57.57 70.94 74.00 75.06 75.47
Ours (TPP) 75.65 2.69 (0.03) 49.24 (0.23) 69.97 (0.10) 74.07 (0.06) 75.23 (0.03) 75.51 (0.05)

VGG-16

SNNC-AP Li et al. (2021) 75.37 – – – 63.64 70.69 73.32
Ours (Permute) 75.37 38.61 67.29 73.35 74.34 74.82 75.11

Ours (TPP) 75.37 54.14 (0.59) 69.75 (0.27) 73.44 (0.02) 74.72 (0.06) 75.14 (0.02) 75.25 (0.03)

RegNetX-4GF

SNNC-AP Li et al. (2021) 80.02 – – – 55.70 70.96 75.78
Ours (Permute) 78.45 – – 43.45 68.12 75.63 77.63

Ours (TPP) 78.45 – – 22.71 (2.98) 66.51 (0.44) 75.54 (0.07) 77.83 (0.04)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E.2 RTS

Table 7: Comparison between our proposed methods and ANN-SNN conversion RTS method on
CIFAR-10/100 and ImageNet. The average accuracy and standard deviation of the TPP method are
reported over 5 experiments.

Dataset Architecture Method ANN T=4 T=8 T=16 T=32 T=64 T=128

CIFAR-10

VGG-16
RTS*Deng & Gu (2021a) 94.99 88.64 91.67 93.64 94.50 94.76 94.91

Ours (Permute) 94.99 91.22 93.70 94.50 94.86 94.88 94.97
Ours (TPP) 94.99 91.49 (0.21) 94.11 (0.09) 94.72 (0.08) 94.84 (0.06) 94.91 (0.02) 94.98 (0.02)

ResNet-20
RTS*Deng & Gu (2021a) 91.07 27.08 40.88 65.13 84.75 90.12 90.76

Ours (Permute) 91.07 68.18 86.57 90.20 90.81 91.04 90.99
Ours (TPP) 91.07 72.87 (0.22) 88.27 (0.14) 90.44 (0.08) 90.86 (0.14) 90.94 (0.04) 91.01 (0.03)

CIFAR-100 VGG-16
RTS◦Deng & Gu (2021a) 76.13 23.76 43.81 56.23 67.61 73.45 75.23

Ours (Permute) 76.13 35.31 62.84 71.20 74.34 75.53 75.92
Ours (TPP) + RTS 76.13 37.88 (0.35) 65.81 (0.27) 73.05 (0.12) 75.17 (0.17) 75.64 (0.12) 75.90 (0.08)

ImageNet VGG-16
RTS Deng & Gu (2021a) 72.16 – – 55.80 67.73 70.97 71.89

Ours (Permute) 72.16 33.77 58.31 67.80 70.89 71.65 71.95
Ours (TPP) 72.16 30.50 (1.19) 56.69(0.67) 67.34 (0.25) 70.63 (0.11) 71.75 (0.05) 72.05 (0.03)

E.3 QCFS

Table 8: Comparison between our proposed methods and ANN-SNN conversion QCFS method on
CIFAR-10/100 and ImageNet. The average accuracy and standard deviation of the TPP method are
reported over 5 experiments.

Dataset Architecture Method ANN T=4 T=8 T=16 T=32 T=64

CIFAR-10

VGG-16
QCFS*Bu et al. (2022c) 95.76 94.33 95.21 95.65 95.87 95.99

Ours (Permute) 95.76 95.15 95.58 95.83 95.95 95.97
Ours (TPP) 95.76 95.28(0.09) 95.84(0.1) 95.95(0.05) 95.98(0.06) 95.97 (0.03)

ResNet-20
QCFS Bu et al. (2022c) 92.43 79.45 88.56 91.94 92.79 92.82

Ours (Permute) 92.43 84.85 91.24 92.67 92.82 92.85
Ours (TPP) 92.43 86.24(0.18) 92.08(0.11) 92.70(0.1) 92.78(0.04 92.68(0.06)

CIFAR-100

VGG-16
QCFS◦Bu et al. (2022c) 76.3 69.29 73.89 75.98 76.52 76.54

Ours (Permute) 76.3 74.28 75.97 76.54 76.60 76.64
Ours (TPP) 76.3 74.0(0.15) 76.06(0.08) 76.37(0.1) 76.55(0.09) 76.51(0.07)

