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Abstract

The MultiWOZ 2.0 dataset has greatly boosted001
the research on dialogue state tracking (DST).002
However, substantial noise has been discov-003
ered in its state annotations. Such noise brings004
about huge challenges for training DST mod-005
els robustly. Although several refined versions,006
including MultiWOZ 2.1-2.4, have been pub-007
lished recently, there are still lots of noisy la-008
bels, especially in the training set. Besides, it009
is costly to rectify all the problematic annota-010
tions. In this paper, instead of improving the011
annotation quality further, we propose a gen-012
eral framework, named ASSIST (lAbel noiSe-013
robuSt dIalogue State Tracking), to train DST014
models robustly from noisy labels. ASSIST015
first generates pseudo labels for each sample016
in the training set by using an auxiliary model017
trained on a small clean dataset, then puts the018
generated pseudo labels and vanilla noisy la-019
bels together to train the primary model. We020
show the validity of ASSIST theoretically. Ex-021
perimental results also demonstrate that AS-022
SIST improves the joint goal accuracy of DST023
by up to 28.16% on the initial version Multi-024
WOZ 2.0 and 8.41% on the latest version Mul-025
tiWOZ 2.4, respectively.026

1 Introduction027

Task-oriented dialogue systems play an important028

role in helping users accomplish a variety of tasks029

through verbal interactions (Young et al., 2013;030

Gao et al., 2019). Dialogue state tracking (DST) is031

an essential component of the dialogue manager in032

pipeline-based task-oriented dialogue systems. It033

aims to keep track of users’ intentions at each turn034

of the conversation (Mrkšić et al., 2017). The state035

information indicates the progress of the conversa-036

tion and is leveraged to determine the next system037

action and generate the next system response (Chen038

et al., 2017). As shown in Figure 1, the dialogue039

state is typically represented as a set of (slot, value)040

pairs (Williams et al., 2014; Henderson et al., 2014).041

Hi, how may I help you?

I need to book a room at autumn house.

Definitely, for how many people and 
how many nights?

Just me, 3 nights. Can you also give me 
information on the vue cinema?

Sure. It is in the city centre, and the 
phone number is 08451962320.

Thanks for your help. That’s all I need.

(hotel-name, autumn house)

(hotel-name, autumn house)
(hotel-book people, 1)

(hotel-book stay, 3)
(attraction-name, vue cinema)

(hotel-name, autumn house)
(hotel-book people, 1)

(hotel-book stay, 3)
(attraction-name, vue cinema)

Dialogue Context Dialogue State

Figure 1: An example dialogue spanning two domains.
On the left is the dialogue context with system respon-
ses shown in orange and user utterances in green. The
dialogue state at each turn is presented on the right.

Therefore, the problem of DST is defined as extract- 042

ing the values for all slots from the dialogue context 043

at each turn of the conversation. 044

Over the past few years, DST has made signif- 045

icant progress, attributed to a number of publicly 046

available dialogue datasets, such as DSTC2 (Hen- 047

derson et al., 2014), FRAMES (El Asri et al., 2017), 048

MultiWOZ 2.0 (Budzianowski et al., 2018), Cross- 049

WOZ (Zhu et al., 2020), and SGD (Rastogi et al., 050

2020). Among these datasets, MultiWOZ 2.0 is the 051

most popular one. So far, lots of DST models have 052

been built on top of it (Lee et al., 2019; Wu et al., 053

2019; Ouyang et al., 2020; Kim et al., 2020; Hu 054

et al., 2020; Ye et al., 2021b; Lin et al., 2021). 055

However, it has been found out that there is sub- 056

stantial noise in the state annotations of MultiWOZ 057

2.0 (Eric et al., 2020). These noisy labels may im- 058

pede the training of robust DST models and lead 059

to noticeable performance decrease (Zhang et al., 060

2016). To remedy this issue, massive efforts have 061

been devoted to rectifying the annotations, and four 062

refined versions, including MultiWOZ 2.1 (Eric 063

et al., 2020), MultiWOZ 2.2 (Zang et al., 2020), 064

MultiWOZ 2.3 (Han et al., 2020b), and MultiWOZ 065

2.4 (Ye et al., 2021a), have been released. Even so, 066

there are still plenty of noisy and inconsistent labels. 067
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For example, in the latest version MultiWOZ 2.4,068

