
Diffusion Prior for Online Decision Making:
A Case Study of Thompson Sampling

Yu-Guan Hsieh ∗

Université Grenoble Alpes
yu-guan.hsieh@univ-grenoble-alpes.fr

Shiva Kasiviswanathan
Amazon

kasivisw@amazon.com

Branislav Kveton
AWS AI Labs

bkveton@amazon.com

Patrick Bloebaum
Amazon

bloebp@amazon.com

Abstract

In this work, we investigate the possibility of using denoising diffusion models to
learn priors for online decision making problems. Our special focus is on the meta-
learning for bandit framework, with the goal of learning a strategy that performs
well across bandit tasks of a same class. To this end, we train a diffusion model that
learns the underlying task distribution and combine Thompson sampling with the
learned prior to deal with new task at test time. Our posterior sampling algorithm
is designed to carefully balance between the learned prior and the noisy observa-
tions that come from the learner’s interaction with the environment. Preliminary
experiments clearly demonstrate the potential of the considered approach.

1 Introduction

Uncertainty quantification is an integral part of online decision making and forms the basis of various
online algorithms that trade-off exploration against exploitation. Among these methods, Bayesian
approaches allow us to quantify the uncertainty using probability distributions, with the help of the
powerful tools of Bayesian inference. Nonetheless, their performance is known to be sensitive to the
choice of prior.
For concreteness, let us consider the problem of stochastic multi-armed bandits (MABs) [2, 10], in
which a learner repeatedly pulls one of the K arms from a given set A = {1, ...,K} and receives
rewards that depend on the learner’s choices. More precisely, when arm a is pulled at round t, the
learner receives reward rt drawn from an arm-dependent distribution Pa. The goal of the learner is
either to i) accumulate the highest possible reward over time (a.k.a. regret-minimization) or to ii) find
the arm with the highest expected reward within a prescribed number of rounds (a.k.a. best-arm
identification).
For both purposes, we need to have a reasonable estimate of the arms’ mean rewards µa =
Era∼Pa [ra]. In general, this would require us to pull each arm a certain number of times, which
becomes inefficient when K is large. While the no-free-lunch principle prevents us from improving
upon this bottleneck in general situations, it is worth noticing that the bandit instances (referred as
tasks hereinafter) that we encounter in most practical problems are far from arbitrary. To name a
few examples, in recommendation systems, each task corresponds to a user with certain underlying
preferences that affect how much they like each item; in online shortest path routing, we operate in
real-world networks that feature specific characteristics. In this regard, introducing such inductive
bias to the learning algorithm would be beneficial. In Bayesian models, this can be expressed through

∗Work done during internship at Amazon.

NeurIPS 2022 Workshop on Score-Based Methods.

the choice of the prior distribution. Moreover, as suggested by the mete-learning paradigm, the prior
itself can also be learned from data, which often leads to superior performance [7, 13].

Our contributions. This work tackles the problem of meta-learning a prior for bandits [1, 3, 11],
with Thompson sampling used as the base algorithm in each task. In order to approximate the
complex priors that arise in practice, we build upon the powerful tools of deep generative modeling,
whose recent progress have enabled impressive results in various areas ranging from image generation
[15] to protein design [21]. Specifically, we propose to meta-learn the prior using denoising diffusion
models [6, 17], and develop an algorithm to perform Thompson sampling under the learned prior.
The designed algorithm strikes a delicate balance between the learned prior and bandit observations,
bearing in mind the importance of having an accurate uncertainty estimate. Through synthetic
experiments, we demonstrate the benefit of the considered approach against several baseline methods.

2 Preliminaries and Problem Description

In this section, we briefly review denoising diffusion models and introduce our meta-learning
framework over a class of bandit tasks. The associated pseudo-codes can be found in Appendix A.

2.1 Denoising Diffusion Probabilistic Model

First introduced by Sohl-Dickstein et al. [17] and recently popularized by Ho et al. [6] and Song and
Ermon [18], denoising diffusion models (or the closely related score-based models) have been shown
to achieve state-of-the-art performance in various data generation tasks. Numerous variants of these
models have been proposed. Below, we mainly adopt the notations and formulation of Ho et al. [6],
with minimal modifications to adapt it to our purpose.
Intuitively speaking, diffusion models learn to approximate a distribution Q0 by training a series of
denoisers with samples drawn from this distribution. Writing q for the probability density function
(assume everything is Lebesgue measurable for simplicity) and X0 for the associated random variable,
we define the forward diffusion process with respect to a sequence of scale factors (αℓ) ∈ (0, 1)L by

q(x1:L |x0) =

L−1∏
ℓ=0

q(xℓ+1 |xℓ), q(Xℓ+1 |xℓ) = N (Xℓ+1;
√
αℓ+1xℓ, (1− αℓ+1)I).