ResNet-20
QCFS Bu et al. (2022c) 67.0 27.44 49.35 63.12 66.84 67.77

Ours (Permute) 67.0 45.33 62.81 66.93 67.85 67.96
Ours (TPP) 67.0 47.0(0.2) 64.66(0.25) 67.28(0.12) 67.61(0.1) 67.77(0.06)

ImageNet VGG-16
QCFS Bu et al. (2022c) 74.29 – – 50.97 68.47 72.85

Ours (Permute) 73.89 55.54 71.12 73.65 74.28 74.28
Ours (TPP) 74.22 68.39 (0.08) 72.99 (0.05) 73.98 (0.07) 74.23 (0.03) 74.29 (0.00)

E.4 SPIKING ACTIVITY

The percentage difference between the baseline and our method in TPP mode is calculated as follows:
Percentage Difference = Ours−Baseline

Baseline × 100.

1 3 5 7 9 11 13 15
Layer

6
7

9

11

13

15

Sp
ike

 c
ou

nt
 a

fte
r t

im
e

T
(lo

ga
rit

hm
ic

sc
al

e) T=8
T=16
T=32

T=64
T=128

Baseline
TPP

(a) RTS

1 3 5 7 9 11 13 15
Layer

7

9

11

13

15

Sp
ike

 c
ou

nt
 a

fte
r t

im
e

T
(lo

ga
rit

hm
ic

sc
al

e)

(b) QCFS

1 3 5 7 9 11 13
Layer

7

9

11

13

15

Sp
ike

 c
ou

nt
 a

fte
r t

im
e

T
(lo

ga
rit

hm
ic

sc
al

e)

(c) SNNC w/o calibration

Figure 5: Spike counts of VGG-16 on CIFAR-100 after different timesteps (T). Note: The bar height
from bottom indicates the spike counts after each timestep T, and the color of longer Ts is overlaid by
shorter Ts.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 9: Comparison of firing counts percentage difference between the baseline and our proposed
TPP method for VGG-16 on CIFAR-100 using QCFS.

Layer T=4 T=8 T=16 T=32 T=64 T=128

1 1.073 0.528 0.261 0.136 0.065 0.033

2 2.629 1.022 0.438 0.206 0.102 0.050

3 0.049 0.230 0.185 0.109 0.056 0.028

4 -0.867 -0.664 -0.419 -0.228 -0.118 -0.060

5 0.073 0.515 0.350 0.182 0.090 0.044

6 0.701 0.010 -0.098 -0.074 -0.041 -0.021

7 -1.071 -0.865 -0.470 -0.246 -0.122 -0.063

8 1.009 1.193 0.731 0.385 0.196 0.096

9 0.504 0.417 0.205 0.108 0.051 0.024

10 -0.112 0.842 0.647 0.375 0.198 0.100

11 2.071 2.438 1.614 0.898 0.465 0.235

12 0.797 0.943 0.756 0.461 0.247 0.127

13 4.503 2.156 1.209 0.655 0.343 0.171

14 25.898 13.883 7.770 3.852 1.887 0.936

15 33.585 16.864 8.945 4.474 2.227 1.108

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 10: Comparison of firing counts percentage difference between the baseline and our proposed
TPP method for ResNet-34 on ImageNet using QCFS.