both the validation set and test set are noise-free,069

as they have been manually re-annotated. While070

the training set is still noisy, as it remains intact. In071

reality, it is costly and labor-intensive to refine ex-072

isting large-scale noisy datasets or collect new ones073

with fully precise annotations (Wei et al., 2020), let074

alone dialogue datasets with multiple domains and075

multiple turns. In view of this, we argue that it is a076

necessity to devise particular learning algorithms077

to train DST models robustly from noisy labels.078

Although loads of noisy label learning algo-079

rithms (Natarajan et al., 2013; Han et al., 2020a)080

have been proposed in the machine learning com-081

munity, most of them target only multi-class classi-082

fication (Song et al., 2020). However, as illustrated083

in Figure 1, the dialogue state may contain multiple084

labels, which makes it unstraightforward to apply085

existing noisy label learning algorithms to the DST086

task. In this paper we propose a general framework,087

named ASSIST (lAbel noiSe-robuSt dIalogue State088

Tracking), to train DST models robustly from noisy089

labels. ASSIST first trains an auxiliary model on090

a small clean dataset to generate pseudo labels for091

each sample in the noisy training set. Then, it lever-092

ages both the generated pseudo labels and vanilla093

noisy labels to train the primary model. Since the094

auxiliary model is trained on the clean dataset, it095

can be expected that the pseudo labels will help us096

train the primary model more robustly. Note that097

ASSIST is based on the assumption that we have098

access to a small clean dataset. This assumption is099

reasonable, as it is feasible to manually collect a100

small noise-free dataset or re-annotate a portion of101

a large noisy dataset.102

In summary, our main contributions include:103

• We propose a general framework ASSIST to104

train robust DST models from noisy labels.105

To the best of our knowledge, we are the first106

to tackle the DST problem by taking into con-107

sideration the label noise.108

• We theoretically analyze why the pseudo la-109

bels are beneficial and show that a proper com-110

bination of the pseudo labels and vanilla noisy111

labels can approximate the unknown true la-112

bels more accurately.113

• We conduct extensive experiments on Multi-114

WOZ 2.0 & 2.4. The results demonstrate that115

ASSIST can improve the DST performance116

on both datasets by a large margin.117

2 Problem Definition 118

In this section, we first provide the conventional 119

definition of DST and then extend the definition to 120

the noisy label learning scenario. 121

2.1 Conventional Dialogue State Tracking 122

Let X = {(R1, U1), . . . , (RT , UT )} denote a dia- 123

logue of T turns, where Rt and Ut represent the 124

system response and user utterance at turn t, re- 125

spectively. The dialogue state at turn t is defined 126

as Bt = {(s, vt)|s ∈ S}, where S denotes the 127

set of predefined slots and vt is the corresponding 128

value of slot s. Following previous work (Lee et al., 129

2019; Hu et al., 2020; Ye et al., 2021b), a slot in 130

this paper refers to the concatenation of the domain 131

name and slot name so as to include the domain 132

information. For example, we use "hotel-name" to 133

represent the slot "name" in the hotel domain. 134

In general, the issue of DST is defined as learn- 135

ing a dialogue state tracker F : Xt → Bt that takes 136

the dialogue context Xt as input and predicts the 137

dialogue state Bt at each turn t as accurately as 138

possible. Here, Xt represents the dialogue history 139

up to turn t, i.e., Xt = {(R1, U1), . . . , (Rt, Ut)}. 140

2.2 Dialogue State Tracking with Noisy 141

Labels 142

Conventionally, all the state labels are assumed to 143

be correct. However, this assumption may not hold. 144

In practice, dialogue state annotations are error- 145

prone (Han et al., 2020b). There are a couple of 146

reasons. First, the states are usually annotated by 147

crowdworkers to improve the labelling efficiency. 148

Due to limited knowledge, crowdworkers cannot 149

annotate all the states with 100% accuracy, which 150

naturally incurs noisy labels (Han et al., 2020a). 151

Second, the dialogue may span multiple domains, 152

which also increases the labelling difficulty. Ap- 153

parently, the noisy labels are harmful and likely to 154

lead to sub-optimal performance. Therefore, it is 155

crucial to take them into consideration so as to train 156

DST models more robustly. 157

Let B̃t = {(s, ṽt)|s ∈ S} denote the noisy state 158

annotations, where ṽt is the noisy label of slot s at 159

turn t. We use Bt = {(s, vt)|s ∈ S} to denote the 160

noise-free state annotations. Here, vt represents the 161

true label of slot s at turn t, which is unknown. In 162

fact, existing DST approaches are only able to learn 163

a sub-optimal dialogue state tracker F̃ : Xt → B̃t 164

rather than the optimal state tracker F : Xt → Bt, 165

as none of them have considered the influence of 166
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noisy labels. In this work, we aim to learn a robust167