The first equality suggests that the forward process is Markovian, while the second equality implies
that the transition kernel is Gaussian. Further denoting the product of the scale factors by ᾱℓ =∏ℓ

i=1 αi, we then have q(Xℓ |x0) = N (Xℓ;
√
ᾱℓx0, (1− ᾱℓ)I).

The sequence (αℓ) ∈ (0, 1)L is chosen to be decreasing and such that ᾱL ≈ 0. We thus expect
q(Xℓ) ≈ N (0, 1). A denosing diffusion model learns to reverse the diffusion process with a
distribution Pθ over random variables X ′

0:L, in the hope that the marginal distribution Pθ(X
′
0) is a

good approximation of Q0. This is achieved by setting pθ(Xℓ) = N (0, 1), enforcing the learned
reverse process to be Markovian, and modeling pθ(Xℓ |xℓ+1) as a Gaussian parameterized by

pθ(Xℓ |xℓ+1) = q(Xℓ |xℓ+1, X0 = hθ(xℓ+1, ℓ+ 1))︸ ︷︷ ︸
x̂0

∝ q(xℓ+1 |Xℓ)q(Xℓ |X0 = x̂0)︸ ︷︷ ︸
both are Gaussian by construction

. (1)

In the above hθ is the learned denoiser and hθ(xℓ+1, ℓ+ 1) is the predicted clean sample.2

2.2 Meta-Learning of Bandit Tasks

We consider a meta-learning for bandits framework in which the bandit tasks are drawn from an
underlying distribution T . Unlike [3, 11], we focus on the a more standard scenario which features
a meta-train and a meta-test phase. The goal is to learn a good prior using the training set such
that we can perform better once the algorithm is deployed with the learned prior in the test phase.
Mathematically, we can characterize the performance of the algorithm with the so-called transfer
regret [3], defined by RegT (π) = EB∼T RegT (π,B) where π is the algorithm that uses the learned
prior and RegT (π,B) is the regret incurred by the algorithm within task B (see Appendix C).

2To obtain hθ we typically train a neural network with a U-Net architecture. In [6], this network is trained to
output the predicted noise z̄ℓ = (xℓ −

√
ᾱℓhθ(xℓ, ℓ))/

√
1− ᾱℓ.

2

Throughout the work, we assume that the noise in the rewards are Gaussian with known variance σ2.
The learner thus only needs to learn the vector of the mean rewards µ = (µa)a∈A. Accordingly, the
prior is defined as a distribution in RK .

3 Algorithm

In this section, we describe our backbone algorithm for Thompson sampling with diffusion prior.

3.1 Diffusion Model as Prior

Our training data for the diffusion prior can have different forms. For example, these data may be
composed of the interaction history with tasks using some bandit algorithms. How to leverage such
confounded and noisy data to learn a diffusion model is a challenging problem. In this short paper,
we simply assume that the mean vectors of these tasks are known, from which we can apply the
standard diffusion model training process.
Once the diffusion model is learned, we may use it directly as a prior in any downstream tasks.
Nonetheless, the original sampling process of the diffusion model as described in [6] falls short in
providing a good estimate of the variances that reflects the right level of uncertainty. To address
this problem, we propose to further calibrate the variances of the reverse process with a separate
calibration set V . For this, we write

pθ(Xℓ |xℓ+1) =

∫
q(Xℓ |xℓ+1, x0)p

′
θ(x0 |xℓ+1) dx0. (2)

In the above, p′θ(X0 |xℓ+1) is a Gaussian distribution centered at x̂0 = hθ(xℓ+1, ℓ + 1). This is
different from (1) where by analogy we may interpret p′θ(x0 |xℓ+1) dx0 as a Dirac. The covariance
of p′θ(X0 |xℓ+1) is then taken as a diagonal matrix diag(τ2ℓ+1) whose diagonal elements are the
(coordinate-wise) mean squared reconstruction errors of the model on the calibration set V . That
is, we construct Ṽℓ containing pairs (x0, xℓ) with x0 ∈ V and xℓ sampled from Xℓ |x0, and set

τaℓ =
√∑

x0,xℓ∈Ṽℓ
∥xa

0 − ha
θ(xℓ, ℓ)∥2/ card(Ṽℓ). Intuitively, this adjusts how much we rely on the

learned model in the upcoming tasks by taking the reconstruction error as a proxy for its quality.