Layer T=4 T=8 T=16 T=32 T=64 T=128

1 0.587 0.306 0.149 0.079 0.036 0.018

2 -0.921 -0.435 -0.212 -0.108 -0.053 -0.025

3 0.353 0.189 0.082 0.036 0.019 0.010

4 -2.786 -1.583 -0.920 -0.506 -0.270 -0.141

5 0.469 0.277 -0.107 -0.020 -0.019 -0.011

6 -3.955 -1.865 -0.705 -0.344 -0.166 -0.086

7 -0.381 0.321 -0.090 -0.031 -0.020 -0.013

8 6.615 3.261 1.494 0.628 0.290 0.131

9 -5.116 -3.006 -1.555 -0.794 -0.391 -0.195

10 -2.938 3.431 3.096 1.794 0.975 0.498

11 1.184 0.466 0.359 0.102 0.053 0.022

12 -17.739 -7.302 -1.788 -0.609 -0.270 -0.132

13 0.105 -0.138 -0.287 -0.292 -0.166 -0.087

14 -8.597 -2.626 0.006 0.327 0.289 0.140

15 -0.522 -0.214 -0.273 -0.299 -0.173 -0.094

16 -11.196 -5.194 -1.990 -0.813 -0.405 -0.217

17 -3.828 -1.192 -0.320 -0.192 -0.105 -0.058

18 -6.869 -2.392 -0.644 0.007 -0.002 0.001

19 0.092 -0.299 -0.181 -0.138 -0.074 -0.035

20 -5.639 -0.308 0.923 0.796 0.448 0.234

21 0.399 -0.968 -0.796 -0.509 -0.275 -0.145

22 -4.474 3.712 4.440 3.033 1.700 0.880

23 0.456 -0.901 -0.703 -0.533 -0.281 -0.145

24 -5.863 4.241 5.617 3.797 2.090 1.074

25 1.433 -0.464 -0.774 -0.632 -0.347 -0.182

26 -5.034 4.908 6.328 4.362 2.459 1.271

27 0.661 -0.914 -1.156 -0.931 -0.530 -0.284

28 -15.667 4.763 9.616 6.975 4.062 2.096

29 -9.747 1.663 3.836 2.455 1.384 0.673

30 -0.151 16.639 15.387 9.638 5.334 2.769

31 -5.403 0.917 1.957 1.555 1.009 0.574

32 17.796 6.777 3.728 3.231 2.507 1.583

33 -4.935 -2.141 2.055 2.931 2.395 1.561

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 11: Comparison of firing counts percentage difference between the baseline and our proposed
TPP method for VGG-16 on ImageNet using QCFS.

Layer T=4 T=8 T=16 T=32 T=64 T=128

1 5.487 2.776 1.444 0.712 0.363 0.179

2 0.418 0.173 -0.005 0.007 0.007 0.006

3 -2.375 -0.883 -0.351 -0.128 -0.062 -0.031

4 6.170 2.181 0.627 0.121 0.024 -0.002

5 -3.338 -0.318 0.327 0.306 0.173 0.097

6 7.036 2.769 0.993 0.385 0.173 0.078

7 -5.722 -3.482 -1.661 -0.800 -0.400 -0.200

8 -6.155 0.310 1.411 0.955 0.507 0.269

9 -0.718 1.172 0.725 0.337 0.162 0.081

10 -12.833 -9.060 -4.882 -2.359 -1.145 -0.564

11 12.966 11.241 7.718 4.443 2.344 1.188

12 -11.194 -14.874 -12.032 -7.889 -4.437 -2.395

13 -37.388 -30.782 -20.701 -12.296 -6.527 -3.377

14 -23.619 -12.312 -3.929 -0.233 0.585 0.382

15 -10.988 -18.476 -13.953 -7.904 -4.091 -2.015

F PERMUTATIONS AND STABILIZATION OF FIRING RATE

Table 12: Recorded accuracy after t ≤ T time steps, when the baseline model is "permuted" in
latency T . Setting is VGG-16, CIFAR-100.

Method ANN t=1 t=2 t=4 t=8 t=16 t=32

QCFS Bu et al. (2022c) 49.09 63.22 69.29 73.89 75.98 76.52
Ours (Permute) T=4 68.11 71.91 74.2
Ours (Permute) T=8 71.76 74.11 75.53 75.86
Ours (Permute) T=16 72.75 74.27 75.63 76.0 76.39
Ours ((Permute) T=32 73.15 75.23 75.74 76.27 76.59 76.52

RTS Deng & Gu (2021b) 1.0 1.03 23.76 43.81 56.23 67.61
Ours (Permute) T=4 22.9 30.78 34.54
Ours ((Permute) T=8 45.11 52.7 59.2 62.58
Ours ((Permute) T=16 54.58 64.37 68.6 70.8 71.79
Ours (Permute) T=32 62.76 69.12 71.76 73.31 74.09 74.6

Comments:

1. In Table 12 we combine permutations with baseline models in fixed latency T . Afterwards,
we record the accuracies of such "permuted" model for lower latencies t. We can notice a
sharp increase in the accuracies compared to the baselines, and in particular, the variance in
accuracies across t is reduced.