state tracker F∗ that can well approximate F from168

the noisy state annotations B̃t.169

3 Proposed Approach170

We introduce a general framework ASSIST, aiming171

to train DST models robustly from noisy labels.172

We assume that a small clean dataset is accessible.173

Based on this dataset, ASSIST first trains an aux-174

iliary model A. Then, it leverages A to generate175

pseudo labels for each sample in the noisy training176

set. The pseudo state annotations are represented177

as B̆t = {(s, v̆t)|s ∈ S}, where v̆t denotes the178

pseudo label of slot s at turn t. Afterwards, both179

the generated pseudo labels and vanilla noisy labels180

are exploited to train the primary model F∗. That181

is, we intend to learn F∗ : Xt → C(B̆t, B̃t), where182

C(B̆t, B̃t) is a combination of B̆t and B̃t.183

Essentially, any existing DST models can be184

employed as the auxiliary model. However, these185

models may lead to overfitting due to the small size186

of the clean dataset. To tackle this issue, we pro-187

pose a new simple model as the auxiliary model1.188

3.1 Auxiliary Model Architecture189

Figure 2 shows the architecture, which consists of a190

dialogue context semantic encoder, a slot attention191

module, and a slot-value matching module.192

Dialogue Context Semantic Encoder193

Similar to (Lee et al., 2019; Kim et al., 2020; Ye194

et al., 2021b), we utilize the pre-trained language195

model BERT (Devlin et al., 2019) to encode the196

dialogue context Xt into contextual semantic repre-197

sentations. Let Zt = Rt ⊕ Ut be the concatenation198

of the system response and user utterance at turn199

t, where ⊕ denotes the operator of sequence con-200

catenation. Then, the dialogue context Xt can be201

represented as Xt = Z1 ⊕ Z2 ⊕ · · · ⊕ Zt.202

We also concatenate each slot-value pair and de-203

note the representation of the dialogue state at turn204

t as Bt =
⊕

(s,vt)∈Bt,vt 6=none s ⊕ vt, in which205

only non-none slots are included. Bt can serve as206

a compact representation of the dialogue history.207

In view of this, we treat the previous turn dialogue208

state Bt−1 as part of the input as well, which can209

be beneficial when Xt exceeds the maximum input210

length of BERT. The complete input sequence to211

the encoder module is then denoted as:212

It = [CLS]⊕Xt−1⊕Bt−1⊕[SEP ]⊕Zt⊕[SEP ],213

1We adopt existing DST models as the primary model.
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[CLS]

"#$ %&'"#$ − %&' )

%$
*′ ∈ -$

. ∈ /0#12⨁4#12 5#

6#

fixed

fixedfinetune

Figure 2: Overall architecture of the auxiliary model.
The parameters of the BERT used to encode slots and
values are fixed during the training phase.

where [CLS] and [SEP ] are the two special tokens 214

introduced by BERT. 215

Let Ht ∈ R|It|×d be the semantic matrix repre- 216

sentation of It. Here, |It| and d denote the sequence 217

length of It and the BERT output dimension, re- 218

spectively. Then, we have: 219

Ht = BERTfinetune(It), 220

where BERTfinetune means that the BERT model 221

will be fine-tuned during the training phase. 222

For each slot s and its candidate value v′ ∈ Vs, 223

we employ another BERT to encode them into se- 224

mantic vectors hs ∈ Rd and hv
′ ∈ Rd. Here, Vs 225

denotes the candidate value set of slot s. Unlike the 226

dialogue context, we leverage the pre-trained BERT 227

without fine-tuning to embed s and v′. Besides, we 228

adopt the output vector corresponding to the spe- 229

cial token [CLS] as an aggregated representation 230

of slot s and value v′, i.e., 231

hs = BERT
[CLS]
fixed ([CLS]⊕ s⊕ [SEP ]),

hv
′

= BERT
[CLS]
fixed ([CLS]⊕ v′ ⊕ [SEP ]).

232

Slot Attention 233

The slot attention module is exploited to retrieve 234

slot-relevant information for all the slots from the 235

same dialogue context. The slot attention is a multi- 236

head attention (Vaswani et al., 2017). Specifically, 237

the slot representation hs is regarded as the query 238

vector, and the dialogue context representation Ht 239

is taken as both the key matrix and value matrix. 240

The slot attention matches hs to the semantic vector 241

of each word in the dialogue context and calculates 242

the attention score, based on which the slot-specific 243

information can be extracted. Let ast ∈ Rd denote 244
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a d-dimensional vector representation of the related245