3.2 Thompson Sampling with Diffusion Prior

Thompson sampling [14, 20] is one of the most popular strategies for tackling stochastic bandits due
to its simplicity and generality. It takes as input a prior distribution for the parameter of interest, and
samples a guess of the parameter from the posterior distribution at each round to determine which arm
to pull. In the MAB setting in Section 1, the parameter of interest is the vector of mean rewards µ. At
each round t, a vector µ̃t is sampled from the posterior distribution determined by the prior and the
interaction history (as, rs)s∈{1,...,t−1}. Subsequently, the learner pulls an arm at ∈ argmaxa∈A µ̃a

t .
In the following we design an algorithm that samples from the posterior distribution when the prior is
described by a diffusion model. While an exact solution does not exist in general, we aim to find a
good approximation that balances well between the meta-learned prior and noisy observations. In
contrast, most existing approaches for posterior sampling with diffusion models focus on the solution
of inverse problems [5, 8, 17, 19], and do not take the underlying uncertainty into account.
To proceed, the general idea of our algorithm is to guide the sample towards the observation during
the sampling process. Formally, let us consider Y0 as a random observation of X0 with known
q(Y0 |X0). For given y0, we are interested in sampling from X0 | y0. We achieve this by going
through the reverse Markovian process, conditioning on Y0 = y0. In fact, to sample from Xℓ | y0, we
only need to first sample xℓ+1 from Xℓ+1 | y0 and then sample xℓ from Xℓ |xℓ+1, y0. Repeating the
process for ℓ = L− 1, . . . , 0 then gives the desired result. Below we briefly explain the initialization
and the recursive steps of our method. Detailed derivation of the algorithm along with alternative
approaches are discussed in Appendix B.

Sampling from XL | y0. For this part, we simply ignore y0 and sample from N (0, 1) as before.

Sampling from Xℓ |xℓ+1, y0 For simplicity, we restrict our attention to the case of multi-armed
bandit. Here, y0 is the interaction history and x0 = µ is the vector of mean rewards, leading to

q(y0 |x0) ∝
t∏

s=1

q(rs |µ, as) =
t∏

s=1

N (rs;µ
as , σ2) [as a function of x0]. (3)

3

We distinguish between two situations.
• Arm a has never been pulled in the first t rounds: We sample the corresponding coordinate xa

ℓ
from the Gaussian distribution q̃(xa

ℓ |xℓ+1, y0) = pθ(xℓ |xℓ+1) introduced in (2).
• Arm a has been pulled in the first t rounds: We denote by µ̂a

t =
∑t

s=1 rs 1{as = a}/Na
t as the

empirical mean and σa
t = σ/

√
Na

t as the adjusted standard deviation, where Na
t is the number

of times that arm a has been pulled up to time t (included). We also write z̄ℓ+1 for the noise
predicted by the denoiser from xℓ+1.3 Then, with ρℓ = ᾱℓ+1(1− ᾱℓ)/(ᾱℓ(1− ᾱℓ+1)), we sample
from the Gaussian distribution q̃(xa

ℓ |xℓ+1, y0) satisfying that

q̃(xa
ℓ |xℓ+1, y0) ∝ pθ(x

a
ℓ |xℓ+1)N

(
xa
ℓ ;
√
ᾱℓµ̂

a
t +

√
1− ᾱℓz̄

a
ℓ+1, ᾱℓ((σ

a
t)

2 + ρℓ(τ
a
ℓ+1)

2)
)
.

In words, we sample xℓ from a Gaussian whose mean is a weighted average of the mean of
pθ(x

a
ℓ |xℓ+1) and a noisy version of the empirical mean µ̂t (only defined for those arms that have

been pulled). Importantly, the noisy version of the observation is computed with the predicted
noise, which distinguishes our work from existing ones such as [19].