2. Baseline analysis:

(a) SNN models converted from a pretrained ANN aim to approximate the ANN activation
values with firing rates. In particular, in lower time steps, the approximation is too
coarse as the firing rate has only few possibilities to use to approximate the ANN (con-
tinuous) values. For example, in T = 1, the baselines are attempting to approximate
ANN activations with binary values 0 and θ.

(b) Moreover, at each spiking layer, the spiking neurons at early time steps, use only
the outputs of the previous spiking layer from the same, early, time steps. As this
information is already too coarse, the approximation error accumulates throughout
the network, finally yielding in models that are underperfoming in low latencies.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(c) With longer latencies, the model is using more spikes and is able to approximate the
ANN values more accurately, and to correct the results from the first time steps.

3. Effect of permutations:
(a) When performing permutations on spike trains after spiking layers in the baseline

models, the input to the next spiking layer in lower time steps, no longer depends only
on the outputs of the previous layer in the same lower time steps, but it depends
on the outputs in all time steps T .

(b) In particular, when spiking layer is producing spikes at time step t = 1, it does so
"taking into account" (via permutation) outputs at all the time steps from the previous
spiking layer.

(c) As a way of example, consider two spiking neurons N1 and N2, where N2 receives the
weighted input from N1. If a spiking neuron N1 in one layer has produced spike train
s = [1, 0, 0, 0], in approximating ANN value of .25, then a spiking neuron N2 at the
first time step will use 1 as the approximation and will receive the input W · 1 from
neuron N1. However, after a generic permutation of s, the probability of having zero at
the first time step of output of neuron N1 is 3

4 (as oppose to having 1 with probability
1
4), and at the first time step neuron N2 will most likely receive the input W · 0 = 0
from neuron N1, which is a rather better approximation for W · .25 than W itself.

(d) This property of receiving input at lower t but taking into account the previous layer
spike outputs at all the time steps is not only exclusive to lower t. Indeed, at every time
step t ≤ T , the input at a spiking layer is formed by taking into account spiking train
outputs from the previous layer at all the time steps, but having already accounted for
for the observed input at the first t < 1 steps.

(e) In general, the permutations overall increase the performance of the baselines because
the spike trains are "uniformized" in accordance to their rate, and the accumulation
error is reduced. If a layer l has produced spike outputs that well approximate the l
layer in ANN, then, after a generic permutation, at each time step starting with the first,
the next layer is receiving the most likely binary approximation of those rates.

(f) This is nothing but Theorem 2 in visible action.
(g) Besides Table 12, we provide further evidence on how permutation affect the baselines

through the observed membrane potential in the following Appendix.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

G MEMBRANE POTENTIAL DISTRIBUTION

Figure 6: The membrane potential distributions of the first channel (randomly selected) across three
modes (baseline, shuffle, and probabilistic) in VGG-16 on CIFAR-100. For comparison, the first two
timesteps (t=1, t=2) from a total of eight timesteps (T=8) are selected for each mode. The baseline
mode (blue) achieves an accuracy of 24.22%, while the shuffle mode (light green) improves accuracy
to 70.54%, and the probabilistic mode (dark orange) further increases accuracy to 73.42%. The
distributions are shown before firing, and the red dashed line indicates the threshold voltage (Vth) for
the layer.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 7: The membrane potential of the first channel (randomly selected) from layer 1 in SNNC
baseline mode using VGG-16 on CIFAR-100 achieves an accuracy of 24.22% before firing.

The first two timesteps exhibit an abnormal distribution compared to those at t=4 to t=8. This
discrepancy arises from the initially incorrect membrane potential before firing, which affects the
firing rate and propagates errors layer by layer. A detailed quantifiable error analysis is provided in
Appendix Section I. Furthermore, as shown in Figure 8, shuffling the membrane potential effectively
alleviates this effect.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 8: Membrane potential of the first channel (randomly selected) before firing in SNNC shuffle
mode using VGG-16 on CIFAR-100. The achieved accuracy is 70.54%, indicating the impact of
random spike rearrangement.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 9: Membrane potential of the first channel (randomly selected) before firing in SNNC
probabilistic mode using VGG-16 on CIFAR-100. The accuracy increases to 73.42%.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