information of slot s at turn t, we obtain:246

ast = MultiHead(hs,Ht,Ht).247

ast is expected to be close to the semantic vector248

representation of the true value of slot s.249

Considering that the output of BERT is normal-250

ized by layer normalization (Ba et al., 2016), we251

also feed ast to a layer normalization layer, which252

is preceded by a linear transformation layer. The253

final slot-specific vector gst ∈ Rd is calculated as:254

gst = LayerNorm(Linear(ast )).255

Slot-Value Matching256

The slot-value matching module is utilized to pre-257

dict the value of each slot s. It first calculates the258

distance between the slot-specific representation259

gst and the semantic representation of each candi-260

date value v′ ∈ Vs, i.e., hv
′
. Then, the candidate261

value with the smallest distance is selected as the262

prediction. The `2 norm is adopted to compute the263

distance. Denoting v̂t as the predicted value of slot264

s at turn t, we have:265

v̂t = argmin
v′∈Vs

‖gst − hv
′‖2.266

3.2 Auxiliary Model Training267

We leverage a small clean dataset to train the auxil-268

iary model. Since the true labels are available, the269

auxiliary model is directly trained to maximize the270

joint probability of all slot values. The probability271

of the true value vt of slot s at turn t is defined as:272

p(vt|Xt, s) =
exp (−‖gst − hvt ‖2)∑

v′∈Vs exp (−‖gst − hv′‖2)
,273

where hvt is the semantic representation of vt. Max-274

imizing the joint probability Π(s,vt)∈Btp(vt|Xt, s)275

is equivalent to minimizing the following objective:276

Laux =
∑

(s,vt)∈Bt

− log p(vt|Xt, s).277

3.3 Pseudo Label Generation278

Our approach depends on the auxiliary model A279

to generate pseudo labels B̆t = {(s, v̆t)|s ∈ S} for280

each sample in the noisy training set. In this work,281

we treat each dialogue context Xt rather than the282

entire dialogue as a training sample. Without loss283

of generality, the pseudo label generation process284

is denoted as follows:285

B̆t = A(Xt,S),286

where Xt belongs to the noisy training set.287

3.4 Primary Model Training 288

To reduce the influence of noisy labels, we combine 289

the generated pseudo labels and vanilla noisy labels 290

to train the primary model. 291

Let v̆t and ṽt be the one-hot representation of 292

the pseudo label v̆t and vanilla noisy label ṽt, re- 293

spectively. Then, we can define the combined label 294

as: 295

vct = αv̆t + (1− α)ṽt, 296

where α(0 ≤ α ≤ 1) is a parameter to balance the 297

pseudo labels and vanilla labels. We calculate the 298

probability of vct as below: 299

p(vct |Xt, s) = p(v̆t|Xt, s)αp(ṽt|Xt, s)(1−α). 300

Here, p(v̆t|Xt, s) and p(ṽt|Xt, s) correspond to the 301

probability of v̆t and ṽt, respectively. 302

Let C(B̆t, B̃t) = {(s,vct )|s ∈ S} represent the 303

combined state annotations. The training objective 304

of the primary model is then defined as: 305

Lpri =
∑

(s,vc
t )∈C(B̆t,B̃t)

− log p(vct |Xt, s)

= α
∑

(s,v̆t)∈B̆t

− log p(v̆t|Xt, s)

+ (1− α)
∑

(s,ṽt)∈B̃t

− log p(ṽt|Xt, s)

= αLpseudo + (1− α)Lvanilla,

306

where Lpseudo and Lvanilla correspond to the train- 307

ing objective of using only the pseudo labels and 308

using only the vanilla noisy labels, respectively. By 309

minimizing Lpri, the primary model is trained to 310

learn from the vanilla noisy labels and at the same 311

time imitate the predictions of the auxiliary model. 312

3.5 Theoretical Analysis 313

Since the pseudo labels are generated by the auxil- 314

iary model that has been trained on a small clean 315

dataset, it can be expected that the combined labels 316

are able to serve as a better approximation to the 317

unknown true labels. Let vt denote the one-hot rep- 318

resentation of the unknown true value vt of slot s 319

at turn t. We adopt the mean squared loss to define 320

the approximation error of any corrupted labels v̈t 321

associated with the noisy training set Dn as: 322

Yv̈ =
1

|Dn||S|
∑
Xt∈Dn

∑
s∈S

EDc [‖v̈t − vt‖22], 323

where the expectation ranges over different choices 324

of the clean dataset Dc, and | · | returns the cardi- 325

nality of a set. 326
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Next, we show that the approximation error of327