4 Numerical Experiments

0 1000 2000 3000 4000 5000
Iterations

0

100

200

300

400

Re
gr

et

UCB
GTS-diag
σ0 = 0.1

GTS-full
DiffTS
σ0 = 0.05

0 1000 2000 3000 4000 5000
Iterations

0

50

100

150

200
Re

gr
et

UCB
GTS-diag
σ0 = 0.1

GTS-full
DiffTS
σ0 = 0.05

Fig. 1: Average regret over 100 tasks of
different algorithms in the two problems.
Shaded areas represent standard errors.

In this section, we illustrate the benefit of using diffusion
prior through two synthetic experiments. Missing details can
be found in Appendix C.

Problem construction. For the two problems, we fix σ =
0.1 and construct the means as follows
1. Labeled Arms Problem. Let K = 500. In this problem,

each arm is associated to 7 of the 50 labels. For each
bandit task, we randomly pick 7 labels; the expected
reward of an arm is positively correlated to the number of
labels that fall into the intersection of the arm’s labels and
the task’s labels. This is a simplest model for modeling
user preferences over a list of items.

2. Popular and Niche Problem. Let K = 200. In this
problem, the arms are separated into 40 groups, each of
size 5. Among these, 20 groups of arms tend to have high
expected rewards but these arms are never the optimal
ones. The other 20 groups of arms have lower expected
rewards in general but contain the optimal arm. This represents a situation where Gaussian prior
can lead to poor performance due to its inability to model multi-modal distributions.

Training and baselines. In terms of algorithms, we compare our method, DiffTS, with UCB and
Thompson sampling with Gaussian prior using either diagonal or full covariance matrix (GTS-diag
and GTS-full). For each algorithm, we test two configurations: either the algorithm is given the true
standard deviation σ′ = 0.1 or an underspecified standard deviation σ′ = 0.05.
To train the diffusion model, we use a training set of 5000 samples and a calibration set of 1000
samples. The 6000 samples put together are also used to compute the means and the covariances
used by the Gaussian Thompson sampling algorithms. To test the performance of the algorithms, we
sample another 100 bandit tasks and run the aforementioned algorithms on these tasks.

Results. We report the regrets of the algorithms averaged over the 100 test tasks in Figure 1 (the
top and the bottom figures correspond respectively to the Labeled Arms and the Popular and
Niche problem). We verify that using a diffusion prior which describes better the task distribution
indeed helps achieve smaller regret. However, the amount of improvement varies. In the Labeled
Arms problem, learning the correlation between arms already lower the regret significantly, and the
assumed noise standard deviation σ′ seems to have a greater impact. In the Popular and Niche
problem, using a Gaussian prior with full covariance matrix however leads to poor performance, and
the ability of denoising diffusion models to model complex distribution helps greatly here.

3It holds that xℓ+1 =
√
ᾱℓ+1hθ(xℓ+1, ℓ+ 1) +

√
1− αℓ+1z̄ℓ+1.

4

References

[1] Soumya Basu, Branislav Kveton, Manzil Zaheer, and Csaba Szepesvári. No regrets for learning the prior
in bandits. Advances in Neural Information Processing Systems, 34:28029–28041, 2021.

[2] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed
bandit problems. Foundations and Trends in Machine Learning, 5(1):1–122, 2012.

[3] Leonardo Cella, Alessandro Lazaric, and Massimiliano Pontil. Meta-learning with stochastic linear bandits.
In International Conference on Machine Learning, pages 1360–1370. PMLR, 2020.

[4] Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using diffusion
models with self-conditioning. arXiv preprint arXiv:2208.04202, 2022.

[5] Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models as plug-and-
play priors. arXiv preprint arXiv:2206.09012, 2022.

[6] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[7] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):5149–5169,
2021.

[8] Bahjat Kawar, Gregory Vaksman, and Michael Elad. Snips: Solving noisy inverse problems stochastically.
Advances in Neural Information Processing Systems, 34:21757–21769, 2021.

[9] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile diffusion
model for audio synthesis. In International Conference on Learning Representations, 2020.

[10] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[11] Amit Peleg, Naama Pearl, and Ron Meir. Metalearning linear bandits by prior update. In International
Conference on Artificial Intelligence and Statistics, pages 2885–2926. PMLR, 2022.

[12] Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising diffusion
models for multivariate probabilistic time series forecasting. In International Conference on Machine
Learning, pages 8857–8868. PMLR, 2021.

[13] Jonas Rothfuss, Dominique Heyn, Andreas Krause, et al. Meta-learning reliable priors in the function
space. Advances in Neural Information Processing Systems, 34:280–293, 2021.