H THE EFFECT OF PERMUTATIONS ON PERFORMANCE: FURTHER
EXPERIMENTS

(0,
 1,

 2,
 3)

(0,
 1,

 3,
 2)

(0,
 2,

 1,
 3)

(0,
 2,

 3,
 1)

(0,
 3,

 1,
 2)

(0,
 3,

 2,
 1)

(1,
 0,

 2,
 3)

(1,
 0,

 3,
 2)

(1,
 2,

 0,
 3)

(1,
 2,

 3,
 0)

(1,
 3,

 0,
 2)

(1,
 3,

 2,
 0)

(2,
 0,

 1,
 3)

(2,
 0,

 3,
 1)

(2,
 1,

 0,
 3)

(2,
 1,

 3,
 0)

(2,
 3,

 0,
 1)

(2,
 3,

 1,
 0)

(3,
 0,

 1,
 2)

(3,
 0,

 2,
 1)

(3,
 1,

 0,
 2)

(3,
 1,

 2,
 0)

(3,
 2,

 0,
 1)

(3,
 2,

 1,
 0)

Order (Permutations)

71

72

73

74

75

Ac
cu

ra
cy

Figure 10: Accuracy comparison for all T ! permutations of input order over T = 4 time steps
using QCFS with VGG-16 on CIFAR-100. Results of permuted orders outperform the original,
non-permuted order (0, 1, 2, 3). Baseline accuracy is 69.31%, The ANN accuracy is 76.21%.

(0,
 1)

(0,
 2)

(0,
 3)

(0,
 4)

(0,
 5)

(0,
 6)

(0,
 7)

(1,
 2)

(1,
 3)

(1,
 4)

(1,
 5)

(1,
 6)

(1,
 7)

(2,
 3)

(2,
 4)

(2,
 5)

(2,
 6)

(2,
 7)

(3,
 4)

(3,
 5)

(3,
 6)

(3,
 7)

(4,
 5)

(4,
 6)

(4,
 7)

(5,
 6)

(5,
 7)

(6,
 7)

Fixed positions

74.50

74.75

75.00

75.25

75.50

75.75

76.00

76.25

Ac
cu

ra
cy

Figure 11: Accuracy comparison for permutations over 8 time steps, fixing given pairs of time steps.
Setting is VGG-16, CIFAR-100. The baseline (QCFS) accuracy is 73.89%, ANN accuracy is 76.21%.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14
Layer position

68

69

70

71

72

Ac
cu

ra
cy

Figure 12: Accuracy of the model when a permutation is applied on a single layer using QCFS
baseline. Setting is VGG-16, T = 4, CIFAR-100. Baseline accuracy is 69.31%, ANN accuracy is
76.31%

0 2 4 6 8 10 12
Layer position

20

30

40

50

60

Ac
cu

ra
cy

Figure 13: Accuracy of the model when a permutation is applied on a single layer using SNNC
baseline. Setting is VGG-16, T = 8, CIFAR-100. Baseline accuracy without calibration is 24.22%,
ANN accuracy is 77.87%

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

I CONVERSION ERROR ANALYSIS

For this section, we use the terminology of Bu et al. (2022c) for the classification of conversion errors.
We shortly recall three classes and we refer the reader to the original paper for more details:

1. Clipping error: When performing the ANN-SNN conversion, one uses some heuristics to
set up the threshold, based on the corresponding distribution of the activation values. In
particular, if A is the ANN activation, and θ is the set threshold for this particular layer,
then the clipping error manifest itself in approximating A(·) with min(A(·), θ) (which is
the maximum output of the spiking layer (before normalization)).

2. Quantization error: As the spiking neurons produce discrete spikes (values 0 or θ (before
normalization)), the quantization error manifest itself in using θ

T ·max(0, ⌊Tθ · x⌋) (which
is tentative output of the spiking neuron) to approximate A(x).

3. The unevenness error: This error potentially occur due to the non-uniformity of the input to
the spiking neurons. In particular, it can happen that the neurons receive streams of positive
input during certain time period, while receiving stream of negative input during another
period. Ideally, two streams should cancel each other parts of each other, but, due to their
temporal mismatch, the neurons fire superfluous spikes, or they do not fire enough spikes as
they theoretically should.