the combined labels can be smaller than that of ei-328

ther the vanilla noisy labels or the generated pseudo329

labels. The details are presented in Theorem 1.330

Theorem 1. The optimal approximation error with331

respect to the combined labels vct is smaller than332

that of the vanilla labels ṽt and pseudo labels v̆t,333

i.e.,334

min
α
Yvc < min{Yṽ, Yv̆}.335

By setting α = Yṽ
Yṽ+Yv̆

, Yvc reaches its minimum:336

min
α
Yvc =

YṽYv̆
Yṽ + Yv̆

.337

Proof. The proof is presented in Appendix A.338

Theorem 1 indicates that if α is set properly, the339

combined labels can approximate the unknown true340

labels more accurately. Hence, we can potentially341

train the primary model more robustly. Note that342

we cannot calculate the optimal value of α directly.343

4 Experimental Setup344

4.1 Datasets345

We adopt MultiWOZ 2.0 (Budzianowski et al.,346

2018) and MultiWOZ 2.4 (Ye et al., 2021a) as the347

datasets in our experiments. MultiWOZ 2.0 is one348

of the largest publicly available multi-domain task-349

oriented dialogue datasets, including about 10,000350

dialogues spanning seven domains. MultiWOZ 2.4351

is the latest refined version of MultiWOZ 2.0, in352

which the annotations of the validation set and test353

set have been manually rectified and thus are noise-354

free. However, the training set of MultiWOZ 2.4355

is still noisy, as it remains intact and is the same as356

that of MultiWOZ 2.1 (Eric et al., 2020).357

Since the hospital domain and police domain358

never occur in the test set, we use only the remain-359

ing five domains {attraction, hotel, restaurant, taxi,360

train} in our experiments. These domains have 30361

slots in total. Considering that the validation set362

and test set of MultiWOZ 2.0 are noisy, we replace363

them with the counterparts of MultiWOZ 2.4. We364

preprocess the datasets following (Ye et al., 2021b).365

We use the validation set as the small clean dataset.366

4.2 Evaluation Metrics367

We exploit joint goal accuracy and slot accuracy as368

the evaluation metrics. The joint goal accuracy is369

defined as the proportion of dialogue turns in which370

the values of all slots are correctly predicted. It is371

the most important metric in the DST task. The slot 372

accuracy is defined as the average of all individual 373

slot accuracies. The accuracy of an individual slot 374

is calculated as the ratio of dialogue turns in which 375

its value is correctly predicted. 376

We also propose a new evaluation metric, termed 377

as joint turn accuracy. We define joint turn accuracy 378

as the proportion of dialogue turns in which the 379

values of all active slots are correctly predicted. 380

A slot becomes active if its value is mentioned in 381

current turn and is not inherited from previous turns. 382

The advantage of joint turn accuracy is that it can 383

tell us in how many turns the turn-level information 384

is fully captured by the model. 385

4.3 Primary DST Models 386

To verify the effectiveness of the proposed frame- 387

work, we apply the generated pseudo labels to three 388

different primary models. 389

SOM-DST: SOM-DST (Kim et al., 2020) is an 390

open vocabulary-based method. It treats the dia- 391

logue state as an explicit fixed-sized memory and 392

selectively overwrites this memory at each turn. 393

STAR: STAR (Ye et al., 2021b) is a predefined 394

ontology-based method. It leverages a stacked 395

slot self-attention to model the slot dependencies. 396

AUX-DST: We also test using the proposed auxil- 397

iary model as the primary model. For the sake of 398

description, we refer to this model as AUX-DST. 399

4.4 Implementation Details 400

For the auxiliary model, the pre-trained BERT-base- 401

uncased model2 is utilized as the dialogue context 402

encoder. Another pre-trained BERT-base-uncased 403

model with fixed weights is employed to encode 404

the slots and their candidate values. The maximum 405

input length of the BERT model is set to 512. The 406

number of heads in the slot attention module is set 407

to 4. The output dimension of the linear transfor- 408

mation layer is set to 768, which is the same as the 409

dimension of the BERT outputs. Recall that the 410

previous turn dialogue state is treated as part of the 411

input. The ground-truth one is used during training, 412

and the predicted one is used during testing. 413

We train the auxiliary model on the clean valida- 414

tion set and the primary model on the noisy training 415

set. When training the auxiliary model, the noisy 416

2https://huggingface.co/transformers/
model_doc/bert.html
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Primary
Models

Labels MultiWOZ 2.0 MultiWOZ 2.4

Vanilla Pseudo Joint
Goal(%)

Joint
Turn(%) Slot(%) Joint

Goal(%)
Joint

Turn(%) Slot(%)

SOM-DST
3 7 45.14 77.86 96.71 66.78 87.81 98.38
7 3 67.06 87.95 98.47 68.69 88.41 98.55
3 3 70.83 89.14 98.61 75.19 91.02 98.84

STAR
3 7 48.30 78.91 97.10 73.62 90.45 98.85
7 3 70.66 85.93 98.67 71.01 86.31 98.69
3 3 74.12 88.93 98.86 79.41 91.86 99.14

AUX-DST
3 7 45.66 78.76 96.95 70.37 89.31 98.67
7 3 70.39 86.28 98.67 70.68 86.82 98.68
3 3 73.82 88.29 98.84 78.14 91.03 99.07

Table 1: Performance comparison on the test sets of MultiWOZ 2.0 & 2.4. The best scores are highlighted in bold.

training set is leveraged to choose the best model.417

For all primary models, the parameter α is set to418

0.6 on MutliWOZ 2.0 and 0.4 on MultiWOZ 2.4.419

More training details can be found in Appendix B.420

5 Experimental Results421

5.1 Main Results422

Table 1 presents the performance scores of the three423

different primary DST models on the test sets of424

MultiWOZ 2.0 & 2.4 when they are trained using425

our proposed framework ASSIST. For comparison,426

we also include the results when only the vanilla427

labels or only the pseudo labels are used to train428

the primary models.429

As can be seen, ASSIST consistently improves430

the performance of the three primary models on431

both datasets. More concretely, compared to the432

results obtained using only the vanilla labels, AS-433

SIST improves the joint goal accuracy of SOM-434

DST, STAR, and AUX-DST on MultiWOZ 2.0 by435

25.69%, 25.82%, and 28.16% absolute gains, re-436

spectively. On MultiWOZ 2.4, ASSIST also leads437

to 8.41%, 5.79%, and 7.77% absolute joint goal ac-438

curacy gains. From Table 1, we further observe that439

the performance improvements on MultiWOZ 2.4440

are lower than on MultiWOZ 2.0. This is because441

the training set of MultiWOZ 2.4 is the same as442

that of MultiWOZ 2.1 (Eric et al., 2020), in which443

lots of annotation errors have been fixed. We also444

observe that all the primary models demonstrate445

relatively good performance when only the pseudo446

labels are used. From these results, it can be con-447

cluded that the pseudo labels are beneficial and448

they can help us train DST models more robustly.449

Another observation from Table 1 is that SOM-450

DST tends to show comparable or even higher joint451
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Figure 3: Performance comparison on the test sets of
MultiWOZ 2.0 & 2.4 by adopting STAR as the auxil-
iary model. We use lowercase letters in the legend to
show that the models are taken as the auxiliary model.