[14] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on
thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.

[15] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-
image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022.

[16] Max Simchowitz, Christopher Tosh, Akshay Krishnamurthy, Daniel J Hsu, Thodoris Lykouris, Miro
Dudik, and Robert E Schapire. Bayesian decision-making under misspecified priors with applications to
meta-learning. Advances in Neural Information Processing Systems, 34:26382–26394, 2021.

[17] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning, pages
2256–2265. PMLR, 2015.

[18] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 32, 2019.

[19] Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical imaging with
score-based generative models. In International Conference on Learning Representations, 2021.

[20] William R Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3-4):285–294, 1933.

[21] Zachary Wu, Kadina E Johnston, Frances H Arnold, and Kevin K Yang. Protein sequence design with
deep generative models. Current opinion in chemical biology, 65:18–27, 2021.

5

Appendix

A Missing Pseudo Codes

Algorithm 1 Meta Learning for Bandits with Diffusion Models
1: Meta Training
2: Input: A set of expected means (µB)B from different tasks B ∼ T
3: Train a diffusion model (a denoiser) hθ to model the distribution of the mean rewards
4: Calibration
5: Input: A set of expected means (µB)B from different tasks B ∼ T
6: Compute the mean squared reconstruction error (τ2ℓ)ℓ∈{1,...,L} for the denoiser hθ at different

noise levels to calibrate the variance
7: Meta Test / Deployment
8: For any new task B, run Thompson sampling with diffusion prior using the trained model

Algorithm 2 Thompson Sampling with Diffusion Prior (DiffTS)

1: Input: Learned denoiser (diffusion model) hθ, reconstruction errors (τ2ℓ)ℓ∈{1,...,L}, presumed
noise standard deviation σ′

2: for t = 1, . . . do
3: Sample xL ∼ N (0, I)
4: for ℓ ∈ L− 1, . . . , 0 do
5: Predict clean sample x̂0 = hθ(xℓ+1, ℓ+ 1) and associated noise z̄ℓ+1

6: Compute diffused observation ỹaℓ =
√
ᾱℓµ̂

a
t−1 +

√
1− ᾱℓz̄ℓ+1

7: for a ∈ A do
8: If Na

t−1 = 0, sample xa
ℓ ∼ pθ(X

a
ℓ |xℓ+1)

9: If Na
t−1 > 0, sample

xa
ℓ ∼ q̃(Xa

ℓ |xℓ+1, y0) ∝ pθ(X
a
ℓ |xℓ+1)N

(
Xa

ℓ ; ỹaℓ , ᾱℓ((σ
a
t)

2 + ρℓ(τ
a
ℓ+1)

2
)

10: end for
11: end for
12: Pull arm at ∈ argmaxa∈A xa

0
13: Update number of pulls Na

t , scaled std σa
t , and empirical reward µ̂a

t for a ∈ A
14: end for

B Posterior Sampling: Algorithms and Derivation

Below we provide two approximations to sample from XL |xℓ+1, y0. The first one is easier to derive
but the second one consistently achieves better performance in our experiments.4 We thus utilize the
second approach in Sections 3 and 4.

1. Approach 1, acting on x0. We write

q(xℓ |xℓ+1, y0) =

∫
q(xℓ, y0, x0 |xℓ+1) dx0

q(y0 |xℓ+1)
=

∫
q(y0 |x0)q(xℓ |x0, xℓ+1)q(x0 |xℓ+1) dx0

q(y0 |xℓ+1)
.

(4)
As in Section 3.1, we approximate q(x0 |xℓ+1) by

p′θ(x0 |xℓ+1) = N (x0;hθ(xℓ+1, ℓ+ 1),diag(τ2ℓ+1)).

4We conjecture this is because the first approach leads to results that are less consistent with the observations.

6

Then, if q(Y0 |x0) is also Gaussian, the integral in (4) with q(x0 |xℓ+1) replaced by p′θ(x0 |xℓ+1)
can be computed in close form.

For further illustration, we focus on the case of multi-armed bandits where the relation between
y0 the interaction history and x0 = µ the mean reward vector is given by (3). The approximate
distribution of Xℓ |xℓ+1, y0 is thus independent across coordinates (arms) and we can compute
the density individually for each arm, which we denote by q̃(xa

ℓ |xℓ+1, y0). It is computed using
(4) with q(x0 |xℓ+1) ≈ p′θ(x0 |xℓ+1) followed by a normalization.