To study what is the main source of errors when performing ANN-SNN conversion with TPP neurons,
we consider in detail the situation of a single layer of ANN neurons, and corresponding layer of
SNN TPP neurons. For a function f and constant c, we denote by fc the clipping of f by c, that is
fc(x) = min(f(x), c). For example, ReLUθ(x) := min(ReLU(x), θ) = min(max(0, x), θ).

Theorem 3. Let X(l) be the input of the ANN layer with ReLU activation and suppose that, during
the accumulation phase, the corresponding SNN layer of TPP neurons accumulated T ·X(l) quantity
of voltage.

(a) For every time step t = 1, . . . , T , we have

θ

t
· E
[

t∑
i=1

s(l)[i]

]
= ReLUθ(X

(l)). (12)

(b) Suppose that for some t = 1, . . . , T , the TPP layer produced s(l)[1], . . . , s(l)[t− 1] vector
spike trains for the first t− 1 steps, and the residue voltage for neuron i is higher than zero.
Then,

θ

t

(
E
[
s
(l)
i [t]

]
+

t−1∑
i=1

s
(l)
i [i]

)
= ReLUθ(X

(l)
i). (13)

(c) If s(l)[1], . . . , s(l)[T] are the output vectors of spike trains of the TPP neurons during T time
steps, then

θ

T

t−1∑
i=1

s
(l)
j [i] =

{
ReLUθ(X

(l)
j), if ReLUθ(X

(l)
j) is a multiple of θ

T ,
θ
T · ⌊Tθ ReLUθ(X

(l)
j)⌋ or θ

T · ⌊Tθ ReLUθ(X
(l)
j)⌋+ θ

T , otherwise.
(14)

(d) Suppose that maxX(l) ≤ θ and that the same weights W (l+1) act on the outputs of layer (l)
of ANN and SNN as above, and let X(l+1) (resp. T · X̃(l+1)) be the inputs to the (l + 1)th
ANN layer (resp. the accumulated voltage for the (l+1)th SNN layer of TPP neurons), Then

||X(l+1) − X̃(l+1)||∞ ≤ ||W (l+1)||∞ ·
θ

T
. (15)

Comments:

(a) We contrast this result with Theorem 2 of Bu et al. (2022c). Namely, there the authors
show that if one uses half of the threshold as the initialization of the membrane potential,

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

the expectation of the conversion error (layerwise) is 0. However, the authors in Bu et al.
(2022c) use the underlying assumption that the distribution of the ANN values layerwise is
uniform, which in practice is not the case (see for example Bojkovic et al. (2024)). Our
result (a) above shows that after every t ≤ T time steps, our expected spiking rate aligns
well with the clipping of the ReLU activation by the threshold, as it should, without any
prior assumptions on the distribution of the ANN activation values.

(b) The point of result (b) is that the activity of TPP neuron adapts to the observed output it
already produced. In particular, as long as the neuron is still active and contains residue
membrane potential, the expectation of its output at the next time step takes into account the
previously produced spikes and will yield the ANN counterpart.

(c) (d) The results (c) and (d) show that during the accumulation phase, the TPP neuron approxi-
mate well the ANN neurons with ReLU activation. In particular, the only remaining source
of errors in layerwise approximation is the clipping error due to the set threshold θ, and
the quantization error due to the discrete outputs of the spiking neurons. We also note in
Equation equation 15 the two possibilities of the output in the second case ("otherwise").

33

	Introduction
	Preliminaries
	Related work

	Motivation and proposed method
	Permuting spike trains
	From permutations to Bursting Probabilistic Spiking Neurons
	Bio-plausibility and hardware implementation of TPP neurons

	Experiments
	Comparison with the State-of-the-art ANN-SNN Conversion methods
	Comparison with other types of SNN training methods and models
	Spike activity

	Conclusions and future work
	Conversion steps
	Proof of the theoretical results
	Experiments Details
	Datasets
	Configuration and Setups
	Ours + QCFS
	Ours + RTS
	Ours + SNNC w/o Calibration

	Algorithms
	Additional Experiments
	SNNC
	RTS
	QCFS
	Spiking activity

	Permutations and stabilization of firing rate
	Membrane potential Distribution
	The effect of permutations on performance: Further experiments
	Conversion error analysis