turn accuracy compared to STAR and AUX-DST, 452

although its performance is worse in terms of joint 453

goal accuracy and slot accuracy. This is because 454

SOM-DST focuses on turn-active slots and copies 455

the values for other slots from previous turns, while 456

both STAR and AUX-DST predict the values of all 457

slots from scratch at each turn. These results show 458

that the joint turn accuracy can help us understand 459

in more depth how different models behave. 460

5.2 Applying STAR as the Auxiliary Model 461

Although any existing DST models can be adopted 462

as the auxiliary model, we chose to propose a new 463

simple one to reduce overfitting. In order to ver- 464

ify the superiority of the proposed model, we also 465

apply STAR as the auxiliary model and compare 466

their performance in Figure 3. We chose STAR 467

due to its good performance, as shown in Table 1. 468

From Figure 3, we observe that all three primary 469

models demonstrate higher performance on both 470

datasets when using the proposed auxiliary model 471

than using STAR as the auxiliary model. The re- 472

sults indicate that the proposed auxiliary model is 473

able to generate pseudo labels with higher quality. 474
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Figure 4: Effects of the parameter α. A
larger α indicates that more emphasis
is put on the pseudo labels.
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Figure 6: Performance of the aux-
iliary model evaluated on the noisy
training set of MultiWOZ 2.4.

5.3 Effects of Parameter α475

The parameter α adjusts the weights of the pseudo476

labels and vanilla labels. Here, we study the effects477

of α by varying its value in the range of 0 to 1 with a478

step size of 0.1. Figure 4 shows the results of AUX-479

DST. As can be seen, α plays an important role in480

balancing the pseudo labels and vanilla labels. The481

best performance is achieved when α is set to 0.6482

on MultiWOZ 2.0 and 0.4 on MultiWOZ 2.4. Since483

the training set of MultiWOZ 2.0 has more noisy484

labels than that of MultiWOZ 2.4, more emphasis485

should be put on its pseudo labels to obtain the best486

performance. It is also noted that the performance487

difference between MultiWOZ 2.0 and MultiWOZ488

2.4 dwindles away as α increases. This is because489

the vanilla labels will contribute less to the training490

of the primary model when α is set to be larger.491

5.4 Effects of the Size of the Clean Dataset492

Considering that our proposed framework ASSIST493

relies on a small clean dataset to train the auxiliary494

model that is further leveraged to generate pseudo495

labels for the training set, it is valuable to explore496

the effects of the size of the clean dataset on the497

performance of the primary model. For this pur-498

pose, we vary the number of dialogues in the clean499

dataset from 500 to 10003 to generate different500

pseudo labels. We then combine these different501

pseudo labels with the vanilla labels to train the502

primary model AUX-DST. The results on Multi-503

WOZ 2.4 are reported in Figure 5. For comparison,504

we also include the results when only the pseudo505

labels or only the vanilla labels are used to train506

the primary model. As can be seen, the size of the507

clean dataset has a great impact on the performance508

of the primary model. Apparently, fewer clean data509

will lead to worse performance. Nevertheless, as510

long as the pseudo labels are combined with the511

3There are 1000 dialogues in total in the validation set.

vanilla labels, the primary model can consistently 512

demonstrate the strongest performance. 513

5.5 Analyses on Pseudo Labels’ Quality 514

The previous experiments have proven the effec- 515

tiveness of the generated pseudo labels in training 516

robust DST models. In this part, we provide further 517

analyses on the quality of the pseudo labels to gain 518

more insights into why they can be beneficial. 519

5.5.1 Quantitative Analysis 520

We first investigate whether the pseudo labels are 521

consistent with the true labels. To achieve this goal, 522

we can compute the joint goal accuracy and joint 523

turn accuracy of the auxiliary model on the training 524

set. However, the true labels of the training set are 525

unavailable. As an alternative, we treat the vanilla 526

noisy labels as true labels (note that only a portion 527

of the vanilla labels are noisy). In this experiment, 528

we also vary the number of clean dialogues to train 529

the auxiliary model. Figure 6 presents the results. 530

As shown in Figure 6, the auxiliary model achieves 531

higher performance when more clean dialogues are 532

utilized to train it. If the entire validation set is 533

used, it achieves around 50% joint goal accuracy 534

and around 75% joint turn accuracy. Given that 535

the vanilla noisy labels are regarded as the true 536

labels, we can conjecture that the true performance 537

is actually higher. This experiment shows that the 538

pseudo labels are consistent with the unknown true 539

labels to some extent and are a good complement 540

to the vanilla noisy labels. 541

5.5.2 Qualitative Analysis 542

To intuitively understand the quality of the pseudo 543

labels, we show four dialogue snippets with their 544

vanilla labels and the generated pseudo labels in 545

Table 2. As can be seen, the vanilla labels of the 546

first two dialogue snippets are incomplete, while all 547

the missing information is presented in the pseudo 548
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Dialogue Context Vanilla Labels Pseudo Labels
[sys]: Sure, da vinci pizzeria is a cheap Italian
restaurant in the area.
[usr]: Would you mind making a reservation for
Thursday at 17:15?

(restaurant-name, da vinci pizzeria)
(restaurant-book day, thursday)
(restaurant-book time, 17:15)

(restaurant-name, da vinci pizzeria)

[sys]: Do you have a preferred section of town?
[usr]: Not really, but I want free wifi and it
should be 4 star.

(hotel-internet, free)
(hotel-stars, 4)

(hotel-area, dontcare)
(hotel-internet, free)

(hotel-stars, 4)

[usr]: I need to find out if there is a train going
to stansted airport that leaves after 12:30.