When arm a has never been pulled, q̃(xa
ℓ |xℓ+1, y0) is nothing but pθ(xa

ℓ |xℓ+1). Otherwise,
q̃(xa

ℓ |xℓ+1, y0) is computed first using the fact that

q(ya0 |xa
0)p

′
θ(x

a
0 |xℓ+1) ∝ N

xa
0 ;

µ̂a
t /(σ

a
t)

2 + ha
θ(xℓ+1, ℓ+ 1)/(τaℓ+1)

2

1/(σa
t)

2 + 1/(τaℓ+1)
2︸ ︷︷ ︸

x̂a
0

,
1

1/(σa
t)

2 + 1/(τaℓ+1)
2︸ ︷︷ ︸

(σ̂a)2

 .

Next, with

q(xa
ℓ |x0, xℓ+1) = N

xa
ℓ ;

√
ᾱℓβℓ+1

1− ᾱℓ+1︸ ︷︷ ︸
π1

xa
0 +

√
αℓ+1(1− ᾱℓ)

1− ᾱℓ+1︸ ︷︷ ︸
π2

xa
ℓ+1,

(1− ᾱℓ)βℓ+1

1− ᾱℓ+1

 ,

we see that we just need to replace xa
0 by x̂a

0 and augment the variance by π2
1(σ̂

a)2 when sampling
xa
ℓ . Compared to the case where y0 is not given, the main difference lies in that we first change

the estimated x̂0 before sampling xℓ.

2. Approach 2, acting on xℓ. Alternatively, we may write

q(xℓ |xℓ+1, y0) =
q(xℓ |xℓ+1)q(y0 |xℓ, xℓ+1)

q(y0 |xℓ+1)
=

q(xℓ |xℓ+1)
∫
q(y0 |x0)q(x0 |xℓ, xℓ+1) dx0

q(y0 |xℓ+1)
.

(5)
To begin, we use pθ(xℓ |xℓ+1) to approximate q(xℓ |xℓ+1). Next, one natural way to tackle the
integral is to use q(x0 |xℓ, xℓ+1) = q(x0 |xℓ) ≈ p′θ(x0 |xℓ). In the simplest case q(y0 |x0) =
N (y0;x0, σ

2I), and we deduce∫
q(y0 |x0)p

′
θ(x0 |xℓ) dx0 = N (y0;hθ(xℓ, ℓ), σ

2I + diag(τ2ℓ)).

Nonetheless, as the denoiser hθ can be arbitrarily complex, this does not lead to a close form
expression to sample xℓ. We may resort to Langevin dynamics sampling, i.e., taking gradient steps
on xℓ to make sure the denoised result is coherent with y0. This is a general approach that may be
of interest for arbitrary conditional distribution Y0 |X0, but we have simpler solution when the
noise is Gaussian. In fact, it holds that

Xℓ =
√
ᾱℓX0 +

√
1− ᾱℓZ̄ℓ and Xℓ+1 =

√
αℓ+1Xℓ +

√
1− αℓZℓ+1,

where both Z̄ℓ and Zℓ+1 are random variable with distribution N (0, I). This results in

Xℓ+1 =
√
ᾱℓ+1X0 +

√
1− ᾱℓ+1Z̄ℓ+1

for

Z̄ℓ+1 =

√
αℓ+1(1− ᾱℓ)

1− ᾱℓ+1
Z̄ℓ +

√
1− αℓ+1

1− ᾱℓ+1
Zℓ+1.

7

Therefore, we may take Z̄ℓ+1 as a reasonable approximation of Z̄ℓ, while sampling Z̄ℓ+1 is
basically the same as sampling from p′θ(X0 |xℓ+1). To summarize, we write

q(x0 |xℓ, xℓ+1) = q

(
Z̄ℓ =

xℓ −
√
ᾱℓx0√

1− ᾱℓ

∣∣∣xℓ, xℓ+1

)
≈ q

(
Z̄ℓ+1 =

xℓ −
√
ᾱℓx0√

1− ᾱℓ

∣∣∣xℓ, xℓ+1

)
= q

(
X0 =

1
√
ᾱℓ+1

(
xℓ+1 −

(
xℓ −

√
ᾱℓx0

)√1− ᾱℓ+1

1− ᾱℓ

) ∣∣∣xℓ, xℓ+1

)
≈ p′θ

(
X0 =

1
√
ᾱℓ+1

(
xℓ+1 −

(
xℓ −

√
ᾱℓx0

)√1− ᾱℓ+1

1− ᾱℓ

) ∣∣∣xℓ+1

)
= N

(√
ᾱℓ(1− ᾱℓ+1)