(train-arriveby, 13:03)
(train-destination, stansted airport)

(train-leaveat, 12:30)

(train-destination, stansted airport)
(train-leaveat, 12:30)

[usr]: I am staying in the west part of Cambridge
and would like to know about some places to go. (attraction-area, west) (attraction-area, west)

(hotel-area, west)

Table 2: Four dialogue snippets with their vanilla labels and the generated pseudo labels. These dialogue snippets
are chosen from the training set of MultiWOZ 2.4. To save space, we only present turn-active slots and their values.

labels. For the third dialogue snippet, the vanilla la-549

bels contain an unmentioned slot-value pair "(train-550

arriveby, 13:03)". This error has also been fixed551

in the pseudo labels. For the last dialogue snippet,552

the vanilla labels are correct. However, the pseudo553

labels introduce an overconfident prediction of the554

value of slot "hotel-area". This case study has ver-555

ified again that the pseudo labels can be utilized556

to fix certain errors in the vanilla labels. However,557

the pseudo labels may bring about some new errors.558

Hence, we should combine the two types of labels.559

6 Related Work560

In this section, we briefly review related work on561

DST and noisy label learning.562

6.1 Dialogue State Tracking563

Recently, DST has got an enormous amount of at-564

tention, thanks to the availability of multiple large-565

scale multi-domain dialogue datasets such as Multi-566

WOZ 2.0 (Budzianowski et al., 2018), MultiWOZ567

2.1 (Eric et al., 2020), RiSAWOZ (Quan et al.,568

2020), and SGD (Rastogi et al., 2020). The most569

popular datasets are MultiWOZ 2.0 and MultiWOZ570

2.1, and lots of DST models have been built on top571

of them (Lee et al., 2019; Wu et al., 2019; Ouyang572

et al., 2020; Hosseini-Asl et al., 2020; Kim et al.,573

2020; Hu et al., 2020; Feng et al., 2020; Ye et al.,574

2021b; Lin et al., 2021; Liang et al., 2021).575

These recent DST models can be grouped into576

two categories: predefined ontology-based models577

and open vocabulary-based models. The predefined578

ontology-based models treat DST as a multi-label579

classification problem and tend to demonstrate bet-580

ter performance (Chen et al., 2020; Zhang et al.,581

2020; Shan et al., 2020; Ye et al., 2021b). The open582

vocabulary-based models leverage either span pre-583

diction (Heck et al., 2020; Gao et al., 2020) or584

sequence generation (Wu et al., 2019; Feng et al., 585

2020; Hosseini-Asl et al., 2020) to extract slot val- 586

ues from the dialogue context directly. 587

Although these DST models have made a huge 588

success, they can only achieve sub-optimal perfor- 589

mance, due to the lack of handling noisy labels. To 590

the best of our knowledge, we are the first to take 591

into account the noisy labels when tackling DST. 592

6.2 Noisy Label Learning 593

Addressing noisy labels in supervised learning is 594

a long-term studied problem (Frénay and Verley- 595

sen, 2013; Song et al., 2020; Han et al., 2020a). 596

This issue becomes more prominent in the era of 597

deep learning, as training deep models generally re- 598

quires a lot of well-labelled data, but it is expensive 599

and time-consuming to collect large-scale datasets 600

with completely clean annotations. This dilemma 601

has sparked a surge of noisy label learning meth- 602

ods (Hendrycks et al., 2018; Zhang and Sabuncu, 603

2018; Song et al., 2019; Wei et al., 2020). Even 604

so, these methods mainly focus on multi-class clas- 605

sification (Song et al., 2020), which makes it not 606

straightforward to apply them to the DST task. 607

7 Conclusion 608

In this work, we have presented a general frame- 609

work ASSIST, aiming to train DST models robustly 610

from noisy labels. ASSIST leverages an auxiliary 611

model that is trained on a small clean dataset to gen- 612

erate pseudo labels for the large noisy training set. 613

The pseudo labels are combined with the vanilla 614

labels to train the primary model. Both theoreti- 615

cal analysis and empirical study have verified the 616

validity of our proposed framework. In the future, 617

we intend to explore more advanced techniques to 618

combine the pseudo labels and vanilla noisy labels. 619
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A Proof of Theorem 1873

Proof. Our proof is based on the bias-variance de-874

composition theorem4. For any sample Xt in the875

noisy training set Dn, the approximation error with876

respect to the pseudo label v̆t of slot s is defined877

as EDc [‖v̆t − vt‖22], which, according to the bias-878

variance decomposition theorem, can be decom-879

posed into a bias term and a variance term, i.e.,880

EDc [‖v̆t − vt‖22] = (BiasDc [v̆t])
2 + VarDc [v̆t],881

where882

BiasDc [v̆t] = ‖EDc [v̆t]− vt‖2,
VarDc [v̆t] = EDc [‖EDc [v̆t]− v̆t‖22].