ᾱℓ+1(1− ᾱℓ)
x0 +

xℓ+1√
ᾱℓ+1

−

√
(1− ᾱℓ+1)

ᾱℓ+1(1− ᾱℓ)
xℓ ;

hθ(xℓ+1, ℓ+ 1),diag(τ2ℓ+1)

)

=
√
ρℓ N

(
x0 ;

1√
ᾱℓ

(xℓ −
√
1− ᾱℓz̄ℓ+1), ρℓ diag(τ

2
ℓ+1)

)
,

where ρℓ = ᾱℓ+1(1− ᾱℓ)/(ᾱℓ(1− ᾱℓ+1)) and z̄ℓ+1 represents the noise predicted by the denoiser
from xℓ+1, that is,

z̄ℓ+1 =
xℓ+1 −

√
ᾱℓ+1hθ(xℓ+1, ℓ+ 1)√
1− ᾱℓ+1

.

Then, focusing on the arm that has been pulled at least once and ignoring the multiplicative
constant that does not depend on xℓ, we get

q(ya0 |xℓ) =

∫
q(ya0 |xa

0)q(x
a
0 |xℓ, xℓ+1) dx0

≈ √
ρℓ

∫
q(ya0 |xa

0)N
(
xa
0 ;

1√
ᾱℓ

(xa
ℓ −

√
1− ᾱℓz̄

a
ℓ+1), ρℓ(τ

a
ℓ+1)

2

)
dx0

∝
∫

N
(
xa
0 ; µ̂

a
t , (σ

a
t)

2
)
N
(
xa
0 ;

1√
ᾱℓ

(xa
ℓ −

√
1− ᾱℓz̄

a
ℓ+1), ρℓ(τ

a
ℓ+1)

2

)
dx0

= N
(
µ̂a
t ;

1√
ᾱℓ

(xa
ℓ −

√
1− ᾱℓz̄

a
ℓ+1), (σ

a
t)

2 + ρℓ(τ
a
ℓ+1)

2

)
∝ N

(
xa
ℓ ;
√
ᾱℓµ̂

a
t +

√
1− ᾱℓz̄

a
ℓ+1, ᾱℓ((σ

a
t)

2 + ρℓ(τ
a
ℓ+1)

2).
)

Subsequently, we can approximate the posterior distribution of xℓ using (5)

q̃(xa
ℓ |xℓ+1, y0) ∝ pθ(x

a
ℓ |xℓ+1)N

(
xa
ℓ ;
√
ᾱℓµ̂

a
t +

√
1− ᾱℓz̄

a
ℓ+1, ᾱℓ((σ

a
t)

2 + ρℓ(τ
a
ℓ+1)

2)
)
.

This results in the algorithm that we present in Section 3.2.

C Missing Experimental Details

In this section, we provide missing experimental details mainly concerning the used diffusion models
and the construction of the problem instances. All the simulations are run on an Amazon p3.2xlarge
instance equipped with an NVIDIA Tesla V100 GPU.

Diffusion models. In our experiments, we set the diffusion steps of the diffusion models to L = 100
and adopt a linear variance schedule from 1− α1 = 10−4 to 1− αL = 0.1. Moreover, the models
are trained to predict the clean sample x0 instead of the noise z̄ℓ since it is reported in [4] that this
leads to better performance when the data are binary, and as explained below and shown in Figures 2
and 3, the mean rewards of the two considered tasks are nearly binary.
The denoiser itself is a 1-dimensional U-Net adapted from [9, 12]. We use 5 residual blocks, each
block containing 6 residual channels. These numbers are rather arbitrary and do not seem to affect

8

much our results. More importantly, since the patterns that we want to learn do not have the spatial
correlation that convolutional layers are designed for, we add a fully connected layer at the beginning
to map the input to a vector of size 128 × 6, before reshaping these vectors into 6 channels and
feeding them to the convolutional layers. In a similar fashion, we also replace the last layer of the
architecture by a fully connected layer. We find out that these minimal modification already enable
the model to perform well on our problems, but believe a thorough investigation into the architecture
design would further benefit our approach.
These diffusion models are then trained with Adam for 15000 steps, with a learning rate of 5× 10−4,
with a batch size fixed at 128 (which corresponds to 384 epochs).

Construction of bandit instances. We now give more details on how the mean reward vectors
are constructed in the two problems. Some illustrations of the constructed instances and the vectors
generated by the trained diffusion models are provided in Figures 2 and 3.

1. Labeled Arms (K = 500). As described in Section 4, in our first problem we are provided a
set of 50 labels L = {1, ..., 50}. Each arm is associated to a subset La of these labels with size
card(La) = 7. To sample a new bandit task B, we randomly draw a set LB ⊆ L again with size
7. Then for each arm a, we set µ̄a = 1− 1/4card(L

a ∩LB). Finally, to obtain the mean rewards
µ, we perturb the coordinates of µ̄ by independent Gaussian noises of standard deviation 0.1 and
scale the resulting vector to the range [0, 1].

2. Popular and Niche (K = 200). The arms are split into 40 groups of equal size. Conceptually,
20 of these groups represent the ‘popular’ items while the other 20 represent the ‘niche’ items. For
each bandit task, we first construct a vector µ̄ whose coordinates’ values default to 0. However,
we randomly choose 1 to 3 groups of niche items and the value of each of these items is set to 1
with probability 0.7 (independently across the selected items). Similarly, we randomly choose 15
to 17 groups of popular items and set their values to 0.8. Then, to construct the mean reward
vector µ, we perturb the values of µ̄ by independent Gaussian noises with standard deviation of
0.1. After that, we clip the values of the popular items to make them smaller than 0.95 and clip
the entire vector to the range [0, 1].

UCB. The most standard implementation of the UCB algorithm sets the upper confidence bound to

Ua
t = µ̂a

t + σ′

√
log t

Na
t

. (6)

Instead, in our experiments we use Ua
t = µ̂a

t + σ′/
√

Na
t . Eq. (6) is more conservative than our

implementation. However, looking at Figure 1, we figure out that UCB without the log t factor is
already the most conservative algorithm in our experiments. Therefore, while in the long term UCB
with (6) may achieve lower regret, with limited budget Thompson sampling with a wrong but good
enough prior would generally be preferable [16].

Regret. For sake of completeness, we state here the definition of the (pseudo-)regret with respect
to a sequence of arms (at)t∈{1,...,T} in a single bandit task. Let a⋆ ∈ argmaxa∈A µa be an optimal
arm. It is defined as RegT = Tµa⋆ −

∑T
t=1 µ

at .

9

(a) The mean reward vectors of 100 constructed bandit tasks.

(b) The mean reward vectors of 80 constructed bandit tasks, grouped by labels and showing only 5 labels.
Note that each arm has multiple labels and thus appears in multiple groups.

(c) 80 mean reward vectors generated by the trained diffusion model, grouped by labels and showing only 5
labels. Note that each arm has multiple labels and thus appears in multiple groups.

Fig. 2: Visualization of the mean reward vectors constructed in the Labeled Arms problem. Rows and columns
correspond to tasks and arms. The darker the color the higher the value, with white and black representing
respectively µa = 0 and µa = 1. While human eyes can barely recognize any pattern in the constructed vectors,
diffusion models manage to learn the underlying patterns that become recognizable by humans only when the
arms are grouped in a specific way.

10

(a) The mean reward vectors of 50 constructed bandit tasks.

(b) The mean reward vectors of 50 constructed bandit tasks. Reordered to put the arms of the same group
together. The popular arms are on the right side of the figure.

(c) 50 mean reward vectors generated by the trained diffusion model. Reordered to put the arms of the same
group together. The popular arms are on the right side of the figure.

Fig. 3: Visualization of the mean reward vectors constructed in the Popular and Niche problem. Rows
and columns correspond to tasks and arms. The darker the color the higher the value, with white and black
representing respectively µa = 0 and µa = 1. Diffusion models manage to learn the underlying patterns that
become recognizable by humans only when the arms are grouped in a specific way.

11

	1 Introduction
	2 Preliminaries and Problem Description
	2.1 Denoising Diffusion Probabilistic Model
	2.2 Meta-Learning of Bandit Tasks

	3 Algorithm
	3.1 Diffusion Model as Prior
	3.2 Thompson Sampling with Diffusion Prior

	4 Numerical Experiments
	A Missing Pseudo Codes
	B Posterior Sampling: Algorithms and Derivation
	C Missing Experimental Details