883

In our approach, the auxiliary model is a BERT-884

based model, which has more than 110M parame-885

ters. Such a complex model is expected to be able886

to capture all the samples in the small clean dataset887

4https://en.wikipedia.org/wiki/
Bias-variance_tradeoff

Dc. Therefore, we can reasonably assume that the 888

bias term is close to zero. Then, we have: 889

BiasDc [v̆t] ≈ 0⇒ EDc [v̆t] ≈ vt. 890

Considering that the pseudo labels are generated 891

by the auxiliary model that is trained on an extra 892

small clean dataset and this clean dataset is inde- 893

pendent of the noisy training set, we can regard the 894

pseudo labels and vanilla labels as independent of 895

each other. Consequently, we obtain: 896

EDc [(ṽt − vt)
T (v̆t − vt)]

= [EDc [ṽt − vt]]
TEDc [v̆t − vt]

= [EDc [ṽt − vt]]
TEDc [v̆t − EDc [v̆t]]

= [EDc [ṽt − vt]]
T0 = 0.

897

Based on the formula above, we can now cal- 898

culate the approximation error with respect to the 899

combined label vct of slot s as below: 900

EDc [‖vct − vt‖22]

= EDc [‖αv̆t + (1− α)ṽt − vt‖22]

= EDc [‖α(v̆t − vt) + (1− α)(ṽt − vt)‖22]

= α2EDc [‖v̆t − vt‖22]

+ (1− α)2EDc [‖ṽt − vt‖22],

901

where the last equality holds because of EDc [(ṽt− 902

vt)
T (v̆t − vt)] = 0. Then, we have: 903

Yvc =
1

|Dn||S|
∑
Xt∈Dn

∑
s∈S

EDc [‖vct − vt‖22]

=
α2

|Dn||S|
∑
Xt∈Dn

∑
s∈S

EDc [‖v̆t − vt‖22]

+
(1− α)2

|Dn||S|
∑
Xt∈Dn

∑
s∈S

EDc [‖ṽt − vt‖22]

= α2Yv̆ + (1− α)2Yṽ.

904

Yvc reaches its minimum when α = Yṽ
Yṽ+Yv̆

, and 905

min
α
Yvc =

YṽYv̆
Yṽ + Yv̆

, (1) 906

which concludes the proof. 907

B Training Details 908

Note that the proposed auxiliary model is also ap- 909

plied as one primary model in our experiments. 910

In both cases, AdamW (Kingma and Ba, 2014) 911

is adopted as the optimizer, and a linear schedule 912

11
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Figure 7: The error rate of each slot on MultiWOZ 2.4.

with warmup is created to adjust the learning rate913

dynamically. The peak learning rate is set to 2.5e-914

5. The warmup proportion is fixed at 0.1. The915

dropout (Srivastava et al., 2014) probability and916

word dropout (Bowman et al., 2016) probability917

are also fixed at 0.1. When taken as the auxiliary918

model, the model is trained for at most 30 epochs919

with a batch size of 8. When taken as the primary920

model, the batch size and training epochs are set to921

8 and 12, respectively. The best model is chosen922

according to the performance on the validation set.923

For SOM-DST and STAR, the default hyperpa-924

rameters are adopted when they are applied as the925

primary model.926

C Additional Experimental Results927

C.1 Error Analysis928

We further investigate the error rate with respect929

to each slot. We adopt AUX-DST as the primary930

model and use AUX-DST(w/o p) to denote the case931

when only the vanilla labels are employed to train932

the model. The results on the test set of MultiWOZ933

2.4 are illustrated in Figure 7, from which we can934

observe that the slot "hotel-type" has the highest935

error rate. Even though the error rate is reduced936

with the aid of the pseudo labels, it is still the high-937

est one among all the slots. This is because the938

labels of this slot are confusing. It is also observed939
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Figure 8: Analyses on the effects of the distribution of
the clean dataset by removing all the dialogues related
to each domain. "w/o all" means no clean data is used.

that the "name"-related slots have relatively high 940

error rates. However, when the pseudo labels are 941

used, their error rates reduce remarkably. Besides, 942

we observe that the error rates of some slots are 943

higher when the pseudo labels are leveraged. This 944

is probably due to the fact that we have used the 945

same parameter α to combine the pseudo labels 946

and vanilla labels of all slots. In practice, the noise 947

rate with respect to each slot in the vanilla labels 948

may not be exactly the same. This observation in- 949

spires us that more advanced techniques should be 950

developed to combine the pseudo labels and vanilla 951

labels, which we leave as our future work. 952

C.2 Effects of the Distribution of the Clean 953

Dataset 954

Except for the size of the clean dataset, the dis- 955

tribution of the clean dataset may also affect the 956

performance of the primary model, especially when 957

the clean dataset has a significantly different distri- 958

bution from the training set. Thus, it is important 959

to study the effects of the distribution of the clean 960

dataset. However, we are short of clean datasets 961

with different distributions. It is also challenging to 962

model the distribution explicitly since the dialogue 963

state may contain multiple labels. To address this 964

issue, we propose to remove all the dialogues that 965

are related to a specific domain and use only the 966

remaining ones as the clean dataset. As thus, we 967

can create multiple clean datasets with different dis- 968

tributions. The results of AUX-DST on MultiWOZ 969

2.4 are shown in Figure 8. As can be observed, al- 970

though different clean datasets indeed lead to differ- 971

ent performance, compared to the situation where 972

no clean data is used (i.e., only the vanilla labels 973

are used to train the model), all these clean datasets 974

still bring huge performance improvements. 975

12


